32 |
private: |
private: |
33 |
// |
// |
34 |
PamLevel2 *L2; |
PamLevel2 *L2; |
35 |
|
Bool_t debug; |
36 |
|
Bool_t usetrack; |
37 |
// |
// |
38 |
// needed to avoid reprocessing the same event over and over to obtain the variables |
// needed to avoid reprocessing the same event over and over to obtain the variables |
39 |
// |
// |
41 |
UInt_t PKT; |
UInt_t PKT; |
42 |
UInt_t atime; |
UInt_t atime; |
43 |
Int_t tr; |
Int_t tr; |
44 |
|
Int_t sntr; |
45 |
// |
// |
46 |
Int_t interplane; ///< Number of available dE/dx measurements before interaction or exit from the calo (interaction plane) |
Int_t interplane; ///< Number of available dE/dx measurements before interaction or exit from the calo (interaction plane) |
47 |
Int_t N; ///< Number of dE/dx measurements to be used to calculate qpremeanN, default N = 5 |
Int_t N; ///< Number of dE/dx measurements to be used to calculate qpremeanN, default N = 5 |
48 |
Int_t R; ///< Number of strip to be used around the trajectory to calculate qpremeanN, default R = 3 |
Int_t R; ///< Number of strip to be used around the trajectory to calculate qpremeanN, default R = 3 |
49 |
|
Int_t UN; ///< Number of dE/dx measurements really used to calculate qpremeanN |
50 |
Float_t preq; ///< Energy release (MIP) up to the interaction plane (included) |
Float_t preq; ///< Energy release (MIP) up to the interaction plane (included) |
51 |
Float_t postq; ///< Energy release (MIP) from the interaction plane (excluded) up to the last plane |
Float_t postq; ///< Energy release (MIP) from the interaction plane (excluded) up to the last plane |
52 |
|
Float_t stdedx1; ///< Energy release (MIP) on the first Silicon detector (Y EVEN) around the strip with maximum energy release (no track information). |
53 |
Float_t dedx1; ///< Energy release (MIP) along the track on the first Silicon detector (Y EVEN). |
Float_t dedx1; ///< Energy release (MIP) along the track on the first Silicon detector (Y EVEN). |
54 |
Float_t dedx3; ///< Energy release (MIP) along the track on the first three Silicon detectors (Y EVEN, X EVEN, Y ODD). |
Float_t dedx3; ///< Energy release (MIP) along the track on the first three Silicon detectors (Y EVEN, X EVEN, Y ODD). |
55 |
Float_t qpremean; ///< Truncated mean (MIP) along the track up to the interaction plane preq using three points |
Float_t qpremean; ///< Truncated mean (MIP) along the track up to the interaction plane preq using three points |
56 |
Float_t qpremeanN; ///< Truncated mean (MIP) along the track up to the interaction plane preq using N points |
Float_t qpremeanN; ///< Truncated mean (MIP) along the track up to the interaction plane preq using N points |
57 |
|
Float_t qNmin1; ///< Truncated mean (MIP) along the track using N-1 measurements before of the interaction plane |
58 |
|
Float_t maxrel; ///<Energy maximum release on first Calorimeter plane (dedx of strip with maximum release) |
59 |
Float_t ethr; ///< Threshold (MIP) needed to find the interaction plane |
Float_t ethr; ///< Threshold (MIP) needed to find the interaction plane |
60 |
Bool_t multhit; ///< True if the interaction plane has been determined by multiple hit counting |
Bool_t multhit; ///< True if the interaction plane has been determined by multiple hit counting |
61 |
Bool_t gap; ///< True if determining the interaction plane a big (>5 planes) gap has been found between a point and another along the track |
Bool_t gap; ///< True if determining the interaction plane a big (>5 planes) gap has been found between a point and another along the track |
62 |
// |
Float_t charge_siegen1; |
63 |
|
Float_t ZCalo_dedx_b; //Z from Calo using dedx in first Calorimeter plane vs. beta |
64 |
|
Float_t ZCalo_maxrel_b; //Z from Calo using maximum release in first Calorimeter plane vs. beta |
65 |
|
Float_t ZCalo_dedx_defl; //Z from Calo using dedx in first Calorimeter plane vs. rigidity |
66 |
|
Float_t ZCalo_Nmin1_defl; //Z from Calo using truncated mean on N-1 Calorimeter planes (plane N+1 is the interaction plane) vs. rigidity |
67 |
|
// |
68 |
|
Float_t qNmin1_w; |
69 |
|
Int_t S2; |
70 |
public: |
public: |
71 |
// |
// |
72 |
// |
// |
73 |
|
//char* version(); |
74 |
|
|
75 |
Int_t Get_interplane(){ Process(); return interplane;}; ///< Number of available dE/dx measurements before interaction or exit from the calo (interaction plane) |
Int_t Get_interplane(){ Process(); return interplane;}; ///< Number of available dE/dx measurements before interaction or exit from the calo (interaction plane) |
76 |
Int_t Get_N(){ return N;}; ///< Number of available dE/dx measurements before interaction or exit from the calo (interaction plane) |
Int_t Get_N(){ return N;}; ///< Number of dE/dx measurements to be used to calculate qpremeanN, default N = 5 |
77 |
|
Int_t Get_UsedN(){ return UN;}; ///< Number of dE/dx measurements really used to calculate qpremeanN |
78 |
Int_t Get_R(){ return R;}; ///< Number of strip to be used around the trajectory to calculate qpremeanN, default R = 3 |
Int_t Get_R(){ return R;}; ///< Number of strip to be used around the trajectory to calculate qpremeanN, default R = 3 |
79 |
Float_t Get_preq(){ Process(); return preq;}; ///< Energy release (MIP) up to the interaction plane (included) |
Float_t Get_preq(){ Process(); return preq;}; ///< Energy release (MIP) up to the interaction plane (included) |
80 |
Float_t Get_postq(){ Process(); return postq;}; ///< Energy release (MIP) from the interaction plane (excluded) up to the last plane |
Float_t Get_postq(){ Process(); return postq;}; ///< Energy release (MIP) from the interaction plane (excluded) up to the last plane |
81 |
|
Float_t Get_StdEdx1(){ Process(); return stdedx1;}; ///< Energy release (MIP) on the first Silicon detector (Y EVEN) around the strip with maximum energy release (no track information, 3 strips in total). |
82 |
Float_t Get_dEdx1(){ Process(); return dedx1;}; ///< Energy release (MIP) along the track on the first Silicon detector (Y EVEN). |
Float_t Get_dEdx1(){ Process(); return dedx1;}; ///< Energy release (MIP) along the track on the first Silicon detector (Y EVEN). |
83 |
Float_t Get_dEdx3(){ Process(); return dedx3;}; ///< Energy release (MIP) along the track on the first three Silicon detectors (Y EVEN, X EVEN, Y ODD). |
Float_t Get_dEdx3(){ Process(); return dedx3;}; ///< Energy release (MIP) along the track on the first three Silicon detectors (Y EVEN, X EVEN, Y ODD). |
84 |
Float_t Get_qpremean(){ Process(); return qpremean;}; ///< Truncated mean (MIP) along the track up to the interaction plane preq using three points |
Float_t Get_qpremean(){ Process(); return qpremean;}; ///< Truncated mean (MIP) along the track up to the interaction plane preq using three points |
85 |
Float_t Get_qpremeanN(){ Process(); return qpremeanN;}; ///< Truncated mean (MIP) along the track up to the interaction plane preq using N points |
Float_t Get_qpremeanN(){ Process(); return qpremeanN;}; ///< Truncated mean (MIP) along the track up to the interaction plane preq using N points |
86 |
|
Float_t Get_qNmin1(){ Process(); return qNmin1;}; ///< Truncated mean (MIP) along the track using N-1 measurements before of the interaction plane |
87 |
|
Float_t Get_maxrel(){ Process(); return maxrel;}; ///<Energy maximum release on first Calorimeter plane (dedx of strip with maximum release) |
88 |
Float_t Get_ethr(){ Process(); return ethr;}; ///< Threshold (MIP) needed to find the interaction plane |
Float_t Get_ethr(){ Process(); return ethr;}; ///< Threshold (MIP) needed to find the interaction plane |
89 |
Bool_t IsMulthit(){ Process(); return multhit;}; ///< True if the interaction plane has been determined by multiple hit counting |
Bool_t IsMulthit(){ Process(); return multhit;}; ///< True if the interaction plane has been determined by multiple hit counting |
90 |
// |
// |
91 |
|
Float_t Get_charge_siegen1(){ Process(); return charge_siegen1;}; ///< charge Siegen method stdedx1 vs. beta |
92 |
|
Float_t Get_ZCalo_dedx_b(){ Process(); return ZCalo_dedx_b;}; //Z from Calo using dedx (or StdEdx) in first Calorimeter plane vs. beta |
93 |
|
Float_t Get_ZCalo_maxrel_b(){ Process(); return ZCalo_maxrel_b;}; //Z from Calo using maximum release in first Calorimeter plane vs. beta |
94 |
|
Float_t Get_ZCalo_dedx_defl(){ Process(); return ZCalo_dedx_defl;}; //Z from Calo using dedx in first Calorimeter plane vs. rigidity |
95 |
|
Float_t Get_ZCalo_Nmin1_defl(){ Process(); return ZCalo_Nmin1_defl;}; //Z from Calo using truncated mean on N-1 Calorimeter planes (plane N+1 is the interaction plane) vs. rigidity |
96 |
|
|
97 |
|
// |
98 |
void Set_N(Int_t n){ N=n;}; |
void Set_N(Int_t n){ N=n;}; |
99 |
void Set_R(Int_t r){ R=r;}; |
void Set_R(Int_t r){ R=r;}; |
100 |
// |
// |
102 |
CaloNuclei(PamLevel2 *L2); |
CaloNuclei(PamLevel2 *L2); |
103 |
~CaloNuclei(){ Delete(); }; |
~CaloNuclei(){ Delete(); }; |
104 |
// |
// |
105 |
|
void SetDebug(Bool_t d){ debug=d; }; |
106 |
|
void UseTrack(Bool_t d){ usetrack=d; }; |
107 |
|
// |
108 |
void Clear(); |
void Clear(); |
109 |
void Clear(Option_t *option){Clear();}; |
void Clear(Option_t *option){Clear();}; |
110 |
void Delete(); |
void Delete(); |
111 |
|
void Delete(Option_t *option){Delete();}; |
112 |
// |
// |
113 |
void Process(); ///< Process data for track number 0 |
void Process(); ///< Process data for track number 0 |
114 |
void Process(Int_t ntr); ///< Process data for track number ntr |
void Process(Int_t ntr); ///< Process data for track number ntr |
115 |
void Print(); |
void Print(); |
116 |
|
void Print(Option_t *option){Print();}; |
117 |
// |
// |
118 |
ClassDef(CaloNuclei,1); |
ClassDef(CaloNuclei,2); |
119 |
}; |
}; |
120 |
|
|
121 |
#endif |
#endif |