/[PAMELA software]/calo/flight/CaloFranzini/src/Calib.cpp
ViewVC logotype

Contents of /calo/flight/CaloFranzini/src/Calib.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.7 - (show annotations) (download)
Mon Jan 21 10:24:10 2008 UTC (16 years, 10 months ago) by mocchiut
Branch: MAIN
Changes since 1.6: +332 -175 lines
che stress

1 #include <stdlib.h>
2 #include <iostream>
3 #include <iomanip>
4 //
5 #include <TString.h>
6 #include <TH1F.h>
7 #include <TH2F.h>
8 #include <TMatrixD.h>
9 #include <TMatrixF.h>
10 #include <TArrayF.h>
11 #include <TArrayI.h>
12 //
13 #include <PamLevel2.h>
14 #include <CaloFranzini.h>
15 //
16 using namespace std;
17 //
18 extern Bool_t MATRIX;
19 extern Bool_t FULL;
20 extern Bool_t SIMU;
21 extern Bool_t CRIG;
22 extern Bool_t SRIG;
23 CaloFranzini *cf;
24 Int_t nbin;
25 Float_t rig[18];
26 Float_t rmean[17];
27 Int_t ntot[17];
28 Int_t MDIM = 8213;
29 //Int_t MDIM = 4128;
30 //Float_t qqplane[17][43];
31 //Int_t nnqplane[17][43];
32
33 TArrayF *qplane[17];
34 TArrayI *nqplane[17];
35 TMatrixD *matrix[17];
36 TMatrixD *nmat[17];
37
38 //TMatrixD *fqplane;
39 //TMatrixD *fnqplane;
40 TMatrixD *fqplane[17];
41 TMatrixD *fnqplane[17];
42 TMatrixD *fmatrix[17];
43 //TMatrixF *fnmat[17];
44 //TMatrixD *fmatrix;
45 //TMatrixD *fnmat;
46 //TMatrixF *fmatrix;
47 //TMatrixF *fnmat;
48 TMatrixF *fnmat[17];
49 //Int_t finmat[43][191];
50
51 //===============================================================================
52 bool Select( PamLevel2* event ){
53
54 //---------------------------------------------------------
55 // single track
56 //---------------------------------------------------------
57 if( event->GetTrkLevel2()->GetNTracks()!=1 ) return false;
58 PamTrack *track = event->GetTrack(0);
59 if(!track)return false;
60
61 //------------------------------------------------------------------
62 // tracker pre-selection
63 //------------------------------------------------------------------
64 TrkTrack *trk = track->GetTrkTrack();
65 float rigidity = trk->GetRigidity();
66 if ( CRIG ) rigidity = event->GetCaloLevel2()->qtot/260.;
67 if ( SRIG ) rigidity = event->GetGPamela()->P0;
68 bool TRACK__OK = false;
69 if(
70 trk->chi2 >0 &&
71 trk->GetNX()>=4 &&
72 trk->GetNY()>=3 &&
73 trk->GetLeverArmX()>=5 &&
74 true ) TRACK__OK = true;
75
76 if( !TRACK__OK )return false;
77
78 //------------------------------------------------------------------
79 // TOF pre-selection
80 //------------------------------------------------------------------
81 bool TOF__OK = false;
82 if(
83 event->GetToFLevel2()->GetNHitPaddles(0) == 1 &&
84 event->GetToFLevel2()->GetNHitPaddles(1) == 1 &&
85 event->GetToFLevel2()->GetNHitPaddles(2) == 1 &&
86 event->GetToFLevel2()->GetNHitPaddles(3) == 1 &&
87 event->GetToFLevel2()->GetNHitPaddles(4) >= 1 &&
88 event->GetToFLevel2()->GetNHitPaddles(5) >= 1 &&
89 event->GetToFLevel2()->npmt() <= 18 &&
90 !event->GetAcLevel2()->CARDhit() &&
91 !event->GetAcLevel2()->CAThit() &&
92 true ) TOF__OK = true;
93 if( !TOF__OK && !SIMU)return false;
94 //------------------------------------------------------
95 // no albedo
96 //------------------------------------------------------
97 if( !SIMU && (track->GetToFTrack()->beta[12]<=0.2 ||
98 track->GetToFTrack()->beta[12] >= 1.5) ) return false;
99
100 //------------------------------------------------------
101 bool CUT1 = false;
102 if(
103 trk->nstep<100 &&
104 rigidity<400. &&
105 rigidity>0.1 &&
106 trk->resx[0]<0.001 &&
107 trk->resx[5]<0.001 &&
108 track->IsSolved() &&
109 trk->IsInsideCavity() &&
110 true ) CUT1 = true;
111 //------------------------------------------------------
112 if( !CUT1 )return false;
113 if ( trk->GetDeflection()>0. && !SIMU ) return false;
114
115 //
116 // ELENA'S CUT
117 //
118 //
119 // lever-arm 6
120 //====================================================
121 bool LX6=false;
122 if(
123 track->GetTrkTrack()->GetLeverArmX()==6 &&
124 !track->GetTrkTrack()->IsBad(0,0) &&
125 !track->GetTrkTrack()->IsBad(5,0) &&
126 track->GetTrkTrack()->resx[0]<0.001 &&
127 track->GetTrkTrack()->resx[5]<0.001 &&
128 track->GetTrkTrack()->IsInsideCavity() &&
129 true ) LX6 = true;
130
131 //====================================================
132 // lever-arm 5
133 //====================================================
134 bool LX5=false;
135 if(
136 track->GetTrkTrack()->GetLeverArmX()==5 &&
137 true ){
138 if(
139 track->GetTrkTrack()->XGood(0) && track->GetTrkTrack()->XGood(4)
140 ){
141
142 if(
143 !track->GetTrkTrack()->IsBad(0,0) &&
144 !track->GetTrkTrack()->IsBad(4,0) &&
145 track->GetTrkTrack()->resx[0]<0.001 &&
146 track->GetTrkTrack()->resx[4]<0.001 &&
147 track->GetTrkTrack()->IsInsideCavity() &&
148 true) LX5 = true;
149 }else if (
150 track->GetTrkTrack()->XGood(1) && track->GetTrkTrack()->XGood(5)
151 ){
152
153 if(
154 !track->GetTrkTrack()->IsBad(1,0) &&
155 !track->GetTrkTrack()->IsBad(5,0) &&
156 track->GetTrkTrack()->resx[1]<0.001 &&
157 track->GetTrkTrack()->resx[5]<0.001 &&
158 track->GetTrkTrack()->IsInsideCavity() &&
159 true) LX5 = true;
160 }
161 }
162 if ( !LX5 && !LX6 ) return false;
163 Float_t defl = trk->GetDeflection();
164 float p0 = 1.111588e+00;
165 float p1 = 1.707656e+00;
166 float p2 = 1.489693e-01;
167 float chi2m025 = p0 + fabs(defl)*p1 + defl*defl*p2;
168
169 float def_0 = 0.07;
170 float chi2m025_0 = p0 + fabs(def_0)*p1 + def_0*def_0*p2;
171
172 // int nchi2cut=5;
173 float chi2cut=3.;
174 float chi2m = pow( chi2m025-chi2m025_0+pow(chi2cut,0.25), 4.);
175 bool CUT2 = false;
176 if(
177 track->GetTrkTrack()->chi2 < chi2m &&
178 true ) CUT2 = true;
179 if ( !CUT2 ) return false;
180 float dedxtrk = trk->GetDEDX();
181 // float zcutn = 9. + 20./(rigidity*rigidity);
182 float zcut2 = 3. + 4.3/(rigidity*rigidity);
183 float zcut1 = 0.52 + 0.455/(rigidity*rigidity);
184 Bool_t Z1 = false;
185 if(dedxtrk > zcut1 && dedxtrk < zcut2){
186 Z1=true;
187 }
188 if ( !Z1 && !SIMU ) return false;
189 //------------------------------------------------------
190 //
191 // energy momentum match
192 //
193 Float_t qtotimp = event->GetCaloLevel2()->qtot / trk->GetRigidity();
194 Float_t qcut2 = (-0.5 * trk->GetRigidity() + 150.) * 1.1;
195 if ( qcut2 < 55. ) qcut2 = 55.;
196 if ( qtotimp <= qcut2 ) return false;
197 //
198 for (Int_t i=0; i < 22; i++){
199 if ( track->GetCaloTrack()->tibar[i][1] < 0 || track->GetCaloTrack()->tibar[i][0] < 0 ){
200 return false;
201 };
202 };
203 //
204 if ( event->GetCaloLevel2()->qtot == 0. ) return false;
205 if ( rigidity>5. && track->GetCaloTrack()->qtrack/event->GetCaloLevel2()->qtot < 0.4 ) return false;
206 if ( rigidity<1. && track->GetToFTrack()->beta[12] < 0.8 ) return false;
207 if ( rigidity>50. ){
208 if ( trk->GetNX()<5 &&
209 trk->GetNY()<4 ) return false;
210 //
211 Bool_t sphit = false;
212 for ( Int_t plane = 0; plane < 6; plane++){
213 if ( !trk->XGood(plane) ){
214 for (Int_t sing = 0; sing < event->GetTrkLevel2()->nclsx(); sing++){
215 TClonesArray &t = *(event->GetTrkLevel2()->SingletX);
216 TrkSinglet *singlet = (TrkSinglet*)t[sing];
217 if ( (singlet->plane-1) == plane ){
218 Float_t x = (singlet->coord[0]+singlet->coord[1])/2.;
219 if ( fabs(track->GetTrkTrack()->xv[plane] - x) < 1. ) sphit = true;
220 };
221 };
222 };
223 if ( !trk->YGood(plane) ){
224 for (Int_t sing = 0; sing < event->GetTrkLevel2()->nclsy(); sing++){
225 TClonesArray &t = *(event->GetTrkLevel2()->SingletY);
226 TrkSinglet *singlet = (TrkSinglet*)t[sing];
227 if ( (singlet->plane-1) == plane ){
228 Float_t x1 = (singlet->coord[0]);
229 Float_t x2 = (singlet->coord[1]);
230 if ( fabs(track->GetTrkTrack()->yv[plane] - x1) < 1. ) sphit = true;
231 if ( fabs(track->GetTrkTrack()->yv[plane] - x2) < 1. ) sphit = true;
232 };
233 };
234 };
235 };
236 if ( sphit ) return false; // spurious hit along the track
237 };
238 //
239 Int_t ti0 = track->GetCaloTrack()->tibar[0][1]-1;
240
241 Int_t view = 0;
242 Int_t plane = 0;
243 Int_t strip = 0;
244 Float_t mip = 0.;
245 //
246 for ( Int_t i=0; i<event->GetCaloLevel1()->istrip; i++ ){
247 //
248 mip = event->GetCaloLevel1()->DecodeEstrip(i,view,plane,strip);
249 if ( view == 1 && plane == 0 && strip == ti0 && mip > 4.) return false;
250 if ( view == 1 && (plane >0 || strip > ti0) ) break;
251 };
252 // if ( event->GetCaloLevel1()->qtotpl(0) > 7. ) return false;
253
254 // if ( rigidity > 2.2 || rigidity < 1.5 ) return false;
255 // printf(" rig %f CRIG %i SRIG %i \n",rigidity,CRIG,SRIG);
256 //
257 return true;
258 }
259 //===============================================================
260 // Create histograms
261 //
262 //
263 //
264 //
265 //
266 //===============================================================
267 void CreateHistos( PamLevel2* event , TString file){
268
269 cf = new CaloFranzini(event);
270 //
271 if ( MATRIX ){
272 cf->UpdateMatrixFile(file.Data());
273 cf->LoadBin();
274 if ( !FULL ){
275 cf->LoadLong();
276 } else {
277 cf->LoadFull();
278 };
279 } else {
280 cf->CreateMatrixFile(file.Data());
281 };
282 //
283 //
284 nbin = 18;
285 rig[0] = 0.1;
286 rig[1] = 0.5;
287 rig[2] = 1.;
288 rig[3] = 1.5;
289 rig[4] = 2.2;
290 rig[5] = 3.;
291 rig[6] = 4.;
292 rig[7] = 5.;
293 rig[8] = 6.;
294 rig[9] = 8.;
295 rig[10] = 10.;
296 rig[11] = 15.;
297 rig[12] = 25.;
298 rig[13] = 35.;
299 rig[14] = 50.;
300 rig[15] = 100.;
301 rig[16] = 200.;
302 rig[17] = 400.;
303 //
304 memset(rmean, 0, 17*sizeof(Float_t));
305 memset(ntot, 0, 17*sizeof(Int_t));
306 // memset(finmat, 0, 43*191*sizeof(Int_t));
307 // Double_t tol = 1E-20;
308 //
309 for (Int_t i=0; i < 17 ; i++){
310 // for (Int_t i=3; i < 4 ; i++){
311 if ( !FULL ){
312 matrix[i] = new TMatrixD(43,43);
313 qplane[i] = new TArrayF(43);
314 nqplane[i] = new TArrayI(43);
315 nmat[i] = new TMatrixD(43,43);
316 } else {
317 if ( MATRIX ){
318 // fmatrix = new TMatrixF(4128,4128);
319 // fnmat = new TMatrixF(4128,4128);
320 // fmatrix = new TMatrixF(8213,8213);
321 // fnmat = new TMatrixF(8213,8213);
322 // fmatrix = new TMatrixF(MDIM,MDIM);
323 // fnmat = new TMatrixF(MDIM,MDIM);
324 // fmatrix[i] = new TMatrixF(1849,1849);
325 // fnmat[i] = new TMatrixF(43,43);
326 fmatrix[i] = new TMatrixD(1333,1333);
327 // fmatrix[i]->SetTol(tol);
328 fnmat[i] = new TMatrixF(43,31);
329 // cf->WriteFullMatrix(fmatrix, i);
330 // cf->WriteFullNMatrix(fnmat, i);
331 // delete fmatrix;
332 // delete fnmat;
333 //fnmat[i] = new TMatrixI(8213,8213);
334 } else {
335 // fqplane = new TMatrixD(43,191); // 43 planes x 191 strip (= 1 + 95 x 2, one strip is the one transversed by the track that could be on the extreme right or left)
336 // fnqplane = new TMatrixD(43,191);//
337 // fqplane[i] = new TMatrixD(43,43); // 43 planes x 43 "strip", where 43 = 50 + 14 + 5 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + [1] + ...
338 // fnqplane[i] = new TMatrixD(43,43);// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
339 //
340 fqplane[i] = new TMatrixD(43,31); // 43 planes x 43 "strip", where 43 = 50 + 14 + 6 + 5 + 3 + 3 + 3 + 2 + 2 + 2 + 1 + 1 + 1 + 1 + 1 + [1] + 1 + 1 + 1 + 1 + ...
341 fnqplane[i] = new TMatrixD(43,31);// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ...
342 //
343 // cf->WriteFullMean(fqplane, i);
344 // cf->WriteFullNMean(fnqplane, i);
345 // delete fqplane;
346 // delete fnqplane;
347 //
348 };
349 };
350 };
351 //
352 }
353
354 //===============================================================
355 void FindAverage( PamLevel2* L2, int iev ){
356 //
357 Float_t erig = L2->GetTrack(0)->GetTrkTrack()->GetRigidity();
358 if ( SRIG ) erig = L2->GetGPamela()->P0;
359 if ( CRIG ) erig = L2->GetCaloLevel2()->qtot/260.;
360 //
361 Int_t rbi = 0;
362 for (Int_t i = 0; i<nbin-1; i++){
363 if ( erig>=rig[i] && erig < rig[i+1] ){
364 rbi = i;
365 break;
366 };
367 };
368 //
369 if ( erig < rig[0] ) return;
370 if ( erig >= rig[nbin-1] ) return;
371 //
372 rmean[rbi] += erig;
373 ntot[rbi]++;
374 //
375 if (!FULL ){
376 Int_t dgf = 43;
377 //
378 for (Int_t i=0; i<dgf; i++){
379 (*nqplane[rbi])[i]++;
380 };
381 //
382 // Fill the estrip matrix
383 //
384 Int_t nplane = 0;
385 Int_t view = 0;
386 Int_t plane = 0;
387 Int_t strip = 0;
388 Float_t mip = 0.;
389 //
390 for ( Int_t i=0; i<L2->GetCaloLevel1()->istrip; i++ ){
391 //
392 mip = L2->GetCaloLevel1()->DecodeEstrip(i,view,plane,strip);
393 //
394 nplane = 1 - view + 2 * plane;
395 if ( erig > 4. && nplane == 0 && mip > 15. ) printf(" IEV %i erig %f OBT %u pkt %u file %s \n",iev,erig,L2->GetOrbitalInfo()->OBT,L2->GetOrbitalInfo()->pkt_num,L2->GetPamTree()->GetFile()->GetName());
396 //printf(" IEV %i OBT %u pkt %u file %s \n",iev,L2->GetOrbitalInfo()->OBT,L2->GetOrbitalInfo()->pkt_num,L2->GetPamTree()->GetFile()->GetName());
397 if ( nplane > 37 ) nplane--;
398 if ( nplane < dgf ){
399 (*qplane[rbi])[nplane] += mip;
400 };
401 //
402 };
403 } else {
404 //
405 // FULL CALORIMETER
406 //
407 // fqplane = cf->LoadFullAverage(rbi);
408 // fnqplane = cf->LoadFullNAverage(rbi);
409 CaloTrkVar *ct = L2->GetTrack(0)->GetCaloTrack();
410 //
411 Int_t nplane = 0;
412 Int_t view = 0;
413 Int_t plane = 0;
414 Int_t strip = 0;
415 Float_t mip = 0.;
416 //
417 Int_t cs = 0;
418 Int_t cd = 0;
419 Int_t mstrip = 0;
420 //
421 for (Int_t j=0; j<2; j++){
422 for (Int_t i=0; i<22; i++){
423 nplane = 1 - j + 2*i;
424 if ( nplane > 37 ) nplane--;
425 //
426 cs = ct->tibar[i][j] - 1;
427 //
428 cd = 95 - cs;
429 //
430 Int_t oldstr = -1;
431 for (Int_t k=0; k<191; k++){
432 mstrip = cd + k;
433 // if ( mstrip < (191-cs) ) (*fnqplane[rbi])[nplane][mstrip] += 1.;
434 // if ( mstrip < (191-cs) ) (*fnqplane)[nplane][mstrip] += 1.;
435 Int_t lstr = cf->ConvertStrip(mstrip);
436 if ( oldstr != lstr ){
437 (*fnqplane[rbi])[nplane][lstr] += 1.;
438 oldstr = lstr;
439 };
440 };
441 };
442 };
443 //
444 //
445 for ( Int_t i=0; i<L2->GetCaloLevel1()->istrip; i++ ){
446 //
447 mip = L2->GetCaloLevel1()->DecodeEstrip(i,view,plane,strip);
448 //
449 nplane = 1 - view + 2 * plane;
450 if ( nplane > 37 ) nplane--;
451 //
452 cs = ct->tibar[plane][view] - 1;
453 //
454 cd = 95 - cs;
455 //
456 mstrip = cd + strip;
457 //
458 Int_t lstr = cf->ConvertStrip(mstrip);
459 // (*fqplane[rbi])[nplane][mstrip] += mip;
460 // (*fqplane)[nplane][mstrip] += mip;
461 (*fqplane[rbi])[nplane][lstr] += mip;
462 //
463 };
464 //
465 // cf->WriteFullMean(fqplane, rbi);
466 // cf->WriteFullNMean(fnqplane, rbi);
467 // cf->UnLoadFullAverage(rbi);
468 // cf->UnLoadFullNAverage(rbi);
469 // delete fqplane;
470 // delete fnqplane;
471 //
472 };
473 }
474
475 void CalculateAverage(){
476 //
477 if ( !FULL ){
478 for (Int_t i=0; i<nbin-1; i++){
479 if ( (*nqplane[i])[0] > 0 ) rmean[i] /= (Float_t)(*nqplane[i])[0];
480 for (Int_t j=0; j<43 ; j++){
481 if ( (*nqplane[i])[j] > 0 ){
482 (*qplane[i])[j] /= (Float_t)(*nqplane[i])[j];
483 } else {
484 (*qplane[i])[j] = 0.;
485 };
486 printf(" BIN %i plane %i average energy %f qplane %f nqplane %i \n",i,j,rmean[i],(*qplane[i])[j],(*nqplane[i])[j]);
487 };
488 };
489 for (Int_t i=0; i<nbin-1; i++){
490 //
491 cf->WriteLongMean(qplane[i], i);
492 //
493 };
494 } else {
495 //
496 for (Int_t i=0; i<nbin-1; i++){
497 // fqplane = cf->LoadFullAverage(i);
498 // fnqplane = cf->LoadFullNAverage(i);
499 if ( ntot[i] > 0 ) rmean[i] /= (Float_t)(ntot[i]);
500 //
501 for (Int_t j=0; j<43 ; j++){
502 // for (Int_t k=0; k<191; k++){
503 // for (Int_t k=0; k<43; k++){
504 for (Int_t k=0; k<31; k++){
505 // if ( (*fnqplane[i])[j][k] > 0 ){
506 // (*fqplane[i])[j][k] /= (Float_t)(*fnqplane[i])[j][k];
507 // } else {
508 // (*fqplane[i])[j][k] = 0.;
509 // };
510 // printf(" BIN %i plane %i strip %i average energy %f qplane %f nqplane %f \n",i,j,k,rmean[i],(*fqplane[i])[j][k],(*fnqplane[i])[j][k]);
511 if ( (*fnqplane[i])[j][k] > 0 ){
512 if ( (*fqplane[i])[j][k] == 0. ) (*fqplane[i])[j][k] = 0.7;
513 (*fqplane[i])[j][k] /= (Float_t)(*fnqplane[i])[j][k];
514 } else {
515 (*fqplane[i])[j][k] = 0.;
516 };
517 // printf(" BIN %i plane %i strip %i average energy %f qplane %f nqplane %f \n",i,j,k,rmean[i],(*fqplane)[j][k],(*fnqplane)[j][k]);
518 };
519 };
520 cf->WriteFullMean(fqplane[i], i);
521 cf->WriteFullNMean(fnqplane[i], i);
522 // cf->UnLoadFullAverage(i);
523 // cf->UnLoadFullNAverage(i);
524 // delete fqplane;
525 // delete fnqplane;
526 };
527 //
528 // for (Int_t i=0; i<nbin-1; i++){
529 // //
530 // cf->WriteFullMean(fqplane[i], i);
531 // //
532 // };
533 };
534 //
535 cf->WriteNumBin(nbin);
536 //
537 TArrayF *rigbin = new TArrayF(18, rig);
538 cf->WriteRigBin(rigbin);
539 //
540 TArrayF *rmeanbin = new TArrayF(17, rmean);
541 TFile *file = cf->GetFile();
542 file->cd();
543 file->WriteObject(&(*rmeanbin), "binrigmean");
544 //
545 //
546 }
547
548 //===============================================================
549 void FindMatrix( PamLevel2* L2, int iev ){
550 //
551 Float_t erig = L2->GetTrack(0)->GetTrkTrack()->GetRigidity();
552 if ( SRIG ) erig = L2->GetGPamela()->P0;
553 if ( CRIG ) erig = L2->GetCaloLevel2()->qtot/260.;
554 //
555 Int_t rbi = 0;
556 for (Int_t i = 0; i<nbin-1; i++){
557 if ( erig>=rig[i] && erig < rig[i+1] ){
558 rbi = i;
559 break;
560 };
561 };
562 //
563 if ( erig < rig[0] ) return;
564 if ( erig >= rig[nbin-1] ) return;
565 //
566 if ( !FULL ){
567 Int_t dgf = 43;
568 //
569 for (Int_t i=0; i<dgf; i++){
570 for (Int_t j=0; j<dgf; j++){
571 (*nmat[rbi])[i][j] += 1.;
572 };
573 };
574 //
575 // Fill the estrip matrix
576 //
577 Int_t nplane = 0;
578 Int_t view = 0;
579 Int_t plane = 0;
580 Int_t strip = 0;
581 Float_t mip = 0.;
582 Float_t hpl[43];
583 memset(hpl,0,43*sizeof(Float_t));
584 for ( Int_t i=0; i<L2->GetCaloLevel1()->istrip; i++ ){
585 //
586 mip = L2->GetCaloLevel1()->DecodeEstrip(i,view,plane,strip);
587 //
588 nplane = 1 - view + 2 * plane;
589 if ( nplane > 37 ) nplane--;
590 if ( nplane < dgf ){
591 hpl[nplane] += mip;
592 };
593 //
594 };
595 //
596 for (Int_t i=0; i<dgf; i++){
597 for (Int_t j=0; j<dgf; j++){
598 (*matrix[rbi])[i][j] += (hpl[i] - cf->GetAverageAt(i,erig)) * (hpl[j] - cf->GetAverageAt(j,erig));
599 };
600 };
601 } else {
602 //
603 // FULL CALORIMETER
604 //
605 // if ( rbi != 3 ) return;
606 printf(" matrix %i IEV %i \n",rbi,iev);
607 // fmatrix = cf->LoadFullMatrix(rbi);
608 // cf->LoadFullMatrix(rbi,fmatrix);
609 // fnmat = cf->LoadFullNMatrix(rbi);
610 // printf(" done \n");
611 // printf(" start loop \n");
612 //
613 CaloTrkVar *ct = L2->GetTrack(0)->GetCaloTrack();
614 //
615 Int_t nplane = 0;
616 Int_t view = 0;
617 Int_t plane = 0;
618 Int_t strip = 0;
619 Float_t mip = 0.;
620 //
621 // Int_t mindgf = 48;
622 // Int_t dgf = 143;
623 // Int_t mindgf = 0; //tutto
624 // Int_t dgf = 191; //tutto
625 // Int_t mindgf = 94;
626 // Int_t dgf = 96;
627 // Int_t mindgf = 84;
628 // Int_t dgf = 106;
629 Int_t mindgf = 0;
630 Int_t dgf = 43;
631 Int_t cs = 0;
632 Int_t cd = 0;
633 Int_t mstrip = 0;
634 //
635 // Float_t mipv[43][43];
636 // memset(mipv,0,43*43*sizeof(Float_t));
637 Float_t mipv[43][31];
638 memset(mipv,0,43*31*sizeof(Float_t));
639 //
640 for ( Int_t i=0; i<L2->GetCaloLevel1()->istrip; i++ ){
641 //
642 mip = L2->GetCaloLevel1()->DecodeEstrip(i,view,plane,strip);
643 //
644 nplane = 1 - view + 2 * plane;
645 if ( nplane > 37 ) nplane--;
646 //
647 cs = ct->tibar[plane][view] - 1;
648 //
649 cd = 95 - cs;
650 //
651 mstrip = cd + strip;
652 //
653 Int_t lstr = cf->ConvertStrip(mstrip);
654 mipv[nplane][lstr] += mip;
655 //
656 };
657 //
658 Float_t mip1 = 1.;
659 Int_t cs1;
660 Int_t cd1;
661 Float_t mip2 = 1.;
662 Int_t cs2;
663 Int_t cd2;
664 Int_t mi = -1;
665 Int_t mj = -1;
666 Int_t nn1 = 0;
667 Int_t pl1 = 0;
668 Int_t vi1 = 0;
669 Int_t nn2 = 0;
670 Int_t pl2 = 0;
671 Int_t vi2 = 0;
672 Int_t mstrip1min = 0;
673 Int_t mstrip1max = 0;
674 Int_t mstrip2min = 0;
675 Int_t mstrip2max = 0;
676 //
677 Int_t toto = 0;
678 //
679 for (Int_t nplane1=0; nplane1<43; nplane1++){
680 if ( nplane1 >= 37 ) nn1 = nplane1 + 1;
681 vi1 = 1;
682 if ( nn1%2 ) vi1 = 0;
683 pl1 = (nn1 - 1 + vi1)/2;
684 //
685 cs1 = ct->tibar[pl1][vi1] - 1; // convertire nplane in pl1 e vi1
686 //
687 cd1 = 95 - cs1;
688 //
689 Int_t at1 = TMath::Max(0,(cd1+0));
690 Int_t at2 = TMath::Min(190,(cd1+95));
691 mstrip1min = cf->ConvertStrip(at1);
692 mstrip1max = cf->ConvertStrip(at2) + 1;
693 // mstrip1min = cf->ConvertStrip(TMath::Max(mindgf,(cd1+0)));
694 // mstrip1max = cf->ConvertStrip(TMath::Min(dgf,(cd1+95))) + 1;
695 //
696 if ( nplane1 == 0 || nplane1 == 42 ) printf(" pl %i mstrip1min %i mstrip1max %i mindgf %i dgf %i cd1 %i\n",nplane1,mstrip1min,mstrip1max,mindgf,dgf,cd1);
697 //
698 for (Int_t mstrip1=mstrip1min; mstrip1<mstrip1max; mstrip1++){
699 // printf(".\n");
700 //
701 mj = -1;
702 //
703 mip1 = mipv[nplane1][mstrip1] - cf->GetFullAverageAt(nplane1,mstrip1,erig,rbi);
704 //
705 // mi = (nplane1 * 191) + mstrip1;
706 // mi = (nplane1 * 43) + mstrip1;
707 mi = (nplane1 * 31) + mstrip1;
708 //
709 // if ( mstrip1 > mstrip1min ) break;
710 // if ( mstrip1 > dgf ) break;
711 // if ( mstrip1 >= mindgf && mstrip1 <= dgf && mstrip1 >= mstrip1min && mstrip1 <= mstrip1max ){
712 //
713 // finmat[nplane1][mstrip1]++;
714 (*fnmat[rbi])[nplane1][mstrip1] += 1.;
715 //
716 if ( mip1 != 0. ){
717 //
718 for (Int_t nplane2=0; nplane2<43; nplane2++){
719 //
720 if ( nplane2 >= 37 ) nn2 = nplane2 + 1;
721 vi2 = 1;
722 if ( nn2%2 ) vi2 = 0;
723 pl1 = (nn2 - 1 + vi2)/2;
724 //
725 cs2 = ct->tibar[pl2][vi2] - 1;
726 //
727 cd2 = 95 - cs2;
728 //
729 // mstrip2min = cd2 + 0;
730 // mstrip2max = cd2 + 95;
731 Int_t t1 = TMath::Max(0,(cd2+0));
732 Int_t t2 = TMath::Min(190,(cd2+95));
733 mstrip2min = cf->ConvertStrip(t1);
734 mstrip2max = cf->ConvertStrip(t2) + 1;
735 //
736 if ( nplane1 == 0 && nplane2 == 0 && mstrip1==mstrip1min ) printf(" mstrip2min %i mstrip2max %i \n",mstrip2min,mstrip2max);
737 //
738 for (Int_t mstrip2=mstrip2min; mstrip2<mstrip2max; mstrip2++){
739 //
740 mip2 = mipv[nplane2][mstrip2] - cf->GetFullAverageAt(nplane2,mstrip2,erig,rbi);
741 //
742 if ( mip2 != 0. ){
743 //
744 // mj = (nplane2 * 191) + mstrip2;
745 // mj = (nplane2 * 43) + mstrip2;
746 // mj = (nplane2 * 31) + mstrip2;
747 Int_t sh = -15 + nplane1;
748 if ( sh > 15 ) sh -= 31*nplane1;
749 //
750 mj = (nplane2 * 31) + mstrip2 + sh;
751 //
752 if ( mj < 0 ) mj += 1333;
753 if ( mj >= 1333 ) mj -= 1333;
754 // printf(" mi %i mj %i sh %i \n",mi,mj,sh);
755 //
756 // mj++;
757 //
758 // if ( mstrip2 > mstrip2min ) break;
759 // if ( mstrip2 > dgf ) break;
760 // if ( mstrip2 >= mindgf && mstrip2 <= dgf && mstrip2 >= mstrip2min && mstrip2 <= mstrip2max ){
761 // if ( mstrip1 >= mstrip1min && mstrip1 <= mstrip1max && mstrip2 >= mstrip2min && mstrip2 <= mstrip2max){
762 // (*fmatrix[rbi])[mi][mj] += (mipv[nplane1][mstrip1] - cf->GetFullAverageAt(nplane1,mstrip1,erig)) * (mipv[nplane2][mstrip2] - cf->GetFullAverageAt(nplane2,mstrip2,erig));
763 // (*fnmat[rbi])[mi][mj] += 1.;
764 (*fmatrix[rbi])[mi][mj] += (mip1 * mip2); // giusto
765 // (*fmatrix)[mi][mj] += (mip1 * mip2) * 1000000.;
766 toto++;
767 // (*fmatrix)[mi][mj] += 1.;
768 // cf->GetFullAverageAt(nplane1,mstrip1,erig,rbi);
769 // cf->GetFullAverageAt(nplane2,mstrip2,erig,rbi);
770 // (*fnmat)[mi][mj] += 1.;
771 // };
772 };
773 };
774 };
775 };
776 };
777 };
778 //
779 printf(" toto = %i \n",toto);
780 printf("\n done \n");
781 // printf(" write matrix \n");
782 // cf->WriteFullMatrix(fmatrix, rbi);
783 // cf->WriteFullNMatrix(fnmat, rbi);
784 // printf(" done \n");
785 // printf(" unload matrix \n");
786 // cf->UnLoadFullMatrix(rbi);
787 // cf->UnLoadFullNMatrix(rbi);
788 // printf(" done \n");
789 // printf(" delete matrix \n");
790 // delete fmatrix;
791 // delete fnmat;
792 // printf(" done \n");
793 };
794 }
795
796 //===============================================================
797 // Save histograms
798 //
799 //
800 //
801 //
802 //
803 //===============================================================
804 void SaveHistos(){
805 //
806 if ( MATRIX ){
807 //
808 printf("Finished, calculating average and inverting matrices\n");
809 //
810 if ( !FULL ){
811 for (Int_t i=0; i<nbin-1; i++){
812 //
813 // determine the average matrix
814 //
815 for (Int_t ii=0; ii<43; ii++){
816 for (Int_t j=0; j<43; j++){
817 if ( (*nmat[i])[ii][j] > 0. ){
818 (*matrix[i])[ii][j] /= (*nmat[i])[ii][j];
819 } else {
820 (*matrix[i])[ii][j] = 0.;
821 };
822 };
823 };
824 //
825 cf->WriteLongMatrix(matrix[i],i);
826 //
827 if ( matrix[i]->Determinant() == 0. ){
828 printf("\n");
829 for (Int_t ii=0; ii<43; ii++){
830 for (Int_t j=0; j<43; j++){
831 printf(" %.f",(*matrix[i])[ii][j]);
832 };
833 printf("\n");
834 };
835 printf("\n");
836 printf(" ERROR: the matrix at bin %i is singular, determinant = 0., it cannot be inverted! \n",i);
837 } else {
838 Double_t det = 0.;
839 TMatrixD invmatrix = (TMatrixD)(matrix[i]->Invert(&det));
840 printf(" Bin %i determinant is %f \n",i,det);
841 cf->WriteInvertedLongMatrix((TMatrixD)invmatrix,i);
842 };
843 };
844 } else {
845 //
846 // FULL
847 //
848 for (Int_t i=0; i<nbin-1; i++){
849 // for (Int_t i=3; i<5; i++){
850 // for (Int_t i=3; i<4; i++){
851 //
852 // determine the average matrix
853 //
854 // fmatrix = cf->LoadFullMatrix(i);
855 // fnmat = cf->LoadFullNMatrix(i);
856 //
857 // for (Int_t ii=0; ii<MDIM; ii++){
858 // for (Int_t j=0; j<MDIM; j++){
859 // // if ( (*fnmat[i])[ii][j] > 0. ){
860 // // (*fmatrix[i])[ii][j] /= (*fnmat[i])[ii][j];
861 // // } else {
862 // // (*fmatrix[i])[ii][j] = 0.;
863 // // };
864 // if ( (*fnmat)[ii][j] > 0. ){
865 // (*fmatrix)[ii][j] /= (*fnmat)[ii][j];
866 // } else {
867 // (*fmatrix)[ii][j] = 0.;
868 // };
869 // };
870 // };
871 //
872 // TMatrixD *mymat3 = new TMatrixD(129,129);
873 // TMatrixD *mymat5 = new TMatrixD(215,215);
874 // TMatrixD *mymat7 = new TMatrixD(301,301);
875 // TMatrixD *mymat9 = new TMatrixD(387,387);
876 // TMatrixD *mymat11 = new TMatrixD(473,473);
877 // TMatrixD *mymat17 = new TMatrixD(731,731);
878 // TMatrixF *mymat = new TMatrixF(129,129);
879 // TMatrixF *mymat = new TMatrixF(989,989);
880 Int_t i1 = -1;
881 Int_t j1 = -1;
882 // int mi,mj;
883 Int_t nonzero = 0;
884 Int_t nonzero1 = 0;
885 for (Int_t ii=0; ii<43; ii++){
886 // for (Int_t j=0; j<191; j++){
887 // for (Int_t j=0; j<43; j++){
888 for (Int_t j=0; j<31; j++){
889 // if ( (*fnmat[i])[ii][j] > 0. ){
890 // (*fmatrix[i])[ii][j] /= (*fnmat[i])[ii][j];
891 // } else {
892 // (*fmatrix[i])[ii][j] = 0.;
893 // };
894 // i1 = (ii * 191) + j;
895 // i1 = (ii * 43) + j;
896 i1 = (ii * 31) + j;
897 // j1 = -1;
898 for (Int_t iij=0; iij<43; iij++){
899 // for (Int_t jj=0; jj<191; jj++){
900 // for (Int_t jj=0; jj<43; jj++){
901 for (Int_t jj=0; jj<31; jj++){
902 //
903 // j1 = (iij * 191) + jj;
904 // j1 = (iij * 43) + jj;
905 Int_t sh = -15 + ii;
906 if ( sh > 15 ) sh -= 31*ii;
907 //
908 j1 = (iij * 31) + jj + sh;
909 //
910 if ( j1 < 0 ) j1 += 1333;
911 if ( j1 >= 1333 ) j1 -= 1333;
912
913 // j1 = (iij * 31) + jj;
914 // j1++;
915 // if ( finmat[ii][j] > 0 ){
916 // (*fmatrix)[i1][j1] /= finmat[ii][j];
917 if ( (*fnmat[i])[ii][j] == 0. || (*fmatrix[i])[i1][j1] == 0. || !((*fmatrix[i])[i1][j1] == (*fmatrix[i])[i1][j1]) ){
918 (*fmatrix[i])[i1][j1] = 1.;
919 } else {
920 (*fmatrix[i])[i1][j1] /= (*fnmat[i])[ii][j];
921 nonzero++;
922 if ( i1 == 0 ) nonzero1++;
923 };
924 //
925 // if ( j>=7 && j <=23 && jj >=7 && jj<=23 ){
926 // Int_t mi17 = (ii*3) + j -7;
927 // Int_t mj17 = (iij*3) + jj -7;
928 // (*mymat17)[mi17][mj17] = (*fmatrix[i])[i1][j1];
929 // };
930 // if ( j>=10 && j <=20 && jj >=10 && jj<=20 ){
931 // Int_t mi11 = (ii*3) + j -10;
932 // Int_t mj11 = (iij*3) + jj -10;
933 // (*mymat11)[mi11][mj11] = (*fmatrix[i])[i1][j1];
934 // };
935 // if ( j>=11 && j <=19 && jj >=11 && jj<=19 ){
936 // Int_t mi9 = (ii*3) + j -11;
937 // Int_t mj9 = (iij*3) + jj -11;
938 // (*mymat9)[mi9][mj9] = (*fmatrix[i])[i1][j1];
939 // };
940 // if ( j>=12 && j <=18 && jj >=12 && jj<=18 ){
941 // Int_t mi7 = (ii*3) + j -12;
942 // Int_t mj7 = (iij*3) + jj -12;
943 // (*mymat7)[mi7][mj7] = (*fmatrix[i])[i1][j1];
944 // };
945 // if ( j>=13 && j <=17 && jj >=13 && jj<=17 ){
946 // Int_t mi5 = (ii*3) + j -13;
947 // Int_t mj5 = (iij*3) + jj -13;
948 // (*mymat5)[mi5][mj5] = (*fmatrix[i])[i1][j1];
949 // };
950 // if ( j>=14 && j <=16 && jj >=14 && jj<=16 ){
951 // Int_t mi3 = (ii*3) + j -14;
952 // Int_t mj3 = (iij*3) + jj -14;
953 // (*mymat3)[mi3][mj3] = (*fmatrix[i])[i1][j1];
954 // };
955
956
957 // if ( j>=94 && j <=96 && jj >=94 && jj<=96 ){
958 // mi = (ii*3) + j -94;
959 // mj = (iij*3) + jj -94;
960 // (*mymat)[mi][mj] = (*fmatrix)[i1][j1];
961 // };
962
963
964 // if ( j>=84 && j <=106 && jj >=84 && jj<=106 ){
965 // mi = (ii*3) + j -84;
966 // mj = (iij*3) + jj -84;
967 // (*mymat)[mi][mj] = (*fmatrix)[i1][j1];
968 // };
969
970 };
971 };
972 };
973 };
974 //
975 printf(" Matrix has %i non-zero elements \n",nonzero);
976 // printf(" Matrix has %i non-zero elements on the first row\n",nonzero1);
977 //
978 // Bool_t BAD = false;
979 // for (Int_t ii=0; ii<43; ii++){
980 // for (Int_t j=0; j<191; j++){
981 // //
982 // i1 = (ii * 191) + j;
983 // //
984 // for (Int_t iij=0; iij<43; iij++){
985 // for (Int_t jj=0; jj<191; jj++){
986 // //
987 // j1 = (iij * 191) + jj;
988 // //
989 // // printf(" ROW %i COLUMN %i VALUE %f \n",i1,j1,(*fmatrix)[i1][j1]);
990 // if ( (*fmatrix)[i1][j1] == 0. || !((*fmatrix)[i1][j1]==(*fmatrix)[i1][j1]) ){
991 // printf(" ROW %i COLUMN %i VALUE %f \n",i1,j1,(*fmatrix)[i1][j1]);
992 // printf(" che schifo! \n");
993 // BAD = true;
994 // };
995 // //
996 // };
997 // };
998 // };
999 // };
1000 // //
1001 // if ( BAD ) printf(" questa matrice fa cagare \n");
1002 //
1003 //
1004 cf->WriteFullMatrix(fmatrix[i],i);
1005 // cf->WriteFullMatrix(fmatrix, i);
1006 // cf->WriteFullNMatrix(fnmat, i);
1007 cf->WriteFullNMatrix(fnmat[i], i);
1008 //
1009 // TDecompSVD svd(*fmatrix[i]);
1010 // Bool_t ok = svd.Decompose();
1011 //
1012 Double_t zero = (Double_t)0.0;
1013 //
1014 if ( fmatrix[i]->Determinant() == zero ){
1015 //if ( fmatrix->Determinant() == 0. ){
1016 printf(" ERROR: the matrix at bin %i is singular, determinant = 0., it cannot be inverted! \n",i);
1017 } else {
1018 // };
1019 // if ( i == 3 ){
1020 // if ( ok ){
1021 // Double_t tol = 1E-20;
1022 // TDecompSVD svd((*fmatrix)[i],tol);
1023 // svd.Decompose();
1024 // TMatrixD svdInv = svd.Invert();
1025 // svdInv.Print("svdInv");
1026 // cout << "condition: " << svd.Condition() << endl;
1027 // cf->WriteInvertedFullMatrix((TMatrixD)svdInv,999);
1028
1029 Double_t det = 0.;
1030 TMatrixD invmatrix = (TMatrixD)(fmatrix[i]->Invert(&det));
1031 printf(" Bin %i determinant is %f \n",i,det);
1032 cf->WriteInvertedFullMatrix((TMatrixD)invmatrix,i);
1033 };
1034
1035 // if ( mymat3->Determinant() == 0. ){
1036 // printf(" ERROR: the matrix at bin %i is singular, determinant = 0., it cannot be inverted! \n",i);
1037 // } else {
1038 // Double_t det = 0.;
1039 // TMatrixD invmatrix = (TMatrixD)(mymat3->Invert(&det));
1040 // printf(" Mymat3 determinant is %f \n",det);
1041 // cf->WriteInvertedFullMatrix((TMatrixD)invmatrix,1103);
1042 // };
1043 // cf->WriteFullMatrix(mymat3, 103);
1044 // if ( mymat5->Determinant() == 0. ){
1045 // printf(" ERROR: the matrix at bin %i is singular, determinant = 0., it cannot be inverted! \n",i);
1046 // } else {
1047 // Double_t det = 0.;
1048 // TMatrixD invmatrix = (TMatrixD)(mymat5->Invert(&det));
1049 // printf(" Mymat5 determinant is %f \n",det);
1050 // cf->WriteInvertedFullMatrix((TMatrixD)invmatrix,1105);
1051 // };
1052 // cf->WriteFullMatrix(mymat5, 105);
1053 // if ( mymat7->Determinant() == 0. ){
1054 // printf(" ERROR: the matrix at bin %i is singular, determinant = 0., it cannot be inverted! \n",i);
1055 // } else {
1056 // Double_t det = 0.;
1057 // TMatrixD invmatrix = (TMatrixD)(mymat7->Invert(&det));
1058 // printf(" Mymat7 determinant is %f \n",det);
1059 // cf->WriteInvertedFullMatrix((TMatrixD)invmatrix,1107);
1060 // };
1061 // cf->WriteFullMatrix(mymat7, 107);
1062 // if ( mymat9->Determinant() == 0. ){
1063 // printf(" ERROR: the matrix at bin %i is singular, determinant = 0., it cannot be inverted! \n",i);
1064 // } else {
1065 // Double_t det = 0.;
1066 // TMatrixD invmatrix = (TMatrixD)(mymat9->Invert(&det));
1067 // printf(" Mymat3 determinant is %f \n",det);
1068 // cf->WriteInvertedFullMatrix((TMatrixD)invmatrix,1109);
1069 // };
1070 // cf->WriteFullMatrix(mymat9, 109);
1071 // if ( mymat11->Determinant() == 0. ){
1072 // printf(" ERROR: the matrix at bin %i is singular, determinant = 0., it cannot be inverted! \n",i);
1073 // } else {
1074 // Double_t det = 0.;
1075 // TMatrixD invmatrix = (TMatrixD)(mymat11->Invert(&det));
1076 // printf(" Mymat11 determinant is %f \n",det);
1077 // cf->WriteInvertedFullMatrix((TMatrixD)invmatrix,1111);
1078 // };
1079 // cf->WriteFullMatrix(mymat11, 111);
1080 // if ( mymat17->Determinant() == 0. ){
1081 // printf(" ERROR: the matrix at bin %i is singular, determinant = 0., it cannot be inverted! \n",i);
1082 // } else {
1083 // Double_t det = 0.;
1084 // TMatrixD invmatrix = (TMatrixD)(mymat17->Invert(&det));
1085 // printf(" Mymat3 determinant is %f \n",det);
1086 // cf->WriteInvertedFullMatrix((TMatrixD)invmatrix,1117);
1087 // };
1088 // cf->WriteFullMatrix(mymat17, 117);
1089
1090
1091 //
1092 // cf->UnLoadFullMatrix(i);
1093 // cf->UnLoadFullNMatrix(i);
1094 // delete fmatrix;
1095 // delete fnmat;
1096 //
1097 };
1098 };
1099 //
1100 printf(" done, closing file and exiting\n");
1101 //
1102 };
1103 //
1104 cf->CloseMatrixFile();
1105 //
1106 cf->Delete();
1107 //
1108 }

  ViewVC Help
Powered by ViewVC 1.1.23