#include #include //-------------------------------------- /** * Default constructor */ CaloEnergy::CaloEnergy(){ Clear(); } CaloEnergy::CaloEnergy(PamLevel2 *l2p){ // Clear(); // L2 = l2p; // if ( !L2->IsORB() ) printf(" WARNING: OrbitalInfo Tree is needed, the plugin could not work properly without it \n"); // fSimu = false; this->Set(); // } CaloEnergy::CaloEnergy(PamLevel2 *l2p, Bool_t simulation){ // Clear(); // L2 = l2p; // if ( !L2->IsORB() ) printf(" WARNING: OrbitalInfo Tree is needed, the plugin could not work properly without it \n"); // fSimu = simulation; this->Set(); // } void CaloEnergy::Delete(){ Clear(); delete this; } void CaloEnergy::UseLevel2(){ if ( clong ){ delete clong; clong = new CaloLong(L2); clong->SplitInto(0,22); // clong->HeavyTail(true); clong->HeavyTail(false); }; if ( cp ) delete cp; cp = NULL; } void CaloEnergy::UseCaloPreSampler(){ // // use the presampler setting forcefitmode to 1000 means to force the DV routine to find the track inside the calorimeter using the "shower" approach developed for electrons // if ( !cp ) cp = new CaloPreSampler(L2); cp->SplitInto(0,22); cp->SetForceFitMode(1000); // cp->UseTracker(false); // cp->ForceCaloFit(); // cp->SetDebug(true); // cp->Process(); if ( clong ) clong->SetCaloLevel2Pointer(cp->GetCaloLevel2Pointer()); } void CaloEnergy::UseLongFit(){ fPl = 0; fLong = true; if ( !clong ){ clong = new CaloLong(L2); if ( cp ) clong->SetCaloLevel2Pointer(cp->GetCaloLevel2Pointer()); clong->SplitInto(0,22); // clong->HeavyTail(true); clong->HeavyTail(false); }; // } void CaloEnergy::Set(){ // // set default values, NB default conversion factor for energy is just very approximated! // OBT = 0; PKT = 0; atime = 0; sntr = "start"; // AOBT = 0; APKT = 0; aatime = 0; asntr = "start"; // debug = false; usepl18x = false; // indep = false; // fAllpl = true; fLong = false; fPl = 1; fRad = -1; cp = NULL; clong = NULL; x0max = -1.; // multicol = false; // this->DefineGeometry(); fXosel =true; fXesel = true; fYosel = true; fYesel = true; fConv_rxe = 44.4; fConv_rxo = 44.4; fConv_ryo = 44.4; fConv_rye = 44.4; fXomin = 1000; fXemin = 1000; fYomin = 1000; fYemin = 1000; // this->UseCaloPreSampler(); // use it by default, to go back to "standard" mode use CaloEnergy::UseLevel2(). // } void CaloEnergy::DefineGeometry(){ // // Use CaloStrip to determine once the position of border strips for each section // // fM = 2. + 0.096; // real position from cbar BUG the 0.096 is already taken into account in the border calculation made by Giovanna fM = 2. ; // real position from cbar // fM1 = 2. - 0.122 - 0.096; // due to calculation of xe1 etc. BUG! this way we count from the silicon border not from the silicon sensitive area fM1 = 2. - 0.122 - 0.096 + 0.096; // due to calculation of xe1 etc. if ( fM1 < 0. ) fM1 = 0.; // CaloStrip *cs = new CaloStrip(fSimu); // // view y plane 0 strip 0 cs->Set(1,0,0); xe1= cs->GetY(); // view y plane 0 strip 31 cs->Set(1,0,31); xe2= cs->GetY(); // view y plane 0 strip 32 cs->Set(1,0,32); xe3= cs->GetY(); // view y plane 0 strip 63 cs->Set(1,0,63); xe4= cs->GetY(); // view y plane 0 strip 64 cs->Set(1,0,64); xe5= cs->GetY(); // view y plane 0 strip 95 cs->Set(1,0,95); xe6= cs->GetY(); // view x plane 0 strip 0 cs->Set(0,0,0); yo1= cs->GetX(); // view x plane 0 strip 31 cs->Set(0,0,31); yo2= cs->GetX(); // view x plane 0 strip 32 cs->Set(0,0,32); yo3= cs->GetX(); // view x plane 0 strip 63 cs->Set(0,0,63); yo4= cs->GetX(); // view x plane 0 strip 64 cs->Set(0,0,64); yo5= cs->GetX(); // view x plane 0 strip 95 cs->Set(0,0,95); yo6= cs->GetX(); // view y plane 1 strip 0 cs->Set(1,1,0); xo1= cs->GetY(); // view y plane 1 strip 31 cs->Set(1,1,31); xo2= cs->GetY(); // view y plane 1 strip 32 cs->Set(1,1,32); xo3= cs->GetY(); // view y plane 1 strip 63 cs->Set(1,1,63); xo4= cs->GetY(); // view y plane 1 strip 64 cs->Set(1,1,64); xo5= cs->GetY(); // view y plane 1 strip 95 cs->Set(1,1,95); xo6= cs->GetY(); // view x plane 1 strip 0 cs->Set(0,1,0); ye1= cs->GetX(); // view x plane 1 strip 31 cs->Set(0,1,31); ye2= cs->GetX(); // view x plane 1 strip 32 cs->Set(0,1,32); ye3= cs->GetX(); // view x plane 1 strip 63 cs->Set(0,1,63); ye4= cs->GetX(); // view x plane 1 strip 64 cs->Set(0,1,64); ye5= cs->GetX(); // view x plane 1 strip 95 cs->Set(0,1,95); ye6= cs->GetX(); // for (Int_t p = 0; p<22; p ++){ for (Int_t v = 0; v<2; v++ ){ cs->Set(v,p,0); trk_z[p][v]= cs->GetZ(); // Z coord for each plane }; }; // delete cs; // } void CaloEnergy::Clear(){ // // clear variables // fPartsel = false; fSel = false; fXosel = false; fXesel = false; fYosel = false; fYesel = false; fCount = 0.; fEnergy = 0.; fEnergyxe = 0.; fEnergyxo = 0.; fEnergyye = 0.; fEnergyyo = 0.; fMax_plane = 0; fMax_planexo = 0; fMax_planexe = 0; fMax_planeyo = 0; fMax_planeye = 0; xomax_en= 0.; xemax_en= 0.; yomax_en= 0.; yemax_en= 0.; // memset(enstrip,0,2*22*96*(sizeof(Float_t))); en = 0.; view = 0; plane = 0; strip = 0; energyxe = 0.; energyyo = 0.; energyxo = 0.; energyye = 0.; fYoout = 0; fYeout = 0; fXoout = 0; fXeout = 0; fXEen_maxplane = 0.; fXOen_maxplane = 0.; fYEen_maxplane = 0.; fYOen_maxplane = 0.; memset(en_xep,0,11*sizeof(Float_t)); memset(en_yep,0,11*sizeof(Float_t)); memset(en_xop,0,11*sizeof(Float_t)); memset(en_yop,0,11*sizeof(Float_t)); // fColumn = -1; fColXE = -1; fColXO = -1; fColYE = -1; fColYO = -1; memset(encol,0,2*3*sizeof(Float_t)); entot[0] = 0.; entot[1] = 0.; // X0pl = 0.76; // } void CaloEnergy::Print(){ // printf("========================================================================\n"); printf(" OBT: %u PKT: %u ATIME: %u \n",OBT,PKT,atime); printf(" fEnergy :.............. %f \n",fEnergy); printf(" fMax_plane :........... %f \n",fMax_plane); printf(" fMax_planexo :......... %i \n",fMax_planexo); printf(" fMax_planexe :......... %i \n",fMax_planexe); printf(" fMax_planeyo :......... %i \n",fMax_planeyo); printf(" fMax_planeye :......... %i \n",fMax_planeye); printf(" fCount :.............. %f \n",fCount); printf(" fSel :.............. %i \n",fSel); printf(" fPartsel:.............. %i \n",fPartsel); printf(" fXesel :.............. %i \n",fXesel); printf(" fXosel :.............. %i \n",fXosel); printf(" fYesel :.............. %i \n",fYesel); printf(" fYosel :.............. %i \n",fYosel); printf(" fXemin :.............. %i \n",fXemin); printf(" fXomin :.............. %i \n",fXomin); printf(" fYemin :.............. %i \n",fYemin); printf(" fYomin :.............. %i \n",fYomin); printf(" fXeout :.............. %i \n",fXeout); printf(" fXoout :.............. %i \n",fXoout); printf(" fYeout :.............. %i \n",fYeout); printf(" fYoout :.............. %i \n",fYoout); printf(" fSimu :.............. %i \n",fSimu); printf(" fM :.............. %f \n",fM); printf(" fM1 :.............. %f \n",fM1); printf(" fRad :.............. %i \n",fRad); printf(" fPl :.............. %i \n",fPl); printf(" fColumn :.............. %i \n",fColumn); printf(" multicol:.............. %i \n",multicol); printf(" encol x :.............. %f \n",this->GetEncol(0)); printf(" encol y :.............. %f \n",this->GetEncol(1)); printf(" entot x :.............. %f \n",this->GetEntot(0)); printf(" entot y :.............. %f \n",this->GetEntot(1)); printf(" fColXE :.............. %i \n",fColXE); printf(" fColXO :.............. %i \n",fColXO); printf(" fColYE :.............. %i \n",fColYE); printf(" fColYO :.............. %i \n",fColYO); printf(" fConv_rxe ............. %f \n",fConv_rxe); printf(" fConv_rxo ............. %f \n",fConv_rxo); printf(" fConv_ryo ............. %f \n",fConv_ryo); printf(" fConv_rye ............. %f \n",fConv_rye); printf(" fLong :.............. %i \n",fLong); printf(" energyxe:.............. %f \n",energyxe); printf(" energyxo:.............. %f \n",energyxo); printf(" energyye:.............. %f \n",energyye); printf(" energyyo:.............. %f \n",energyyo); printf(" fXEen_maxplane:........ %f \n",fXEen_maxplane); printf(" fXOen_maxplane:........ %f \n",fXOen_maxplane); printf(" fYEen_maxplane:........ %f \n",fYEen_maxplane); printf(" fYOen_maxplane:........ %f \n",fYOen_maxplane); printf(" x0max :.............. %f \n",x0max); printf(" X0pl :.............. %f \n",X0pl); printf(" debug :.............. %i \n",debug); printf("========================================================================\n"); // } void CaloEnergy::SetMinimumContainment(TString section, Int_t plane){ section.ToUpper(); if ( section.Contains("XO") ) fXomin = plane; if ( section.Contains("XE") ) fXemin = plane; if ( section.Contains("YO") ) fYomin = plane; if ( section.Contains("YE") ) fYemin = plane; } void CaloEnergy::SetMinimumContainment(Int_t plane){ this->SetMinimumContainment("XEXOYEYO",plane); } void CaloEnergy::SetConversionFactor(TString section, Float_t conv){ section.ToUpper(); if ( section.Contains("XO") ) fConv_rxo = conv; if ( section.Contains("XE") ) fConv_rxe = conv; if ( section.Contains("YO") ) fConv_ryo = conv; if ( section.Contains("YE") ) fConv_rye = conv; } void CaloEnergy::SetConversionFactor(Float_t conv){ this->SetConversionFactor("XEXOYEYO",conv); } Int_t CaloEnergy::GetMinimumContainment(TString section){ section.ToUpper(); if ( section.Contains("XO") ) return(fXomin); if ( section.Contains("XE") ) return(fXemin); if ( section.Contains("YE") ) return(fYemin); if ( section.Contains("YO") ) return(fYomin); printf(" ERROR: section not recognized \n"); return(-1000); } Float_t CaloEnergy::GetConversionFactor(TString section){ section.ToUpper(); if ( section.Contains("XO") ) return(fConv_rxo); if ( section.Contains("XE") ) return(fConv_rxe); if ( section.Contains("YO") ) return(fConv_ryo); if ( section.Contains("YE") ) return(fConv_rye); printf(" ERROR: section not recognized \n"); return(-1000.); } Int_t CaloEnergy::GetMaxplane(TString section){ section.ToUpper(); if ( section.Contains("XO") ) return fMax_planexo; if ( section.Contains("XE") ) return fMax_planexe; if ( section.Contains("YO") ) return fMax_planeyo; if ( section.Contains("YE") ) return fMax_planeye; return(-1); } Int_t CaloEnergy::GetColumn(TString section){ section.ToUpper(); if ( section.Contains("XO") ) return fColXO; if ( section.Contains("XE") ) return fColXE; if ( section.Contains("YO") ) return fColYO; if ( section.Contains("YE") ) return fColYE; return(-1); } Float_t CaloEnergy::GetMipEnergyAtMaxplane(TString section){ printf(" WARNING: OBSOLETE METHOD, use GetMipEnergyAtMaxplane(TString) instead! \n"); return (this->GetEnergyAtMaxplane(section)); } Float_t CaloEnergy::GetEnergyAtMaxplane(TString section){ section.ToUpper(); if ( section.Contains("XO") ) return xomax_en; if ( section.Contains("XE") ) return xemax_en; if ( section.Contains("YO") ) return yomax_en; if ( section.Contains("YE") ) return yemax_en; return(-1); } Float_t CaloEnergy::GetMaxEnergy(TString section){ printf(" WARNING: OBSOLETE METHOD, use GetMipEnergy(TString) instead! \n"); return (this->GetMipEnergy(section)); } Float_t CaloEnergy::GetMipEnergy(TString section){ section.ToUpper(); if ( fLong ){ this->Process(section); return fXOen_maxplane; } else { if ( section.Contains("XO") ) return fXOen_maxplane; if ( section.Contains("XE") ) return fXEen_maxplane; if ( section.Contains("YO") ) return fYOen_maxplane; if ( section.Contains("YE") ) return fYEen_maxplane; }; return(-1); } Float_t CaloEnergy::GetEncol(Int_t i){ if ( fColumn > -1 && (((fXesel || fXosel)&&i==1) || ((fYesel || fYosel)&&i==0)) ){ Int_t t = -1; if ( i == 0 ){ if ( fColumn == 0 || fColumn == 3 || fColumn == 6 ) t = 0; if ( fColumn == 1 || fColumn == 4 || fColumn == 7 ) t = 1; if ( fColumn == 2 || fColumn == 5 || fColumn == 8 ) t = 2; } else { if ( fColumn == 0 || fColumn == 1 || fColumn == 2 ) t = 0; if ( fColumn == 3 || fColumn == 4 || fColumn == 5 ) t = 1; if ( fColumn == 6 || fColumn == 7 || fColumn == 8 ) t = 2; }; if ( debug ) printf(" encol: i %i t %i encol %f \n",i,t,encol[i][t]); return encol[i][t]; }; return(-1.); } Float_t CaloEnergy::GetMaxEnergy(){ printf(" WARNING: OBSOLETE METHOD, use GetMipEnergy() instead! \n"); return (this->GetMipEnergy()); } Float_t CaloEnergy::GetMipEnergy(){ if ( fLong ){ if ( debug ) printf(" oh! call process! with asntr %s and sntr %s \n",asntr.Data(),sntr.Data()); this->Process(asntr); }; return((fXEen_maxplane+fYOen_maxplane+fYEen_maxplane+fXOen_maxplane)); } Bool_t CaloEnergy::IsInsideAcceptance(TString section){ // // check if the event is inside the acceptance of the given section(s) // TString ntr = section; if ( !L2 ){ printf(" ERROR: cannot find PamLevel2 object, use the correct constructor or check your program!\n"); printf(" ERROR: CaloEnergy variables not filled \n"); return false; }; // Bool_t newentry = false; // if ( L2->IsORB() ){ if ( L2->GetOrbitalInfo()->pkt_num != APKT || L2->GetOrbitalInfo()->OBT != AOBT || L2->GetOrbitalInfo()->absTime != aatime || strcmp(ntr.Data(),asntr.Data()) ){ newentry = true; AOBT = L2->GetOrbitalInfo()->OBT; APKT = L2->GetOrbitalInfo()->pkt_num; aatime = L2->GetOrbitalInfo()->absTime; asntr = ntr; }; } else { newentry = true; }; // // if we have already called this method for this event and no input changed then return fSel and exit // if ( !newentry ) return fSel; // // process the event // if ( debug ) printf(" ########## IsInsideAcceptance ######### \n"); // // clear variables // this->Clear(); // section.ToUpper(); // // Count the number of section(s) given as input // Int_t fNumSec = Int_t(section.Contains("XO"))+Int_t(section.Contains("XE"))+Int_t(section.Contains("YO"))+Int_t(section.Contains("YE")); if ( !fNumSec ){ printf(" ERROR: section must be XO or XE or YO or YE while it is %s \n",section.Data()); return false; }; // // If the presampler object exists then use the presampler output instead of the level2 output // CaloLevel2 *cl2 = NULL; if ( cp ){ cl2 = cp->GetCaloLevel2(); } else { cl2 = L2->GetCaloLevel2(); }; // // get the energy for every strip of the calorimeter // for (Int_t ch=0; ch< L2->GetCaloLevel1()->istrip; ch++){ en = L2->GetCaloLevel1()->DecodeEstrip(ch,view,plane,strip); // if ( !usepl18x && view==0 && plane==18 ) en = 0.; // enstrip[view][plane][strip]=en; }; // if ( debug && ((fM1+0.122-0.244*(Float_t)fRad) < 0.) ) printf("Error: (fM1+0.122-0.244*(Float_t)fRad) < 0. fM1 %f fRad %i %f \n",fM1,fRad,(fM1+0.122-0.244*(Float_t)fRad)); // // inclination factor (stolen from Daniele's code) // Float_t ytgx = 0; Float_t ytgy = 0; ytgx = 0.76 * cl2->tanx[0]; ytgy = 0.76 * cl2->tany[0]; X0pl = sqrt( pow(0.76,2.) + pow(ytgx,2.) + pow(ytgy,2.) ); // // sum energy plane by plane for each sections // Float_t fen_xep[11]; Float_t fen_xop[11]; Float_t fen_yep[11]; Float_t fen_yop[11]; memset(fen_xep,0,11*sizeof(Float_t)); memset(fen_xop,0,11*sizeof(Float_t)); memset(fen_yep,0,11*sizeof(Float_t)); memset(fen_yop,0,11*sizeof(Float_t)); // for (Int_t i=0;i<11;i++){ for(strip=0; strip<96; strip++) { fen_xep[i] += enstrip[1][2*i][strip]; fen_yop[i] += enstrip[0][2*i][strip]; fen_xop[i] += enstrip[1][(2*i)+1][strip]; fen_yep[i] += enstrip[0][(2*i)+1][strip]; if ( fRad < 0 ){ // // run over all the strips of the plane // en_xep[i] += enstrip[1][2*i][strip]; en_yop[i] += enstrip[0][2*i][strip]; en_xop[i] += enstrip[1][(2*i)+1][strip]; en_yep[i] += enstrip[0][(2*i)+1][strip]; } else { // // use only the strips inside a cylinder of given radius fRad // if ( cl2->cibar[2*i][1] >= 1 && cl2->cibar[2*i][1] <= 96 && (strip >= (cl2->cibar[2*i][1]-1-fRad)) && (strip <= (cl2->cibar[2*i][1]-1+fRad)) ) en_xep[i] += enstrip[1][2*i][strip]; if ( cl2->cibar[2*i][0] >= 1 && cl2->cibar[2*i][0] <= 96 && (strip >= (cl2->cibar[2*i][0]-1-fRad)) && (strip <= (cl2->cibar[2*i][0]-1+fRad)) ) en_yop[i] += enstrip[0][2*i][strip]; if ( cl2->cibar[(2*i)+1][1] >= 1 && cl2->cibar[(2*i)+1][1] <= 96 && (strip >= (cl2->cibar[(2*i)+1][1]-1-fRad)) && (strip <= (cl2->cibar[(2*i)+1][1]-1+fRad)) ) en_xop[i] += enstrip[1][(2*i)+1][strip]; if ( cl2->cibar[(2*i)+1][0] >= 1 && cl2->cibar[(2*i)+1][0] <= 96 && (strip >= (cl2->cibar[(2*i)+1][0]-1-fRad)) && (strip <= (cl2->cibar[(2*i)+1][0]-1+fRad)) ) en_yep[i] += enstrip[0][(2*i)+1][strip]; }; }; if ( debug ) printf(" ex_xep[%i] %f cibar %i \n",i,en_xep[i],cl2->cibar[2*i][1]); if ( debug ) printf(" ex_xop[%i] %f cibar %i \n",i,en_xop[i],cl2->cibar[(2*i)+1][1]); if ( debug ) printf(" ex_yep[%i] %f cibar %i \n",i,en_yep[i],cl2->cibar[(2*i)+1][0]); if ( debug ) printf(" ex_yop[%i] %f cibar %i \n",i,en_yop[i],cl2->cibar[2*i][0]); energyxe += en_xep[i]; energyyo += en_yop[i]; energyxo += en_xop[i]; energyye += en_yep[i]; }; // // Find the plane of maximum for each section // // Int_t xen = 0; Int_t yon = 0; Int_t xon = 0; Int_t yen = 0; Float_t en = 0.; // if ( section.Contains("XE") ){ yon++; xon++; yen++; for (Int_t ipl =0; ipl < 11; ipl ++) { en = fen_xep[ipl]; if ( !fAllpl ) en = en_xep[ipl]; if(en > xemax_en) { xemax_en = en; fMax_planexe = ipl; }; }; }; // if ( section.Contains("YO") ){ xon++; yen++; for (Int_t ipl =0; ipl < 11; ipl ++) { en = fen_yop[ipl]; if ( !fAllpl ) en = en_yop[ipl]; if(en > yomax_en) { yomax_en = en; fMax_planeyo = ipl; }; }; }; // if ( section.Contains("XO") ){ yen++; for (Int_t ipl =0; ipl < 11; ipl ++) { en = fen_xop[ipl]; if ( !fAllpl ) en = en_xop[ipl]; if(en > xomax_en) { xomax_en = en; fMax_planexo = ipl; }; }; }; // if ( section.Contains("YE") ){ for (Int_t ipl =0; ipl < 11; ipl ++) { en = fen_yep[ipl]; if ( !fAllpl ) en = en_yep[ipl]; if(en > yemax_en) { yemax_en = en; fMax_planeye = ipl; }; }; }; // // the maximum is given externally as X0, convert it to plane and section // if ( x0max > 0. ){ if ( debug ) printf(" CALCULATE MAX PLANE GIVEN X0 ASSUMING PERPENDICULAR TRACK \n"); // Int_t wpl = (Int_t)roundf(x0max/0.76); Int_t wpl = (Int_t)roundf(x0max/X0pl); Bool_t isY = false; // if ( ((x0max/0.76)-(Float_t)wpl) > 0. ) isY = true; if ( ((x0max/X0pl)-(Float_t)wpl) > 0. ) isY = true; xomax_en = 0.; yemax_en = 0.; xemax_en = 0.; yomax_en = 0.; // if ( !(wpl%2) ){ // 0, 2, 4, ... if ( isY ){ if ( section.Contains("YO") ) yomax_en = 1000.; if ( section.Contains("XE") ) xemax_en = 500.; fMax_planeyo=wpl/2; fMax_planexe=wpl/2; if ( section.Contains("XO") ) xomax_en = 10.; if ( section.Contains("YE") ) yemax_en = 5.; } else { if ( section.Contains("YO") ) yomax_en = 500.; if ( section.Contains("XE") ) xemax_en = 1000.; fMax_planeyo=wpl/2; fMax_planexe=wpl/2; if ( section.Contains("XO") ) xomax_en = 5.; if ( section.Contains("YE") ) yemax_en = 10.; }; } else { // 1, 3, 5, ... if ( isY ){ if ( section.Contains("YE") ) yemax_en = 1000.; if ( section.Contains("XO") ) xomax_en = 500.; fMax_planeye=(wpl-1)/2; fMax_planexo=(wpl-1)/2; if ( section.Contains("XE") ) xemax_en = 10.; if ( section.Contains("YO") ) yomax_en = 5.; } else { if ( section.Contains("YE") ) yemax_en = 500.; if ( section.Contains("XO") ) xomax_en = 1000.; fMax_planeye=(wpl-1)/2; fMax_planexo=(wpl-1)/2; if ( section.Contains("XE") ) xemax_en = 5.; if ( section.Contains("YO") ) yomax_en = 10.; }; }; // if ( debug ) printf(" x0max %f x0max/0.76 %f wpl %i isY %i yomax_en %f xemax_en %f yemax_en %f xomax_en %f fMaxplane %i %i %i %i\n",x0max,(x0max/0.76),wpl,isY,yomax_en,xemax_en,yemax_en,xomax_en,fMax_planeyo,fMax_planexe,fMax_planeye,fMax_planexo); if ( debug ) printf(" x0max %f x0max/X0pl %f X0pl %f wpl %i isY %i yomax_en %f xemax_en %f yemax_en %f xomax_en %f fMaxplane %i %i %i %i\n",x0max,(x0max/X0pl),X0pl,wpl,isY,yomax_en,xemax_en,yemax_en,xomax_en,fMax_planeyo,fMax_planexe,fMax_planeye,fMax_planexo); }; // Int_t nPl = fPl; // // Set the maximum in case of coherent mode was selected // if ( !indep ){ nPl = 0; if ( debug ) printf(" A: Check maximum, coherent mode: xoen %f yoen %f xeen %f yeen %f xomax %i yomax %i xemax %i yemax %i\n",xomax_en,yomax_en,xemax_en,yemax_en,fMax_planexo,fMax_planeyo,fMax_planexe,fMax_planeye); Int_t nummod = 0; Int_t numexpl = 0; if ( xomax_en > xemax_en && xomax_en > yemax_en && xomax_en > yomax_en ){ // // Section XO contains the maximum energy release per plane of the whole calorimeter // if ( debug ) printf(" XO is MAX %i %i %i %i\n",xen,yon,xon,yen); // // fMax_plane is the plane of maximum + number of additional dE/dx measurement counting planes from 0 to 43 // fMax_plane = (fNumSec * fMax_planexo) +(Float_t)xon + fPl; // // nummod is the integer part of the number of modules in which the maximum is contained // nummod = (Int_t)(((Float_t)fMax_plane)/(Float_t)fNumSec); // // numexpl is the number of additional planes (0,1,2) inside the module // numexpl = (Int_t)((Float_t)fMax_plane-(Float_t)fNumSec*(Float_t)nummod); // }; if ( xemax_en > xomax_en && xemax_en > yemax_en && xemax_en > yomax_en ){ if ( debug ) printf(" XE is MAX %i %i %i %i\n",xen,yon,xon,yen); fMax_plane = (fNumSec * fMax_planexe) +(Float_t)xen + fPl; nummod = (Int_t)(((Float_t)fMax_plane)/(Float_t)fNumSec); numexpl = (Int_t)((Float_t)fMax_plane-(Float_t)fNumSec*(Float_t)nummod); // }; if ( yemax_en > xomax_en && yemax_en > xemax_en && yemax_en > yomax_en ){ if ( debug ) printf(" YE is MAX %i %i %i %i\n",xen,yon,xon,yen); fMax_plane = (fNumSec * fMax_planeye) +(Float_t)yen + fPl; nummod = (Int_t)(((Float_t)fMax_plane)/(Float_t)fNumSec); numexpl = (Int_t)((Float_t)fMax_plane-(Float_t)fNumSec*(Float_t)nummod); // }; if ( yomax_en > xemax_en && yomax_en > yemax_en && yomax_en > xomax_en ){ if ( debug ) printf(" YO is MAX %i %i %i %i\n",xen,yon,xon,yen); fMax_plane = (fNumSec * fMax_planeyo) +(Float_t)yon + fPl; nummod = (Int_t)(((Float_t)fMax_plane)/(Float_t)fNumSec); numexpl = (Int_t)((Float_t)fMax_plane-(Float_t)fNumSec*(Float_t)nummod); // }; // // find the plane up to which is necessary to integrate the energy for each section // Int_t a = 0; Int_t b = 0; Int_t c = 0; if ( numexpl > xen ) a = 1; if ( numexpl > yon ) b = 1; if ( numexpl > xon ) c = 1; fMax_planexe = nummod; fMax_planeyo = nummod - 1 + a; fMax_planexo = nummod - 1 + b; fMax_planeye = nummod - 1 + c; if ( debug ) printf(" fMax_plane %f nummod %i numexpl %i a %i b %i c %i \n",fMax_plane,nummod,numexpl,a,b,c); if ( debug ) printf(" DONE: Check maximum, coherent mode: xoen %f yoen %f xeen %f yeen %f xomax %i yomax %i xemax %i yemax %i\n",xomax_en,yomax_en,xemax_en,yemax_en,fMax_planexo,fMax_planeyo,fMax_planexe,fMax_planeye); }; // // for each plane of the calorimeter find the position of the track in the direction along the strip (where we do not have a measurement from the selected plane) by looking at the plane above/below of the other view and extrapolating the trajectory to the given plane // // Float_t tgx_cl2; Float_t tgy_cl2; tgx_cl2 = cl2->tanx[0]; tgy_cl2 = cl2->tany[0]; // for (Int_t p=0; p<22; p++){ track_coordy[p][1] = cl2->cbar[p][1]; track_coordx[p][1] = cl2->cbar[p][0] - fabs(trk_z[p][1]-trk_z[p][0])*tgx_cl2; // track_coordx[p][1] = cl2->cbar[p][0] + fabs(trk_z[p][1]-trk_z[p][0])*tgx_cl2; track_coordx[p][0] = cl2->cbar[p][0]; track_coordy[p][0] = cl2->cbar[p][1] - fabs(trk_z[p][1]-trk_z[p][0])*tgy_cl2; // track_coordy[p][0] = cl2->cbar[p][1] + fabs(trk_z[p][1]-trk_z[p][0])*tgy_cl2; if ( debug ) printf(" p %i track_coordy[p][1] %f track_coordx[p][1] %f track_coordx[p][0] %f track_coordy[p][0] %f \n",p,track_coordy[p][1],track_coordx[p][1],track_coordx[p][0],track_coordy[p][0]); }; // if ( debug ) printf(" acceptance fNumSec %i tgx %f tgy %f\n",fNumSec,tgx_cl2,tgy_cl2); // if ( section.Contains("XO") ){ // // find the column hit in the first plane // Int_t ix = -1; Int_t iy = -1; if ( track_coordx[(2*0)+1][1] >= (-12.054+fM) && track_coordx[(2*0)+1][1] <= (-4.246-fM) ) ix = 0; if ( track_coordx[(2*0)+1][1] >= ( -4.004+fM) && track_coordx[(2*0)+1][1] <= ( 3.804-fM) ) ix = 1; if ( track_coordx[(2*0)+1][1] >= ( 4.046+fM) && track_coordx[(2*0)+1][1] <= (11.854-fM) ) ix = 2; if ( cl2->cbar[(2*0)+1][1] >= (xo1 + fM1) && cl2->cbar[(2*0)+1][1] <= (xo2 - fM1) ) iy = 0; if ( cl2->cbar[(2*0)+1][1] >= (xo3 + fM1) && cl2->cbar[(2*0)+1][1] <= (xo4 - fM1) ) iy = 1; if ( cl2->cbar[(2*0)+1][1] >= (xo5 + fM1) && cl2->cbar[(2*0)+1][1] <= (xo6 - fM1) ) iy = 2; if ( ix > -1 && iy > -1 ) fColXO = ix + iy*3; // // check event is inside XO acceptance, if multicol is false (SingleColumn mode) then the track must be contained in a column. // for (Int_t i=0; i<11; i++) { if (( ( track_coordx[(2*i)+1][1] >= (-12.054+fM) && track_coordx[(2*i)+1][1] <= (-4.246-fM) && (ix == 0 || multicol) ) || ( track_coordx[(2*i)+1][1] >= ( -4.004+fM) && track_coordx[(2*i)+1][1] <= ( 3.804-fM) && (ix == 1 || multicol) ) || ( track_coordx[(2*i)+1][1] >= ( 4.046+fM) && track_coordx[(2*i)+1][1] <= (11.854-fM) && (ix == 2 || multicol) ) ) && ( ( cl2->cbar[(2*i)+1][1] >= (xo1 + fM1) && cl2->cbar[(2*i)+1][1] <= (xo2 - fM1) && (iy == 0 || multicol) ) || ( cl2->cbar[(2*i)+1][1] >= (xo3 + fM1) && cl2->cbar[(2*i)+1][1] <= (xo4 - fM1) && (iy == 1 || multicol) ) || ( cl2->cbar[(2*i)+1][1] >= (xo5 + fM1) && cl2->cbar[(2*i)+1][1] <= (xo6 - fM1) && (iy == 2 || multicol) ) )){ fXosel = true; fXoout = i; } else { fXosel = false; break; }; }; // // if it goes out of the acceptance BUT the plane up to which we are integrating the energy is contained then the event is "partially" contained // if ( !fXosel && fXoout >= fXomin && fXoout >= (Int_t)(fMax_planexo+nPl) ){ if ( debug ) printf(" XO: this event is only partially contained: fXoout %i fXomin %i fMax_planexo + nPl %i \n",fXoout,fXomin,(Int_t)(fMax_planexo+nPl)); fPartsel = true; fXosel = true; }; // // event is contained (or partially contained) hence we can integrate energy up to the maximum and calculate the energy as measured by this section // if ( fXosel ){ for (Int_t iplm=0; iplm<=TMath::Min(10,(Int_t)(fMax_planexo+nPl)); iplm++){ fXOen_maxplane += en_xop[iplm]; if ( debug ) printf(" XO iplm %i fXOen_maxplane %f en_xop[iplm] %f\n",iplm,fXOen_maxplane,en_xop[iplm]); }; fEnergyxo = fXOen_maxplane/fConv_rxo; // for (Int_t i=0;i<11;i++){ for(strip=0; strip<96; strip++) { // // run over all the strips of the plane // if ( strip >= 0 && strip < 32 ) encol[1][0] += enstrip[1][(2*i)+1][strip]; if ( strip >= 32 && strip < 64 ) encol[1][1] += enstrip[1][(2*i)+1][strip]; if ( strip >= 64 && strip < 96 ) encol[1][2] += enstrip[1][(2*i)+1][strip]; entot[1] += enstrip[1][(2*i)+1][strip]; // }; }; }; }; // if ( section.Contains("XE") ){ // // find the column hit in the first plane // Int_t ix = -1; Int_t iy = -1; if ( track_coordx[(2*0)][1] >= (-11.854+fM) && track_coordx[(2*0)][1] <= (-4.046-fM) ) ix = 0; if ( track_coordx[(2*0)][1] >= ( -3.804+fM) && track_coordx[(2*0)][1] <= ( 4.004-fM) ) ix = 1; if ( track_coordx[(2*0)][1] >= ( 4.246+fM) && track_coordx[(2*0)][1] <= (12.054-fM) ) ix = 2; if ( cl2->cbar[(2*0)][1] >= (xe1 + fM1) && cl2->cbar[(2*0)][1] <= (xe2 - fM1) ) iy = 0; if ( cl2->cbar[(2*0)][1] >= (xe3 + fM1) && cl2->cbar[(2*0)][1] <= (xe4 - fM1) ) iy = 1; if ( cl2->cbar[(2*0)][1] >= (xe5 + fM1) && cl2->cbar[(2*0)][1] <= (xe6 - fM1) ) iy = 2; if ( ix > -1 && iy > -1 ) fColXE = ix + iy*3; // // check event is inside XO acceptance // for (Int_t i=0; i<11; i++) { if (( ( track_coordx[(2*i)][1] >= (-11.854+fM) && track_coordx[(2*i)][1] <= (-4.046-fM) && (ix == 0 || multicol) ) || ( track_coordx[(2*i)][1] >= ( -3.804+fM) && track_coordx[(2*i)][1] <= ( 4.004-fM) && (ix == 1 || multicol) ) || ( track_coordx[(2*i)][1] >= ( 4.246+fM) && track_coordx[(2*i)][1] <= (12.054-fM) && (ix == 2 || multicol) ) ) && ( ( cl2->cbar[(2*i)][1] >= (xe1 + fM1) && cl2->cbar[(2*i)][1] <= (xe2 - fM1) && (iy == 0 || multicol) ) || ( cl2->cbar[(2*i)][1] >= (xe3 + fM1) && cl2->cbar[(2*i)][1] <= (xe4 - fM1) && (iy == 1 || multicol) ) || ( cl2->cbar[(2*i)][1] >= (xe5 + fM1) && cl2->cbar[(2*i)][1] <= (xe6 - fM1) && (iy == 2 || multicol) ) )){ fXesel = true; fXeout = i; } else { fXesel = false; break; }; }; // if ( !fXesel && fXeout >= fXemin && fXeout >= (Int_t)(fMax_planexe+nPl) ){ if ( debug ) printf(" XE: this event is only partially contained: fXeout %i fXemin %i fMax_planexe + nPl %i \n",fXeout,fXemin,(Int_t)(fMax_planexe+nPl)); fPartsel = true; fXesel = true; }; if ( fXesel ){ for (Int_t iplm=0;iplm<=TMath::Min(10,(Int_t)(fMax_planexe+nPl)) ;iplm++){ fXEen_maxplane += en_xep[iplm]; if ( debug ) printf(" XE iplm %i fXOen_maxplane %f en_xop[iplm] %f\n",iplm,fXEen_maxplane,en_xep[iplm]); }; fEnergyxe = fXEen_maxplane/fConv_rxe; // for (Int_t i=0;i<11;i++){ for(strip=0; strip<96; strip++) { // // run over all the strips of the plane // if ( strip >= 0 && strip < 32 ) encol[1][0] += enstrip[1][(2*i)][strip]; if ( strip >= 32 && strip < 64 ) encol[1][1] += enstrip[1][(2*i)][strip]; if ( strip >= 64 && strip < 96 ) encol[1][2] += enstrip[1][(2*i)][strip]; entot[1] += enstrip[1][(2*i)][strip]; // }; }; }; }; // if ( section.Contains("YE") ){ // // find the column hit in the first plane // Int_t ix = -1; Int_t iy = -1; if ( track_coordy[(2*0)+1][0] >= (-12.154+fM) && track_coordy[(2*0)+1][0] <= (-4.346-fM) ) iy = 0; if ( track_coordy[(2*0)+1][0] >= ( -4.104+fM) && track_coordy[(2*0)+1][0] <= ( 3.704-fM) ) iy = 1; if ( track_coordy[(2*0)+1][0] >= ( 3.946+fM) && track_coordy[(2*0)+1][0] <= (11.754-fM) ) iy = 2; if ( cl2->cbar[(2*0)+1][0] >= (ye1 + fM1) && cl2->cbar[(2*0)+1][0] <= (ye2 - fM1) ) ix = 0; if ( cl2->cbar[(2*0)+1][0] >= (ye3 + fM1) && cl2->cbar[(2*0)+1][0] <= (ye4 - fM1) ) ix = 1; if ( cl2->cbar[(2*0)+1][0] >= (ye5 + fM1) && cl2->cbar[(2*0)+1][0] <= (ye6 - fM1) ) ix = 2; if ( ix > -1 && iy > -1 ) fColYE = ix + iy*3; // // check event is inside XO acceptance // for (Int_t i=0; i<11; i++) { if (( ( track_coordy[(2*i)+1][0] >= (-12.154+fM) && track_coordy[(2*i)+1][0] <= (-4.346-fM) && (iy == 0 || multicol) ) || ( track_coordy[(2*i)+1][0] >= ( -4.104+fM) && track_coordy[(2*i)+1][0] <= ( 3.704-fM) && (iy == 1 || multicol) ) || ( track_coordy[(2*i)+1][0] >= ( 3.946+fM) && track_coordy[(2*i)+1][0] <= (11.754-fM) && (iy == 2 || multicol) ) ) && ( ( cl2->cbar[(2*i)+1][0] >= (ye1 + fM1) && cl2->cbar[(2*i)+1][0] <= (ye2 - fM1) && (ix == 0 || multicol) ) || ( cl2->cbar[(2*i)+1][0] >= (ye3 + fM1) && cl2->cbar[(2*i)+1][0] <= (ye4 - fM1) && (ix == 1 || multicol) ) || ( cl2->cbar[(2*i)+1][0] >= (ye5 + fM1) && cl2->cbar[(2*i)+1][0] <= (ye6 - fM1) && (ix == 2 || multicol) ) )){ fYesel = true; fYeout = i; } else { fYesel = false; break; }; }; // if ( !fYesel && fYeout >= fYemin && fYeout >= (Int_t)(fMax_planeye+nPl) ){ if ( debug ) printf(" YE: this event is only partially contained: fYeout %i fYemin %i fMax_planeye + nPl %i \n",fYeout,fYemin,(Int_t)(fMax_planeye+nPl)); fPartsel = true; fYesel = true; }; if ( fYesel ){ for (Int_t iplm=0;iplm<=TMath::Min(10,(Int_t)(fMax_planeye+nPl)) ;iplm++) fYEen_maxplane += en_yep[iplm]; fEnergyye = fYEen_maxplane/fConv_rye; // for (Int_t i=0;i<11;i++){ for(strip=0; strip<96; strip++) { // // run over all the strips of the plane // if ( strip >= 0 && strip < 32 ) encol[0][0] += enstrip[0][(2*i)+1][strip]; if ( strip >= 32 && strip < 64 ) encol[0][1] += enstrip[0][(2*i)+1][strip]; if ( strip >= 64 && strip < 96 ) encol[0][2] += enstrip[0][(2*i)+1][strip]; entot[0] += enstrip[0][(2*i)+1][strip]; // }; }; // }; }; // if ( section.Contains("YO") ){ // // find the column hit in the first plane // Int_t ix = -1; Int_t iy = -1; if ( track_coordy[(2*0)][0] >= (-11.954+fM) && track_coordy[(2*0)][0] <= (-4.146-fM) ) iy = 0; if ( track_coordy[(2*0)][0] >= ( -3.904+fM) && track_coordy[(2*0)][0] <= ( 3.904-fM) ) iy = 1; if ( track_coordy[(2*0)][0] >= ( 4.146+fM) && track_coordy[(2*0)][0] <= (11.954-fM) ) iy = 2; if ( cl2->cbar[(2*0)][0] >= (yo1 + fM1) && cl2->cbar[(2*0)][0] <= (yo2 - fM1) ) ix = 0; if ( cl2->cbar[(2*0)][0] >= (yo3 + fM1) && cl2->cbar[(2*0)][0] <= (yo4 - fM1) ) ix = 1; if ( cl2->cbar[(2*0)][0] >= (yo5 + fM1) && cl2->cbar[(2*0)][0] <= (yo6 - fM1) ) ix = 2; if ( ix > -1 && iy > -1 ) fColYO = ix + iy*3; // // check event is inside XO acceptance // for (Int_t i=0; i<11; i++) { if (( ( track_coordy[(2*i)][0] >= (-11.954+fM) && track_coordy[(2*i)][0] <= (-4.146-fM) && (iy == 0 || multicol) ) || ( track_coordy[(2*i)][0] >= ( -3.904+fM) && track_coordy[(2*i)][0] <= ( 3.904-fM) && (iy == 1 || multicol) ) || ( track_coordy[(2*i)][0] >= ( 4.146+fM) && track_coordy[(2*i)][0] <= (11.954-fM) && (iy == 2 || multicol) ) ) && ( ( cl2->cbar[(2*i)][0] >= (yo1 + fM1) && cl2->cbar[(2*i)][0] <= (yo2 - fM1) && (ix == 0 || multicol) ) || ( cl2->cbar[(2*i)][0] >= (yo3 + fM1) && cl2->cbar[(2*i)][0] <= (yo4 - fM1) && (ix == 1 || multicol) ) || ( cl2->cbar[(2*i)][0] >= (yo5 + fM1) && cl2->cbar[(2*i)][0] <= (yo6 - fM1) && (ix == 2 || multicol) ) )){ fYosel = true; fYoout = i; } else { fYosel = false; break; }; }; // if ( !fYosel && fYoout >= fYomin && fYoout >= (Int_t)(fMax_planeyo+nPl) ){ if ( debug ) printf(" YO: this event is only partially contained: fYoout %i fYomin %i fMax_planeyo + nPl %i \n",fYoout,fYomin,(Int_t)(fMax_planeyo+nPl)); fPartsel = true; fYosel = true; }; if ( fYosel ){ for (Int_t iplm=0;iplm<=TMath::Min(10,(Int_t)(fMax_planeyo+nPl)) ;iplm++) fYOen_maxplane += en_yop[iplm]; fEnergyyo = fYOen_maxplane/fConv_ryo; // for (Int_t i=0;i<11;i++){ for(strip=0; strip<96; strip++) { // // run over all the strips of the plane // if ( strip >= 0 && strip < 32 ) encol[0][0] += enstrip[0][(2*i)][strip]; if ( strip >= 32 && strip < 64 ) encol[0][1] += enstrip[0][(2*i)][strip]; if ( strip >= 64 && strip < 96 ) encol[0][2] += enstrip[0][(2*i)][strip]; entot[0] += enstrip[0][(2*i)][strip]; // }; }; }; }; // // Count the number of sections in which the event is contained // fCount = (Float_t)((Int_t)fXesel+(Int_t)fXosel+(Int_t)fYesel+(Int_t)fYosel); // if ( indep ){ // // independent mode, average the energy measurement and max plane of the contained sections // fSel = ( fXesel || fYesel || fXosel || fYosel ); fMax_plane = (Float_t)(fMax_planeyo+fMax_planeye+fMax_planexo+fMax_planexe)/fCount; fEnergy = (fEnergyxe+fEnergyyo+fEnergyye+fEnergyxo)/fCount; // } else { // // coherent mode, sum the energy [MIP] of the given sections and convert using fConv_rxo. **** NB: it is assumed that the conversion factor is unique and the method SetConvertionFactor(Float_t) has been used**** The event is selected only if it is contained in all the given sections // if ( fCount != fNumSec ){ fSel = false; } else { fSel = true; }; fEnergy = (fXEen_maxplane+fYOen_maxplane+fYEen_maxplane+fXOen_maxplane)/fConv_rxo; if ( fSel ){ if ( fXesel ) fColumn = fColXE; if ( fXosel ){ if ( fColXO != fColumn && fColumn > -1 ){ printf(" ERROR! mismatch in column number between different sections! fColumn %i fColXO %i \n",fColumn,fColXO); } else { fColumn = fColXO; }; }; if ( fYesel ){ if ( fColYE != fColumn && fColumn > -1 ){ printf(" ERROR! mismatch in column number between different sections! fColumn %i fColYE %i \n",fColumn,fColYE); } else { fColumn = fColYE; }; }; if ( fYosel ){ if ( fColYO != fColumn && fColumn > -1 ){ printf(" ERROR! mismatch in column number between different sections! fColumn %i fColYO %i \n",fColumn,fColYO); } else { fColumn = fColYO; }; }; }; }; // if ( debug ) printf("sel %i indep %i fMax_plane %f conv_r %f en_maxplane %f encalo %f \n",fSel,indep,fMax_plane,fConv_rxo,fXOen_maxplane,fEnergy); if ( debug ) printf(" IsInside XE %i XO %i YE %i YO %i => SEL %i \n",fXesel,fXosel,fYesel,fYosel,fSel); // // finish exit // return fSel; // } void CaloEnergy::Process(){ TString xo = "XO"; this->Process(xo); } void CaloEnergy::Process(TString section){ // // process the event // TString ntr = section; if ( !L2 ){ printf(" ERROR: cannot find PamLevel2 object, use the correct constructor or check your program!\n"); printf(" ERROR: CaloEnergy variables not filled \n"); return; }; // Bool_t newentry = false; // if ( L2->IsORB() ){ if ( L2->GetOrbitalInfo()->pkt_num != PKT || L2->GetOrbitalInfo()->OBT != OBT || L2->GetOrbitalInfo()->absTime != atime || strcmp(ntr.Data(),sntr.Data()) ){ newentry = true; OBT = L2->GetOrbitalInfo()->OBT; PKT = L2->GetOrbitalInfo()->pkt_num; atime = L2->GetOrbitalInfo()->absTime; sntr = ntr; }; } else { newentry = true; }; // // if we have already called this method for this event and no input changed then return fSel and exit // if ( !newentry ) return; // // process the event // if ( debug ) printf(" Processing event at OBT %u PKT %u time %u section %s\n",OBT,PKT,atime,section.Data()); // // check if the cylinder of integration can go out of the sensor given the frame which has been set (if we use all the calorimeter fRad is < 0 and the printout is suppressed) // if ( (fM1+0.122-0.244*(Float_t)fRad) < 0.000000001 ) printf("Error: (fM1+0.122-0.244*(Float_t)fRad) < 0. fM1 %f fRad %i %f \n",fM1,fRad,(fM1+0.122-0.244*(Float_t)fRad)); // if ( fLong ){ if ( debug ) printf(" ==================================================================> LONGITUDINAL FIT! \n"); // // use long fit to measure energy // if ( this->IsInsideAcceptance(section) ){ // if ( debug ) printf(" ==================================================================> LONG INSIDE! \n"); // Float_t myene[2][22]; memset(myene,0,(sizeof(Float_t))*2*22); for (Int_t j=0; j<11; j++){ if ( section.Contains("XE") ) myene[1][2*j] = en_xep[j]; if ( section.Contains("YO") ) myene[0][2*j] = en_yop[j]; if ( section.Contains("XO") ) myene[1][(2*j)+1] = en_xop[j]; if ( section.Contains("YE") ) myene[0][(2*j)+1] = en_yep[j]; }; clong->UnMaskSections(); if ( !(section.Contains("YE")) ) clong->MaskSection("YE"); if ( !(section.Contains("YO")) ) clong->MaskSection("YO"); if ( !(section.Contains("XO")) ) clong->MaskSection("XO"); if ( !(section.Contains("XE")) ) clong->MaskSection("XE"); clong->ForceNextFit(); clong->SetEnergies(myene); if ( debug ){ clong->Fit(true); } else { clong->Fit(); }; if ( clong->GetLowerLimit() != 0. || clong->GetUpperLimit() != 0. ){ fXOen_maxplane = clong->Get_defE0(); } else { fXOen_maxplane = clong->Get_E0(); }; fMax_plane = clong->Get_tmax(); fYOen_maxplane = 0.; fYEen_maxplane = 0.; fXEen_maxplane = 0.; fEnergy=fXOen_maxplane/fConv_rxo; if ( fEnergy != fEnergy || clong->Get_fitresult() != 0 ) fEnergy = -1.; // if ( fEnergy != fEnergy ) fEnergy = 1.; // } else { // // if the event is not in the acceptance, return a negative energy. // if ( debug ) printf(" Outside acceptance \n"); fEnergy *= -1.; // }; // } else { // // use the energy measurement // if ( this->IsInsideAcceptance(section) ){ // // the event is good // if ( debug ) printf(" XE %i XO %i YE %i YO %i \n",fXesel,fXosel,fYesel,fYosel); // } else { // // if the event is not in the acceptance, return a negative energy. // if ( debug ) printf(" Outside acceptance \n"); fEnergy *= -1.; // }; }; // }