--- calo/flight/CaloEnergy/inc/CaloEnergy.h 2009/08/18 09:24:50 1.9 +++ calo/flight/CaloEnergy/inc/CaloEnergy.h 2009/09/10 12:53:29 1.12 @@ -45,37 +45,82 @@ UInt_t aatime;///< event absolute time TString asntr;///< string containing the list of section the user want to process // + // margins, acceptance and containment + // Float_t fM; ///< margin in the strip direction Float_t fM1; ///< margin along the strip reading direction Int_t fPl; ///< number of dE/dx measurements over the maximum that are used to find the energy + Float_t fCount; ///< Number of sections inside the acceptance (only the section given by the user are checked) + Int_t fRad; ///< Radius [strip] of the cylinder used to integrate the energy along the track, if negative radius is inf (the whole plane is used). Default: -1 + Int_t fNumSec; ///< Number of sections given by the user + Bool_t fXosel; ///< true if event is contained in section XO + Bool_t fXesel; ///< true if event is contained in section XE + Bool_t fYosel; ///< true if event is contained in section YO + Bool_t fYesel; ///< true if event is contained in section YE + Bool_t fSel; ///< true if event is contained in at least one of the given section (independet mode) or in all the given section (coherent mode) + Bool_t fPartsel; ///< true if the event is contained only up to the last plane used for energy determination (can be used in conjunction with fXXmin) + Int_t fXeout; ///< last plane [0,11] for which the trajectory is contained in section XE + Int_t fYeout; ///< last plane [0,11] for which the trajectory is contained in section YE + Int_t fXoout; ///< last plane [0,11] for which the trajectory is contained in section XO + Int_t fYoout; ///< last plane [0,11] for which the trajectory is contained in section YO + Int_t fXomin; ///< last plane [0,11] for which the trajectory MUST be contained in section XO. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY) + Int_t fXemin; ///< last plane [0,11] for which the trajectory MUST be contained in section XE. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY) + Int_t fYomin; ///< last plane [0,11] for which the trajectory MUST be contained in section YO. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY) + Int_t fYemin; ///< last plane [0,11] for which the trajectory MUST be contained in section YE. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY) + Bool_t indep; ///< flag to switch between INDEPENDENT or COHERENT mode, default false - COHERENT mode selected + Float_t X0pl; ///< transversed X0 for each W plane taking into account inclination of the trajectory + // + // conversion factors + // Float_t fConv_rxe; ///< MIP - energy conversion factor for section XE Float_t fConv_rxo; ///< MIP - energy conversion factor for section XO Float_t fConv_rye; ///< MIP - energy conversion factor for section YE Float_t fConv_ryo; ///< MIP - energy conversion factor for section YO + // + // Longitudinal fit + // Bool_t fLong; ///< if true use the integral of the longitudinal profile to measure the energy (NOT IMPLEMENTED YET), default FALSE + // + // Energies (MIP) + // + Float_t fXOen_maxplane; ///< total energy [MIP] used for energy determination as given by section XO + Float_t fYOen_maxplane; ///< total energy [MIP] used for energy determination as given by section YO + Float_t fXEen_maxplane; ///< total energy [MIP] used for energy determination as given by section XE + Float_t fYEen_maxplane; ///< total energy [MIP] used for energy determination as given by section YE + Float_t xomax_en; ///< energy at plane of maximum of section XO + Float_t xemax_en; ///< energy at plane of maximum of section XE + Float_t yomax_en; ///< energy at plane of maximum of section YO + Float_t yemax_en; ///< energy at plane of maximum of section YE + Float_t energyxe; ///< 11 planes detected energy [MIP] for section XE + Float_t energyyo; ///< 11 planes detected energy [MIP] for section YO + Float_t energyxo; ///< 11 planes detected energy [MIP] for section XO + Float_t energyye; ///< 11 planes detected energy [MIP] for section YE + Float_t en_xep[11]; ///< detected energy [MIP] for each plane of section XE + Float_t en_yop[11]; ///< detected energy [MIP] for each plane of section YO + Float_t en_xop[11]; ///< detected energy [MIP] for each plane of section XO + Float_t en_yep[11]; ///< detected energy [MIP] for each plane of section YE + Float_t encol[2][3]; ///< detected energy [MIP] for each column of views x and y + Float_t entot[2]; ///< detected energy [MIP] for views x and y + // + // Energies (GV) // Float_t fEnergyxe; ///< Energy as measured by section XE Float_t fEnergyxo; ///< Energy as measured by section XO Float_t fEnergyye; ///< Energy as measured by section YE Float_t fEnergyyo; ///< Energy as measured by section YO Float_t fEnergy; ///< Energy as measured by the average of the used section in "Independent mode" or energy as measured by the used section in "Coherent mode" - Float_t fCount; ///< Number of sections inside the acceptance (only the section given by the user are checked) + // + // Plane of maximum + // Int_t fMax_planexe; ///< plane of maximum energy release (independent mode) or last plane used for energy measurement (coherent mode) for section XE Int_t fMax_planexo; ///< plane of maximum energy release (independent mode) or last plane used for energy measurement (coherent mode) for section XO Int_t fMax_planeyo; ///< plane of maximum energy release (independent mode) or last plane used for energy measurement (coherent mode) for section YO Int_t fMax_planeye; ///< plane of maximum energy release (independent mode) or last plane used for energy measurement (coherent mode) for section YE Float_t fMax_plane; ///< average max plane [0,11] (independent mode) or last plane for energy measurement [0,43] (coherent mode) + Float_t x0max; ///< plane of maximum given externally (only test purpose) + Bool_t fAllpl; ///< use all 96 strips for each plane to determine the maximum OR only the energy along the track as defined with fRad // - Float_t fXOen_maxplane; ///< total energy [MIP] used for energy determination as given by section XO - Float_t fYOen_maxplane; ///< total energy [MIP] used for energy determination as given by section YO - Float_t fXEen_maxplane; ///< total energy [MIP] used for energy determination as given by section XE - Float_t fYEen_maxplane; ///< total energy [MIP] used for energy determination as given by section YE - // - Float_t xomax_en; ///< energy at plane of maximum of section XO - Float_t xemax_en; ///< energy at plane of maximum of section XE - Float_t yomax_en; ///< energy at plane of maximum of section YO - Float_t yemax_en; ///< energy at plane of maximum of section YE - // + // Geometry // Float_t xe1; ///< position of strip 1 section XE Float_t xe2; ///< position of strip 32 section XE @@ -83,95 +128,105 @@ Float_t xe4; ///< position of strip 64 section XE Float_t xe5; ///< position of strip 65 section XE Float_t xe6; ///< position of strip 96 section XE - // Float_t z1; Float_t yo1; ///< position of strip 1 section YO Float_t yo2; ///< position of strip 32 section YO Float_t yo3; ///< position of strip 33 section YO Float_t yo4; ///< position of strip 64 section YO Float_t yo5; ///< position of strip 65 section YO Float_t yo6; ///< position of strip 96 section YO - // Float_t z2; Float_t xo1; ///< position of strip 1 section XO Float_t xo2; ///< position of strip 32 section XO Float_t xo3; ///< position of strip 33 section XO Float_t xo4; ///< position of strip 64 section XO Float_t xo5; ///< position of strip 65 section XO Float_t xo6; ///< position of strip 96 section XO - // Float_t z3; Float_t ye1; ///< position of strip 1 section YE Float_t ye2; ///< position of strip 32 section YE Float_t ye3; ///< position of strip 33 section YE Float_t ye4; ///< position of strip 64 section YE Float_t ye5; ///< position of strip 65 section YE Float_t ye6; ///< position of strip 96 section YE - // Float_t z4; - Float_t track_coordx[22][2]; - Float_t track_coordy[22][2]; - // + Float_t track_coordx[22][2]; ///< XO and XE views, position (x and y) of the trajectory according to the fit + Float_t track_coordy[22][2]; ///< YO and YE views, position (x and y) of the trajectory according to the fit Float_t trk_z[22][2]; ///< Z position of calorimeter planes + // + // decode estrip + // Float_t en; ///< energy [mip] for decodeestrip Int_t view; ///< view for decodeestrip Int_t plane; ///< plane for decodeestrip Int_t strip; ///< strip for decodeestrip - Int_t fRad; ///< Radius [strip] of the cylinder used to integrate the energy along the track, if negative radius is inf (the whole plane is used). Default: -1 - Int_t fNumSec; ///< Number of sections given by the user - Float_t energyxe; ///< 11 planes detected energy [MIP] for section XE - Float_t energyyo; ///< 11 planes detected energy [MIP] for section YO - Float_t energyxo; ///< 11 planes detected energy [MIP] for section XO - Float_t energyye; ///< 11 planes detected energy [MIP] for section YE - Float_t en_xep[11]; ///< detected energy [MIP] for each plane of section XE - Float_t en_yop[11]; ///< detected energy [MIP] for each plane of section YO - Float_t en_xop[11]; ///< detected energy [MIP] for each plane of section XO - Float_t en_yep[11]; ///< detected energy [MIP] for each plane of section YE Float_t enstrip[2][22][96]; ///< detected energy [MIP] for each strip of calorimeter - // - Float_t encol[2][3]; - Int_t fColumn; + // y ^ + // || 6 7 8 + // Columns || 3 4 5 + // || 0 1 2 + Int_t fColumn; ///< Column number for the event [0,8] =============> x + Int_t fColXE; ///< Column number for section XE + Int_t fColXO; ///< Column number for section XO + Int_t fColYE; ///< Column number for section YE + Int_t fColYO; ///< Column number for section YO + Bool_t multicol; ///< accept or not multicolumns events // - Float_t x0max; ///< plane of maximum given externally (only test purpose) - // - Bool_t fXosel; ///< true if event is contained in section XO - Bool_t fXesel; ///< true if event is contained in section XE - Bool_t fYosel; ///< true if event is contained in section YO - Bool_t fYesel; ///< true if event is contained in section YE - Bool_t fSel; ///< true if event is contained in at least one of the given section (independet mode) or in all the given section (coherent mode) - Bool_t fPartsel; ///< true if the event is contained only up to the last plane used for energy determination (can be used in conjunction with fXXmin) - Int_t fXeout; ///< last plane [0,11] for which the trajectory is contained in section XE - Int_t fYeout; ///< last plane [0,11] for which the trajectory is contained in section YE - Int_t fXoout; ///< last plane [0,11] for which the trajectory is contained in section XO - Int_t fYoout; ///< last plane [0,11] for which the trajectory is contained in section YO - Int_t fXomin; ///< last plane [0,11] for which the trajectory MUST be contained in section XO. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY) - Int_t fXemin; ///< last plane [0,11] for which the trajectory MUST be contained in section XE. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY) - Int_t fYomin; ///< last plane [0,11] for which the trajectory MUST be contained in section YO. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY) - Int_t fYemin; ///< last plane [0,11] for which the trajectory MUST be contained in section YE. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY) + // other stuff // Bool_t fSimu; ///< true if we are using simulated data, default false - Bool_t indep; ///< flag to switch between INDEPENDENT or COHERENT mode, default false - COHERENT mode selected - // CaloPreSampler *cp; ///< pointer to calopresampler object (object constructed only when invoking method UseCaloPreSampler() , default: use level2 data). CaloLong *clong; ///< pointer to calolong object (object constructed only when invoking method UseLongFit(), default use energy up to maximum). // + // private methods + // void DefineGeometry(); ///< called by constructors to fill geometrical variables (like xe1 etc). void Set(); ///< called by contructors to define default variables public: // + // constructors and destructors + // CaloEnergy(); ///< default constructor (does nothing) CaloEnergy(PamLevel2 *L2); ///< constructor CaloEnergy(PamLevel2 *L2, Bool_t simulation); ///< constructor ~CaloEnergy(){ Delete(); }; ///< default destructor // + // Setters and behaviour methods + // void SetDebug(Bool_t d){ debug=d; }; ///< set the debug flag (verbose print-out on STDOUT), default is false // - void Clear(); ///< clear varibles - void Clear(Option_t *option){Clear();}; ///< compatibility with TObject - void Delete(); ///< delete object - void Delete(Option_t *option){Delete();}; ///< compatibility with TObject + void UseCaloPreSampler(); ///< use pre-sampler routine to refit the track (level2 default fitting could be wrong, in this case we force "shower fitting" in the DV library). + void UseLevel2(); ///< use level2 default fitting + // + void UseLongFit();///< use or not the longitudinal fit to determine the energy + void UseMeasuredEnergyUpToMax(){ fLong = false;}; ///< use the measured energy to determine the maximum (default) + // + void IndependentMode(){ indep = true; }; ///< Set the independent mode + void CoherentMode(){ indep = false; }; ///< Set the coherent mode + // + void MultiColumns(){multicol = true;}; ///< accept multicolumns events + void SingleColumn(){multicol = false;}; ///< accept events only if contained in a single column + // + void UseAllPlane2FindMax(){ fAllpl = true;};///< find the maximum (not long fit) integrating over all the 96 strips of the planes even if SetRadius has been used [default] + void UseMeasuredEnergy2FindMax(){ fAllpl = false;};///< find the maximum (not long fit) using the energy measured and used to calculate the result + // + void SetMargin(Float_t margin){fM = margin ; fM1 = margin - 0.122 - 0.096 + 0.096; if ( fM1 < 0. ) fM1 = 0.;}; ///< set the margin from the border of the silicon sensor (not from the first strip), set the same margin for both the directions + void SetMarginStripDirection(Float_t margin){fM = margin ;}; ///< set the margin from the border of the silicon sensor (not from the first strip) in the strip direction + void SetMarginStripReading(Float_t margin){fM1 = margin -0.122 - 0.096 + 0.096;}; ///< set the margin from the border of the silicon sensor (not from the first strip) in the strip reading direction + // + void SetRadius(Int_t strip){fRad = strip;}; ///< set the radius of the cylinder + void SetMaxPlaneOffset(Int_t noplanes){fPl = noplanes;}; ///< set the number of dE/dx measurements to be used after the maximum + // + void SetX0max(Float_t xm){ x0max = xm;}; ///< set the plane of maximum from external source X0 (test purpose only) + void SetRigX0max(Float_t rig){ x0max = -0.5+log(rig/0.0076);}; ///< set the plane of maximum from external source rigidity (GeV) (test purpose only) + // + void SetMinimumContainment(Int_t plane); ///< set the last plane [0,11] for which the trajectory MUST be contained in all the sections. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY) + void SetMinimumContainment(TString section, Int_t plane); ///< set the last plane [0,11] for which the trajectory MUST be contained in section "section". Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY) + // + void SetConversionFactor(Float_t conv_r); ///< Set the MIP-GV conversion factor for all the four sections. + void SetConversionFactor(TString section, Float_t conv_r); ///< Set the MIP-GV conversion factor for section "section". + // + void ForceProcessing(){atime=0; PKT=0; APKT=0; aatime=0;}; ///< Force processing the event even if the same request is made twice without a getentry from pamlevel2 + // + // Getters and checks methods // - void Process(); ///< Process the event - void Process(TString section); ///< Process the event for section "section" - void Print(); ///< Print variables on STDOUT - void Print(Option_t *option){Print();}; ///< compatibility with TObject // Bool_t IsInsideAcceptance(TString section); ///< returns true if event is inside acceptance of the given sections (all if coherent mode, at least one in independent mode) Bool_t IsInsideReducedAcceptance(){return fPartsel;}; ///< returns true if the event is inside acceptance only up to the last used plane (see fXomin etc) @@ -187,53 +242,61 @@ // Float_t GetEnergy(){ Process(); return fEnergy;}; ///< returns the energy [GV] determined for this event Float_t GetEnergy(TString section){ Process(section); return fEnergy;}; ///< returns the energy [GV] determined for this event + // Float_t GetCount(){ return fCount;}; ///< returns the number of section inside acceptance for this event (equal to the number of given section in coherent mode) // - Float_t GetMaxplane(){ return fMax_plane;}; ///< returns the average max plane [0,11] (independent mode) or last plane for energy measurement [0,43] (coherent mode) - Float_t GetEnergyAtMaxplane(TString section); ///< returns the energy at the plane of maximum for section "section" + Float_t GetEnergyAtMaxplane(TString section); ///< returns the energy [MIP] at the plane of maximum for section "section" + Float_t GetMipEnergyAtMaxplane(TString section); ///< returns the energy [MIP] at the plane of maximum for section "section" // Float_t GetMaxEnergy(); ///< returns the total energy [MIP] before conversion Float_t GetMaxEnergy(TString section); ///< returns the total energy [MIP] before conversion for section "section" - Int_t GetMaxplane(TString section); ///< returns the plane of maximum (independent mode) or the last used plane (coherent mode) for section "section" - // - void UseLongFit();///< use or not the longitudinal fit to determine the energy - CaloLong* GetCaloLong(){return clong;}; ///< Get calolong object. - void UseMeasuredEnergyUpToMax(){ fLong = false;}; ///< use the measured energy to determine the maximum (default) + Float_t GetMipEnergy(); ///< returns the total energy [MIP] before conversion + Float_t GetMipEnergy(TString section); ///< returns the total energy [MIP] before conversion for section "section" // - void SetMargin(Float_t margin){fM = margin ; fM1 = margin - 0.122 - 0.096 + 0.096; if ( fM1 < 0. ) fM1 = 0.;}; ///< set the margin from the border of the silicon sensor (not from the first strip), set the same margin for both the directions - void SetMarginStripDirection(Float_t margin){fM = margin ;}; ///< set the margin from the border of the silicon sensor (not from the first strip) in the strip direction - void SetMarginStripReading(Float_t margin){fM1 = margin -0.122 - 0.096 + 0.096;}; ///< set the margin from the border of the silicon sensor (not from the first strip) in the strip reading direction - void SetRadius(Int_t strip){fRad = strip;}; ///< set the radius of the cylinder - void SetMaxPlaneOffset(Int_t noplanes){fPl = noplanes;}; ///< set the number of dE/dx measurements to be used after the maximum - void SetX0max(Float_t xm){ x0max = xm;}; ///< set the plane of maximum from external source X0 (test purpose only) - void SetRigX0max(Float_t rig){ x0max = -0.5+log(rig/0.0076);}; ///< set the plane of maximum from external source rigidity (GeV) (test purpose only) + Int_t GetMaxplane(TString section); ///< returns the plane of maximum (independent mode) or the last used plane (coherent mode) for section "section" + Float_t GetMaxplane(){ return fMax_plane;}; ///< returns the average max plane [0,11] (independent mode) or last plane for energy measurement [0,43] (coherent mode) // - void SetMinimumContainment(Int_t plane); ///< set the last plane [0,11] for which the trajectory MUST be contained in all the sections. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY) - void SetMinimumContainment(TString section, Int_t plane); ///< set the last plane [0,11] for which the trajectory MUST be contained in section "section". Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY) Int_t GetMinimumContainment(TString section); ///< get the last plane [0,11] for which the trajectory MUST be contained in section "section". // - void SetConversionFactor(Float_t conv_r); ///< Set the MIP-GV conversion factor for all the four sections. - void SetConversionFactor(TString section, Float_t conv_r); ///< Set the MIP-GV conversion factor for section "section". Float_t GetConversionFactor(TString section); ///< Get the MIP-GV conversion factor for section "section". // - void IndependentMode(){ indep = true; }; ///< Set the independent mode - void CoherentMode(){ indep = false; }; ///< Set the coherent mode - // - void UseCaloPreSampler(); ///< use pre-sampler routine to refit the track (level2 default fitting could be wrong, in this case we force "shower fitting" in the DV library). - CaloPreSampler* GetCaloPreSampler(){return cp;}; ///< Get pre-sampler object. - // Float_t *Get_track_coordx(){ return *track_coordx;}; ///< X position of the track for all the planes and views Float_t *Get_track_coordy(){ return *track_coordy;}; ///< Y position of the track for all the planes and views // Float_t Get_track_coordx(Int_t i, Int_t j){ return track_coordx[i][j];}; ///< X position of the track for plane i and view j Float_t Get_track_coordy(Int_t i, Int_t j){ return track_coordy[i][j];}; ///< X position of the track for plane i and view j // - Float_t *Get_encol(){ return *encol;}; ///< integrated energy over columns [MIP] - Float_t Get_encol(Int_t i, Int_t j){ return encol[i][j];}; ///< integrated energy over view i and column j [MIP] + Float_t *GetEncol(){ return *encol;}; ///< integrated energy over columns (encol[2][3]) [MIP] + Float_t GetEncol(Int_t i, Int_t j){ return encol[i][j];}; ///< integrated energy over view i and column j [MIP] + Float_t GetEncol(Int_t i); ///< integrated energy over view i given fColumn [MIP] + Float_t *GetEntot(){ return entot;}; ///< integrated energy over views (entot[2]) [MIP] + Float_t GetEntot(Int_t i){ return entot[i];}; ///< integrated energy over all view i [MIP] + // + Int_t GetColumn(){return fColumn;}; ///< number of column which contains the track + Int_t GetColumn(TString section); ///< number of column which contains the track for section "section" + // + Float_t Get_X0pl(){return X0pl;}; ///< transversed X0 for each W plane taking into account inclination of the trajectory + Float_t GetX0max(){ return x0max;}; ///< get the given X0 (test purpose only) + // + // Get pointers + // + CaloLong* GetCaloLong(){return clong;}; ///< Get calolong object. + CaloPreSampler* GetCaloPreSampler(){return cp;}; ///< Get pre-sampler object. + CaloEnergy* GetCaloEnergyPointer(){return this;}; ///< Get CaloEnergy pointer + // + // Other methods + // + void Clear(); ///< clear varibles + void Clear(Option_t *option){Clear();}; ///< compatibility with TObject + void Delete(); ///< delete object + void Delete(Option_t *option){Delete();}; ///< compatibility with TObject // - Int_t Get_column(){return fColumn;}; ///< number of column which contains the track + void Process(); ///< Process the event + void Process(TString section); ///< Process the event for section "section" + void Print(); ///< Print variables on STDOUT + void Print(Option_t *option){Print();}; ///< compatibility with TObject // - ClassDef(CaloEnergy,1); + ClassDef(CaloEnergy,3); }; #endif