16 |
#include <TSystemFile.h> |
#include <TSystemFile.h> |
17 |
#include <TSystemDirectory.h> |
#include <TSystemDirectory.h> |
18 |
#include <TSQLServer.h> |
#include <TSQLServer.h> |
19 |
|
#include <CaloPreSampler.h> |
20 |
|
|
21 |
#include <iostream> |
#include <iostream> |
22 |
|
|
30 |
private: |
private: |
31 |
// |
// |
32 |
PamLevel2 *L2; |
PamLevel2 *L2; |
33 |
Bool_t debug; |
Bool_t debug; ///< debug flag |
34 |
// |
// |
35 |
// needed to avoid reprocessing the same event over and over to obtain the variables |
// needed to avoid reprocessing the same event over and over to obtain the variables |
36 |
// |
// |
37 |
UInt_t OBT; |
UInt_t OBT; ///< CPU OBT |
38 |
UInt_t PKT; |
UInt_t PKT; ///< CPU packet number |
39 |
UInt_t atime; |
UInt_t atime; ///< event absolute time |
40 |
TString sntr; |
TString sntr; ///< string containing the list of section the user want to process |
41 |
UInt_t AOBT; |
UInt_t AOBT; ///< CPU OBT |
42 |
UInt_t APKT; |
UInt_t APKT; ///< CPU packet number |
43 |
UInt_t aatime; |
UInt_t aatime;///< event absolute time |
44 |
TString asntr; |
TString asntr;///< string containing the list of section the user want to process |
45 |
// |
// |
46 |
Float_t fM; |
Float_t fM; ///< margin in the strip direction |
47 |
Float_t fM1; |
Float_t fM1; ///< margin along the strip reading direction |
48 |
Int_t fPl; |
Int_t fPl; ///< number of dE/dx measurements over the maximum that are used to find the energy |
49 |
Float_t fConv_rxe; |
Float_t fConv_rxe; ///< MIP - energy conversion factor for section XE |
50 |
Float_t fConv_rxo; |
Float_t fConv_rxo; ///< MIP - energy conversion factor for section XO |
51 |
Float_t fConv_rye; |
Float_t fConv_rye; ///< MIP - energy conversion factor for section YE |
52 |
Float_t fConv_ryo; |
Float_t fConv_ryo; ///< MIP - energy conversion factor for section YO |
53 |
Bool_t fLong; |
Bool_t fLong; ///< if true use the integral of the longitudinal profile to measure the energy (NOT IMPLEMENTED YET), default FALSE |
54 |
// |
// |
55 |
Float_t fEnergyxe; |
Float_t fEnergyxe; ///< Energy as measured by section XE |
56 |
Float_t fEnergyxo; |
Float_t fEnergyxo; ///< Energy as measured by section XO |
57 |
Float_t fEnergyye; |
Float_t fEnergyye; ///< Energy as measured by section YE |
58 |
Float_t fEnergyyo; |
Float_t fEnergyyo; ///< Energy as measured by section YO |
59 |
Float_t fEnergy; |
Float_t fEnergy; ///< Energy as measured by the average of the used section in "Independent mode" or energy as measured by the used section in "Coherent mode" |
60 |
Float_t fCount; |
Float_t fCount; ///< Number of sections inside the acceptance (only the section given by the user are checked) |
61 |
Int_t fMax_planexe; |
Int_t fMax_planexe; ///< plane of maximum energy release (independent mode) or last plane used for energy measurement (coherent mode) for section XE |
62 |
Int_t fMax_planexo; |
Int_t fMax_planexo; ///< plane of maximum energy release (independent mode) or last plane used for energy measurement (coherent mode) for section XO |
63 |
Int_t fMax_planeyo; |
Int_t fMax_planeyo; ///< plane of maximum energy release (independent mode) or last plane used for energy measurement (coherent mode) for section YO |
64 |
Int_t fMax_planeye; |
Int_t fMax_planeye; ///< plane of maximum energy release (independent mode) or last plane used for energy measurement (coherent mode) for section YE |
65 |
Float_t fMax_plane; |
Float_t fMax_plane; ///< average max plane [0,11] (independent mode) or last plane for energy measurement [0,43] (coherent mode) |
66 |
// |
// |
67 |
Float_t xe1; |
Float_t fXOen_maxplane; ///< total energy [MIP] used for energy determination as given by section XO |
68 |
Float_t xe2; |
Float_t fYOen_maxplane; ///< total energy [MIP] used for energy determination as given by section YO |
69 |
Float_t xe3; |
Float_t fXEen_maxplane; ///< total energy [MIP] used for energy determination as given by section XE |
70 |
Float_t xe4; |
Float_t fYEen_maxplane; ///< total energy [MIP] used for energy determination as given by section YE |
71 |
Float_t xe5; |
// |
72 |
Float_t xe6; |
Float_t xe1; ///< position of strip 1 section XE |
73 |
Float_t z1; |
Float_t xe2; ///< position of strip 32 section XE |
74 |
Float_t yo1; |
Float_t xe3; ///< position of strip 33 section XE |
75 |
Float_t yo2; |
Float_t xe4; ///< position of strip 64 section XE |
76 |
Float_t yo3; |
Float_t xe5; ///< position of strip 65 section XE |
77 |
Float_t yo4; |
Float_t xe6; ///< position of strip 96 section XE |
78 |
Float_t yo5; |
// Float_t z1; |
79 |
Float_t yo6; |
Float_t yo1; ///< position of strip 1 section YO |
80 |
Float_t z2; |
Float_t yo2; ///< position of strip 32 section YO |
81 |
Float_t xo1; |
Float_t yo3; ///< position of strip 33 section YO |
82 |
Float_t xo2; |
Float_t yo4; ///< position of strip 64 section YO |
83 |
Float_t xo3; |
Float_t yo5; ///< position of strip 65 section YO |
84 |
Float_t xo4; |
Float_t yo6; ///< position of strip 96 section YO |
85 |
Float_t xo5; |
// Float_t z2; |
86 |
Float_t xo6; |
Float_t xo1; ///< position of strip 1 section XO |
87 |
Float_t z3; |
Float_t xo2; ///< position of strip 32 section XO |
88 |
Float_t ye1; |
Float_t xo3; ///< position of strip 33 section XO |
89 |
Float_t ye2; |
Float_t xo4; ///< position of strip 64 section XO |
90 |
Float_t ye3; |
Float_t xo5; ///< position of strip 65 section XO |
91 |
Float_t ye4; |
Float_t xo6; ///< position of strip 96 section XO |
92 |
Float_t ye5; |
// Float_t z3; |
93 |
Float_t ye6; |
Float_t ye1; ///< position of strip 1 section YE |
94 |
Float_t z4; |
Float_t ye2; ///< position of strip 32 section YE |
95 |
Float_t trk_z[22][2]; |
Float_t ye3; ///< position of strip 33 section YE |
96 |
Float_t en; |
Float_t ye4; ///< position of strip 64 section YE |
97 |
Int_t view; |
Float_t ye5; ///< position of strip 65 section YE |
98 |
Int_t plane; |
Float_t ye6; ///< position of strip 96 section YE |
99 |
Int_t strip; |
// Float_t z4; |
100 |
Int_t fRad; |
Float_t trk_z[22][2]; ///< Z position of calorimeter planes |
101 |
Float_t energyxe; |
Float_t en; ///< energy [mip] for decodeestrip |
102 |
Float_t energyyo; |
Int_t view; ///< view for decodeestrip |
103 |
Float_t energyxo; |
Int_t plane; ///< plane for decodeestrip |
104 |
Float_t energyye; |
Int_t strip; ///< strip for decodeestrip |
105 |
Float_t en_xep[11]; |
Int_t fRad; ///< Radius [strip] of the cylinder used to integrate the energy along the track, if negative radius is inf (the whole plane is used). Default: -1 |
106 |
Float_t en_yop[11]; |
Int_t fNumSec; ///< Number of sections given by the user |
107 |
Float_t en_xop[11]; |
Float_t energyxe; ///< 11 planes detected energy [MIP] for section XE |
108 |
Float_t en_yep[11]; |
Float_t energyyo; ///< 11 planes detected energy [MIP] for section YO |
109 |
Float_t enstrip[2][22][96]; |
Float_t energyxo; ///< 11 planes detected energy [MIP] for section XO |
110 |
// |
Float_t energyye; ///< 11 planes detected energy [MIP] for section YE |
111 |
Bool_t fXosel; |
Float_t en_xep[11]; ///< detected energy [MIP] for each plane of section XE |
112 |
Bool_t fXesel; |
Float_t en_yop[11]; ///< detected energy [MIP] for each plane of section YO |
113 |
Bool_t fYosel; |
Float_t en_xop[11]; ///< detected energy [MIP] for each plane of section XO |
114 |
Bool_t fYesel; |
Float_t en_yep[11]; ///< detected energy [MIP] for each plane of section YE |
115 |
Bool_t fSel; |
Float_t enstrip[2][22][96]; ///< detected energy [MIP] for each strip of calorimeter |
116 |
Bool_t fPartsel; |
// |
117 |
Int_t fXeout; |
Bool_t fXosel; ///< true if event is contained in section XO |
118 |
Int_t fYeout; |
Bool_t fXesel; ///< true if event is contained in section XE |
119 |
Int_t fXoout; |
Bool_t fYosel; ///< true if event is contained in section YO |
120 |
Int_t fYoout; |
Bool_t fYesel; ///< true if event is contained in section YE |
121 |
Int_t fXomin; |
Bool_t fSel; ///< true if event is contained in at least one of the given section (independet mode) or in all the given section (coherent mode) |
122 |
Int_t fXemin; |
Bool_t fPartsel; ///< true if the event is contained only up to the last plane used for energy determination (can be used in conjunction with fXXmin) |
123 |
Int_t fYomin; |
Int_t fXeout; ///< last plane [0,11] for which the trajectory is contained in section XE |
124 |
Int_t fYemin; |
Int_t fYeout; ///< last plane [0,11] for which the trajectory is contained in section YE |
125 |
// |
Int_t fXoout; ///< last plane [0,11] for which the trajectory is contained in section XO |
126 |
Bool_t fSimu; |
Int_t fYoout; ///< last plane [0,11] for which the trajectory is contained in section YO |
127 |
void DefineGeometry(); |
Int_t fXomin; ///< last plane [0,11] for which the trajectory MUST be contained in section XO. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY) |
128 |
void Set(); |
Int_t fXemin; ///< last plane [0,11] for which the trajectory MUST be contained in section XE. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY) |
129 |
|
Int_t fYomin; ///< last plane [0,11] for which the trajectory MUST be contained in section YO. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY) |
130 |
|
Int_t fYemin; ///< last plane [0,11] for which the trajectory MUST be contained in section YE. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY) |
131 |
|
// |
132 |
|
Bool_t fSimu; ///< true if we are using simulated data, default false |
133 |
|
Bool_t indep; ///< flag to switch between INDEPENDENT or COHERENT mode, default false - COHERENT mode selected |
134 |
|
// |
135 |
|
CaloPreSampler *cp; ///< pointer to calopresampler object (object constructed only when invoking method UseCaloPreSampler() , default: use level2 data). |
136 |
|
// |
137 |
|
void DefineGeometry(); ///< called by constructors to fill geometrical variables (like xe1 etc). |
138 |
|
void Set(); ///< called by contructors to define default variables |
139 |
|
|
140 |
public: |
public: |
141 |
// |
// |
142 |
CaloEnergy(); |
CaloEnergy(); ///< default constructor (does nothing) |
143 |
CaloEnergy(PamLevel2 *L2); |
CaloEnergy(PamLevel2 *L2); ///< constructor |
144 |
CaloEnergy(PamLevel2 *L2, Bool_t simulation); |
CaloEnergy(PamLevel2 *L2, Bool_t simulation); ///< constructor |
145 |
~CaloEnergy(){ Delete(); }; |
~CaloEnergy(){ Delete(); }; ///< default destructor |
146 |
// |
// |
147 |
void SetDebug(Bool_t d){ debug=d; }; |
void SetDebug(Bool_t d){ debug=d; }; ///< set the debug flag (verbose print-out on STDOUT), default is false |
148 |
// |
// |
149 |
void Clear(); |
void Clear(); ///< clear varibles |
150 |
void Clear(Option_t *option){Clear();}; |
void Clear(Option_t *option){Clear();}; ///< compatibility with TObject |
151 |
void Delete(); |
void Delete(); ///< delete object |
152 |
void Delete(Option_t *option){Delete();}; |
void Delete(Option_t *option){Delete();}; ///< compatibility with TObject |
153 |
// |
// |
154 |
void Process(); |
void Process(); ///< Process the event |
155 |
void Process(TString section); |
void Process(TString section); ///< Process the event for section "section" |
156 |
void Print(); |
void Print(); ///< Print variables on STDOUT |
157 |
void Print(Option_t *option){Print();}; |
void Print(Option_t *option){Print();}; ///< compatibility with TObject |
158 |
// |
// |
159 |
Bool_t IsInsideAcceptance(TString section); |
Bool_t IsInsideAcceptance(TString section); ///< returns true if event is inside acceptance of the given sections (all if coherent mode, at least one in independent mode) |
160 |
Bool_t IsInsideReducedAcceptance(){return fPartsel;}; |
Bool_t IsInsideReducedAcceptance(){return fPartsel;}; ///< returns true if the event is inside acceptance only up to the last used plane (see fXomin etc) |
161 |
// |
// |
162 |
Bool_t IsInsideXE(){return(IsInsideAcceptance("XE"));}; |
Bool_t IsInsideXE(){return(IsInsideAcceptance("XE"));}; |
163 |
Bool_t InsideXEcheck(){return fXesel;}; |
Bool_t InsideXEcheck(){return fXesel;}; |
168 |
Bool_t IsInsideYO(){return(IsInsideAcceptance("YO"));}; |
Bool_t IsInsideYO(){return(IsInsideAcceptance("YO"));}; |
169 |
Bool_t InsideYOcheck(){return fYosel;}; |
Bool_t InsideYOcheck(){return fYosel;}; |
170 |
// |
// |
171 |
Float_t GetEnergy(){ Process(); return fEnergy;}; |
Float_t GetEnergy(){ Process(); return fEnergy;}; ///< returns the energy [GV] determined for this event |
172 |
Float_t GetEnergy(TString section){ Process(section); return fEnergy;}; |
Float_t GetEnergy(TString section){ Process(section); return fEnergy;}; ///< returns the energy [GV] determined for this event |
173 |
Float_t GetCount(){ return fCount;}; |
Float_t GetCount(){ return fCount;}; ///< returns the number of section inside acceptance for this event (equal to the number of given section in coherent mode) |
174 |
// |
// |
175 |
Float_t GetMaxplane(){ return fMax_plane;}; |
Float_t GetMaxplane(){ return fMax_plane;}; ///< returns the average max plane [0,11] (independent mode) or last plane for energy measurement [0,43] (coherent mode) |
176 |
Float_t GetMaxEnergy(TString section){ return(this->GetEnergy(section)*this->GetConversionFactor(section));}; |
// |
177 |
Int_t GetMaxplane(TString section); |
Float_t GetMaxEnergy(){ return((fXEen_maxplane+fYOen_maxplane+fYEen_maxplane+fXOen_maxplane));}; ///< returns the total energy [MIP] before conversion |
178 |
// |
Float_t GetMaxEnergy(TString section); ///< returns the total energy [MIP] before conversion for section "section" |
179 |
void UseLongitudinalFitEnergy(){ fPl = 0; fLong = true;}; |
Int_t GetMaxplane(TString section); ///< returns the plane of maximum (independent mode) or the last used plane (coherent mode) for section "section" |
180 |
void UseMeasuredEnergyUpToMax(){ fLong = false;}; |
// |
181 |
void SetMargin(Float_t margin){fM = margin + 0.096; fM1 = margin - 0.122 - 0.096; if ( fM1 < 0. ) fM1 = 0.;}; |
void UseLongitudinalFitEnergy(){ fPl = 0; fLong = true;}; ///< use or not the longitudinal fit to determine the energy (NOT IMPLEMENTED YET) |
182 |
void SetMarginStripDirection(Float_t margin){fM = margin + 0.096;}; |
void UseMeasuredEnergyUpToMax(){ fLong = false;}; ///< use the measured energy to determine the maximum (default) |
183 |
void SetMarginStripReading(Float_t margin){fM1 = margin -0.122 - 0.096;}; |
// |
184 |
void SetRadius(Int_t strip){fRad = strip;}; |
void SetMargin(Float_t margin){fM = margin + 0.096; fM1 = margin - 0.122 - 0.096; if ( fM1 < 0. ) fM1 = 0.;}; ///< set the margin from the border of the silicon sensor (not from the first strip), set the same margin for both the directions |
185 |
void SetMaxPlaneOffset(Int_t noplanes){fPl = noplanes;}; |
void SetMarginStripDirection(Float_t margin){fM = margin + 0.096;}; ///< set the margin from the border of the silicon sensor (not from the first strip) in the strip direction |
186 |
// |
void SetMarginStripReading(Float_t margin){fM1 = margin -0.122 - 0.096;}; ///< set the margin from the border of the silicon sensor (not from the first strip) in the strip reading direction |
187 |
void SetMinimumContainment(TString section, Int_t plane); |
void SetRadius(Int_t strip){fRad = strip;}; ///< set the radius of the cylinder |
188 |
Int_t GetMinimumContainment(TString section); |
void SetMaxPlaneOffset(Int_t noplanes){fPl = noplanes;}; ///< set the number of dE/dx measurements to be used after the maximum |
189 |
void SetConversionFactor(TString section, Float_t conv_r); |
// |
190 |
Float_t GetConversionFactor(TString section); |
void SetMinimumContainment(Int_t plane); ///< set the last plane [0,11] for which the trajectory MUST be contained in all the sections. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY) |
191 |
|
void SetMinimumContainment(TString section, Int_t plane); ///< set the last plane [0,11] for which the trajectory MUST be contained in section "section". Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY) |
192 |
|
Int_t GetMinimumContainment(TString section); ///< get the last plane [0,11] for which the trajectory MUST be contained in section "section". |
193 |
|
// |
194 |
|
void SetConversionFactor(Float_t conv_r); ///< Set the MIP-GV conversion factor for all the four sections. |
195 |
|
void SetConversionFactor(TString section, Float_t conv_r); ///< Set the MIP-GV conversion factor for section "section". |
196 |
|
Float_t GetConversionFactor(TString section); ///< Get the MIP-GV conversion factor for section "section". |
197 |
|
// |
198 |
|
void IndependentMode(){ indep = true; }; ///< Set the independent mode |
199 |
|
void CoherentMode(){ indep = false; }; ///< Set the coherent mode |
200 |
|
// |
201 |
|
void UseCaloPreSampler(); ///< use pre-sampler routine to refit the track (level2 default fitting could be wrong, in this case we force "shower fitting" in the DV library). |
202 |
|
CaloPreSampler* GetCaloPreSampler(){return cp;}; ///< Get pre-sampler object. |
203 |
// |
// |
204 |
ClassDef(CaloEnergy,1); |
ClassDef(CaloEnergy,1); |
205 |
}; |
}; |