/[PAMELA software]/calo/flight/CaloEnergy/inc/CaloEnergy.h
ViewVC logotype

Contents of /calo/flight/CaloEnergy/inc/CaloEnergy.h

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.12 - (show annotations) (download)
Thu Sep 10 12:53:29 2009 UTC (15 years, 4 months ago) by mocchiut
Branch: MAIN
Changes since 1.11: +5 -1 lines
File MIME type: text/plain
Bugs fixed and new methods implemented

1 /**
2 * \file CaloEnergy.h
3 * \authors Emiliano Mocchiutti & Giovanna Jerse
4 */
5 #ifndef caloenergy_h
6 #define caloenergy_h
7
8 #include <PamLevel2.h>
9
10 #include <TTree.h>
11 #include <TFriendElement.h>
12 #include <TChain.h>
13 #include <TFile.h>
14 #include <TList.h>
15 #include <TKey.h>
16 #include <TSystemFile.h>
17 #include <TSystemDirectory.h>
18 #include <TSQLServer.h>
19
20 #include <CaloPreSampler.h>
21 #include <CaloProfile.h>
22
23 #include <iostream>
24
25 using namespace std;
26
27 /**
28 *
29 */
30 class CaloEnergy : public TObject {
31
32 private:
33 //
34 PamLevel2 *L2; ///< PamLevel2 object
35 Bool_t debug; ///< debug flag
36 //
37 // needed to avoid reprocessing the same event over and over to obtain the variables
38 //
39 UInt_t OBT; ///< CPU OBT
40 UInt_t PKT; ///< CPU packet number
41 UInt_t atime; ///< event absolute time
42 TString sntr; ///< string containing the list of section the user want to process
43 UInt_t AOBT; ///< CPU OBT
44 UInt_t APKT; ///< CPU packet number
45 UInt_t aatime;///< event absolute time
46 TString asntr;///< string containing the list of section the user want to process
47 //
48 // margins, acceptance and containment
49 //
50 Float_t fM; ///< margin in the strip direction
51 Float_t fM1; ///< margin along the strip reading direction
52 Int_t fPl; ///< number of dE/dx measurements over the maximum that are used to find the energy
53 Float_t fCount; ///< Number of sections inside the acceptance (only the section given by the user are checked)
54 Int_t fRad; ///< Radius [strip] of the cylinder used to integrate the energy along the track, if negative radius is inf (the whole plane is used). Default: -1
55 Int_t fNumSec; ///< Number of sections given by the user
56 Bool_t fXosel; ///< true if event is contained in section XO
57 Bool_t fXesel; ///< true if event is contained in section XE
58 Bool_t fYosel; ///< true if event is contained in section YO
59 Bool_t fYesel; ///< true if event is contained in section YE
60 Bool_t fSel; ///< true if event is contained in at least one of the given section (independet mode) or in all the given section (coherent mode)
61 Bool_t fPartsel; ///< true if the event is contained only up to the last plane used for energy determination (can be used in conjunction with fXXmin)
62 Int_t fXeout; ///< last plane [0,11] for which the trajectory is contained in section XE
63 Int_t fYeout; ///< last plane [0,11] for which the trajectory is contained in section YE
64 Int_t fXoout; ///< last plane [0,11] for which the trajectory is contained in section XO
65 Int_t fYoout; ///< last plane [0,11] for which the trajectory is contained in section YO
66 Int_t fXomin; ///< last plane [0,11] for which the trajectory MUST be contained in section XO. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY)
67 Int_t fXemin; ///< last plane [0,11] for which the trajectory MUST be contained in section XE. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY)
68 Int_t fYomin; ///< last plane [0,11] for which the trajectory MUST be contained in section YO. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY)
69 Int_t fYemin; ///< last plane [0,11] for which the trajectory MUST be contained in section YE. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY)
70 Bool_t indep; ///< flag to switch between INDEPENDENT or COHERENT mode, default false - COHERENT mode selected
71 Float_t X0pl; ///< transversed X0 for each W plane taking into account inclination of the trajectory
72 //
73 // conversion factors
74 //
75 Float_t fConv_rxe; ///< MIP - energy conversion factor for section XE
76 Float_t fConv_rxo; ///< MIP - energy conversion factor for section XO
77 Float_t fConv_rye; ///< MIP - energy conversion factor for section YE
78 Float_t fConv_ryo; ///< MIP - energy conversion factor for section YO
79 //
80 // Longitudinal fit
81 //
82 Bool_t fLong; ///< if true use the integral of the longitudinal profile to measure the energy (NOT IMPLEMENTED YET), default FALSE
83 //
84 // Energies (MIP)
85 //
86 Float_t fXOen_maxplane; ///< total energy [MIP] used for energy determination as given by section XO
87 Float_t fYOen_maxplane; ///< total energy [MIP] used for energy determination as given by section YO
88 Float_t fXEen_maxplane; ///< total energy [MIP] used for energy determination as given by section XE
89 Float_t fYEen_maxplane; ///< total energy [MIP] used for energy determination as given by section YE
90 Float_t xomax_en; ///< energy at plane of maximum of section XO
91 Float_t xemax_en; ///< energy at plane of maximum of section XE
92 Float_t yomax_en; ///< energy at plane of maximum of section YO
93 Float_t yemax_en; ///< energy at plane of maximum of section YE
94 Float_t energyxe; ///< 11 planes detected energy [MIP] for section XE
95 Float_t energyyo; ///< 11 planes detected energy [MIP] for section YO
96 Float_t energyxo; ///< 11 planes detected energy [MIP] for section XO
97 Float_t energyye; ///< 11 planes detected energy [MIP] for section YE
98 Float_t en_xep[11]; ///< detected energy [MIP] for each plane of section XE
99 Float_t en_yop[11]; ///< detected energy [MIP] for each plane of section YO
100 Float_t en_xop[11]; ///< detected energy [MIP] for each plane of section XO
101 Float_t en_yep[11]; ///< detected energy [MIP] for each plane of section YE
102 Float_t encol[2][3]; ///< detected energy [MIP] for each column of views x and y
103 Float_t entot[2]; ///< detected energy [MIP] for views x and y
104 //
105 // Energies (GV)
106 //
107 Float_t fEnergyxe; ///< Energy as measured by section XE
108 Float_t fEnergyxo; ///< Energy as measured by section XO
109 Float_t fEnergyye; ///< Energy as measured by section YE
110 Float_t fEnergyyo; ///< Energy as measured by section YO
111 Float_t fEnergy; ///< Energy as measured by the average of the used section in "Independent mode" or energy as measured by the used section in "Coherent mode"
112 //
113 // Plane of maximum
114 //
115 Int_t fMax_planexe; ///< plane of maximum energy release (independent mode) or last plane used for energy measurement (coherent mode) for section XE
116 Int_t fMax_planexo; ///< plane of maximum energy release (independent mode) or last plane used for energy measurement (coherent mode) for section XO
117 Int_t fMax_planeyo; ///< plane of maximum energy release (independent mode) or last plane used for energy measurement (coherent mode) for section YO
118 Int_t fMax_planeye; ///< plane of maximum energy release (independent mode) or last plane used for energy measurement (coherent mode) for section YE
119 Float_t fMax_plane; ///< average max plane [0,11] (independent mode) or last plane for energy measurement [0,43] (coherent mode)
120 Float_t x0max; ///< plane of maximum given externally (only test purpose)
121 Bool_t fAllpl; ///< use all 96 strips for each plane to determine the maximum OR only the energy along the track as defined with fRad
122 //
123 // Geometry
124 //
125 Float_t xe1; ///< position of strip 1 section XE
126 Float_t xe2; ///< position of strip 32 section XE
127 Float_t xe3; ///< position of strip 33 section XE
128 Float_t xe4; ///< position of strip 64 section XE
129 Float_t xe5; ///< position of strip 65 section XE
130 Float_t xe6; ///< position of strip 96 section XE
131 Float_t yo1; ///< position of strip 1 section YO
132 Float_t yo2; ///< position of strip 32 section YO
133 Float_t yo3; ///< position of strip 33 section YO
134 Float_t yo4; ///< position of strip 64 section YO
135 Float_t yo5; ///< position of strip 65 section YO
136 Float_t yo6; ///< position of strip 96 section YO
137 Float_t xo1; ///< position of strip 1 section XO
138 Float_t xo2; ///< position of strip 32 section XO
139 Float_t xo3; ///< position of strip 33 section XO
140 Float_t xo4; ///< position of strip 64 section XO
141 Float_t xo5; ///< position of strip 65 section XO
142 Float_t xo6; ///< position of strip 96 section XO
143 Float_t ye1; ///< position of strip 1 section YE
144 Float_t ye2; ///< position of strip 32 section YE
145 Float_t ye3; ///< position of strip 33 section YE
146 Float_t ye4; ///< position of strip 64 section YE
147 Float_t ye5; ///< position of strip 65 section YE
148 Float_t ye6; ///< position of strip 96 section YE
149 Float_t track_coordx[22][2]; ///< XO and XE views, position (x and y) of the trajectory according to the fit
150 Float_t track_coordy[22][2]; ///< YO and YE views, position (x and y) of the trajectory according to the fit
151 Float_t trk_z[22][2]; ///< Z position of calorimeter planes
152 //
153 // decode estrip
154 //
155 Float_t en; ///< energy [mip] for decodeestrip
156 Int_t view; ///< view for decodeestrip
157 Int_t plane; ///< plane for decodeestrip
158 Int_t strip; ///< strip for decodeestrip
159 Float_t enstrip[2][22][96]; ///< detected energy [MIP] for each strip of calorimeter
160 // y ^
161 // || 6 7 8
162 // Columns || 3 4 5
163 // || 0 1 2
164 Int_t fColumn; ///< Column number for the event [0,8] =============> x
165 Int_t fColXE; ///< Column number for section XE
166 Int_t fColXO; ///< Column number for section XO
167 Int_t fColYE; ///< Column number for section YE
168 Int_t fColYO; ///< Column number for section YO
169 Bool_t multicol; ///< accept or not multicolumns events
170 //
171 // other stuff
172 //
173 Bool_t fSimu; ///< true if we are using simulated data, default false
174 CaloPreSampler *cp; ///< pointer to calopresampler object (object constructed only when invoking method UseCaloPreSampler() , default: use level2 data).
175 CaloLong *clong; ///< pointer to calolong object (object constructed only when invoking method UseLongFit(), default use energy up to maximum).
176 //
177 // private methods
178 //
179 void DefineGeometry(); ///< called by constructors to fill geometrical variables (like xe1 etc).
180 void Set(); ///< called by contructors to define default variables
181
182 public:
183 //
184 // constructors and destructors
185 //
186 CaloEnergy(); ///< default constructor (does nothing)
187 CaloEnergy(PamLevel2 *L2); ///< constructor
188 CaloEnergy(PamLevel2 *L2, Bool_t simulation); ///< constructor
189 ~CaloEnergy(){ Delete(); }; ///< default destructor
190 //
191 // Setters and behaviour methods
192 //
193 void SetDebug(Bool_t d){ debug=d; }; ///< set the debug flag (verbose print-out on STDOUT), default is false
194 //
195 void UseCaloPreSampler(); ///< use pre-sampler routine to refit the track (level2 default fitting could be wrong, in this case we force "shower fitting" in the DV library).
196 void UseLevel2(); ///< use level2 default fitting
197 //
198 void UseLongFit();///< use or not the longitudinal fit to determine the energy
199 void UseMeasuredEnergyUpToMax(){ fLong = false;}; ///< use the measured energy to determine the maximum (default)
200 //
201 void IndependentMode(){ indep = true; }; ///< Set the independent mode
202 void CoherentMode(){ indep = false; }; ///< Set the coherent mode
203 //
204 void MultiColumns(){multicol = true;}; ///< accept multicolumns events
205 void SingleColumn(){multicol = false;}; ///< accept events only if contained in a single column
206 //
207 void UseAllPlane2FindMax(){ fAllpl = true;};///< find the maximum (not long fit) integrating over all the 96 strips of the planes even if SetRadius has been used [default]
208 void UseMeasuredEnergy2FindMax(){ fAllpl = false;};///< find the maximum (not long fit) using the energy measured and used to calculate the result
209 //
210 void SetMargin(Float_t margin){fM = margin ; fM1 = margin - 0.122 - 0.096 + 0.096; if ( fM1 < 0. ) fM1 = 0.;}; ///< set the margin from the border of the silicon sensor (not from the first strip), set the same margin for both the directions
211 void SetMarginStripDirection(Float_t margin){fM = margin ;}; ///< set the margin from the border of the silicon sensor (not from the first strip) in the strip direction
212 void SetMarginStripReading(Float_t margin){fM1 = margin -0.122 - 0.096 + 0.096;}; ///< set the margin from the border of the silicon sensor (not from the first strip) in the strip reading direction
213 //
214 void SetRadius(Int_t strip){fRad = strip;}; ///< set the radius of the cylinder
215 void SetMaxPlaneOffset(Int_t noplanes){fPl = noplanes;}; ///< set the number of dE/dx measurements to be used after the maximum
216 //
217 void SetX0max(Float_t xm){ x0max = xm;}; ///< set the plane of maximum from external source X0 (test purpose only)
218 void SetRigX0max(Float_t rig){ x0max = -0.5+log(rig/0.0076);}; ///< set the plane of maximum from external source rigidity (GeV) (test purpose only)
219 //
220 void SetMinimumContainment(Int_t plane); ///< set the last plane [0,11] for which the trajectory MUST be contained in all the sections. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY)
221 void SetMinimumContainment(TString section, Int_t plane); ///< set the last plane [0,11] for which the trajectory MUST be contained in section "section". Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY)
222 //
223 void SetConversionFactor(Float_t conv_r); ///< Set the MIP-GV conversion factor for all the four sections.
224 void SetConversionFactor(TString section, Float_t conv_r); ///< Set the MIP-GV conversion factor for section "section".
225 //
226 void ForceProcessing(){atime=0; PKT=0; APKT=0; aatime=0;}; ///< Force processing the event even if the same request is made twice without a getentry from pamlevel2
227 //
228 // Getters and checks methods
229 //
230 //
231 Bool_t IsInsideAcceptance(TString section); ///< returns true if event is inside acceptance of the given sections (all if coherent mode, at least one in independent mode)
232 Bool_t IsInsideReducedAcceptance(){return fPartsel;}; ///< returns true if the event is inside acceptance only up to the last used plane (see fXomin etc)
233 //
234 Bool_t IsInsideXE(){return(IsInsideAcceptance("XE"));};
235 Bool_t InsideXEcheck(){return fXesel;};
236 Bool_t IsInsideXO(){return(IsInsideAcceptance("XO"));};
237 Bool_t InsideXOcheck(){return fXosel;};
238 Bool_t IsInsideYE(){return(IsInsideAcceptance("YE"));};
239 Bool_t InsideYEcheck(){return fYesel;};
240 Bool_t IsInsideYO(){return(IsInsideAcceptance("YO"));};
241 Bool_t InsideYOcheck(){return fYosel;};
242 //
243 Float_t GetEnergy(){ Process(); return fEnergy;}; ///< returns the energy [GV] determined for this event
244 Float_t GetEnergy(TString section){ Process(section); return fEnergy;}; ///< returns the energy [GV] determined for this event
245 //
246 Float_t GetCount(){ return fCount;}; ///< returns the number of section inside acceptance for this event (equal to the number of given section in coherent mode)
247 //
248 Float_t GetEnergyAtMaxplane(TString section); ///< returns the energy [MIP] at the plane of maximum for section "section"
249 Float_t GetMipEnergyAtMaxplane(TString section); ///< returns the energy [MIP] at the plane of maximum for section "section"
250 //
251 Float_t GetMaxEnergy(); ///< returns the total energy [MIP] before conversion
252 Float_t GetMaxEnergy(TString section); ///< returns the total energy [MIP] before conversion for section "section"
253 Float_t GetMipEnergy(); ///< returns the total energy [MIP] before conversion
254 Float_t GetMipEnergy(TString section); ///< returns the total energy [MIP] before conversion for section "section"
255 //
256 Int_t GetMaxplane(TString section); ///< returns the plane of maximum (independent mode) or the last used plane (coherent mode) for section "section"
257 Float_t GetMaxplane(){ return fMax_plane;}; ///< returns the average max plane [0,11] (independent mode) or last plane for energy measurement [0,43] (coherent mode)
258 //
259 Int_t GetMinimumContainment(TString section); ///< get the last plane [0,11] for which the trajectory MUST be contained in section "section".
260 //
261 Float_t GetConversionFactor(TString section); ///< Get the MIP-GV conversion factor for section "section".
262 //
263 Float_t *Get_track_coordx(){ return *track_coordx;}; ///< X position of the track for all the planes and views
264 Float_t *Get_track_coordy(){ return *track_coordy;}; ///< Y position of the track for all the planes and views
265 //
266 Float_t Get_track_coordx(Int_t i, Int_t j){ return track_coordx[i][j];}; ///< X position of the track for plane i and view j
267 Float_t Get_track_coordy(Int_t i, Int_t j){ return track_coordy[i][j];}; ///< X position of the track for plane i and view j
268 //
269 Float_t *GetEncol(){ return *encol;}; ///< integrated energy over columns (encol[2][3]) [MIP]
270 Float_t GetEncol(Int_t i, Int_t j){ return encol[i][j];}; ///< integrated energy over view i and column j [MIP]
271 Float_t GetEncol(Int_t i); ///< integrated energy over view i given fColumn [MIP]
272 Float_t *GetEntot(){ return entot;}; ///< integrated energy over views (entot[2]) [MIP]
273 Float_t GetEntot(Int_t i){ return entot[i];}; ///< integrated energy over all view i [MIP]
274 //
275 Int_t GetColumn(){return fColumn;}; ///< number of column which contains the track
276 Int_t GetColumn(TString section); ///< number of column which contains the track for section "section"
277 //
278 Float_t Get_X0pl(){return X0pl;}; ///< transversed X0 for each W plane taking into account inclination of the trajectory
279 Float_t GetX0max(){ return x0max;}; ///< get the given X0 (test purpose only)
280 //
281 // Get pointers
282 //
283 CaloLong* GetCaloLong(){return clong;}; ///< Get calolong object.
284 CaloPreSampler* GetCaloPreSampler(){return cp;}; ///< Get pre-sampler object.
285 CaloEnergy* GetCaloEnergyPointer(){return this;}; ///< Get CaloEnergy pointer
286 //
287 // Other methods
288 //
289 void Clear(); ///< clear varibles
290 void Clear(Option_t *option){Clear();}; ///< compatibility with TObject
291 void Delete(); ///< delete object
292 void Delete(Option_t *option){Delete();}; ///< compatibility with TObject
293 //
294 void Process(); ///< Process the event
295 void Process(TString section); ///< Process the event for section "section"
296 void Print(); ///< Print variables on STDOUT
297 void Print(Option_t *option){Print();}; ///< compatibility with TObject
298 //
299 ClassDef(CaloEnergy,3);
300 };
301
302 #endif
303

  ViewVC Help
Powered by ViewVC 1.1.23