1 |
/** |
2 |
* \file CaloEnergy.h |
3 |
* \authors Emiliano Mocchiutti & Giovanna Jerse |
4 |
*/ |
5 |
#ifndef caloenergy_h |
6 |
#define caloenergy_h |
7 |
|
8 |
#include <PamLevel2.h> |
9 |
|
10 |
#include <TTree.h> |
11 |
#include <TFriendElement.h> |
12 |
#include <TChain.h> |
13 |
#include <TFile.h> |
14 |
#include <TList.h> |
15 |
#include <TKey.h> |
16 |
#include <TSystemFile.h> |
17 |
#include <TSystemDirectory.h> |
18 |
#include <TSQLServer.h> |
19 |
|
20 |
#include <CaloPreSampler.h> |
21 |
#include <CaloProfile.h> |
22 |
|
23 |
#include <iostream> |
24 |
|
25 |
using namespace std; |
26 |
|
27 |
/** |
28 |
* |
29 |
*/ |
30 |
class CaloEnergy : public TObject { |
31 |
|
32 |
private: |
33 |
// |
34 |
PamLevel2 *L2; ///< PamLevel2 object |
35 |
Bool_t debug; ///< debug flag |
36 |
// |
37 |
// needed to avoid reprocessing the same event over and over to obtain the variables |
38 |
// |
39 |
UInt_t OBT; ///< CPU OBT |
40 |
UInt_t PKT; ///< CPU packet number |
41 |
UInt_t atime; ///< event absolute time |
42 |
TString sntr; ///< string containing the list of section the user want to process |
43 |
UInt_t AOBT; ///< CPU OBT |
44 |
UInt_t APKT; ///< CPU packet number |
45 |
UInt_t aatime;///< event absolute time |
46 |
TString asntr;///< string containing the list of section the user want to process |
47 |
// |
48 |
// margins, acceptance and containment |
49 |
// |
50 |
Float_t fM; ///< margin in the strip direction |
51 |
Float_t fM1; ///< margin along the strip reading direction |
52 |
Int_t fPl; ///< number of dE/dx measurements over the maximum that are used to find the energy |
53 |
Float_t fCount; ///< Number of sections inside the acceptance (only the section given by the user are checked) |
54 |
Int_t fRad; ///< Radius [strip] of the cylinder used to integrate the energy along the track, if negative radius is inf (the whole plane is used). Default: -1 |
55 |
Int_t fNumSec; ///< Number of sections given by the user |
56 |
Bool_t fXosel; ///< true if event is contained in section XO |
57 |
Bool_t fXesel; ///< true if event is contained in section XE |
58 |
Bool_t fYosel; ///< true if event is contained in section YO |
59 |
Bool_t fYesel; ///< true if event is contained in section YE |
60 |
Bool_t fSel; ///< true if event is contained in at least one of the given section (independet mode) or in all the given section (coherent mode) |
61 |
Bool_t fPartsel; ///< true if the event is contained only up to the last plane used for energy determination (can be used in conjunction with fXXmin) |
62 |
Int_t fXeout; ///< last plane [0,11] for which the trajectory is contained in section XE |
63 |
Int_t fYeout; ///< last plane [0,11] for which the trajectory is contained in section YE |
64 |
Int_t fXoout; ///< last plane [0,11] for which the trajectory is contained in section XO |
65 |
Int_t fYoout; ///< last plane [0,11] for which the trajectory is contained in section YO |
66 |
Int_t fXomin; ///< last plane [0,11] for which the trajectory MUST be contained in section XO. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY) |
67 |
Int_t fXemin; ///< last plane [0,11] for which the trajectory MUST be contained in section XE. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY) |
68 |
Int_t fYomin; ///< last plane [0,11] for which the trajectory MUST be contained in section YO. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY) |
69 |
Int_t fYemin; ///< last plane [0,11] for which the trajectory MUST be contained in section YE. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY) |
70 |
Bool_t indep; ///< flag to switch between INDEPENDENT or COHERENT mode, default false - COHERENT mode selected |
71 |
// |
72 |
// conversion factors |
73 |
// |
74 |
Float_t fConv_rxe; ///< MIP - energy conversion factor for section XE |
75 |
Float_t fConv_rxo; ///< MIP - energy conversion factor for section XO |
76 |
Float_t fConv_rye; ///< MIP - energy conversion factor for section YE |
77 |
Float_t fConv_ryo; ///< MIP - energy conversion factor for section YO |
78 |
// |
79 |
// Longitudinal fit |
80 |
// |
81 |
Bool_t fLong; ///< if true use the integral of the longitudinal profile to measure the energy (NOT IMPLEMENTED YET), default FALSE |
82 |
// |
83 |
// Energies (MIP) |
84 |
// |
85 |
Float_t fXOen_maxplane; ///< total energy [MIP] used for energy determination as given by section XO |
86 |
Float_t fYOen_maxplane; ///< total energy [MIP] used for energy determination as given by section YO |
87 |
Float_t fXEen_maxplane; ///< total energy [MIP] used for energy determination as given by section XE |
88 |
Float_t fYEen_maxplane; ///< total energy [MIP] used for energy determination as given by section YE |
89 |
Float_t xomax_en; ///< energy at plane of maximum of section XO |
90 |
Float_t xemax_en; ///< energy at plane of maximum of section XE |
91 |
Float_t yomax_en; ///< energy at plane of maximum of section YO |
92 |
Float_t yemax_en; ///< energy at plane of maximum of section YE |
93 |
Float_t energyxe; ///< 11 planes detected energy [MIP] for section XE |
94 |
Float_t energyyo; ///< 11 planes detected energy [MIP] for section YO |
95 |
Float_t energyxo; ///< 11 planes detected energy [MIP] for section XO |
96 |
Float_t energyye; ///< 11 planes detected energy [MIP] for section YE |
97 |
Float_t en_xep[11]; ///< detected energy [MIP] for each plane of section XE |
98 |
Float_t en_yop[11]; ///< detected energy [MIP] for each plane of section YO |
99 |
Float_t en_xop[11]; ///< detected energy [MIP] for each plane of section XO |
100 |
Float_t en_yep[11]; ///< detected energy [MIP] for each plane of section YE |
101 |
Float_t encol[2][3]; ///< detected energy [MIP] for each column of views x and y |
102 |
Float_t entot[2]; ///< detected energy [MIP] for views x and y |
103 |
// |
104 |
// Energies (GV) |
105 |
// |
106 |
Float_t fEnergyxe; ///< Energy as measured by section XE |
107 |
Float_t fEnergyxo; ///< Energy as measured by section XO |
108 |
Float_t fEnergyye; ///< Energy as measured by section YE |
109 |
Float_t fEnergyyo; ///< Energy as measured by section YO |
110 |
Float_t fEnergy; ///< Energy as measured by the average of the used section in "Independent mode" or energy as measured by the used section in "Coherent mode" |
111 |
// |
112 |
// Plane of maximum |
113 |
// |
114 |
Int_t fMax_planexe; ///< plane of maximum energy release (independent mode) or last plane used for energy measurement (coherent mode) for section XE |
115 |
Int_t fMax_planexo; ///< plane of maximum energy release (independent mode) or last plane used for energy measurement (coherent mode) for section XO |
116 |
Int_t fMax_planeyo; ///< plane of maximum energy release (independent mode) or last plane used for energy measurement (coherent mode) for section YO |
117 |
Int_t fMax_planeye; ///< plane of maximum energy release (independent mode) or last plane used for energy measurement (coherent mode) for section YE |
118 |
Float_t fMax_plane; ///< average max plane [0,11] (independent mode) or last plane for energy measurement [0,43] (coherent mode) |
119 |
Float_t x0max; ///< plane of maximum given externally (only test purpose) |
120 |
Bool_t fAllpl; ///< use all 96 strips for each plane to determine the maximum OR only the energy along the track as defined with fRad |
121 |
// |
122 |
// Geometry |
123 |
// |
124 |
Float_t xe1; ///< position of strip 1 section XE |
125 |
Float_t xe2; ///< position of strip 32 section XE |
126 |
Float_t xe3; ///< position of strip 33 section XE |
127 |
Float_t xe4; ///< position of strip 64 section XE |
128 |
Float_t xe5; ///< position of strip 65 section XE |
129 |
Float_t xe6; ///< position of strip 96 section XE |
130 |
Float_t yo1; ///< position of strip 1 section YO |
131 |
Float_t yo2; ///< position of strip 32 section YO |
132 |
Float_t yo3; ///< position of strip 33 section YO |
133 |
Float_t yo4; ///< position of strip 64 section YO |
134 |
Float_t yo5; ///< position of strip 65 section YO |
135 |
Float_t yo6; ///< position of strip 96 section YO |
136 |
Float_t xo1; ///< position of strip 1 section XO |
137 |
Float_t xo2; ///< position of strip 32 section XO |
138 |
Float_t xo3; ///< position of strip 33 section XO |
139 |
Float_t xo4; ///< position of strip 64 section XO |
140 |
Float_t xo5; ///< position of strip 65 section XO |
141 |
Float_t xo6; ///< position of strip 96 section XO |
142 |
Float_t ye1; ///< position of strip 1 section YE |
143 |
Float_t ye2; ///< position of strip 32 section YE |
144 |
Float_t ye3; ///< position of strip 33 section YE |
145 |
Float_t ye4; ///< position of strip 64 section YE |
146 |
Float_t ye5; ///< position of strip 65 section YE |
147 |
Float_t ye6; ///< position of strip 96 section YE |
148 |
Float_t track_coordx[22][2]; ///< XO and XE views, position (x and y) of the trajectory according to the fit |
149 |
Float_t track_coordy[22][2]; ///< YO and YE views, position (x and y) of the trajectory according to the fit |
150 |
Float_t trk_z[22][2]; ///< Z position of calorimeter planes |
151 |
// |
152 |
// decode estrip |
153 |
// |
154 |
Float_t en; ///< energy [mip] for decodeestrip |
155 |
Int_t view; ///< view for decodeestrip |
156 |
Int_t plane; ///< plane for decodeestrip |
157 |
Int_t strip; ///< strip for decodeestrip |
158 |
Float_t enstrip[2][22][96]; ///< detected energy [MIP] for each strip of calorimeter |
159 |
// y ^ |
160 |
// || 6 7 8 |
161 |
// Columns || 3 4 5 |
162 |
// || 0 1 2 |
163 |
Int_t fColumn; ///< Column number for the event [0,8] =============> x |
164 |
Int_t fColXE; ///< Column number for section XE |
165 |
Int_t fColXO; ///< Column number for section XO |
166 |
Int_t fColYE; ///< Column number for section YE |
167 |
Int_t fColYO; ///< Column number for section YO |
168 |
Bool_t multicol; ///< accept or not multicolumns events |
169 |
// |
170 |
// other stuff |
171 |
// |
172 |
Bool_t fSimu; ///< true if we are using simulated data, default false |
173 |
CaloPreSampler *cp; ///< pointer to calopresampler object (object constructed only when invoking method UseCaloPreSampler() , default: use level2 data). |
174 |
CaloLong *clong; ///< pointer to calolong object (object constructed only when invoking method UseLongFit(), default use energy up to maximum). |
175 |
// |
176 |
// private methods |
177 |
// |
178 |
void DefineGeometry(); ///< called by constructors to fill geometrical variables (like xe1 etc). |
179 |
void Set(); ///< called by contructors to define default variables |
180 |
|
181 |
public: |
182 |
// |
183 |
// constructors and destructors |
184 |
// |
185 |
CaloEnergy(); ///< default constructor (does nothing) |
186 |
CaloEnergy(PamLevel2 *L2); ///< constructor |
187 |
CaloEnergy(PamLevel2 *L2, Bool_t simulation); ///< constructor |
188 |
~CaloEnergy(){ Delete(); }; ///< default destructor |
189 |
// |
190 |
// Setters and behaviour methods |
191 |
// |
192 |
void SetDebug(Bool_t d){ debug=d; }; ///< set the debug flag (verbose print-out on STDOUT), default is false |
193 |
// |
194 |
void UseCaloPreSampler(); ///< use pre-sampler routine to refit the track (level2 default fitting could be wrong, in this case we force "shower fitting" in the DV library). |
195 |
void UseLevel2(); ///< use level2 default fitting |
196 |
// |
197 |
void UseLongFit();///< use or not the longitudinal fit to determine the energy |
198 |
void UseMeasuredEnergyUpToMax(){ fLong = false;}; ///< use the measured energy to determine the maximum (default) |
199 |
// |
200 |
void IndependentMode(){ indep = true; }; ///< Set the independent mode |
201 |
void CoherentMode(){ indep = false; }; ///< Set the coherent mode |
202 |
// |
203 |
void MultiColumns(){multicol = true;}; ///< accept multicolumns events |
204 |
void SingleColumn(){multicol = false;}; ///< accept events only if contained in a single column |
205 |
// |
206 |
void UseAllPlane2FindMax(){ fAllpl = true;};///< find the maximum (not long fit) integrating over all the 96 strips of the planes even if SetRadius has been used [default] |
207 |
void UseMeasuredEnergy2FindMax(){ fAllpl = false;};///< find the maximum (not long fit) using the energy measured and used to calculate the result |
208 |
// |
209 |
void SetMargin(Float_t margin){fM = margin ; fM1 = margin - 0.122 - 0.096 + 0.096; if ( fM1 < 0. ) fM1 = 0.;}; ///< set the margin from the border of the silicon sensor (not from the first strip), set the same margin for both the directions |
210 |
void SetMarginStripDirection(Float_t margin){fM = margin ;}; ///< set the margin from the border of the silicon sensor (not from the first strip) in the strip direction |
211 |
void SetMarginStripReading(Float_t margin){fM1 = margin -0.122 - 0.096 + 0.096;}; ///< set the margin from the border of the silicon sensor (not from the first strip) in the strip reading direction |
212 |
// |
213 |
void SetRadius(Int_t strip){fRad = strip;}; ///< set the radius of the cylinder |
214 |
void SetMaxPlaneOffset(Int_t noplanes){fPl = noplanes;}; ///< set the number of dE/dx measurements to be used after the maximum |
215 |
// |
216 |
void SetX0max(Float_t xm){ x0max = xm;}; ///< set the plane of maximum from external source X0 (test purpose only) |
217 |
void SetRigX0max(Float_t rig){ x0max = -0.5+log(rig/0.0076);}; ///< set the plane of maximum from external source rigidity (GeV) (test purpose only) |
218 |
// |
219 |
void SetMinimumContainment(Int_t plane); ///< set the last plane [0,11] for which the trajectory MUST be contained in all the sections. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY) |
220 |
void SetMinimumContainment(TString section, Int_t plane); ///< set the last plane [0,11] for which the trajectory MUST be contained in section "section". Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY) |
221 |
// |
222 |
void SetConversionFactor(Float_t conv_r); ///< Set the MIP-GV conversion factor for all the four sections. |
223 |
void SetConversionFactor(TString section, Float_t conv_r); ///< Set the MIP-GV conversion factor for section "section". |
224 |
// |
225 |
// Getters and checks methods |
226 |
// |
227 |
// |
228 |
Bool_t IsInsideAcceptance(TString section); ///< returns true if event is inside acceptance of the given sections (all if coherent mode, at least one in independent mode) |
229 |
Bool_t IsInsideReducedAcceptance(){return fPartsel;}; ///< returns true if the event is inside acceptance only up to the last used plane (see fXomin etc) |
230 |
// |
231 |
Bool_t IsInsideXE(){return(IsInsideAcceptance("XE"));}; |
232 |
Bool_t InsideXEcheck(){return fXesel;}; |
233 |
Bool_t IsInsideXO(){return(IsInsideAcceptance("XO"));}; |
234 |
Bool_t InsideXOcheck(){return fXosel;}; |
235 |
Bool_t IsInsideYE(){return(IsInsideAcceptance("YE"));}; |
236 |
Bool_t InsideYEcheck(){return fYesel;}; |
237 |
Bool_t IsInsideYO(){return(IsInsideAcceptance("YO"));}; |
238 |
Bool_t InsideYOcheck(){return fYosel;}; |
239 |
// |
240 |
Float_t GetEnergy(){ Process(); return fEnergy;}; ///< returns the energy [GV] determined for this event |
241 |
Float_t GetEnergy(TString section){ Process(section); return fEnergy;}; ///< returns the energy [GV] determined for this event |
242 |
// |
243 |
Float_t GetCount(){ return fCount;}; ///< returns the number of section inside acceptance for this event (equal to the number of given section in coherent mode) |
244 |
// |
245 |
Float_t GetEnergyAtMaxplane(TString section); ///< returns the energy [MIP] at the plane of maximum for section "section" |
246 |
Float_t GetMipEnergyAtMaxplane(TString section); ///< returns the energy [MIP] at the plane of maximum for section "section" |
247 |
// |
248 |
Float_t GetMaxEnergy(); ///< returns the total energy [MIP] before conversion |
249 |
Float_t GetMaxEnergy(TString section); ///< returns the total energy [MIP] before conversion for section "section" |
250 |
Float_t GetMipEnergy(); ///< returns the total energy [MIP] before conversion |
251 |
Float_t GetMipEnergy(TString section); ///< returns the total energy [MIP] before conversion for section "section" |
252 |
// |
253 |
Int_t GetMaxplane(TString section); ///< returns the plane of maximum (independent mode) or the last used plane (coherent mode) for section "section" |
254 |
Float_t GetMaxplane(){ return fMax_plane;}; ///< returns the average max plane [0,11] (independent mode) or last plane for energy measurement [0,43] (coherent mode) |
255 |
// |
256 |
Int_t GetMinimumContainment(TString section); ///< get the last plane [0,11] for which the trajectory MUST be contained in section "section". |
257 |
// |
258 |
Float_t GetConversionFactor(TString section); ///< Get the MIP-GV conversion factor for section "section". |
259 |
// |
260 |
Float_t *Get_track_coordx(){ return *track_coordx;}; ///< X position of the track for all the planes and views |
261 |
Float_t *Get_track_coordy(){ return *track_coordy;}; ///< Y position of the track for all the planes and views |
262 |
// |
263 |
Float_t Get_track_coordx(Int_t i, Int_t j){ return track_coordx[i][j];}; ///< X position of the track for plane i and view j |
264 |
Float_t Get_track_coordy(Int_t i, Int_t j){ return track_coordy[i][j];}; ///< X position of the track for plane i and view j |
265 |
// |
266 |
Float_t *GetEncol(){ return *encol;}; ///< integrated energy over columns (encol[2][3]) [MIP] |
267 |
Float_t GetEncol(Int_t i, Int_t j){ return encol[i][j];}; ///< integrated energy over view i and column j [MIP] |
268 |
Float_t GetEncol(Int_t i); ///< integrated energy over view i given fColumn [MIP] |
269 |
Float_t *GetEntot(){ return entot;}; ///< integrated energy over views (entot[2]) [MIP] |
270 |
Float_t GetEntot(Int_t i){ return entot[i];}; ///< integrated energy over all view i [MIP] |
271 |
// |
272 |
Int_t GetColumn(){return fColumn;}; ///< number of column which contains the track |
273 |
Int_t GetColumn(TString section); ///< number of column which contains the track for section "section" |
274 |
// |
275 |
// Get pointers |
276 |
// |
277 |
CaloLong* GetCaloLong(){return clong;}; ///< Get calolong object. |
278 |
CaloPreSampler* GetCaloPreSampler(){return cp;}; ///< Get pre-sampler object. |
279 |
CaloEnergy* GetCaloEnergyPointer(){return this;}; ///< Get CaloEnergy pointer |
280 |
// |
281 |
// Other methods |
282 |
// |
283 |
void Clear(); ///< clear varibles |
284 |
void Clear(Option_t *option){Clear();}; ///< compatibility with TObject |
285 |
void Delete(); ///< delete object |
286 |
void Delete(Option_t *option){Delete();}; ///< compatibility with TObject |
287 |
// |
288 |
void Process(); ///< Process the event |
289 |
void Process(TString section); ///< Process the event for section "section" |
290 |
void Print(); ///< Print variables on STDOUT |
291 |
void Print(Option_t *option){Print();}; ///< compatibility with TObject |
292 |
// |
293 |
ClassDef(CaloEnergy,2); |
294 |
}; |
295 |
|
296 |
#endif |
297 |
|