16 |
#include <TSystemFile.h> |
#include <TSystemFile.h> |
17 |
#include <TSystemDirectory.h> |
#include <TSystemDirectory.h> |
18 |
#include <TSQLServer.h> |
#include <TSQLServer.h> |
19 |
|
|
20 |
#include <CaloPreSampler.h> |
#include <CaloPreSampler.h> |
21 |
|
#include <CaloProfile.h> |
22 |
|
|
23 |
#include <iostream> |
#include <iostream> |
24 |
|
|
31 |
|
|
32 |
private: |
private: |
33 |
// |
// |
34 |
PamLevel2 *L2; |
PamLevel2 *L2; ///< PamLevel2 object |
35 |
Bool_t debug; ///< debug flag |
Bool_t debug; ///< debug flag |
36 |
// |
// |
37 |
// needed to avoid reprocessing the same event over and over to obtain the variables |
// needed to avoid reprocessing the same event over and over to obtain the variables |
45 |
UInt_t aatime;///< event absolute time |
UInt_t aatime;///< event absolute time |
46 |
TString asntr;///< string containing the list of section the user want to process |
TString asntr;///< string containing the list of section the user want to process |
47 |
// |
// |
48 |
|
// margins, acceptance and containment |
49 |
|
// |
50 |
Float_t fM; ///< margin in the strip direction |
Float_t fM; ///< margin in the strip direction |
51 |
Float_t fM1; ///< margin along the strip reading direction |
Float_t fM1; ///< margin along the strip reading direction |
52 |
Int_t fPl; ///< number of dE/dx measurements over the maximum that are used to find the energy |
Int_t fPl; ///< number of dE/dx measurements over the maximum that are used to find the energy |
53 |
|
Float_t fCount; ///< Number of sections inside the acceptance (only the section given by the user are checked) |
54 |
|
Int_t fRad; ///< Radius [strip] of the cylinder used to integrate the energy along the track, if negative radius is inf (the whole plane is used). Default: -1 |
55 |
|
Int_t fNumSec; ///< Number of sections given by the user |
56 |
|
Bool_t fXosel; ///< true if event is contained in section XO |
57 |
|
Bool_t fXesel; ///< true if event is contained in section XE |
58 |
|
Bool_t fYosel; ///< true if event is contained in section YO |
59 |
|
Bool_t fYesel; ///< true if event is contained in section YE |
60 |
|
Bool_t fSel; ///< true if event is contained in at least one of the given section (independet mode) or in all the given section (coherent mode) |
61 |
|
Bool_t fPartsel; ///< true if the event is contained only up to the last plane used for energy determination (can be used in conjunction with fXXmin) |
62 |
|
Int_t fXeout; ///< last plane [0,11] for which the trajectory is contained in section XE |
63 |
|
Int_t fYeout; ///< last plane [0,11] for which the trajectory is contained in section YE |
64 |
|
Int_t fXoout; ///< last plane [0,11] for which the trajectory is contained in section XO |
65 |
|
Int_t fYoout; ///< last plane [0,11] for which the trajectory is contained in section YO |
66 |
|
Int_t fXomin; ///< last plane [0,11] for which the trajectory MUST be contained in section XO. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY) |
67 |
|
Int_t fXemin; ///< last plane [0,11] for which the trajectory MUST be contained in section XE. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY) |
68 |
|
Int_t fYomin; ///< last plane [0,11] for which the trajectory MUST be contained in section YO. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY) |
69 |
|
Int_t fYemin; ///< last plane [0,11] for which the trajectory MUST be contained in section YE. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY) |
70 |
|
Bool_t indep; ///< flag to switch between INDEPENDENT or COHERENT mode, default false - COHERENT mode selected |
71 |
|
Float_t X0pl; ///< transversed X0 for each W plane taking into account inclination of the trajectory |
72 |
|
// |
73 |
|
// conversion factors |
74 |
|
// |
75 |
Float_t fConv_rxe; ///< MIP - energy conversion factor for section XE |
Float_t fConv_rxe; ///< MIP - energy conversion factor for section XE |
76 |
Float_t fConv_rxo; ///< MIP - energy conversion factor for section XO |
Float_t fConv_rxo; ///< MIP - energy conversion factor for section XO |
77 |
Float_t fConv_rye; ///< MIP - energy conversion factor for section YE |
Float_t fConv_rye; ///< MIP - energy conversion factor for section YE |
78 |
Float_t fConv_ryo; ///< MIP - energy conversion factor for section YO |
Float_t fConv_ryo; ///< MIP - energy conversion factor for section YO |
79 |
|
// |
80 |
|
// Longitudinal fit |
81 |
|
// |
82 |
Bool_t fLong; ///< if true use the integral of the longitudinal profile to measure the energy (NOT IMPLEMENTED YET), default FALSE |
Bool_t fLong; ///< if true use the integral of the longitudinal profile to measure the energy (NOT IMPLEMENTED YET), default FALSE |
83 |
|
// |
84 |
|
// Energies (MIP) |
85 |
|
// |
86 |
|
Float_t fXOen_maxplane; ///< total energy [MIP] used for energy determination as given by section XO |
87 |
|
Float_t fYOen_maxplane; ///< total energy [MIP] used for energy determination as given by section YO |
88 |
|
Float_t fXEen_maxplane; ///< total energy [MIP] used for energy determination as given by section XE |
89 |
|
Float_t fYEen_maxplane; ///< total energy [MIP] used for energy determination as given by section YE |
90 |
|
Float_t xomax_en; ///< energy at plane of maximum of section XO |
91 |
|
Float_t xemax_en; ///< energy at plane of maximum of section XE |
92 |
|
Float_t yomax_en; ///< energy at plane of maximum of section YO |
93 |
|
Float_t yemax_en; ///< energy at plane of maximum of section YE |
94 |
|
Float_t energyxe; ///< 11 planes detected energy [MIP] for section XE |
95 |
|
Float_t energyyo; ///< 11 planes detected energy [MIP] for section YO |
96 |
|
Float_t energyxo; ///< 11 planes detected energy [MIP] for section XO |
97 |
|
Float_t energyye; ///< 11 planes detected energy [MIP] for section YE |
98 |
|
Float_t en_xep[11]; ///< detected energy [MIP] for each plane of section XE |
99 |
|
Float_t en_yop[11]; ///< detected energy [MIP] for each plane of section YO |
100 |
|
Float_t en_xop[11]; ///< detected energy [MIP] for each plane of section XO |
101 |
|
Float_t en_yep[11]; ///< detected energy [MIP] for each plane of section YE |
102 |
|
Float_t encol[2][3]; ///< detected energy [MIP] for each column of views x and y |
103 |
|
Float_t entot[2]; ///< detected energy [MIP] for views x and y |
104 |
|
// |
105 |
|
// Energies (GV) |
106 |
// |
// |
107 |
Float_t fEnergyxe; ///< Energy as measured by section XE |
Float_t fEnergyxe; ///< Energy as measured by section XE |
108 |
Float_t fEnergyxo; ///< Energy as measured by section XO |
Float_t fEnergyxo; ///< Energy as measured by section XO |
109 |
Float_t fEnergyye; ///< Energy as measured by section YE |
Float_t fEnergyye; ///< Energy as measured by section YE |
110 |
Float_t fEnergyyo; ///< Energy as measured by section YO |
Float_t fEnergyyo; ///< Energy as measured by section YO |
111 |
Float_t fEnergy; ///< Energy as measured by the average of the used section in "Independent mode" or energy as measured by the used section in "Coherent mode" |
Float_t fEnergy; ///< Energy as measured by the average of the used section in "Independent mode" or energy as measured by the used section in "Coherent mode" |
112 |
Float_t fCount; ///< Number of sections inside the acceptance (only the section given by the user are checked) |
// |
113 |
|
// Plane of maximum |
114 |
|
// |
115 |
Int_t fMax_planexe; ///< plane of maximum energy release (independent mode) or last plane used for energy measurement (coherent mode) for section XE |
Int_t fMax_planexe; ///< plane of maximum energy release (independent mode) or last plane used for energy measurement (coherent mode) for section XE |
116 |
Int_t fMax_planexo; ///< plane of maximum energy release (independent mode) or last plane used for energy measurement (coherent mode) for section XO |
Int_t fMax_planexo; ///< plane of maximum energy release (independent mode) or last plane used for energy measurement (coherent mode) for section XO |
117 |
Int_t fMax_planeyo; ///< plane of maximum energy release (independent mode) or last plane used for energy measurement (coherent mode) for section YO |
Int_t fMax_planeyo; ///< plane of maximum energy release (independent mode) or last plane used for energy measurement (coherent mode) for section YO |
118 |
Int_t fMax_planeye; ///< plane of maximum energy release (independent mode) or last plane used for energy measurement (coherent mode) for section YE |
Int_t fMax_planeye; ///< plane of maximum energy release (independent mode) or last plane used for energy measurement (coherent mode) for section YE |
119 |
Float_t fMax_plane; ///< average max plane [0,11] (independent mode) or last plane for energy measurement [0,43] (coherent mode) |
Float_t fMax_plane; ///< average max plane [0,11] (independent mode) or last plane for energy measurement [0,43] (coherent mode) |
120 |
|
Float_t x0max; ///< plane of maximum given externally (only test purpose) |
121 |
|
Bool_t fAllpl; ///< use all 96 strips for each plane to determine the maximum OR only the energy along the track as defined with fRad |
122 |
// |
// |
123 |
Float_t fXOen_maxplane; ///< total energy [MIP] used for energy determination as given by section XO |
// Geometry |
|
Float_t fYOen_maxplane; ///< total energy [MIP] used for energy determination as given by section YO |
|
|
Float_t fXEen_maxplane; ///< total energy [MIP] used for energy determination as given by section XE |
|
|
Float_t fYEen_maxplane; ///< total energy [MIP] used for energy determination as given by section YE |
|
124 |
// |
// |
125 |
Float_t xe1; ///< position of strip 1 section XE |
Float_t xe1; ///< position of strip 1 section XE |
126 |
Float_t xe2; ///< position of strip 32 section XE |
Float_t xe2; ///< position of strip 32 section XE |
128 |
Float_t xe4; ///< position of strip 64 section XE |
Float_t xe4; ///< position of strip 64 section XE |
129 |
Float_t xe5; ///< position of strip 65 section XE |
Float_t xe5; ///< position of strip 65 section XE |
130 |
Float_t xe6; ///< position of strip 96 section XE |
Float_t xe6; ///< position of strip 96 section XE |
|
// Float_t z1; |
|
131 |
Float_t yo1; ///< position of strip 1 section YO |
Float_t yo1; ///< position of strip 1 section YO |
132 |
Float_t yo2; ///< position of strip 32 section YO |
Float_t yo2; ///< position of strip 32 section YO |
133 |
Float_t yo3; ///< position of strip 33 section YO |
Float_t yo3; ///< position of strip 33 section YO |
134 |
Float_t yo4; ///< position of strip 64 section YO |
Float_t yo4; ///< position of strip 64 section YO |
135 |
Float_t yo5; ///< position of strip 65 section YO |
Float_t yo5; ///< position of strip 65 section YO |
136 |
Float_t yo6; ///< position of strip 96 section YO |
Float_t yo6; ///< position of strip 96 section YO |
|
// Float_t z2; |
|
137 |
Float_t xo1; ///< position of strip 1 section XO |
Float_t xo1; ///< position of strip 1 section XO |
138 |
Float_t xo2; ///< position of strip 32 section XO |
Float_t xo2; ///< position of strip 32 section XO |
139 |
Float_t xo3; ///< position of strip 33 section XO |
Float_t xo3; ///< position of strip 33 section XO |
140 |
Float_t xo4; ///< position of strip 64 section XO |
Float_t xo4; ///< position of strip 64 section XO |
141 |
Float_t xo5; ///< position of strip 65 section XO |
Float_t xo5; ///< position of strip 65 section XO |
142 |
Float_t xo6; ///< position of strip 96 section XO |
Float_t xo6; ///< position of strip 96 section XO |
|
// Float_t z3; |
|
143 |
Float_t ye1; ///< position of strip 1 section YE |
Float_t ye1; ///< position of strip 1 section YE |
144 |
Float_t ye2; ///< position of strip 32 section YE |
Float_t ye2; ///< position of strip 32 section YE |
145 |
Float_t ye3; ///< position of strip 33 section YE |
Float_t ye3; ///< position of strip 33 section YE |
146 |
Float_t ye4; ///< position of strip 64 section YE |
Float_t ye4; ///< position of strip 64 section YE |
147 |
Float_t ye5; ///< position of strip 65 section YE |
Float_t ye5; ///< position of strip 65 section YE |
148 |
Float_t ye6; ///< position of strip 96 section YE |
Float_t ye6; ///< position of strip 96 section YE |
149 |
// Float_t z4; |
Float_t track_coordx[22][2]; ///< XO and XE views, position (x and y) of the trajectory according to the fit |
150 |
|
Float_t track_coordy[22][2]; ///< YO and YE views, position (x and y) of the trajectory according to the fit |
151 |
Float_t trk_z[22][2]; ///< Z position of calorimeter planes |
Float_t trk_z[22][2]; ///< Z position of calorimeter planes |
152 |
|
// |
153 |
|
// decode estrip |
154 |
|
// |
155 |
Float_t en; ///< energy [mip] for decodeestrip |
Float_t en; ///< energy [mip] for decodeestrip |
156 |
Int_t view; ///< view for decodeestrip |
Int_t view; ///< view for decodeestrip |
157 |
Int_t plane; ///< plane for decodeestrip |
Int_t plane; ///< plane for decodeestrip |
158 |
Int_t strip; ///< strip for decodeestrip |
Int_t strip; ///< strip for decodeestrip |
|
Int_t fRad; ///< Radius [strip] of the cylinder used to integrate the energy along the track, if negative radius is inf (the whole plane is used). Default: -1 |
|
|
Int_t fNumSec; ///< Number of sections given by the user |
|
|
Float_t energyxe; ///< 11 planes detected energy [MIP] for section XE |
|
|
Float_t energyyo; ///< 11 planes detected energy [MIP] for section YO |
|
|
Float_t energyxo; ///< 11 planes detected energy [MIP] for section XO |
|
|
Float_t energyye; ///< 11 planes detected energy [MIP] for section YE |
|
|
Float_t en_xep[11]; ///< detected energy [MIP] for each plane of section XE |
|
|
Float_t en_yop[11]; ///< detected energy [MIP] for each plane of section YO |
|
|
Float_t en_xop[11]; ///< detected energy [MIP] for each plane of section XO |
|
|
Float_t en_yep[11]; ///< detected energy [MIP] for each plane of section YE |
|
159 |
Float_t enstrip[2][22][96]; ///< detected energy [MIP] for each strip of calorimeter |
Float_t enstrip[2][22][96]; ///< detected energy [MIP] for each strip of calorimeter |
160 |
// |
// y ^ |
161 |
Bool_t fXosel; ///< true if event is contained in section XO |
// || 6 7 8 |
162 |
Bool_t fXesel; ///< true if event is contained in section XE |
// Columns || 3 4 5 |
163 |
Bool_t fYosel; ///< true if event is contained in section YO |
// || 0 1 2 |
164 |
Bool_t fYesel; ///< true if event is contained in section YE |
Int_t fColumn; ///< Column number for the event [0,8] =============> x |
165 |
Bool_t fSel; ///< true if event is contained in at least one of the given section (independet mode) or in all the given section (coherent mode) |
Int_t fColXE; ///< Column number for section XE |
166 |
Bool_t fPartsel; ///< true if the event is contained only up to the last plane used for energy determination (can be used in conjunction with fXXmin) |
Int_t fColXO; ///< Column number for section XO |
167 |
Int_t fXeout; ///< last plane [0,11] for which the trajectory is contained in section XE |
Int_t fColYE; ///< Column number for section YE |
168 |
Int_t fYeout; ///< last plane [0,11] for which the trajectory is contained in section YE |
Int_t fColYO; ///< Column number for section YO |
169 |
Int_t fXoout; ///< last plane [0,11] for which the trajectory is contained in section XO |
Bool_t multicol; ///< accept or not multicolumns events |
170 |
Int_t fYoout; ///< last plane [0,11] for which the trajectory is contained in section YO |
// |
171 |
Int_t fXomin; ///< last plane [0,11] for which the trajectory MUST be contained in section XO. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY) |
// other stuff |
|
Int_t fXemin; ///< last plane [0,11] for which the trajectory MUST be contained in section XE. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY) |
|
|
Int_t fYomin; ///< last plane [0,11] for which the trajectory MUST be contained in section YO. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY) |
|
|
Int_t fYemin; ///< last plane [0,11] for which the trajectory MUST be contained in section YE. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY) |
|
172 |
// |
// |
173 |
Bool_t fSimu; ///< true if we are using simulated data, default false |
Bool_t fSimu; ///< true if we are using simulated data, default false |
|
Bool_t indep; ///< flag to switch between INDEPENDENT or COHERENT mode, default false - COHERENT mode selected |
|
|
// |
|
174 |
CaloPreSampler *cp; ///< pointer to calopresampler object (object constructed only when invoking method UseCaloPreSampler() , default: use level2 data). |
CaloPreSampler *cp; ///< pointer to calopresampler object (object constructed only when invoking method UseCaloPreSampler() , default: use level2 data). |
175 |
|
CaloLong *clong; ///< pointer to calolong object (object constructed only when invoking method UseLongFit(), default use energy up to maximum). |
176 |
|
// |
177 |
|
// private methods |
178 |
// |
// |
179 |
void DefineGeometry(); ///< called by constructors to fill geometrical variables (like xe1 etc). |
void DefineGeometry(); ///< called by constructors to fill geometrical variables (like xe1 etc). |
180 |
void Set(); ///< called by contructors to define default variables |
void Set(); ///< called by contructors to define default variables |
181 |
|
|
182 |
public: |
public: |
183 |
// |
// |
184 |
|
// constructors and destructors |
185 |
|
// |
186 |
CaloEnergy(); ///< default constructor (does nothing) |
CaloEnergy(); ///< default constructor (does nothing) |
187 |
CaloEnergy(PamLevel2 *L2); ///< constructor |
CaloEnergy(PamLevel2 *L2); ///< constructor |
188 |
CaloEnergy(PamLevel2 *L2, Bool_t simulation); ///< constructor |
CaloEnergy(PamLevel2 *L2, Bool_t simulation); ///< constructor |
189 |
~CaloEnergy(){ Delete(); }; ///< default destructor |
~CaloEnergy(){ Delete(); }; ///< default destructor |
190 |
// |
// |
191 |
|
// Setters and behaviour methods |
192 |
|
// |
193 |
void SetDebug(Bool_t d){ debug=d; }; ///< set the debug flag (verbose print-out on STDOUT), default is false |
void SetDebug(Bool_t d){ debug=d; }; ///< set the debug flag (verbose print-out on STDOUT), default is false |
194 |
// |
// |
195 |
void Clear(); ///< clear varibles |
void UseCaloPreSampler(); ///< use pre-sampler routine to refit the track (level2 default fitting could be wrong, in this case we force "shower fitting" in the DV library). |
196 |
void Clear(Option_t *option){Clear();}; ///< compatibility with TObject |
void UseLevel2(); ///< use level2 default fitting |
197 |
void Delete(); ///< delete object |
// |
198 |
void Delete(Option_t *option){Delete();}; ///< compatibility with TObject |
void UseLongFit();///< use or not the longitudinal fit to determine the energy |
199 |
|
void UseMeasuredEnergyUpToMax(){ fLong = false;}; ///< use the measured energy to determine the maximum (default) |
200 |
|
// |
201 |
|
void IndependentMode(){ indep = true; }; ///< Set the independent mode |
202 |
|
void CoherentMode(){ indep = false; }; ///< Set the coherent mode |
203 |
|
// |
204 |
|
void MultiColumns(){multicol = true;}; ///< accept multicolumns events |
205 |
|
void SingleColumn(){multicol = false;}; ///< accept events only if contained in a single column |
206 |
|
// |
207 |
|
void UseAllPlane2FindMax(){ fAllpl = true;};///< find the maximum (not long fit) integrating over all the 96 strips of the planes even if SetRadius has been used [default] |
208 |
|
void UseMeasuredEnergy2FindMax(){ fAllpl = false;};///< find the maximum (not long fit) using the energy measured and used to calculate the result |
209 |
|
// |
210 |
|
void SetMargin(Float_t margin){fM = margin ; fM1 = margin - 0.122 - 0.096 + 0.096; if ( fM1 < 0. ) fM1 = 0.;}; ///< set the margin from the border of the silicon sensor (not from the first strip), set the same margin for both the directions |
211 |
|
void SetMarginStripDirection(Float_t margin){fM = margin ;}; ///< set the margin from the border of the silicon sensor (not from the first strip) in the strip direction |
212 |
|
void SetMarginStripReading(Float_t margin){fM1 = margin -0.122 - 0.096 + 0.096;}; ///< set the margin from the border of the silicon sensor (not from the first strip) in the strip reading direction |
213 |
|
// |
214 |
|
void SetRadius(Int_t strip){fRad = strip;}; ///< set the radius of the cylinder |
215 |
|
void SetMaxPlaneOffset(Int_t noplanes){fPl = noplanes;}; ///< set the number of dE/dx measurements to be used after the maximum |
216 |
|
// |
217 |
|
void SetX0max(Float_t xm){ x0max = xm;}; ///< set the plane of maximum from external source X0 (test purpose only) |
218 |
|
void SetRigX0max(Float_t rig){ x0max = -0.5+log(rig/0.0076);}; ///< set the plane of maximum from external source rigidity (GeV) (test purpose only) |
219 |
|
// |
220 |
|
void SetMinimumContainment(Int_t plane); ///< set the last plane [0,11] for which the trajectory MUST be contained in all the sections. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY) |
221 |
|
void SetMinimumContainment(TString section, Int_t plane); ///< set the last plane [0,11] for which the trajectory MUST be contained in section "section". Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY) |
222 |
|
// |
223 |
|
void SetConversionFactor(Float_t conv_r); ///< Set the MIP-GV conversion factor for all the four sections. |
224 |
|
void SetConversionFactor(TString section, Float_t conv_r); ///< Set the MIP-GV conversion factor for section "section". |
225 |
|
// |
226 |
|
void ForceProcessing(){atime=0; PKT=0; APKT=0; aatime=0;}; ///< Force processing the event even if the same request is made twice without a getentry from pamlevel2 |
227 |
|
// |
228 |
|
// Getters and checks methods |
229 |
// |
// |
|
void Process(); ///< Process the event |
|
|
void Process(TString section); ///< Process the event for section "section" |
|
|
void Print(); ///< Print variables on STDOUT |
|
|
void Print(Option_t *option){Print();}; ///< compatibility with TObject |
|
230 |
// |
// |
231 |
Bool_t IsInsideAcceptance(TString section); ///< returns true if event is inside acceptance of the given sections (all if coherent mode, at least one in independent mode) |
Bool_t IsInsideAcceptance(TString section); ///< returns true if event is inside acceptance of the given sections (all if coherent mode, at least one in independent mode) |
232 |
Bool_t IsInsideReducedAcceptance(){return fPartsel;}; ///< returns true if the event is inside acceptance only up to the last used plane (see fXomin etc) |
Bool_t IsInsideReducedAcceptance(){return fPartsel;}; ///< returns true if the event is inside acceptance only up to the last used plane (see fXomin etc) |
242 |
// |
// |
243 |
Float_t GetEnergy(){ Process(); return fEnergy;}; ///< returns the energy [GV] determined for this event |
Float_t GetEnergy(){ Process(); return fEnergy;}; ///< returns the energy [GV] determined for this event |
244 |
Float_t GetEnergy(TString section){ Process(section); return fEnergy;}; ///< returns the energy [GV] determined for this event |
Float_t GetEnergy(TString section){ Process(section); return fEnergy;}; ///< returns the energy [GV] determined for this event |
245 |
|
// |
246 |
Float_t GetCount(){ return fCount;}; ///< returns the number of section inside acceptance for this event (equal to the number of given section in coherent mode) |
Float_t GetCount(){ return fCount;}; ///< returns the number of section inside acceptance for this event (equal to the number of given section in coherent mode) |
247 |
// |
// |
248 |
Float_t GetMaxplane(){ return fMax_plane;}; ///< returns the average max plane [0,11] (independent mode) or last plane for energy measurement [0,43] (coherent mode) |
Float_t GetEnergyAtMaxplane(TString section); ///< returns the energy [MIP] at the plane of maximum for section "section" |
249 |
|
Float_t GetMipEnergyAtMaxplane(TString section); ///< returns the energy [MIP] at the plane of maximum for section "section" |
250 |
// |
// |
251 |
Float_t GetMaxEnergy(){ return((fXEen_maxplane+fYOen_maxplane+fYEen_maxplane+fXOen_maxplane));}; ///< returns the total energy [MIP] before conversion |
Float_t GetMaxEnergy(); ///< returns the total energy [MIP] before conversion |
252 |
Float_t GetMaxEnergy(TString section); ///< returns the total energy [MIP] before conversion for section "section" |
Float_t GetMaxEnergy(TString section); ///< returns the total energy [MIP] before conversion for section "section" |
253 |
Int_t GetMaxplane(TString section); ///< returns the plane of maximum (independent mode) or the last used plane (coherent mode) for section "section" |
Float_t GetMipEnergy(); ///< returns the total energy [MIP] before conversion |
254 |
|
Float_t GetMipEnergy(TString section); ///< returns the total energy [MIP] before conversion for section "section" |
255 |
// |
// |
256 |
void UseLongitudinalFitEnergy(){ fPl = 0; fLong = true;}; ///< use or not the longitudinal fit to determine the energy (NOT IMPLEMENTED YET) |
Int_t GetMaxplane(TString section); ///< returns the plane of maximum (independent mode) or the last used plane (coherent mode) for section "section" |
257 |
void UseMeasuredEnergyUpToMax(){ fLong = false;}; ///< use the measured energy to determine the maximum (default) |
Float_t GetMaxplane(){ return fMax_plane;}; ///< returns the average max plane [0,11] (independent mode) or last plane for energy measurement [0,43] (coherent mode) |
|
// |
|
|
void SetMargin(Float_t margin){fM = margin + 0.096; fM1 = margin - 0.122 - 0.096; if ( fM1 < 0. ) fM1 = 0.;}; ///< set the margin from the border of the silicon sensor (not from the first strip), set the same margin for both the directions |
|
|
void SetMarginStripDirection(Float_t margin){fM = margin + 0.096;}; ///< set the margin from the border of the silicon sensor (not from the first strip) in the strip direction |
|
|
void SetMarginStripReading(Float_t margin){fM1 = margin -0.122 - 0.096;}; ///< set the margin from the border of the silicon sensor (not from the first strip) in the strip reading direction |
|
|
void SetRadius(Int_t strip){fRad = strip;}; ///< set the radius of the cylinder |
|
|
void SetMaxPlaneOffset(Int_t noplanes){fPl = noplanes;}; ///< set the number of dE/dx measurements to be used after the maximum |
|
258 |
// |
// |
|
void SetMinimumContainment(Int_t plane); ///< set the last plane [0,11] for which the trajectory MUST be contained in all the sections. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY) |
|
|
void SetMinimumContainment(TString section, Int_t plane); ///< set the last plane [0,11] for which the trajectory MUST be contained in section "section". Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY) |
|
259 |
Int_t GetMinimumContainment(TString section); ///< get the last plane [0,11] for which the trajectory MUST be contained in section "section". |
Int_t GetMinimumContainment(TString section); ///< get the last plane [0,11] for which the trajectory MUST be contained in section "section". |
260 |
// |
// |
|
void SetConversionFactor(Float_t conv_r); ///< Set the MIP-GV conversion factor for all the four sections. |
|
|
void SetConversionFactor(TString section, Float_t conv_r); ///< Set the MIP-GV conversion factor for section "section". |
|
261 |
Float_t GetConversionFactor(TString section); ///< Get the MIP-GV conversion factor for section "section". |
Float_t GetConversionFactor(TString section); ///< Get the MIP-GV conversion factor for section "section". |
262 |
// |
// |
263 |
void IndependentMode(){ indep = true; }; ///< Set the independent mode |
Float_t *Get_track_coordx(){ return *track_coordx;}; ///< X position of the track for all the planes and views |
264 |
void CoherentMode(){ indep = false; }; ///< Set the coherent mode |
Float_t *Get_track_coordy(){ return *track_coordy;}; ///< Y position of the track for all the planes and views |
265 |
// |
// |
266 |
void UseCaloPreSampler(); ///< use pre-sampler routine to refit the track (level2 default fitting could be wrong, in this case we force "shower fitting" in the DV library). |
Float_t Get_track_coordx(Int_t i, Int_t j){ return track_coordx[i][j];}; ///< X position of the track for plane i and view j |
267 |
|
Float_t Get_track_coordy(Int_t i, Int_t j){ return track_coordy[i][j];}; ///< X position of the track for plane i and view j |
268 |
|
// |
269 |
|
Float_t *GetEncol(){ return *encol;}; ///< integrated energy over columns (encol[2][3]) [MIP] |
270 |
|
Float_t GetEncol(Int_t i, Int_t j){ return encol[i][j];}; ///< integrated energy over view i and column j [MIP] |
271 |
|
Float_t GetEncol(Int_t i); ///< integrated energy over view i given fColumn [MIP] |
272 |
|
Float_t *GetEntot(){ return entot;}; ///< integrated energy over views (entot[2]) [MIP] |
273 |
|
Float_t GetEntot(Int_t i){ return entot[i];}; ///< integrated energy over all view i [MIP] |
274 |
|
// |
275 |
|
Int_t GetColumn(){return fColumn;}; ///< number of column which contains the track |
276 |
|
Int_t GetColumn(TString section); ///< number of column which contains the track for section "section" |
277 |
|
// |
278 |
|
Float_t Get_X0pl(){return X0pl;}; ///< transversed X0 for each W plane taking into account inclination of the trajectory |
279 |
|
Float_t GetX0max(){ return x0max;}; ///< get the given X0 (test purpose only) |
280 |
|
// |
281 |
|
// Get pointers |
282 |
|
// |
283 |
|
CaloLong* GetCaloLong(){return clong;}; ///< Get calolong object. |
284 |
CaloPreSampler* GetCaloPreSampler(){return cp;}; ///< Get pre-sampler object. |
CaloPreSampler* GetCaloPreSampler(){return cp;}; ///< Get pre-sampler object. |
285 |
|
CaloEnergy* GetCaloEnergyPointer(){return this;}; ///< Get CaloEnergy pointer |
286 |
|
// |
287 |
|
// Other methods |
288 |
|
// |
289 |
|
void Clear(); ///< clear varibles |
290 |
|
void Clear(Option_t *option){Clear();}; ///< compatibility with TObject |
291 |
|
void Delete(); ///< delete object |
292 |
|
void Delete(Option_t *option){Delete();}; ///< compatibility with TObject |
293 |
|
// |
294 |
|
void Process(); ///< Process the event |
295 |
|
void Process(TString section); ///< Process the event for section "section" |
296 |
|
void Print(); ///< Print variables on STDOUT |
297 |
|
void Print(Option_t *option){Print();}; ///< compatibility with TObject |
298 |
// |
// |
299 |
ClassDef(CaloEnergy,1); |
ClassDef(CaloEnergy,3); |
300 |
}; |
}; |
301 |
|
|
302 |
#endif |
#endif |