/[PAMELA software]/calo/flight/CaloEnergy/inc/CaloEnergy.h
ViewVC logotype

Diff of /calo/flight/CaloEnergy/inc/CaloEnergy.h

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 1.4 by mocchiut, Wed Jul 29 12:58:26 2009 UTC revision 1.12 by mocchiut, Thu Sep 10 12:53:29 2009 UTC
# Line 16  Line 16 
16  #include <TSystemFile.h>  #include <TSystemFile.h>
17  #include <TSystemDirectory.h>  #include <TSystemDirectory.h>
18  #include <TSQLServer.h>  #include <TSQLServer.h>
19    
20  #include <CaloPreSampler.h>  #include <CaloPreSampler.h>
21    #include <CaloProfile.h>
22    
23  #include <iostream>  #include <iostream>
24    
# Line 29  class CaloEnergy : public TObject { Line 31  class CaloEnergy : public TObject {
31    
32   private:   private:
33      //      //
34      PamLevel2 *L2;      PamLevel2 *L2; ///< PamLevel2 object
35      Bool_t debug; ///< debug flag      Bool_t debug; ///< debug flag
36      //      //
37      // needed to avoid reprocessing the same event over and over to obtain the variables      // needed to avoid reprocessing the same event over and over to obtain the variables
# Line 43  class CaloEnergy : public TObject { Line 45  class CaloEnergy : public TObject {
45      UInt_t aatime;///< event absolute time      UInt_t aatime;///< event absolute time
46      TString asntr;///< string containing the list of section the user want to process      TString asntr;///< string containing the list of section the user want to process
47      //      //
48        // margins, acceptance and containment
49        //
50      Float_t fM; ///< margin in the strip direction      Float_t fM; ///< margin in the strip direction
51      Float_t fM1; ///< margin along the strip reading direction      Float_t fM1; ///< margin along the strip reading direction
52      Int_t fPl; ///< number of dE/dx measurements over the maximum that are used to find the energy      Int_t fPl; ///< number of dE/dx measurements over the maximum that are used to find the energy
53        Float_t fCount; ///< Number of sections inside the acceptance (only the section given by the user are checked)
54        Int_t fRad; ///< Radius [strip] of the cylinder used to integrate the energy along the track, if negative radius is inf (the whole plane is used). Default: -1
55        Int_t fNumSec; ///< Number of sections given by the user
56        Bool_t fXosel; ///< true if event is contained in section XO
57        Bool_t fXesel; ///< true if event is contained in section XE
58        Bool_t fYosel; ///< true if event is contained in section YO  
59        Bool_t fYesel; ///< true if event is contained in section YE
60        Bool_t fSel; ///< true if event is contained in at least one of the given section (independet mode) or in all the given section (coherent mode)
61        Bool_t fPartsel; ///< true if the event is contained only up to the last plane used for energy determination (can be used in conjunction with fXXmin)
62        Int_t fXeout; ///< last plane [0,11] for which the trajectory is contained in section XE
63        Int_t fYeout; ///< last plane [0,11] for which the trajectory is contained in section YE
64        Int_t fXoout; ///< last plane [0,11] for which the trajectory is contained in section XO
65        Int_t fYoout; ///< last plane [0,11] for which the trajectory is contained in section YO
66        Int_t fXomin; ///< last plane [0,11] for which the trajectory MUST be contained in section XO. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY)
67        Int_t fXemin; ///< last plane [0,11] for which the trajectory MUST be contained in section XE. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY)
68        Int_t fYomin; ///< last plane [0,11] for which the trajectory MUST be contained in section YO. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY)
69        Int_t fYemin; ///< last plane [0,11] for which the trajectory MUST be contained in section YE. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY)
70        Bool_t indep; ///< flag to switch between INDEPENDENT or COHERENT mode, default false - COHERENT mode selected
71        Float_t X0pl; ///< transversed X0 for each W plane taking into account inclination of the trajectory
72        //
73        // conversion factors
74        //
75      Float_t fConv_rxe; ///< MIP - energy conversion factor for section XE      Float_t fConv_rxe; ///< MIP - energy conversion factor for section XE
76      Float_t fConv_rxo; ///< MIP - energy conversion factor for section XO      Float_t fConv_rxo; ///< MIP - energy conversion factor for section XO
77      Float_t fConv_rye; ///< MIP - energy conversion factor for section YE      Float_t fConv_rye; ///< MIP - energy conversion factor for section YE
78      Float_t fConv_ryo; ///< MIP - energy conversion factor for section YO      Float_t fConv_ryo; ///< MIP - energy conversion factor for section YO
79        //
80        // Longitudinal fit
81        //
82      Bool_t fLong; ///< if true use the integral of the longitudinal profile to measure the energy (NOT IMPLEMENTED YET), default FALSE      Bool_t fLong; ///< if true use the integral of the longitudinal profile to measure the energy (NOT IMPLEMENTED YET), default FALSE
83        //
84        // Energies (MIP)
85        //
86        Float_t fXOen_maxplane; ///< total energy [MIP] used for energy determination as given by section XO
87        Float_t fYOen_maxplane; ///< total energy [MIP] used for energy determination as given by section YO
88        Float_t fXEen_maxplane; ///< total energy [MIP] used for energy determination as given by section XE
89        Float_t fYEen_maxplane; ///< total energy [MIP] used for energy determination as given by section YE
90        Float_t xomax_en; ///< energy at plane of maximum of section XO
91        Float_t xemax_en; ///< energy at plane of maximum of section XE
92        Float_t yomax_en; ///< energy at plane of maximum of section YO
93        Float_t yemax_en; ///< energy at plane of maximum of section YE
94        Float_t energyxe; ///< 11 planes detected energy [MIP] for section XE
95        Float_t energyyo; ///< 11 planes detected energy [MIP] for section YO
96        Float_t energyxo; ///< 11 planes detected energy [MIP] for section XO
97        Float_t energyye; ///< 11 planes detected energy [MIP] for section YE
98        Float_t en_xep[11]; ///< detected energy [MIP] for each plane of section XE
99        Float_t en_yop[11]; ///< detected energy [MIP] for each plane of section YO
100        Float_t en_xop[11]; ///< detected energy [MIP] for each plane of section XO
101        Float_t en_yep[11]; ///< detected energy [MIP] for each plane of section YE
102        Float_t encol[2][3]; ///< detected energy [MIP] for each column of views x and y
103        Float_t entot[2]; ///< detected energy [MIP] for views x and y
104        //
105        // Energies (GV)
106      //      //
107      Float_t fEnergyxe; ///< Energy as measured by section XE      Float_t fEnergyxe; ///< Energy as measured by section XE
108      Float_t fEnergyxo; ///< Energy as measured by section XO      Float_t fEnergyxo; ///< Energy as measured by section XO
109      Float_t fEnergyye; ///< Energy as measured by section YE      Float_t fEnergyye; ///< Energy as measured by section YE
110      Float_t fEnergyyo; ///< Energy as measured by section YO      Float_t fEnergyyo; ///< Energy as measured by section YO
111      Float_t fEnergy; ///< Energy as measured by the average of the used section in "Independent mode" or energy as measured by the used section in "Coherent mode"      Float_t fEnergy; ///< Energy as measured by the average of the used section in "Independent mode" or energy as measured by the used section in "Coherent mode"
112      Float_t fCount; ///< Number of sections inside the acceptance (only the section given by the user are checked)      //
113        // Plane of maximum
114        //
115      Int_t fMax_planexe; ///< plane of maximum energy release (independent mode) or last plane used for energy measurement (coherent mode) for section XE      Int_t fMax_planexe; ///< plane of maximum energy release (independent mode) or last plane used for energy measurement (coherent mode) for section XE
116      Int_t fMax_planexo; ///< plane of maximum energy release (independent mode) or last plane used for energy measurement (coherent mode) for section XO      Int_t fMax_planexo; ///< plane of maximum energy release (independent mode) or last plane used for energy measurement (coherent mode) for section XO
117      Int_t fMax_planeyo; ///< plane of maximum energy release (independent mode) or last plane used for energy measurement (coherent mode) for section YO      Int_t fMax_planeyo; ///< plane of maximum energy release (independent mode) or last plane used for energy measurement (coherent mode) for section YO
118      Int_t fMax_planeye; ///< plane of maximum energy release (independent mode) or last plane used for energy measurement (coherent mode) for section YE      Int_t fMax_planeye; ///< plane of maximum energy release (independent mode) or last plane used for energy measurement (coherent mode) for section YE
119      Float_t fMax_plane; ///< average max plane [0,11] (independent mode) or last plane for energy measurement [0,43] (coherent mode)      Float_t fMax_plane; ///< average max plane [0,11] (independent mode) or last plane for energy measurement [0,43] (coherent mode)
120        Float_t x0max; ///< plane of maximum given externally (only test purpose)
121        Bool_t fAllpl; ///< use all 96 strips for each plane to determine the maximum OR only the energy along the track as defined with fRad
122      //      //
123      Float_t fXOen_maxplane; ///< total energy [MIP] used for energy determination as given by section XO      // Geometry
     Float_t fYOen_maxplane; ///< total energy [MIP] used for energy determination as given by section YO  
     Float_t fXEen_maxplane; ///< total energy [MIP] used for energy determination as given by section XE  
     Float_t fYEen_maxplane; ///< total energy [MIP] used for energy determination as given by section YE  
124      //      //
125      Float_t xe1; ///< position of strip  1 section XE      Float_t xe1; ///< position of strip  1 section XE
126      Float_t xe2; ///< position of strip 32 section XE      Float_t xe2; ///< position of strip 32 section XE
# Line 75  class CaloEnergy : public TObject { Line 128  class CaloEnergy : public TObject {
128      Float_t xe4; ///< position of strip 64 section XE      Float_t xe4; ///< position of strip 64 section XE
129      Float_t xe5; ///< position of strip 65 section XE      Float_t xe5; ///< position of strip 65 section XE
130      Float_t xe6; ///< position of strip 96 section XE      Float_t xe6; ///< position of strip 96 section XE
     //    Float_t z1;  
131      Float_t yo1; ///< position of strip  1 section YO      Float_t yo1; ///< position of strip  1 section YO
132      Float_t yo2; ///< position of strip 32 section YO      Float_t yo2; ///< position of strip 32 section YO
133      Float_t yo3; ///< position of strip 33 section YO      Float_t yo3; ///< position of strip 33 section YO
134      Float_t yo4; ///< position of strip 64 section YO      Float_t yo4; ///< position of strip 64 section YO
135      Float_t yo5; ///< position of strip 65 section YO      Float_t yo5; ///< position of strip 65 section YO
136      Float_t yo6; ///< position of strip 96 section YO      Float_t yo6; ///< position of strip 96 section YO
     //    Float_t z2;  
137      Float_t xo1; ///< position of strip  1 section XO      Float_t xo1; ///< position of strip  1 section XO
138      Float_t xo2; ///< position of strip 32 section XO      Float_t xo2; ///< position of strip 32 section XO
139      Float_t xo3; ///< position of strip 33 section XO      Float_t xo3; ///< position of strip 33 section XO
140      Float_t xo4; ///< position of strip 64 section XO      Float_t xo4; ///< position of strip 64 section XO
141      Float_t xo5; ///< position of strip 65 section XO      Float_t xo5; ///< position of strip 65 section XO
142      Float_t xo6; ///< position of strip 96 section XO      Float_t xo6; ///< position of strip 96 section XO
     //    Float_t z3;  
143      Float_t ye1; ///< position of strip  1 section YE      Float_t ye1; ///< position of strip  1 section YE
144      Float_t ye2; ///< position of strip 32 section YE      Float_t ye2; ///< position of strip 32 section YE
145      Float_t ye3; ///< position of strip 33 section YE      Float_t ye3; ///< position of strip 33 section YE
146      Float_t ye4; ///< position of strip 64 section YE      Float_t ye4; ///< position of strip 64 section YE
147      Float_t ye5; ///< position of strip 65 section YE      Float_t ye5; ///< position of strip 65 section YE
148      Float_t ye6; ///< position of strip 96 section YE      Float_t ye6; ///< position of strip 96 section YE
149      //    Float_t z4;      Float_t  track_coordx[22][2]; ///< XO and XE views, position (x and y) of the trajectory according to the fit
150        Float_t  track_coordy[22][2]; ///< YO and YE views, position (x and y) of the trajectory according to the fit
151      Float_t trk_z[22][2]; ///< Z position of calorimeter planes      Float_t trk_z[22][2]; ///< Z position of calorimeter planes
152        //
153        // decode estrip
154        //
155      Float_t en; ///< energy [mip] for decodeestrip      Float_t en; ///< energy [mip] for decodeestrip
156      Int_t view; ///< view for decodeestrip      Int_t view; ///< view for decodeestrip
157      Int_t plane; ///< plane for decodeestrip      Int_t plane; ///< plane for decodeestrip
158      Int_t strip; ///< strip for decodeestrip      Int_t strip; ///< strip for decodeestrip
     Int_t fRad; ///< Radius [strip] of the cylinder used to integrate the energy along the track, if negative radius is inf (the whole plane is used). Default: -1  
     Int_t fNumSec; ///< Number of sections given by the user  
     Float_t energyxe; ///< 11 planes detected energy [MIP] for section XE  
     Float_t energyyo; ///< 11 planes detected energy [MIP] for section YO  
     Float_t energyxo; ///< 11 planes detected energy [MIP] for section XO  
     Float_t energyye; ///< 11 planes detected energy [MIP] for section YE  
     Float_t en_xep[11]; ///< detected energy [MIP] for each plane of section XE  
     Float_t en_yop[11]; ///< detected energy [MIP] for each plane of section YO  
     Float_t en_xop[11]; ///< detected energy [MIP] for each plane of section XO  
     Float_t en_yep[11]; ///< detected energy [MIP] for each plane of section YE  
159      Float_t enstrip[2][22][96]; ///< detected energy [MIP] for each strip of calorimeter      Float_t enstrip[2][22][96]; ///< detected energy [MIP] for each strip of calorimeter
160      //      //                                                   y ^
161      Bool_t fXosel; ///< true if event is contained in section XO      //                                                    || 6 7 8
162      Bool_t fXesel; ///< true if event is contained in section XE      // Columns                                            || 3 4 5
163      Bool_t fYosel; ///< true if event is contained in section YO        //                                                    || 0 1 2
164      Bool_t fYesel; ///< true if event is contained in section YE      Int_t fColumn; ///< Column number for the event [0,8] =============> x
165      Bool_t fSel; ///< true if event is contained in at least one of the given section (independet mode) or in all the given section (coherent mode)      Int_t fColXE; ///< Column number for section XE
166      Bool_t fPartsel; ///< true if the event is contained only up to the last plane used for energy determination (can be used in conjunction with fXXmin)      Int_t fColXO; ///< Column number for section XO
167      Int_t fXeout; ///< last plane [0,11] for which the trajectory is contained in section XE      Int_t fColYE; ///< Column number for section YE
168      Int_t fYeout; ///< last plane [0,11] for which the trajectory is contained in section YE      Int_t fColYO; ///< Column number for section YO
169      Int_t fXoout; ///< last plane [0,11] for which the trajectory is contained in section XO      Bool_t multicol; ///< accept or not multicolumns events
170      Int_t fYoout; ///< last plane [0,11] for which the trajectory is contained in section YO      //
171      Int_t fXomin; ///< last plane [0,11] for which the trajectory MUST be contained in section XO. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY)      // other stuff
     Int_t fXemin; ///< last plane [0,11] for which the trajectory MUST be contained in section XE. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY)  
     Int_t fYomin; ///< last plane [0,11] for which the trajectory MUST be contained in section YO. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY)  
     Int_t fYemin; ///< last plane [0,11] for which the trajectory MUST be contained in section YE. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY)  
172      //      //
173      Bool_t fSimu; ///< true if we are using simulated data, default false      Bool_t fSimu; ///< true if we are using simulated data, default false
     Bool_t indep; ///< flag to switch between INDEPENDENT or COHERENT mode, default false - COHERENT mode selected  
     //  
174      CaloPreSampler *cp; ///< pointer to calopresampler object (object constructed only when invoking method UseCaloPreSampler() , default: use level2 data).      CaloPreSampler *cp; ///< pointer to calopresampler object (object constructed only when invoking method UseCaloPreSampler() , default: use level2 data).
175        CaloLong *clong; ///< pointer to calolong object (object constructed only when invoking method UseLongFit(), default use energy up to maximum).
176        //
177        // private methods
178      //      //
179      void DefineGeometry(); ///< called by constructors to fill geometrical variables (like xe1 etc).      void DefineGeometry(); ///< called by constructors to fill geometrical variables (like xe1 etc).
180      void Set(); ///< called by contructors to define default variables      void Set(); ///< called by contructors to define default variables
181    
182   public:   public:
183      //      //
184        // constructors and destructors
185        //
186      CaloEnergy(); ///< default constructor (does nothing)      CaloEnergy(); ///< default constructor (does nothing)
187      CaloEnergy(PamLevel2 *L2); ///< constructor      CaloEnergy(PamLevel2 *L2); ///< constructor
188      CaloEnergy(PamLevel2 *L2, Bool_t simulation); ///< constructor      CaloEnergy(PamLevel2 *L2, Bool_t simulation); ///< constructor
189      ~CaloEnergy(){ Delete(); }; ///< default destructor      ~CaloEnergy(){ Delete(); }; ///< default destructor
190      //      //
191        // Setters and behaviour methods
192        //
193      void SetDebug(Bool_t d){ debug=d; }; ///< set the debug flag (verbose print-out on STDOUT), default is false      void SetDebug(Bool_t d){ debug=d; }; ///< set the debug flag (verbose print-out on STDOUT), default is false
194      //      //
195      void Clear(); ///< clear varibles      void UseCaloPreSampler(); ///< use pre-sampler routine to refit the track (level2 default fitting could be wrong, in this case we force "shower fitting" in the DV library).
196      void Clear(Option_t *option){Clear();}; ///< compatibility with TObject      void UseLevel2(); ///< use level2 default fitting
197      void Delete(); ///< delete object      //
198      void Delete(Option_t *option){Delete();}; ///< compatibility with TObject      void UseLongFit();///< use or not the longitudinal fit to determine the energy      
199        void UseMeasuredEnergyUpToMax(){ fLong = false;}; ///< use the measured energy to determine the maximum (default)
200        //
201        void IndependentMode(){ indep = true; }; ///< Set the independent mode
202        void CoherentMode(){ indep = false; }; ///< Set the coherent mode
203        //
204        void MultiColumns(){multicol = true;}; ///< accept multicolumns events
205        void SingleColumn(){multicol = false;}; ///< accept events only if contained in a single column
206        //
207        void UseAllPlane2FindMax(){ fAllpl = true;};///< find the maximum (not long fit) integrating over all the 96 strips of the planes even if SetRadius has been used [default]
208        void UseMeasuredEnergy2FindMax(){ fAllpl = false;};///< find the maximum (not long fit) using the energy measured and used to calculate the result
209        //
210        void SetMargin(Float_t margin){fM = margin ; fM1 = margin - 0.122 - 0.096 + 0.096; if ( fM1 < 0. ) fM1 = 0.;}; ///< set the margin from the border of the silicon sensor (not from the first strip), set the same margin for both the directions
211        void SetMarginStripDirection(Float_t margin){fM = margin ;}; ///< set the margin from the border of the silicon sensor (not from the first strip) in the strip direction
212        void SetMarginStripReading(Float_t margin){fM1 = margin -0.122 - 0.096 + 0.096;};  ///< set the margin from the border of the silicon sensor (not from the first strip) in the strip reading direction
213        //
214        void SetRadius(Int_t strip){fRad = strip;}; ///< set the radius of the cylinder
215        void SetMaxPlaneOffset(Int_t noplanes){fPl = noplanes;}; ///< set the number of dE/dx measurements to be used after the maximum
216        //
217        void SetX0max(Float_t xm){ x0max = xm;}; ///< set the plane of maximum from external source X0 (test purpose only)
218        void SetRigX0max(Float_t rig){ x0max = -0.5+log(rig/0.0076);}; ///< set the plane of maximum from external source rigidity (GeV) (test purpose only)
219        //
220        void SetMinimumContainment(Int_t plane); ///< set the last plane [0,11] for which the trajectory MUST be contained in all the sections. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY)
221        void SetMinimumContainment(TString section, Int_t plane); ///< set the last plane [0,11] for which the trajectory MUST be contained in section "section". Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY)
222        //
223        void SetConversionFactor(Float_t conv_r); ///< Set the MIP-GV conversion factor for all the four sections.
224        void SetConversionFactor(TString section, Float_t conv_r); ///< Set the MIP-GV conversion factor for section "section".
225        //
226        void ForceProcessing(){atime=0; PKT=0; APKT=0; aatime=0;}; ///< Force processing the event even if the same request is made twice without a getentry from pamlevel2
227        //
228        // Getters and checks methods
229      //      //
     void Process(); ///< Process the event  
     void Process(TString section);  ///< Process the event for section "section"  
     void Print(); ///< Print variables on STDOUT  
     void Print(Option_t *option){Print();}; ///< compatibility with TObject  
230      //      //
231      Bool_t IsInsideAcceptance(TString section); ///< returns true if event is inside acceptance of the given sections (all if coherent mode, at least one in independent mode)      Bool_t IsInsideAcceptance(TString section); ///< returns true if event is inside acceptance of the given sections (all if coherent mode, at least one in independent mode)
232      Bool_t IsInsideReducedAcceptance(){return fPartsel;}; ///< returns true if the event is inside acceptance only up to the last used plane (see fXomin etc)      Bool_t IsInsideReducedAcceptance(){return fPartsel;}; ///< returns true if the event is inside acceptance only up to the last used plane (see fXomin etc)
# Line 170  class CaloEnergy : public TObject { Line 242  class CaloEnergy : public TObject {
242      //      //
243      Float_t GetEnergy(){ Process(); return fEnergy;}; ///< returns the energy [GV] determined for this event      Float_t GetEnergy(){ Process(); return fEnergy;}; ///< returns the energy [GV] determined for this event
244      Float_t GetEnergy(TString section){ Process(section); return fEnergy;}; ///< returns the energy [GV] determined for this event      Float_t GetEnergy(TString section){ Process(section); return fEnergy;}; ///< returns the energy [GV] determined for this event
245        //
246      Float_t GetCount(){ return fCount;}; ///< returns the number of section inside acceptance for this event (equal to the number of given section in coherent mode)      Float_t GetCount(){ return fCount;}; ///< returns the number of section inside acceptance for this event (equal to the number of given section in coherent mode)
247      //      //
248      Float_t GetMaxplane(){ return fMax_plane;}; ///< returns the average max plane [0,11] (independent mode) or last plane for energy measurement [0,43] (coherent mode)          Float_t GetEnergyAtMaxplane(TString section); ///< returns the energy [MIP] at the plane of maximum for section "section"
249        Float_t GetMipEnergyAtMaxplane(TString section); ///< returns the energy [MIP] at the plane of maximum for section "section"
250      //      //
251      Float_t GetMaxEnergy(){ return((fXEen_maxplane+fYOen_maxplane+fYEen_maxplane+fXOen_maxplane));}; ///< returns the total energy [MIP] before conversion      Float_t GetMaxEnergy(); ///< returns the total energy [MIP] before conversion
252      Float_t GetMaxEnergy(TString section); ///< returns the total energy [MIP] before conversion for section "section"      Float_t GetMaxEnergy(TString section); ///< returns the total energy [MIP] before conversion for section "section"
253      Int_t GetMaxplane(TString section); ///< returns the plane of maximum (independent mode) or the last used plane (coherent mode) for section "section"      Float_t GetMipEnergy(); ///< returns the total energy [MIP] before conversion
254        Float_t GetMipEnergy(TString section); ///< returns the total energy [MIP] before conversion for section "section"
255      //      //
256      void UseLongitudinalFitEnergy(){ fPl = 0; fLong = true;}; ///< use or not the longitudinal fit to determine the energy (NOT IMPLEMENTED YET)      Int_t GetMaxplane(TString section); ///< returns the plane of maximum (independent mode) or the last used plane (coherent mode) for section "section"
257      void UseMeasuredEnergyUpToMax(){ fLong = false;}; ///< use the measured energy to determine the maximum (default)      Float_t GetMaxplane(){ return fMax_plane;}; ///< returns the average max plane [0,11] (independent mode) or last plane for energy measurement [0,43] (coherent mode)    
     //  
     void SetMargin(Float_t margin){fM = margin + 0.096; fM1 = margin - 0.122 - 0.096; if ( fM1 < 0. ) fM1 = 0.;}; ///< set the margin from the border of the silicon sensor (not from the first strip), set the same margin for both the directions  
     void SetMarginStripDirection(Float_t margin){fM = margin + 0.096;}; ///< set the margin from the border of the silicon sensor (not from the first strip) in the strip direction  
     void SetMarginStripReading(Float_t margin){fM1 = margin -0.122 - 0.096;};  ///< set the margin from the border of the silicon sensor (not from the first strip) in the strip reading direction  
     void SetRadius(Int_t strip){fRad = strip;}; ///< set the radius of the cylinder  
     void SetMaxPlaneOffset(Int_t noplanes){fPl = noplanes;}; ///< set the number of dE/dx measurements to be used after the maximum  
258      //      //
     void SetMinimumContainment(Int_t plane); ///< set the last plane [0,11] for which the trajectory MUST be contained in all the sections. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY)  
     void SetMinimumContainment(TString section, Int_t plane); ///< set the last plane [0,11] for which the trajectory MUST be contained in section "section". Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY)  
259      Int_t GetMinimumContainment(TString section); ///< get the last plane [0,11] for which the trajectory MUST be contained in section "section".      Int_t GetMinimumContainment(TString section); ///< get the last plane [0,11] for which the trajectory MUST be contained in section "section".
260      //      //
     void SetConversionFactor(Float_t conv_r); ///< Set the MIP-GV conversion factor for all the four sections.  
     void SetConversionFactor(TString section, Float_t conv_r); ///< Set the MIP-GV conversion factor for section "section".  
261      Float_t GetConversionFactor(TString section); ///< Get the MIP-GV conversion factor for section "section".      Float_t GetConversionFactor(TString section); ///< Get the MIP-GV conversion factor for section "section".
262      //      //
263      void IndependentMode(){ indep = true; }; ///< Set the independent mode      Float_t *Get_track_coordx(){ return *track_coordx;}; ///< X position of the track for all the planes and views
264      void CoherentMode(){ indep = false; }; ///< Set the coherent mode      Float_t *Get_track_coordy(){ return *track_coordy;}; ///< Y position of the track for all the planes and views
265      //      //
266      void UseCaloPreSampler(); ///< use pre-sampler routine to refit the track (level2 default fitting could be wrong, in this case we force "shower fitting" in the DV library).      Float_t  Get_track_coordx(Int_t i, Int_t j){ return track_coordx[i][j];}; ///< X position of the track for plane i and view j
267        Float_t  Get_track_coordy(Int_t i, Int_t j){ return track_coordy[i][j];}; ///< X position of the track for plane i and view j
268        //
269        Float_t *GetEncol(){ return *encol;}; ///< integrated energy over columns (encol[2][3]) [MIP]
270        Float_t GetEncol(Int_t i, Int_t j){ return encol[i][j];}; ///< integrated energy over view i and column j [MIP]
271        Float_t GetEncol(Int_t i); ///< integrated energy over view i given fColumn [MIP]
272        Float_t *GetEntot(){ return entot;}; ///< integrated energy over views (entot[2])  [MIP]
273        Float_t GetEntot(Int_t i){ return entot[i];}; ///< integrated energy over all view i [MIP]
274        //
275        Int_t GetColumn(){return fColumn;}; ///< number of column which contains the track
276        Int_t GetColumn(TString section); ///< number of column which contains the track for section "section"
277        //
278        Float_t Get_X0pl(){return X0pl;}; ///< transversed X0 for each W plane taking into account inclination of the trajectory
279        Float_t GetX0max(){ return x0max;}; ///< get the given X0 (test purpose only)
280        //
281        // Get pointers
282        //
283        CaloLong* GetCaloLong(){return clong;}; ///< Get calolong object.
284      CaloPreSampler* GetCaloPreSampler(){return cp;}; ///< Get pre-sampler object.      CaloPreSampler* GetCaloPreSampler(){return cp;}; ///< Get pre-sampler object.
285        CaloEnergy* GetCaloEnergyPointer(){return this;}; ///< Get CaloEnergy pointer
286        //
287        // Other methods
288        //
289        void Clear(); ///< clear varibles
290        void Clear(Option_t *option){Clear();}; ///< compatibility with TObject
291        void Delete(); ///< delete object
292        void Delete(Option_t *option){Delete();}; ///< compatibility with TObject
293        //
294        void Process(); ///< Process the event
295        void Process(TString section);  ///< Process the event for section "section"
296        void Print(); ///< Print variables on STDOUT
297        void Print(Option_t *option){Print();}; ///< compatibility with TObject
298      //      //
299      ClassDef(CaloEnergy,1);      ClassDef(CaloEnergy,3);
300  };  };
301    
302  #endif  #endif

Legend:
Removed from v.1.4  
changed lines
  Added in v.1.12

  ViewVC Help
Powered by ViewVC 1.1.23