/[PAMELA software]/calo/flight/CaloEnergy/inc/CaloEnergy.h
ViewVC logotype

Diff of /calo/flight/CaloEnergy/inc/CaloEnergy.h

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 1.2 by mocchiut, Fri Jul 10 09:54:32 2009 UTC revision 1.6 by mocchiut, Tue Aug 11 13:28:27 2009 UTC
# Line 17  Line 17 
17  #include <TSystemDirectory.h>  #include <TSystemDirectory.h>
18  #include <TSQLServer.h>  #include <TSQLServer.h>
19    
20    #include <CaloPreSampler.h>
21    #include <CaloProfile.h>
22    
23  #include <iostream>  #include <iostream>
24    
25  using namespace std;  using namespace std;
# Line 28  class CaloEnergy : public TObject { Line 31  class CaloEnergy : public TObject {
31    
32   private:   private:
33      //      //
34      PamLevel2 *L2;      PamLevel2 *L2; ///< PamLevel2 object
35      Bool_t debug;      Bool_t debug; ///< debug flag
36      //      //
37      // needed to avoid reprocessing the same event over and over to obtain the variables      // needed to avoid reprocessing the same event over and over to obtain the variables
38      //      //
39      UInt_t OBT;      UInt_t OBT; ///< CPU OBT
40      UInt_t PKT;      UInt_t PKT; ///< CPU packet number
41      UInt_t atime;      UInt_t atime; ///< event absolute time
42      TString sntr;      TString sntr; ///< string containing the list of section the user want to process
43      UInt_t AOBT;      UInt_t AOBT; ///< CPU OBT
44      UInt_t APKT;      UInt_t APKT; ///< CPU packet number
45      UInt_t aatime;      UInt_t aatime;///< event absolute time
46      TString asntr;      TString asntr;///< string containing the list of section the user want to process
47      //      //
48      Float_t fM;      Float_t fM; ///< margin in the strip direction
49      Float_t fM1;      Float_t fM1; ///< margin along the strip reading direction
50      Int_t fPl;      Int_t fPl; ///< number of dE/dx measurements over the maximum that are used to find the energy
51      Float_t fConv_rxe;      Float_t fConv_rxe; ///< MIP - energy conversion factor for section XE
52      Float_t fConv_rxo;      Float_t fConv_rxo; ///< MIP - energy conversion factor for section XO
53      Float_t fConv_rye;      Float_t fConv_rye; ///< MIP - energy conversion factor for section YE
54      Float_t fConv_ryo;      Float_t fConv_ryo; ///< MIP - energy conversion factor for section YO
55      Bool_t fLong;      Bool_t fLong; ///< if true use the integral of the longitudinal profile to measure the energy (NOT IMPLEMENTED YET), default FALSE
56      //      //
57      Float_t fEnergyxe;      Float_t fEnergyxe; ///< Energy as measured by section XE
58      Float_t fEnergyxo;      Float_t fEnergyxo; ///< Energy as measured by section XO
59      Float_t fEnergyye;      Float_t fEnergyye; ///< Energy as measured by section YE
60      Float_t fEnergyyo;      Float_t fEnergyyo; ///< Energy as measured by section YO
61      Float_t fEnergy;      Float_t fEnergy; ///< Energy as measured by the average of the used section in "Independent mode" or energy as measured by the used section in "Coherent mode"
62      Float_t fCount;      Float_t fCount; ///< Number of sections inside the acceptance (only the section given by the user are checked)
63      Int_t fMax_planexe;      Int_t fMax_planexe; ///< plane of maximum energy release (independent mode) or last plane used for energy measurement (coherent mode) for section XE
64      Int_t fMax_planexo;      Int_t fMax_planexo; ///< plane of maximum energy release (independent mode) or last plane used for energy measurement (coherent mode) for section XO
65      Int_t fMax_planeyo;      Int_t fMax_planeyo; ///< plane of maximum energy release (independent mode) or last plane used for energy measurement (coherent mode) for section YO
66      Int_t fMax_planeye;      Int_t fMax_planeye; ///< plane of maximum energy release (independent mode) or last plane used for energy measurement (coherent mode) for section YE
67      Float_t fMax_plane;      Float_t fMax_plane; ///< average max plane [0,11] (independent mode) or last plane for energy measurement [0,43] (coherent mode)
68      //      //
69      Float_t xe1;      Float_t fXOen_maxplane; ///< total energy [MIP] used for energy determination as given by section XO
70      Float_t xe2;      Float_t fYOen_maxplane; ///< total energy [MIP] used for energy determination as given by section YO
71      Float_t xe3;      Float_t fXEen_maxplane; ///< total energy [MIP] used for energy determination as given by section XE
72      Float_t xe4;      Float_t fYEen_maxplane; ///< total energy [MIP] used for energy determination as given by section YE
73      Float_t xe5;      //
74      Float_t xe6;      Float_t xomax_en; ///< energy at plane of maximum of section XO
75      Float_t z1;      Float_t xemax_en; ///< energy at plane of maximum of section XE
76      Float_t yo1;      Float_t yomax_en; ///< energy at plane of maximum of section YO
77      Float_t yo2;      Float_t yemax_en; ///< energy at plane of maximum of section YE
78      Float_t yo3;      //
79      Float_t yo4;      //
80      Float_t yo5;      Float_t xe1; ///< position of strip  1 section XE
81      Float_t yo6;      Float_t xe2; ///< position of strip 32 section XE
82      Float_t z2;      Float_t xe3; ///< position of strip 33 section XE
83      Float_t xo1;      Float_t xe4; ///< position of strip 64 section XE
84      Float_t xo2;      Float_t xe5; ///< position of strip 65 section XE
85      Float_t xo3;      Float_t xe6; ///< position of strip 96 section XE
86      Float_t xo4;      //    Float_t z1;
87      Float_t xo5;      Float_t yo1; ///< position of strip  1 section YO
88      Float_t xo6;      Float_t yo2; ///< position of strip 32 section YO
89      Float_t z3;      Float_t yo3; ///< position of strip 33 section YO
90      Float_t ye1;      Float_t yo4; ///< position of strip 64 section YO
91      Float_t ye2;      Float_t yo5; ///< position of strip 65 section YO
92      Float_t ye3;      Float_t yo6; ///< position of strip 96 section YO
93      Float_t ye4;      //    Float_t z2;
94      Float_t ye5;      Float_t xo1; ///< position of strip  1 section XO
95      Float_t ye6;      Float_t xo2; ///< position of strip 32 section XO
96      Float_t z4;      Float_t xo3; ///< position of strip 33 section XO
97      Float_t trk_z[22][2];        Float_t xo4; ///< position of strip 64 section XO
98      Float_t en;      Float_t xo5; ///< position of strip 65 section XO
99      Int_t view;      Float_t xo6; ///< position of strip 96 section XO
100      Int_t plane;      //    Float_t z3;
101      Int_t strip;      Float_t ye1; ///< position of strip  1 section YE
102      Int_t fRad;      Float_t ye2; ///< position of strip 32 section YE
103      Float_t energyxe;      Float_t ye3; ///< position of strip 33 section YE
104      Float_t energyyo;      Float_t ye4; ///< position of strip 64 section YE
105      Float_t energyxo;      Float_t ye5; ///< position of strip 65 section YE
106      Float_t energyye;      Float_t ye6; ///< position of strip 96 section YE
107      Float_t en_xep[11];      //    Float_t z4;
108      Float_t en_yop[11];      Float_t trk_z[22][2]; ///< Z position of calorimeter planes
109      Float_t en_xop[11];      Float_t en; ///< energy [mip] for decodeestrip
110      Float_t en_yep[11];      Int_t view; ///< view for decodeestrip
111      Float_t enstrip[2][22][96];          Int_t plane; ///< plane for decodeestrip
112      //      Int_t strip; ///< strip for decodeestrip
113      Bool_t fXosel;      Int_t fRad; ///< Radius [strip] of the cylinder used to integrate the energy along the track, if negative radius is inf (the whole plane is used). Default: -1
114      Bool_t fXesel;      Int_t fNumSec; ///< Number of sections given by the user
115      Bool_t fYosel;          Float_t energyxe; ///< 11 planes detected energy [MIP] for section XE
116      Bool_t fYesel;      Float_t energyyo; ///< 11 planes detected energy [MIP] for section YO
117      Bool_t fSel;      Float_t energyxo; ///< 11 planes detected energy [MIP] for section XO
118        Float_t energyye; ///< 11 planes detected energy [MIP] for section YE
119        Float_t en_xep[11]; ///< detected energy [MIP] for each plane of section XE
120        Float_t en_yop[11]; ///< detected energy [MIP] for each plane of section YO
121        Float_t en_xop[11]; ///< detected energy [MIP] for each plane of section XO
122        Float_t en_yep[11]; ///< detected energy [MIP] for each plane of section YE
123        Float_t enstrip[2][22][96]; ///< detected energy [MIP] for each strip of calorimeter
124        //
125        Float_t x0max; ///< plane of maximum given externally (only test purpose)
126        //
127        Bool_t fXosel; ///< true if event is contained in section XO
128        Bool_t fXesel; ///< true if event is contained in section XE
129        Bool_t fYosel; ///< true if event is contained in section YO  
130        Bool_t fYesel; ///< true if event is contained in section YE
131        Bool_t fSel; ///< true if event is contained in at least one of the given section (independet mode) or in all the given section (coherent mode)
132        Bool_t fPartsel; ///< true if the event is contained only up to the last plane used for energy determination (can be used in conjunction with fXXmin)
133        Int_t fXeout; ///< last plane [0,11] for which the trajectory is contained in section XE
134        Int_t fYeout; ///< last plane [0,11] for which the trajectory is contained in section YE
135        Int_t fXoout; ///< last plane [0,11] for which the trajectory is contained in section XO
136        Int_t fYoout; ///< last plane [0,11] for which the trajectory is contained in section YO
137        Int_t fXomin; ///< last plane [0,11] for which the trajectory MUST be contained in section XO. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY)
138        Int_t fXemin; ///< last plane [0,11] for which the trajectory MUST be contained in section XE. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY)
139        Int_t fYomin; ///< last plane [0,11] for which the trajectory MUST be contained in section YO. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY)
140        Int_t fYemin; ///< last plane [0,11] for which the trajectory MUST be contained in section YE. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY)
141        //
142        Bool_t fSimu; ///< true if we are using simulated data, default false
143        Bool_t indep; ///< flag to switch between INDEPENDENT or COHERENT mode, default false - COHERENT mode selected
144      //      //
145      Bool_t fSimu;      CaloPreSampler *cp; ///< pointer to calopresampler object (object constructed only when invoking method UseCaloPreSampler() , default: use level2 data).
146      void DefineGeometry();      CaloLong *clong; ///< pointer to calolong object (object constructed only when invoking method UseLongFit(), default use energy up to maximum).
147        //
148        void DefineGeometry(); ///< called by constructors to fill geometrical variables (like xe1 etc).
149        void Set(); ///< called by contructors to define default variables
150    
151   public:   public:
152      //      //
153      CaloEnergy();      CaloEnergy(); ///< default constructor (does nothing)
154      CaloEnergy(PamLevel2 *L2);      CaloEnergy(PamLevel2 *L2); ///< constructor
155      CaloEnergy(PamLevel2 *L2, Bool_t simulation);      CaloEnergy(PamLevel2 *L2, Bool_t simulation); ///< constructor
156      ~CaloEnergy(){ Delete(); };      ~CaloEnergy(){ Delete(); }; ///< default destructor
157      //      //
158      void SetDebug(Bool_t d){ debug=d; };      void SetDebug(Bool_t d){ debug=d; }; ///< set the debug flag (verbose print-out on STDOUT), default is false
159      //      //
160      void Clear();      void Clear(); ///< clear varibles
161      void Clear(Option_t *option){Clear();};      void Clear(Option_t *option){Clear();}; ///< compatibility with TObject
162      void Delete();      void Delete(); ///< delete object
163      void Delete(Option_t *option){Delete();};      void Delete(Option_t *option){Delete();}; ///< compatibility with TObject
164      //      //
165      void Process();      void Process(); ///< Process the event
166      void Process(TString section);      void Process(TString section);  ///< Process the event for section "section"
167      void Print();      void Print(); ///< Print variables on STDOUT
168      void Print(Option_t *option){Print();};      void Print(Option_t *option){Print();}; ///< compatibility with TObject
169      //      //
170      Bool_t IsInsideAcceptance(TString section);      Bool_t IsInsideAcceptance(TString section); ///< returns true if event is inside acceptance of the given sections (all if coherent mode, at least one in independent mode)
171      Bool_t IsInsideAcceptance(TString section, Bool_t fast);      Bool_t IsInsideReducedAcceptance(){return fPartsel;}; ///< returns true if the event is inside acceptance only up to the last used plane (see fXomin etc)
172      //      //
173      Bool_t IsInsideXE(){return(IsInsideAcceptance("XE"));};      Bool_t IsInsideXE(){return(IsInsideAcceptance("XE"));};
174      Bool_t InsideXEcheck(){return fXesel;};      Bool_t InsideXEcheck(){return fXesel;};
# Line 147  class CaloEnergy : public TObject { Line 179  class CaloEnergy : public TObject {
179      Bool_t IsInsideYO(){return(IsInsideAcceptance("YO"));};      Bool_t IsInsideYO(){return(IsInsideAcceptance("YO"));};
180      Bool_t InsideYOcheck(){return fYosel;};      Bool_t InsideYOcheck(){return fYosel;};
181      //      //
182      Float_t GetEnergy(){ Process(); return fEnergy;};      Float_t GetEnergy(){ Process(); return fEnergy;}; ///< returns the energy [GV] determined for this event
183      Float_t GetEnergy(TString section){ Process(section); return fEnergy;};      Float_t GetEnergy(TString section){ Process(section); return fEnergy;}; ///< returns the energy [GV] determined for this event
184      Float_t GetCount(){ return fCount;};      Float_t GetCount(){ return fCount;}; ///< returns the number of section inside acceptance for this event (equal to the number of given section in coherent mode)
185      //      //
186      Float_t GetMaxplane(){ return fMax_plane;};      Float_t GetMaxplane(){ return fMax_plane;}; ///< returns the average max plane [0,11] (independent mode) or last plane for energy measurement [0,43] (coherent mode)    
187      Float_t GetMaxEnergy(TString section){ return(this->GetEnergy(section)*this->GetConversionFactor(section));};      Float_t GetEnergyAtMaxplane(TString section); ///< returns the energy at the plane of maximum for section "section"
188      Int_t GetMaxplane(TString section);      //
189      //      Float_t GetMaxEnergy(); ///< returns the total energy [MIP] before conversion
190      void UseLongitudinalFitEnergy(){ fPl = 0; fLong = true;};      Float_t GetMaxEnergy(TString section); ///< returns the total energy [MIP] before conversion for section "section"
191      void UseMeasuredEnergyUpToMax(){ fLong = false;};      Int_t GetMaxplane(TString section); ///< returns the plane of maximum (independent mode) or the last used plane (coherent mode) for section "section"
192      void SetMargin(Float_t margin){fM = margin + 0.096; fM1 = margin - 0.122 - 0.096; if ( fM1 < 0. ) fM1 = 0.;};      //
193      void SetMarginStripDirection(Float_t margin){fM = margin + 0.096;};      void UseLongFit();///< use or not the longitudinal fit to determine the energy
194      void SetMarginStripReading(Float_t margin){fM1 = margin -0.122 - 0.096;};      CaloLong* GetCaloLong(){return clong;}; ///< Get calolong object.
195      void SetRadius(Int_t strip){fRad = strip;};      void UseMeasuredEnergyUpToMax(){ fLong = false;}; ///< use the measured energy to determine the maximum (default)
196      void SetMaxPlaneOffset(Int_t noplanes){fPl = noplanes;};      //
197        void SetMargin(Float_t margin){fM = margin + 0.096; fM1 = margin - 0.122 - 0.096; if ( fM1 < 0. ) fM1 = 0.;}; ///< set the margin from the border of the silicon sensor (not from the first strip), set the same margin for both the directions
198        void SetMarginStripDirection(Float_t margin){fM = margin + 0.096;}; ///< set the margin from the border of the silicon sensor (not from the first strip) in the strip direction
199        void SetMarginStripReading(Float_t margin){fM1 = margin -0.122 - 0.096;};  ///< set the margin from the border of the silicon sensor (not from the first strip) in the strip reading direction
200        void SetRadius(Int_t strip){fRad = strip;}; ///< set the radius of the cylinder
201        void SetMaxPlaneOffset(Int_t noplanes){fPl = noplanes;}; ///< set the number of dE/dx measurements to be used after the maximum
202        void SetX0max(Float_t xm){ x0max = xm;}; ///< set the plane of maximum from external source X0 (test purpose only)
203        void SetRigX0max(Float_t rig){ x0max = -0.5+log(rig/0.0076);}; ///< set the plane of maximum from external source rigidity (GeV) (test purpose only)
204        //
205        void SetMinimumContainment(Int_t plane); ///< set the last plane [0,11] for which the trajectory MUST be contained in all the sections. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY)
206        void SetMinimumContainment(TString section, Int_t plane); ///< set the last plane [0,11] for which the trajectory MUST be contained in section "section". Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY)
207        Int_t GetMinimumContainment(TString section); ///< get the last plane [0,11] for which the trajectory MUST be contained in section "section".
208        //
209        void SetConversionFactor(Float_t conv_r); ///< Set the MIP-GV conversion factor for all the four sections.
210        void SetConversionFactor(TString section, Float_t conv_r); ///< Set the MIP-GV conversion factor for section "section".
211        Float_t GetConversionFactor(TString section); ///< Get the MIP-GV conversion factor for section "section".
212        //
213        void IndependentMode(){ indep = true; }; ///< Set the independent mode
214        void CoherentMode(){ indep = false; }; ///< Set the coherent mode
215      //      //
216      void SetConversionFactor(TString section, Float_t conv_r);      void UseCaloPreSampler(); ///< use pre-sampler routine to refit the track (level2 default fitting could be wrong, in this case we force "shower fitting" in the DV library).
217      Float_t GetConversionFactor(TString section);      CaloPreSampler* GetCaloPreSampler(){return cp;}; ///< Get pre-sampler object.
218      //      //
219      ClassDef(CaloEnergy,1);      ClassDef(CaloEnergy,1);
220  };  };

Legend:
Removed from v.1.2  
changed lines
  Added in v.1.6

  ViewVC Help
Powered by ViewVC 1.1.23