/[PAMELA software]/calo/flight/CaloEnergy/inc/CaloEnergy.h
ViewVC logotype

Diff of /calo/flight/CaloEnergy/inc/CaloEnergy.h

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 1.6 by mocchiut, Tue Aug 11 13:28:27 2009 UTC revision 1.13 by mocchiut, Mon Dec 14 14:56:36 2009 UTC
# Line 33  class CaloEnergy : public TObject { Line 33  class CaloEnergy : public TObject {
33      //      //
34      PamLevel2 *L2; ///< PamLevel2 object      PamLevel2 *L2; ///< PamLevel2 object
35      Bool_t debug; ///< debug flag      Bool_t debug; ///< debug flag
36        Bool_t usepl18x;
37      //      //
38      // needed to avoid reprocessing the same event over and over to obtain the variables      // needed to avoid reprocessing the same event over and over to obtain the variables
39      //      //
# Line 45  class CaloEnergy : public TObject { Line 46  class CaloEnergy : public TObject {
46      UInt_t aatime;///< event absolute time      UInt_t aatime;///< event absolute time
47      TString asntr;///< string containing the list of section the user want to process      TString asntr;///< string containing the list of section the user want to process
48      //      //
49        // margins, acceptance and containment
50        //
51      Float_t fM; ///< margin in the strip direction      Float_t fM; ///< margin in the strip direction
52      Float_t fM1; ///< margin along the strip reading direction      Float_t fM1; ///< margin along the strip reading direction
53      Int_t fPl; ///< number of dE/dx measurements over the maximum that are used to find the energy      Int_t fPl; ///< number of dE/dx measurements over the maximum that are used to find the energy
54        Float_t fCount; ///< Number of sections inside the acceptance (only the section given by the user are checked)
55        Int_t fRad; ///< Radius [strip] of the cylinder used to integrate the energy along the track, if negative radius is inf (the whole plane is used). Default: -1
56        Int_t fNumSec; ///< Number of sections given by the user
57        Bool_t fXosel; ///< true if event is contained in section XO
58        Bool_t fXesel; ///< true if event is contained in section XE
59        Bool_t fYosel; ///< true if event is contained in section YO  
60        Bool_t fYesel; ///< true if event is contained in section YE
61        Bool_t fSel; ///< true if event is contained in at least one of the given section (independet mode) or in all the given section (coherent mode)
62        Bool_t fPartsel; ///< true if the event is contained only up to the last plane used for energy determination (can be used in conjunction with fXXmin)
63        Int_t fXeout; ///< last plane [0,11] for which the trajectory is contained in section XE
64        Int_t fYeout; ///< last plane [0,11] for which the trajectory is contained in section YE
65        Int_t fXoout; ///< last plane [0,11] for which the trajectory is contained in section XO
66        Int_t fYoout; ///< last plane [0,11] for which the trajectory is contained in section YO
67        Int_t fXomin; ///< last plane [0,11] for which the trajectory MUST be contained in section XO. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY)
68        Int_t fXemin; ///< last plane [0,11] for which the trajectory MUST be contained in section XE. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY)
69        Int_t fYomin; ///< last plane [0,11] for which the trajectory MUST be contained in section YO. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY)
70        Int_t fYemin; ///< last plane [0,11] for which the trajectory MUST be contained in section YE. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY)
71        Bool_t indep; ///< flag to switch between INDEPENDENT or COHERENT mode, default false - COHERENT mode selected
72        Float_t X0pl; ///< transversed X0 for each W plane taking into account inclination of the trajectory
73        //
74        // conversion factors
75        //
76      Float_t fConv_rxe; ///< MIP - energy conversion factor for section XE      Float_t fConv_rxe; ///< MIP - energy conversion factor for section XE
77      Float_t fConv_rxo; ///< MIP - energy conversion factor for section XO      Float_t fConv_rxo; ///< MIP - energy conversion factor for section XO
78      Float_t fConv_rye; ///< MIP - energy conversion factor for section YE      Float_t fConv_rye; ///< MIP - energy conversion factor for section YE
79      Float_t fConv_ryo; ///< MIP - energy conversion factor for section YO      Float_t fConv_ryo; ///< MIP - energy conversion factor for section YO
80        //
81        // Longitudinal fit
82        //
83      Bool_t fLong; ///< if true use the integral of the longitudinal profile to measure the energy (NOT IMPLEMENTED YET), default FALSE      Bool_t fLong; ///< if true use the integral of the longitudinal profile to measure the energy (NOT IMPLEMENTED YET), default FALSE
84        //
85        // Energies (MIP)
86        //
87        Float_t fXOen_maxplane; ///< total energy [MIP] used for energy determination as given by section XO
88        Float_t fYOen_maxplane; ///< total energy [MIP] used for energy determination as given by section YO
89        Float_t fXEen_maxplane; ///< total energy [MIP] used for energy determination as given by section XE
90        Float_t fYEen_maxplane; ///< total energy [MIP] used for energy determination as given by section YE
91        Float_t xomax_en; ///< energy at plane of maximum of section XO
92        Float_t xemax_en; ///< energy at plane of maximum of section XE
93        Float_t yomax_en; ///< energy at plane of maximum of section YO
94        Float_t yemax_en; ///< energy at plane of maximum of section YE
95        Float_t energyxe; ///< 11 planes detected energy [MIP] for section XE
96        Float_t energyyo; ///< 11 planes detected energy [MIP] for section YO
97        Float_t energyxo; ///< 11 planes detected energy [MIP] for section XO
98        Float_t energyye; ///< 11 planes detected energy [MIP] for section YE
99        Float_t en_xep[11]; ///< detected energy [MIP] for each plane of section XE
100        Float_t en_yop[11]; ///< detected energy [MIP] for each plane of section YO
101        Float_t en_xop[11]; ///< detected energy [MIP] for each plane of section XO
102        Float_t en_yep[11]; ///< detected energy [MIP] for each plane of section YE
103        Float_t encol[2][3]; ///< detected energy [MIP] for each column of views x and y
104        Float_t entot[2]; ///< detected energy [MIP] for views x and y
105        //
106        // Energies (GV)
107      //      //
108      Float_t fEnergyxe; ///< Energy as measured by section XE      Float_t fEnergyxe; ///< Energy as measured by section XE
109      Float_t fEnergyxo; ///< Energy as measured by section XO      Float_t fEnergyxo; ///< Energy as measured by section XO
110      Float_t fEnergyye; ///< Energy as measured by section YE      Float_t fEnergyye; ///< Energy as measured by section YE
111      Float_t fEnergyyo; ///< Energy as measured by section YO      Float_t fEnergyyo; ///< Energy as measured by section YO
112      Float_t fEnergy; ///< Energy as measured by the average of the used section in "Independent mode" or energy as measured by the used section in "Coherent mode"      Float_t fEnergy; ///< Energy as measured by the average of the used section in "Independent mode" or energy as measured by the used section in "Coherent mode"
113      Float_t fCount; ///< Number of sections inside the acceptance (only the section given by the user are checked)      //
114        // Plane of maximum
115        //
116      Int_t fMax_planexe; ///< plane of maximum energy release (independent mode) or last plane used for energy measurement (coherent mode) for section XE      Int_t fMax_planexe; ///< plane of maximum energy release (independent mode) or last plane used for energy measurement (coherent mode) for section XE
117      Int_t fMax_planexo; ///< plane of maximum energy release (independent mode) or last plane used for energy measurement (coherent mode) for section XO      Int_t fMax_planexo; ///< plane of maximum energy release (independent mode) or last plane used for energy measurement (coherent mode) for section XO
118      Int_t fMax_planeyo; ///< plane of maximum energy release (independent mode) or last plane used for energy measurement (coherent mode) for section YO      Int_t fMax_planeyo; ///< plane of maximum energy release (independent mode) or last plane used for energy measurement (coherent mode) for section YO
119      Int_t fMax_planeye; ///< plane of maximum energy release (independent mode) or last plane used for energy measurement (coherent mode) for section YE      Int_t fMax_planeye; ///< plane of maximum energy release (independent mode) or last plane used for energy measurement (coherent mode) for section YE
120      Float_t fMax_plane; ///< average max plane [0,11] (independent mode) or last plane for energy measurement [0,43] (coherent mode)      Float_t fMax_plane; ///< average max plane [0,11] (independent mode) or last plane for energy measurement [0,43] (coherent mode)
121        Float_t x0max; ///< plane of maximum given externally (only test purpose)
122        Bool_t fAllpl; ///< use all 96 strips for each plane to determine the maximum OR only the energy along the track as defined with fRad
123      //      //
124      Float_t fXOen_maxplane; ///< total energy [MIP] used for energy determination as given by section XO      // Geometry
     Float_t fYOen_maxplane; ///< total energy [MIP] used for energy determination as given by section YO  
     Float_t fXEen_maxplane; ///< total energy [MIP] used for energy determination as given by section XE  
     Float_t fYEen_maxplane; ///< total energy [MIP] used for energy determination as given by section YE  
     //  
     Float_t xomax_en; ///< energy at plane of maximum of section XO  
     Float_t xemax_en; ///< energy at plane of maximum of section XE  
     Float_t yomax_en; ///< energy at plane of maximum of section YO  
     Float_t yemax_en; ///< energy at plane of maximum of section YE  
     //  
125      //      //
126      Float_t xe1; ///< position of strip  1 section XE      Float_t xe1; ///< position of strip  1 section XE
127      Float_t xe2; ///< position of strip 32 section XE      Float_t xe2; ///< position of strip 32 section XE
# Line 83  class CaloEnergy : public TObject { Line 129  class CaloEnergy : public TObject {
129      Float_t xe4; ///< position of strip 64 section XE      Float_t xe4; ///< position of strip 64 section XE
130      Float_t xe5; ///< position of strip 65 section XE      Float_t xe5; ///< position of strip 65 section XE
131      Float_t xe6; ///< position of strip 96 section XE      Float_t xe6; ///< position of strip 96 section XE
     //    Float_t z1;  
132      Float_t yo1; ///< position of strip  1 section YO      Float_t yo1; ///< position of strip  1 section YO
133      Float_t yo2; ///< position of strip 32 section YO      Float_t yo2; ///< position of strip 32 section YO
134      Float_t yo3; ///< position of strip 33 section YO      Float_t yo3; ///< position of strip 33 section YO
135      Float_t yo4; ///< position of strip 64 section YO      Float_t yo4; ///< position of strip 64 section YO
136      Float_t yo5; ///< position of strip 65 section YO      Float_t yo5; ///< position of strip 65 section YO
137      Float_t yo6; ///< position of strip 96 section YO      Float_t yo6; ///< position of strip 96 section YO
     //    Float_t z2;  
138      Float_t xo1; ///< position of strip  1 section XO      Float_t xo1; ///< position of strip  1 section XO
139      Float_t xo2; ///< position of strip 32 section XO      Float_t xo2; ///< position of strip 32 section XO
140      Float_t xo3; ///< position of strip 33 section XO      Float_t xo3; ///< position of strip 33 section XO
141      Float_t xo4; ///< position of strip 64 section XO      Float_t xo4; ///< position of strip 64 section XO
142      Float_t xo5; ///< position of strip 65 section XO      Float_t xo5; ///< position of strip 65 section XO
143      Float_t xo6; ///< position of strip 96 section XO      Float_t xo6; ///< position of strip 96 section XO
     //    Float_t z3;  
144      Float_t ye1; ///< position of strip  1 section YE      Float_t ye1; ///< position of strip  1 section YE
145      Float_t ye2; ///< position of strip 32 section YE      Float_t ye2; ///< position of strip 32 section YE
146      Float_t ye3; ///< position of strip 33 section YE      Float_t ye3; ///< position of strip 33 section YE
147      Float_t ye4; ///< position of strip 64 section YE      Float_t ye4; ///< position of strip 64 section YE
148      Float_t ye5; ///< position of strip 65 section YE      Float_t ye5; ///< position of strip 65 section YE
149      Float_t ye6; ///< position of strip 96 section YE      Float_t ye6; ///< position of strip 96 section YE
150      //    Float_t z4;      Float_t  track_coordx[22][2]; ///< XO and XE views, position (x and y) of the trajectory according to the fit
151        Float_t  track_coordy[22][2]; ///< YO and YE views, position (x and y) of the trajectory according to the fit
152      Float_t trk_z[22][2]; ///< Z position of calorimeter planes      Float_t trk_z[22][2]; ///< Z position of calorimeter planes
153        //
154        // decode estrip
155        //
156      Float_t en; ///< energy [mip] for decodeestrip      Float_t en; ///< energy [mip] for decodeestrip
157      Int_t view; ///< view for decodeestrip      Int_t view; ///< view for decodeestrip
158      Int_t plane; ///< plane for decodeestrip      Int_t plane; ///< plane for decodeestrip
159      Int_t strip; ///< strip for decodeestrip      Int_t strip; ///< strip for decodeestrip
     Int_t fRad; ///< Radius [strip] of the cylinder used to integrate the energy along the track, if negative radius is inf (the whole plane is used). Default: -1  
     Int_t fNumSec; ///< Number of sections given by the user  
     Float_t energyxe; ///< 11 planes detected energy [MIP] for section XE  
     Float_t energyyo; ///< 11 planes detected energy [MIP] for section YO  
     Float_t energyxo; ///< 11 planes detected energy [MIP] for section XO  
     Float_t energyye; ///< 11 planes detected energy [MIP] for section YE  
     Float_t en_xep[11]; ///< detected energy [MIP] for each plane of section XE  
     Float_t en_yop[11]; ///< detected energy [MIP] for each plane of section YO  
     Float_t en_xop[11]; ///< detected energy [MIP] for each plane of section XO  
     Float_t en_yep[11]; ///< detected energy [MIP] for each plane of section YE  
160      Float_t enstrip[2][22][96]; ///< detected energy [MIP] for each strip of calorimeter      Float_t enstrip[2][22][96]; ///< detected energy [MIP] for each strip of calorimeter
161        //                                                   y ^
162        //                                                    || 6 7 8
163        // Columns                                            || 3 4 5
164        //                                                    || 0 1 2
165        Int_t fColumn; ///< Column number for the event [0,8] =============> x
166        Int_t fColXE; ///< Column number for section XE
167        Int_t fColXO; ///< Column number for section XO
168        Int_t fColYE; ///< Column number for section YE
169        Int_t fColYO; ///< Column number for section YO
170        Bool_t multicol; ///< accept or not multicolumns events
171      //      //
172      Float_t x0max; ///< plane of maximum given externally (only test purpose)      // other stuff
     //  
     Bool_t fXosel; ///< true if event is contained in section XO  
     Bool_t fXesel; ///< true if event is contained in section XE  
     Bool_t fYosel; ///< true if event is contained in section YO    
     Bool_t fYesel; ///< true if event is contained in section YE  
     Bool_t fSel; ///< true if event is contained in at least one of the given section (independet mode) or in all the given section (coherent mode)  
     Bool_t fPartsel; ///< true if the event is contained only up to the last plane used for energy determination (can be used in conjunction with fXXmin)  
     Int_t fXeout; ///< last plane [0,11] for which the trajectory is contained in section XE  
     Int_t fYeout; ///< last plane [0,11] for which the trajectory is contained in section YE  
     Int_t fXoout; ///< last plane [0,11] for which the trajectory is contained in section XO  
     Int_t fYoout; ///< last plane [0,11] for which the trajectory is contained in section YO  
     Int_t fXomin; ///< last plane [0,11] for which the trajectory MUST be contained in section XO. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY)  
     Int_t fXemin; ///< last plane [0,11] for which the trajectory MUST be contained in section XE. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY)  
     Int_t fYomin; ///< last plane [0,11] for which the trajectory MUST be contained in section YO. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY)  
     Int_t fYemin; ///< last plane [0,11] for which the trajectory MUST be contained in section YE. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY)  
173      //      //
174      Bool_t fSimu; ///< true if we are using simulated data, default false      Bool_t fSimu; ///< true if we are using simulated data, default false
     Bool_t indep; ///< flag to switch between INDEPENDENT or COHERENT mode, default false - COHERENT mode selected  
     //  
175      CaloPreSampler *cp; ///< pointer to calopresampler object (object constructed only when invoking method UseCaloPreSampler() , default: use level2 data).      CaloPreSampler *cp; ///< pointer to calopresampler object (object constructed only when invoking method UseCaloPreSampler() , default: use level2 data).
176      CaloLong *clong; ///< pointer to calolong object (object constructed only when invoking method UseLongFit(), default use energy up to maximum).      CaloLong *clong; ///< pointer to calolong object (object constructed only when invoking method UseLongFit(), default use energy up to maximum).
177      //      //
178        // private methods
179        //
180      void DefineGeometry(); ///< called by constructors to fill geometrical variables (like xe1 etc).      void DefineGeometry(); ///< called by constructors to fill geometrical variables (like xe1 etc).
181      void Set(); ///< called by contructors to define default variables      void Set(); ///< called by contructors to define default variables
182    
183   public:   public:
184      //      //
185        // constructors and destructors
186        //
187      CaloEnergy(); ///< default constructor (does nothing)      CaloEnergy(); ///< default constructor (does nothing)
188      CaloEnergy(PamLevel2 *L2); ///< constructor      CaloEnergy(PamLevel2 *L2); ///< constructor
189      CaloEnergy(PamLevel2 *L2, Bool_t simulation); ///< constructor      CaloEnergy(PamLevel2 *L2, Bool_t simulation); ///< constructor
190      ~CaloEnergy(){ Delete(); }; ///< default destructor      ~CaloEnergy(){ Delete(); }; ///< default destructor
191      //      //
192        // Setters and behaviour methods
193        //
194      void SetDebug(Bool_t d){ debug=d; }; ///< set the debug flag (verbose print-out on STDOUT), default is false      void SetDebug(Bool_t d){ debug=d; }; ///< set the debug flag (verbose print-out on STDOUT), default is false
195      //      //
196      void Clear(); ///< clear varibles      void UseCaloPreSampler(); ///< use pre-sampler routine to refit the track (level2 default fitting could be wrong, in this case we force "shower fitting" in the DV library).
197      void Clear(Option_t *option){Clear();}; ///< compatibility with TObject      void UseLevel2(); ///< use level2 default fitting
198      void Delete(); ///< delete object      //
199      void Delete(Option_t *option){Delete();}; ///< compatibility with TObject      void UseLongFit();///< use or not the longitudinal fit to determine the energy      
200        void UseMeasuredEnergyUpToMax(){ fLong = false;}; ///< use the measured energy to determine the maximum (default)
201        //
202        void IndependentMode(){ indep = true; }; ///< Set the independent mode
203        void CoherentMode(){ indep = false; }; ///< Set the coherent mode
204        //
205        void MultiColumns(){multicol = true;}; ///< accept multicolumns events
206        void SingleColumn(){multicol = false;}; ///< accept events only if contained in a single column
207        //
208        void UseAllPlane2FindMax(){ fAllpl = true;};///< find the maximum (not long fit) integrating over all the 96 strips of the planes even if SetRadius has been used [default]
209        void UseMeasuredEnergy2FindMax(){ fAllpl = false;};///< find the maximum (not long fit) using the energy measured and used to calculate the result
210        //
211        void SetMargin(Float_t margin){fM = margin ; fM1 = margin - 0.122 - 0.096 + 0.096; if ( fM1 < 0. ) fM1 = 0.;}; ///< set the margin from the border of the silicon sensor (not from the first strip), set the same margin for both the directions
212        void SetMarginStripDirection(Float_t margin){fM = margin ;}; ///< set the margin from the border of the silicon sensor (not from the first strip) in the strip direction
213        void SetMarginStripReading(Float_t margin){fM1 = margin -0.122 - 0.096 + 0.096;};  ///< set the margin from the border of the silicon sensor (not from the first strip) in the strip reading direction
214        //
215        void SetRadius(Int_t strip){fRad = strip;}; ///< set the radius of the cylinder
216        void SetMaxPlaneOffset(Int_t noplanes){fPl = noplanes;}; ///< set the number of dE/dx measurements to be used after the maximum
217        //
218        void SetX0max(Float_t xm){ x0max = xm;}; ///< set the plane of maximum from external source X0 (test purpose only)
219        void SetRigX0max(Float_t rig){ x0max = -0.5+log(rig/0.0076);}; ///< set the plane of maximum from external source rigidity (GeV) (test purpose only)
220        //
221        void SetMinimumContainment(Int_t plane); ///< set the last plane [0,11] for which the trajectory MUST be contained in all the sections. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY)
222        void SetMinimumContainment(TString section, Int_t plane); ///< set the last plane [0,11] for which the trajectory MUST be contained in section "section". Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY)
223        //
224        void SetConversionFactor(Float_t conv_r); ///< Set the MIP-GV conversion factor for all the four sections.
225        void SetConversionFactor(TString section, Float_t conv_r); ///< Set the MIP-GV conversion factor for section "section".
226        //
227        void ForceProcessing(){atime=0; PKT=0; APKT=0; aatime=0;}; ///< Force processing the event even if the same request is made twice without a getentry from pamlevel2
228        //
229        // Getters and checks methods
230      //      //
     void Process(); ///< Process the event  
     void Process(TString section);  ///< Process the event for section "section"  
     void Print(); ///< Print variables on STDOUT  
     void Print(Option_t *option){Print();}; ///< compatibility with TObject  
231      //      //
232      Bool_t IsInsideAcceptance(TString section); ///< returns true if event is inside acceptance of the given sections (all if coherent mode, at least one in independent mode)      Bool_t IsInsideAcceptance(TString section); ///< returns true if event is inside acceptance of the given sections (all if coherent mode, at least one in independent mode)
233      Bool_t IsInsideReducedAcceptance(){return fPartsel;}; ///< returns true if the event is inside acceptance only up to the last used plane (see fXomin etc)      Bool_t IsInsideReducedAcceptance(){return fPartsel;}; ///< returns true if the event is inside acceptance only up to the last used plane (see fXomin etc)
# Line 181  class CaloEnergy : public TObject { Line 243  class CaloEnergy : public TObject {
243      //      //
244      Float_t GetEnergy(){ Process(); return fEnergy;}; ///< returns the energy [GV] determined for this event      Float_t GetEnergy(){ Process(); return fEnergy;}; ///< returns the energy [GV] determined for this event
245      Float_t GetEnergy(TString section){ Process(section); return fEnergy;}; ///< returns the energy [GV] determined for this event      Float_t GetEnergy(TString section){ Process(section); return fEnergy;}; ///< returns the energy [GV] determined for this event
246        //
247      Float_t GetCount(){ return fCount;}; ///< returns the number of section inside acceptance for this event (equal to the number of given section in coherent mode)      Float_t GetCount(){ return fCount;}; ///< returns the number of section inside acceptance for this event (equal to the number of given section in coherent mode)
248      //      //
249      Float_t GetMaxplane(){ return fMax_plane;}; ///< returns the average max plane [0,11] (independent mode) or last plane for energy measurement [0,43] (coherent mode)          Float_t GetEnergyAtMaxplane(TString section); ///< returns the energy [MIP] at the plane of maximum for section "section"
250      Float_t GetEnergyAtMaxplane(TString section); ///< returns the energy at the plane of maximum for section "section"      Float_t GetMipEnergyAtMaxplane(TString section); ///< returns the energy [MIP] at the plane of maximum for section "section"
251      //      //
252      Float_t GetMaxEnergy(); ///< returns the total energy [MIP] before conversion      Float_t GetMaxEnergy(); ///< returns the total energy [MIP] before conversion
253      Float_t GetMaxEnergy(TString section); ///< returns the total energy [MIP] before conversion for section "section"      Float_t GetMaxEnergy(TString section); ///< returns the total energy [MIP] before conversion for section "section"
254      Int_t GetMaxplane(TString section); ///< returns the plane of maximum (independent mode) or the last used plane (coherent mode) for section "section"      Float_t GetMipEnergy(); ///< returns the total energy [MIP] before conversion
255        Float_t GetMipEnergy(TString section); ///< returns the total energy [MIP] before conversion for section "section"
256      //      //
257      void UseLongFit();///< use or not the longitudinal fit to determine the energy      Int_t GetMaxplane(TString section); ///< returns the plane of maximum (independent mode) or the last used plane (coherent mode) for section "section"
258      CaloLong* GetCaloLong(){return clong;}; ///< Get calolong object.      Float_t GetMaxplane(){ return fMax_plane;}; ///< returns the average max plane [0,11] (independent mode) or last plane for energy measurement [0,43] (coherent mode)    
     void UseMeasuredEnergyUpToMax(){ fLong = false;}; ///< use the measured energy to determine the maximum (default)  
     //  
     void SetMargin(Float_t margin){fM = margin + 0.096; fM1 = margin - 0.122 - 0.096; if ( fM1 < 0. ) fM1 = 0.;}; ///< set the margin from the border of the silicon sensor (not from the first strip), set the same margin for both the directions  
     void SetMarginStripDirection(Float_t margin){fM = margin + 0.096;}; ///< set the margin from the border of the silicon sensor (not from the first strip) in the strip direction  
     void SetMarginStripReading(Float_t margin){fM1 = margin -0.122 - 0.096;};  ///< set the margin from the border of the silicon sensor (not from the first strip) in the strip reading direction  
     void SetRadius(Int_t strip){fRad = strip;}; ///< set the radius of the cylinder  
     void SetMaxPlaneOffset(Int_t noplanes){fPl = noplanes;}; ///< set the number of dE/dx measurements to be used after the maximum  
     void SetX0max(Float_t xm){ x0max = xm;}; ///< set the plane of maximum from external source X0 (test purpose only)  
     void SetRigX0max(Float_t rig){ x0max = -0.5+log(rig/0.0076);}; ///< set the plane of maximum from external source rigidity (GeV) (test purpose only)  
259      //      //
     void SetMinimumContainment(Int_t plane); ///< set the last plane [0,11] for which the trajectory MUST be contained in all the sections. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY)  
     void SetMinimumContainment(TString section, Int_t plane); ///< set the last plane [0,11] for which the trajectory MUST be contained in section "section". Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY)  
260      Int_t GetMinimumContainment(TString section); ///< get the last plane [0,11] for which the trajectory MUST be contained in section "section".      Int_t GetMinimumContainment(TString section); ///< get the last plane [0,11] for which the trajectory MUST be contained in section "section".
261      //      //
     void SetConversionFactor(Float_t conv_r); ///< Set the MIP-GV conversion factor for all the four sections.  
     void SetConversionFactor(TString section, Float_t conv_r); ///< Set the MIP-GV conversion factor for section "section".  
262      Float_t GetConversionFactor(TString section); ///< Get the MIP-GV conversion factor for section "section".      Float_t GetConversionFactor(TString section); ///< Get the MIP-GV conversion factor for section "section".
263      //      //
264      void IndependentMode(){ indep = true; }; ///< Set the independent mode      Float_t *Get_track_coordx(){ return *track_coordx;}; ///< X position of the track for all the planes and views
265      void CoherentMode(){ indep = false; }; ///< Set the coherent mode      Float_t *Get_track_coordy(){ return *track_coordy;}; ///< Y position of the track for all the planes and views
266      //      //
267      void UseCaloPreSampler(); ///< use pre-sampler routine to refit the track (level2 default fitting could be wrong, in this case we force "shower fitting" in the DV library).      Float_t  Get_track_coordx(Int_t i, Int_t j){ return track_coordx[i][j];}; ///< X position of the track for plane i and view j
268        Float_t  Get_track_coordy(Int_t i, Int_t j){ return track_coordy[i][j];}; ///< X position of the track for plane i and view j
269        //
270        Float_t *GetEncol(){ return *encol;}; ///< integrated energy over columns (encol[2][3]) [MIP]
271        Float_t GetEncol(Int_t i, Int_t j){ return encol[i][j];}; ///< integrated energy over view i and column j [MIP]
272        Float_t GetEncol(Int_t i); ///< integrated energy over view i given fColumn [MIP]
273        Float_t *GetEntot(){ return entot;}; ///< integrated energy over views (entot[2])  [MIP]
274        Float_t GetEntot(Int_t i){ return entot[i];}; ///< integrated energy over all view i [MIP]
275        //
276        Int_t GetColumn(){return fColumn;}; ///< number of column which contains the track
277        Int_t GetColumn(TString section); ///< number of column which contains the track for section "section"
278        //
279        Float_t Get_X0pl(){return X0pl;}; ///< transversed X0 for each W plane taking into account inclination of the trajectory
280        Float_t GetX0max(){ return x0max;}; ///< get the given X0 (test purpose only)
281        //
282        // Get pointers
283        //
284        CaloLong* GetCaloLong(){return clong;}; ///< Get calolong object.
285      CaloPreSampler* GetCaloPreSampler(){return cp;}; ///< Get pre-sampler object.      CaloPreSampler* GetCaloPreSampler(){return cp;}; ///< Get pre-sampler object.
286        CaloEnergy* GetCaloEnergyPointer(){return this;}; ///< Get CaloEnergy pointer
287        //
288        // Other methods
289        //
290        
291        void UsePlane18X(Bool_t use){usepl18x = use;};
292        //
293        void Clear(); ///< clear varibles
294        void Clear(Option_t *option){Clear();}; ///< compatibility with TObject
295        void Delete(); ///< delete object
296        void Delete(Option_t *option){Delete();}; ///< compatibility with TObject
297        //
298        void Process(); ///< Process the event
299        void Process(TString section);  ///< Process the event for section "section"
300        void Print(); ///< Print variables on STDOUT
301        void Print(Option_t *option){Print();}; ///< compatibility with TObject
302      //      //
303      ClassDef(CaloEnergy,1);      ClassDef(CaloEnergy,4);
304  };  };
305    
306  #endif  #endif

Legend:
Removed from v.1.6  
changed lines
  Added in v.1.13

  ViewVC Help
Powered by ViewVC 1.1.23