/[PAMELA software]/calo/flight/CaloEnergy/inc/CaloEnergy.h
ViewVC logotype

Diff of /calo/flight/CaloEnergy/inc/CaloEnergy.h

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 1.2 by mocchiut, Fri Jul 10 09:54:32 2009 UTC revision 1.12 by mocchiut, Thu Sep 10 12:53:29 2009 UTC
# Line 17  Line 17 
17  #include <TSystemDirectory.h>  #include <TSystemDirectory.h>
18  #include <TSQLServer.h>  #include <TSQLServer.h>
19    
20    #include <CaloPreSampler.h>
21    #include <CaloProfile.h>
22    
23  #include <iostream>  #include <iostream>
24    
25  using namespace std;  using namespace std;
# Line 28  class CaloEnergy : public TObject { Line 31  class CaloEnergy : public TObject {
31    
32   private:   private:
33      //      //
34      PamLevel2 *L2;      PamLevel2 *L2; ///< PamLevel2 object
35      Bool_t debug;      Bool_t debug; ///< debug flag
36      //      //
37      // needed to avoid reprocessing the same event over and over to obtain the variables      // needed to avoid reprocessing the same event over and over to obtain the variables
38      //      //
39      UInt_t OBT;      UInt_t OBT; ///< CPU OBT
40      UInt_t PKT;      UInt_t PKT; ///< CPU packet number
41      UInt_t atime;      UInt_t atime; ///< event absolute time
42      TString sntr;      TString sntr; ///< string containing the list of section the user want to process
43      UInt_t AOBT;      UInt_t AOBT; ///< CPU OBT
44      UInt_t APKT;      UInt_t APKT; ///< CPU packet number
45      UInt_t aatime;      UInt_t aatime;///< event absolute time
46      TString asntr;      TString asntr;///< string containing the list of section the user want to process
47      //      //
48      Float_t fM;      // margins, acceptance and containment
49      Float_t fM1;      //
50      Int_t fPl;      Float_t fM; ///< margin in the strip direction
51      Float_t fConv_rxe;      Float_t fM1; ///< margin along the strip reading direction
52      Float_t fConv_rxo;      Int_t fPl; ///< number of dE/dx measurements over the maximum that are used to find the energy
53      Float_t fConv_rye;      Float_t fCount; ///< Number of sections inside the acceptance (only the section given by the user are checked)
54      Float_t fConv_ryo;      Int_t fRad; ///< Radius [strip] of the cylinder used to integrate the energy along the track, if negative radius is inf (the whole plane is used). Default: -1
55      Bool_t fLong;      Int_t fNumSec; ///< Number of sections given by the user
56      //      Bool_t fXosel; ///< true if event is contained in section XO
57      Float_t fEnergyxe;      Bool_t fXesel; ///< true if event is contained in section XE
58      Float_t fEnergyxo;      Bool_t fYosel; ///< true if event is contained in section YO  
59      Float_t fEnergyye;      Bool_t fYesel; ///< true if event is contained in section YE
60      Float_t fEnergyyo;      Bool_t fSel; ///< true if event is contained in at least one of the given section (independet mode) or in all the given section (coherent mode)
61      Float_t fEnergy;      Bool_t fPartsel; ///< true if the event is contained only up to the last plane used for energy determination (can be used in conjunction with fXXmin)
62      Float_t fCount;      Int_t fXeout; ///< last plane [0,11] for which the trajectory is contained in section XE
63      Int_t fMax_planexe;      Int_t fYeout; ///< last plane [0,11] for which the trajectory is contained in section YE
64      Int_t fMax_planexo;      Int_t fXoout; ///< last plane [0,11] for which the trajectory is contained in section XO
65      Int_t fMax_planeyo;      Int_t fYoout; ///< last plane [0,11] for which the trajectory is contained in section YO
66      Int_t fMax_planeye;      Int_t fXomin; ///< last plane [0,11] for which the trajectory MUST be contained in section XO. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY)
67      Float_t fMax_plane;      Int_t fXemin; ///< last plane [0,11] for which the trajectory MUST be contained in section XE. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY)
68      //      Int_t fYomin; ///< last plane [0,11] for which the trajectory MUST be contained in section YO. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY)
69      Float_t xe1;      Int_t fYemin; ///< last plane [0,11] for which the trajectory MUST be contained in section YE. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY)
70      Float_t xe2;      Bool_t indep; ///< flag to switch between INDEPENDENT or COHERENT mode, default false - COHERENT mode selected
71      Float_t xe3;      Float_t X0pl; ///< transversed X0 for each W plane taking into account inclination of the trajectory
72      Float_t xe4;      //
73      Float_t xe5;      // conversion factors
74      Float_t xe6;      //
75      Float_t z1;      Float_t fConv_rxe; ///< MIP - energy conversion factor for section XE
76      Float_t yo1;      Float_t fConv_rxo; ///< MIP - energy conversion factor for section XO
77      Float_t yo2;      Float_t fConv_rye; ///< MIP - energy conversion factor for section YE
78      Float_t yo3;      Float_t fConv_ryo; ///< MIP - energy conversion factor for section YO
79      Float_t yo4;      //
80      Float_t yo5;      // Longitudinal fit
81      Float_t yo6;      //
82      Float_t z2;      Bool_t fLong; ///< if true use the integral of the longitudinal profile to measure the energy (NOT IMPLEMENTED YET), default FALSE
83      Float_t xo1;      //
84      Float_t xo2;      // Energies (MIP)
85      Float_t xo3;      //
86      Float_t xo4;      Float_t fXOen_maxplane; ///< total energy [MIP] used for energy determination as given by section XO
87      Float_t xo5;      Float_t fYOen_maxplane; ///< total energy [MIP] used for energy determination as given by section YO
88      Float_t xo6;      Float_t fXEen_maxplane; ///< total energy [MIP] used for energy determination as given by section XE
89      Float_t z3;      Float_t fYEen_maxplane; ///< total energy [MIP] used for energy determination as given by section YE
90      Float_t ye1;      Float_t xomax_en; ///< energy at plane of maximum of section XO
91      Float_t ye2;      Float_t xemax_en; ///< energy at plane of maximum of section XE
92      Float_t ye3;      Float_t yomax_en; ///< energy at plane of maximum of section YO
93      Float_t ye4;      Float_t yemax_en; ///< energy at plane of maximum of section YE
94      Float_t ye5;      Float_t energyxe; ///< 11 planes detected energy [MIP] for section XE
95      Float_t ye6;      Float_t energyyo; ///< 11 planes detected energy [MIP] for section YO
96      Float_t z4;      Float_t energyxo; ///< 11 planes detected energy [MIP] for section XO
97      Float_t trk_z[22][2];        Float_t energyye; ///< 11 planes detected energy [MIP] for section YE
98      Float_t en;      Float_t en_xep[11]; ///< detected energy [MIP] for each plane of section XE
99      Int_t view;      Float_t en_yop[11]; ///< detected energy [MIP] for each plane of section YO
100      Int_t plane;      Float_t en_xop[11]; ///< detected energy [MIP] for each plane of section XO
101      Int_t strip;      Float_t en_yep[11]; ///< detected energy [MIP] for each plane of section YE
102      Int_t fRad;      Float_t encol[2][3]; ///< detected energy [MIP] for each column of views x and y
103      Float_t energyxe;      Float_t entot[2]; ///< detected energy [MIP] for views x and y
104      Float_t energyyo;      //
105      Float_t energyxo;      // Energies (GV)
106      Float_t energyye;      //
107      Float_t en_xep[11];      Float_t fEnergyxe; ///< Energy as measured by section XE
108      Float_t en_yop[11];      Float_t fEnergyxo; ///< Energy as measured by section XO
109      Float_t en_xop[11];      Float_t fEnergyye; ///< Energy as measured by section YE
110      Float_t en_yep[11];      Float_t fEnergyyo; ///< Energy as measured by section YO
111      Float_t enstrip[2][22][96];          Float_t fEnergy; ///< Energy as measured by the average of the used section in "Independent mode" or energy as measured by the used section in "Coherent mode"
112      //      //
113      Bool_t fXosel;      // Plane of maximum
114      Bool_t fXesel;      //
115      Bool_t fYosel;          Int_t fMax_planexe; ///< plane of maximum energy release (independent mode) or last plane used for energy measurement (coherent mode) for section XE
116      Bool_t fYesel;      Int_t fMax_planexo; ///< plane of maximum energy release (independent mode) or last plane used for energy measurement (coherent mode) for section XO
117      Bool_t fSel;      Int_t fMax_planeyo; ///< plane of maximum energy release (independent mode) or last plane used for energy measurement (coherent mode) for section YO
118        Int_t fMax_planeye; ///< plane of maximum energy release (independent mode) or last plane used for energy measurement (coherent mode) for section YE
119        Float_t fMax_plane; ///< average max plane [0,11] (independent mode) or last plane for energy measurement [0,43] (coherent mode)
120        Float_t x0max; ///< plane of maximum given externally (only test purpose)
121        Bool_t fAllpl; ///< use all 96 strips for each plane to determine the maximum OR only the energy along the track as defined with fRad
122        //
123        // Geometry
124        //
125        Float_t xe1; ///< position of strip  1 section XE
126        Float_t xe2; ///< position of strip 32 section XE
127        Float_t xe3; ///< position of strip 33 section XE
128        Float_t xe4; ///< position of strip 64 section XE
129        Float_t xe5; ///< position of strip 65 section XE
130        Float_t xe6; ///< position of strip 96 section XE
131        Float_t yo1; ///< position of strip  1 section YO
132        Float_t yo2; ///< position of strip 32 section YO
133        Float_t yo3; ///< position of strip 33 section YO
134        Float_t yo4; ///< position of strip 64 section YO
135        Float_t yo5; ///< position of strip 65 section YO
136        Float_t yo6; ///< position of strip 96 section YO
137        Float_t xo1; ///< position of strip  1 section XO
138        Float_t xo2; ///< position of strip 32 section XO
139        Float_t xo3; ///< position of strip 33 section XO
140        Float_t xo4; ///< position of strip 64 section XO
141        Float_t xo5; ///< position of strip 65 section XO
142        Float_t xo6; ///< position of strip 96 section XO
143        Float_t ye1; ///< position of strip  1 section YE
144        Float_t ye2; ///< position of strip 32 section YE
145        Float_t ye3; ///< position of strip 33 section YE
146        Float_t ye4; ///< position of strip 64 section YE
147        Float_t ye5; ///< position of strip 65 section YE
148        Float_t ye6; ///< position of strip 96 section YE
149        Float_t  track_coordx[22][2]; ///< XO and XE views, position (x and y) of the trajectory according to the fit
150        Float_t  track_coordy[22][2]; ///< YO and YE views, position (x and y) of the trajectory according to the fit
151        Float_t trk_z[22][2]; ///< Z position of calorimeter planes
152        //
153        // decode estrip
154        //
155        Float_t en; ///< energy [mip] for decodeestrip
156        Int_t view; ///< view for decodeestrip
157        Int_t plane; ///< plane for decodeestrip
158        Int_t strip; ///< strip for decodeestrip
159        Float_t enstrip[2][22][96]; ///< detected energy [MIP] for each strip of calorimeter
160        //                                                   y ^
161        //                                                    || 6 7 8
162        // Columns                                            || 3 4 5
163        //                                                    || 0 1 2
164        Int_t fColumn; ///< Column number for the event [0,8] =============> x
165        Int_t fColXE; ///< Column number for section XE
166        Int_t fColXO; ///< Column number for section XO
167        Int_t fColYE; ///< Column number for section YE
168        Int_t fColYO; ///< Column number for section YO
169        Bool_t multicol; ///< accept or not multicolumns events
170        //
171        // other stuff
172        //
173        Bool_t fSimu; ///< true if we are using simulated data, default false
174        CaloPreSampler *cp; ///< pointer to calopresampler object (object constructed only when invoking method UseCaloPreSampler() , default: use level2 data).
175        CaloLong *clong; ///< pointer to calolong object (object constructed only when invoking method UseLongFit(), default use energy up to maximum).
176        //
177        // private methods
178      //      //
179      Bool_t fSimu;      void DefineGeometry(); ///< called by constructors to fill geometrical variables (like xe1 etc).
180      void DefineGeometry();      void Set(); ///< called by contructors to define default variables
181    
182   public:   public:
183      //      //
184      CaloEnergy();      // constructors and destructors
185      CaloEnergy(PamLevel2 *L2);      //
186      CaloEnergy(PamLevel2 *L2, Bool_t simulation);      CaloEnergy(); ///< default constructor (does nothing)
187      ~CaloEnergy(){ Delete(); };      CaloEnergy(PamLevel2 *L2); ///< constructor
188      //      CaloEnergy(PamLevel2 *L2, Bool_t simulation); ///< constructor
189      void SetDebug(Bool_t d){ debug=d; };      ~CaloEnergy(){ Delete(); }; ///< default destructor
190      //      //
191      void Clear();      // Setters and behaviour methods
192      void Clear(Option_t *option){Clear();};      //
193      void Delete();      void SetDebug(Bool_t d){ debug=d; }; ///< set the debug flag (verbose print-out on STDOUT), default is false
194      void Delete(Option_t *option){Delete();};      //
195      //      void UseCaloPreSampler(); ///< use pre-sampler routine to refit the track (level2 default fitting could be wrong, in this case we force "shower fitting" in the DV library).
196      void Process();      void UseLevel2(); ///< use level2 default fitting
197      void Process(TString section);      //
198      void Print();      void UseLongFit();///< use or not the longitudinal fit to determine the energy      
199      void Print(Option_t *option){Print();};      void UseMeasuredEnergyUpToMax(){ fLong = false;}; ///< use the measured energy to determine the maximum (default)
200        //
201        void IndependentMode(){ indep = true; }; ///< Set the independent mode
202        void CoherentMode(){ indep = false; }; ///< Set the coherent mode
203        //
204        void MultiColumns(){multicol = true;}; ///< accept multicolumns events
205        void SingleColumn(){multicol = false;}; ///< accept events only if contained in a single column
206        //
207        void UseAllPlane2FindMax(){ fAllpl = true;};///< find the maximum (not long fit) integrating over all the 96 strips of the planes even if SetRadius has been used [default]
208        void UseMeasuredEnergy2FindMax(){ fAllpl = false;};///< find the maximum (not long fit) using the energy measured and used to calculate the result
209        //
210        void SetMargin(Float_t margin){fM = margin ; fM1 = margin - 0.122 - 0.096 + 0.096; if ( fM1 < 0. ) fM1 = 0.;}; ///< set the margin from the border of the silicon sensor (not from the first strip), set the same margin for both the directions
211        void SetMarginStripDirection(Float_t margin){fM = margin ;}; ///< set the margin from the border of the silicon sensor (not from the first strip) in the strip direction
212        void SetMarginStripReading(Float_t margin){fM1 = margin -0.122 - 0.096 + 0.096;};  ///< set the margin from the border of the silicon sensor (not from the first strip) in the strip reading direction
213        //
214        void SetRadius(Int_t strip){fRad = strip;}; ///< set the radius of the cylinder
215        void SetMaxPlaneOffset(Int_t noplanes){fPl = noplanes;}; ///< set the number of dE/dx measurements to be used after the maximum
216        //
217        void SetX0max(Float_t xm){ x0max = xm;}; ///< set the plane of maximum from external source X0 (test purpose only)
218        void SetRigX0max(Float_t rig){ x0max = -0.5+log(rig/0.0076);}; ///< set the plane of maximum from external source rigidity (GeV) (test purpose only)
219        //
220        void SetMinimumContainment(Int_t plane); ///< set the last plane [0,11] for which the trajectory MUST be contained in all the sections. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY)
221        void SetMinimumContainment(TString section, Int_t plane); ///< set the last plane [0,11] for which the trajectory MUST be contained in section "section". Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY)
222        //
223        void SetConversionFactor(Float_t conv_r); ///< Set the MIP-GV conversion factor for all the four sections.
224        void SetConversionFactor(TString section, Float_t conv_r); ///< Set the MIP-GV conversion factor for section "section".
225        //
226        void ForceProcessing(){atime=0; PKT=0; APKT=0; aatime=0;}; ///< Force processing the event even if the same request is made twice without a getentry from pamlevel2
227        //
228        // Getters and checks methods
229      //      //
230      Bool_t IsInsideAcceptance(TString section);      //
231      Bool_t IsInsideAcceptance(TString section, Bool_t fast);      Bool_t IsInsideAcceptance(TString section); ///< returns true if event is inside acceptance of the given sections (all if coherent mode, at least one in independent mode)
232        Bool_t IsInsideReducedAcceptance(){return fPartsel;}; ///< returns true if the event is inside acceptance only up to the last used plane (see fXomin etc)
233      //      //
234      Bool_t IsInsideXE(){return(IsInsideAcceptance("XE"));};      Bool_t IsInsideXE(){return(IsInsideAcceptance("XE"));};
235      Bool_t InsideXEcheck(){return fXesel;};      Bool_t InsideXEcheck(){return fXesel;};
# Line 147  class CaloEnergy : public TObject { Line 240  class CaloEnergy : public TObject {
240      Bool_t IsInsideYO(){return(IsInsideAcceptance("YO"));};      Bool_t IsInsideYO(){return(IsInsideAcceptance("YO"));};
241      Bool_t InsideYOcheck(){return fYosel;};      Bool_t InsideYOcheck(){return fYosel;};
242      //      //
243      Float_t GetEnergy(){ Process(); return fEnergy;};      Float_t GetEnergy(){ Process(); return fEnergy;}; ///< returns the energy [GV] determined for this event
244      Float_t GetEnergy(TString section){ Process(section); return fEnergy;};      Float_t GetEnergy(TString section){ Process(section); return fEnergy;}; ///< returns the energy [GV] determined for this event
245      Float_t GetCount(){ return fCount;};      //
246      //      Float_t GetCount(){ return fCount;}; ///< returns the number of section inside acceptance for this event (equal to the number of given section in coherent mode)
247      Float_t GetMaxplane(){ return fMax_plane;};      //
248      Float_t GetMaxEnergy(TString section){ return(this->GetEnergy(section)*this->GetConversionFactor(section));};      Float_t GetEnergyAtMaxplane(TString section); ///< returns the energy [MIP] at the plane of maximum for section "section"
249      Int_t GetMaxplane(TString section);      Float_t GetMipEnergyAtMaxplane(TString section); ///< returns the energy [MIP] at the plane of maximum for section "section"
250      //      //
251      void UseLongitudinalFitEnergy(){ fPl = 0; fLong = true;};      Float_t GetMaxEnergy(); ///< returns the total energy [MIP] before conversion
252      void UseMeasuredEnergyUpToMax(){ fLong = false;};      Float_t GetMaxEnergy(TString section); ///< returns the total energy [MIP] before conversion for section "section"
253      void SetMargin(Float_t margin){fM = margin + 0.096; fM1 = margin - 0.122 - 0.096; if ( fM1 < 0. ) fM1 = 0.;};      Float_t GetMipEnergy(); ///< returns the total energy [MIP] before conversion
254      void SetMarginStripDirection(Float_t margin){fM = margin + 0.096;};      Float_t GetMipEnergy(TString section); ///< returns the total energy [MIP] before conversion for section "section"
255      void SetMarginStripReading(Float_t margin){fM1 = margin -0.122 - 0.096;};      //
256      void SetRadius(Int_t strip){fRad = strip;};      Int_t GetMaxplane(TString section); ///< returns the plane of maximum (independent mode) or the last used plane (coherent mode) for section "section"
257      void SetMaxPlaneOffset(Int_t noplanes){fPl = noplanes;};      Float_t GetMaxplane(){ return fMax_plane;}; ///< returns the average max plane [0,11] (independent mode) or last plane for energy measurement [0,43] (coherent mode)    
258        //
259        Int_t GetMinimumContainment(TString section); ///< get the last plane [0,11] for which the trajectory MUST be contained in section "section".
260        //
261        Float_t GetConversionFactor(TString section); ///< Get the MIP-GV conversion factor for section "section".
262        //
263        Float_t *Get_track_coordx(){ return *track_coordx;}; ///< X position of the track for all the planes and views
264        Float_t *Get_track_coordy(){ return *track_coordy;}; ///< Y position of the track for all the planes and views
265        //
266        Float_t  Get_track_coordx(Int_t i, Int_t j){ return track_coordx[i][j];}; ///< X position of the track for plane i and view j
267        Float_t  Get_track_coordy(Int_t i, Int_t j){ return track_coordy[i][j];}; ///< X position of the track for plane i and view j
268        //
269        Float_t *GetEncol(){ return *encol;}; ///< integrated energy over columns (encol[2][3]) [MIP]
270        Float_t GetEncol(Int_t i, Int_t j){ return encol[i][j];}; ///< integrated energy over view i and column j [MIP]
271        Float_t GetEncol(Int_t i); ///< integrated energy over view i given fColumn [MIP]
272        Float_t *GetEntot(){ return entot;}; ///< integrated energy over views (entot[2])  [MIP]
273        Float_t GetEntot(Int_t i){ return entot[i];}; ///< integrated energy over all view i [MIP]
274        //
275        Int_t GetColumn(){return fColumn;}; ///< number of column which contains the track
276        Int_t GetColumn(TString section); ///< number of column which contains the track for section "section"
277        //
278        Float_t Get_X0pl(){return X0pl;}; ///< transversed X0 for each W plane taking into account inclination of the trajectory
279        Float_t GetX0max(){ return x0max;}; ///< get the given X0 (test purpose only)
280        //
281        // Get pointers
282        //
283        CaloLong* GetCaloLong(){return clong;}; ///< Get calolong object.
284        CaloPreSampler* GetCaloPreSampler(){return cp;}; ///< Get pre-sampler object.
285        CaloEnergy* GetCaloEnergyPointer(){return this;}; ///< Get CaloEnergy pointer
286        //
287        // Other methods
288        //
289        void Clear(); ///< clear varibles
290        void Clear(Option_t *option){Clear();}; ///< compatibility with TObject
291        void Delete(); ///< delete object
292        void Delete(Option_t *option){Delete();}; ///< compatibility with TObject
293      //      //
294      void SetConversionFactor(TString section, Float_t conv_r);      void Process(); ///< Process the event
295      Float_t GetConversionFactor(TString section);      void Process(TString section);  ///< Process the event for section "section"
296        void Print(); ///< Print variables on STDOUT
297        void Print(Option_t *option){Print();}; ///< compatibility with TObject
298      //      //
299      ClassDef(CaloEnergy,1);      ClassDef(CaloEnergy,3);
300  };  };
301    
302  #endif  #endif

Legend:
Removed from v.1.2  
changed lines
  Added in v.1.12

  ViewVC Help
Powered by ViewVC 1.1.23