/[PAMELA software]/calo/flight/CaloEnergy/inc/CaloEnergy.h
ViewVC logotype

Diff of /calo/flight/CaloEnergy/inc/CaloEnergy.h

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 1.1 by mocchiut, Mon Jun 29 09:42:10 2009 UTC revision 1.11 by mocchiut, Fri Aug 21 07:06:35 2009 UTC
# Line 17  Line 17 
17  #include <TSystemDirectory.h>  #include <TSystemDirectory.h>
18  #include <TSQLServer.h>  #include <TSQLServer.h>
19    
20    #include <CaloPreSampler.h>
21    #include <CaloProfile.h>
22    
23  #include <iostream>  #include <iostream>
24    
25  using namespace std;  using namespace std;
# Line 28  class CaloEnergy : public TObject { Line 31  class CaloEnergy : public TObject {
31    
32   private:   private:
33      //      //
34      PamLevel2 *L2;      PamLevel2 *L2; ///< PamLevel2 object
35      Bool_t debug;      Bool_t debug; ///< debug flag
36      //      //
37      // needed to avoid reprocessing the same event over and over to obtain the variables      // needed to avoid reprocessing the same event over and over to obtain the variables
38      //      //
39      UInt_t OBT;      UInt_t OBT; ///< CPU OBT
40      UInt_t PKT;      UInt_t PKT; ///< CPU packet number
41      UInt_t atime;      UInt_t atime; ///< event absolute time
42      TString sntr;      TString sntr; ///< string containing the list of section the user want to process
43      UInt_t AOBT;      UInt_t AOBT; ///< CPU OBT
44      UInt_t APKT;      UInt_t APKT; ///< CPU packet number
45      UInt_t aatime;      UInt_t aatime;///< event absolute time
46      TString asntr;      TString asntr;///< string containing the list of section the user want to process
47      //      //
48      Float_t fM;      // margins, acceptance and containment
49      Float_t fM1;      //
50      Float_t fPl;      Float_t fM; ///< margin in the strip direction
51      Float_t fConv_r;      Float_t fM1; ///< margin along the strip reading direction
52      Bool_t fLong;      Int_t fPl; ///< number of dE/dx measurements over the maximum that are used to find the energy
53      //      Float_t fCount; ///< Number of sections inside the acceptance (only the section given by the user are checked)
54      Float_t fEnergy;      Int_t fRad; ///< Radius [strip] of the cylinder used to integrate the energy along the track, if negative radius is inf (the whole plane is used). Default: -1
55      Float_t fCount;      Int_t fNumSec; ///< Number of sections given by the user
56      Int_t fMax_plane;      Bool_t fXosel; ///< true if event is contained in section XO
57      //      Bool_t fXesel; ///< true if event is contained in section XE
58      Float_t xe1;      Bool_t fYosel; ///< true if event is contained in section YO  
59      Float_t xe2;      Bool_t fYesel; ///< true if event is contained in section YE
60      Float_t xe3;      Bool_t fSel; ///< true if event is contained in at least one of the given section (independet mode) or in all the given section (coherent mode)
61      Float_t xe4;      Bool_t fPartsel; ///< true if the event is contained only up to the last plane used for energy determination (can be used in conjunction with fXXmin)
62      Float_t xe5;      Int_t fXeout; ///< last plane [0,11] for which the trajectory is contained in section XE
63      Float_t xe6;      Int_t fYeout; ///< last plane [0,11] for which the trajectory is contained in section YE
64      Float_t z1;      Int_t fXoout; ///< last plane [0,11] for which the trajectory is contained in section XO
65      Float_t yo1;      Int_t fYoout; ///< last plane [0,11] for which the trajectory is contained in section YO
66      Float_t yo2;      Int_t fXomin; ///< last plane [0,11] for which the trajectory MUST be contained in section XO. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY)
67      Float_t yo3;      Int_t fXemin; ///< last plane [0,11] for which the trajectory MUST be contained in section XE. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY)
68      Float_t yo4;      Int_t fYomin; ///< last plane [0,11] for which the trajectory MUST be contained in section YO. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY)
69      Float_t yo5;      Int_t fYemin; ///< last plane [0,11] for which the trajectory MUST be contained in section YE. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY)
70      Float_t yo6;      Bool_t indep; ///< flag to switch between INDEPENDENT or COHERENT mode, default false - COHERENT mode selected
71      Float_t z2;      //
72      Float_t xo1;      // conversion factors
73      Float_t xo2;      //
74      Float_t xo3;      Float_t fConv_rxe; ///< MIP - energy conversion factor for section XE
75      Float_t xo4;      Float_t fConv_rxo; ///< MIP - energy conversion factor for section XO
76      Float_t xo5;      Float_t fConv_rye; ///< MIP - energy conversion factor for section YE
77      Float_t xo6;      Float_t fConv_ryo; ///< MIP - energy conversion factor for section YO
78      Float_t z3;      //
79      Float_t ye1;      // Longitudinal fit
80      Float_t ye2;      //
81      Float_t ye3;      Bool_t fLong; ///< if true use the integral of the longitudinal profile to measure the energy (NOT IMPLEMENTED YET), default FALSE
82      Float_t ye4;      //
83      Float_t ye5;      // Energies (MIP)
84      Float_t ye6;      //
85      Float_t z4;      Float_t fXOen_maxplane; ///< total energy [MIP] used for energy determination as given by section XO
86      Float_t trk_z[22][2];        Float_t fYOen_maxplane; ///< total energy [MIP] used for energy determination as given by section YO
87      Float_t en;      Float_t fXEen_maxplane; ///< total energy [MIP] used for energy determination as given by section XE
88      Int_t view;      Float_t fYEen_maxplane; ///< total energy [MIP] used for energy determination as given by section YE
89      Int_t plane;      Float_t xomax_en; ///< energy at plane of maximum of section XO
90      Int_t strip;      Float_t xemax_en; ///< energy at plane of maximum of section XE
91      Float_t energyxe;      Float_t yomax_en; ///< energy at plane of maximum of section YO
92      Float_t energyyo;      Float_t yemax_en; ///< energy at plane of maximum of section YE
93      Float_t energyxo;      Float_t energyxe; ///< 11 planes detected energy [MIP] for section XE
94      Float_t energyye;      Float_t energyyo; ///< 11 planes detected energy [MIP] for section YO
95      Float_t en_xep[11];      Float_t energyxo; ///< 11 planes detected energy [MIP] for section XO
96      Float_t en_yop[11];      Float_t energyye; ///< 11 planes detected energy [MIP] for section YE
97      Float_t en_xop[11];      Float_t en_xep[11]; ///< detected energy [MIP] for each plane of section XE
98      Float_t en_yep[11];      Float_t en_yop[11]; ///< detected energy [MIP] for each plane of section YO
99      Float_t enstrip[2][22][96];          Float_t en_xop[11]; ///< detected energy [MIP] for each plane of section XO
100      //      Float_t en_yep[11]; ///< detected energy [MIP] for each plane of section YE
101      Bool_t fXosel;      Float_t encol[2][3]; ///< detected energy [MIP] for each column of views x and y
102      Bool_t fXesel;      Float_t entot[2]; ///< detected energy [MIP] for views x and y
103      Bool_t fYosel;          //
104      Bool_t fYesel;      // Energies (GV)
105      Bool_t fSel;      //
106        Float_t fEnergyxe; ///< Energy as measured by section XE
107        Float_t fEnergyxo; ///< Energy as measured by section XO
108        Float_t fEnergyye; ///< Energy as measured by section YE
109        Float_t fEnergyyo; ///< Energy as measured by section YO
110        Float_t fEnergy; ///< Energy as measured by the average of the used section in "Independent mode" or energy as measured by the used section in "Coherent mode"
111        //
112        // Plane of maximum
113        //
114        Int_t fMax_planexe; ///< plane of maximum energy release (independent mode) or last plane used for energy measurement (coherent mode) for section XE
115        Int_t fMax_planexo; ///< plane of maximum energy release (independent mode) or last plane used for energy measurement (coherent mode) for section XO
116        Int_t fMax_planeyo; ///< plane of maximum energy release (independent mode) or last plane used for energy measurement (coherent mode) for section YO
117        Int_t fMax_planeye; ///< plane of maximum energy release (independent mode) or last plane used for energy measurement (coherent mode) for section YE
118        Float_t fMax_plane; ///< average max plane [0,11] (independent mode) or last plane for energy measurement [0,43] (coherent mode)
119        Float_t x0max; ///< plane of maximum given externally (only test purpose)
120        Bool_t fAllpl; ///< use all 96 strips for each plane to determine the maximum OR only the energy along the track as defined with fRad
121        //
122        // Geometry
123        //
124        Float_t xe1; ///< position of strip  1 section XE
125        Float_t xe2; ///< position of strip 32 section XE
126        Float_t xe3; ///< position of strip 33 section XE
127        Float_t xe4; ///< position of strip 64 section XE
128        Float_t xe5; ///< position of strip 65 section XE
129        Float_t xe6; ///< position of strip 96 section XE
130        Float_t yo1; ///< position of strip  1 section YO
131        Float_t yo2; ///< position of strip 32 section YO
132        Float_t yo3; ///< position of strip 33 section YO
133        Float_t yo4; ///< position of strip 64 section YO
134        Float_t yo5; ///< position of strip 65 section YO
135        Float_t yo6; ///< position of strip 96 section YO
136        Float_t xo1; ///< position of strip  1 section XO
137        Float_t xo2; ///< position of strip 32 section XO
138        Float_t xo3; ///< position of strip 33 section XO
139        Float_t xo4; ///< position of strip 64 section XO
140        Float_t xo5; ///< position of strip 65 section XO
141        Float_t xo6; ///< position of strip 96 section XO
142        Float_t ye1; ///< position of strip  1 section YE
143        Float_t ye2; ///< position of strip 32 section YE
144        Float_t ye3; ///< position of strip 33 section YE
145        Float_t ye4; ///< position of strip 64 section YE
146        Float_t ye5; ///< position of strip 65 section YE
147        Float_t ye6; ///< position of strip 96 section YE
148        Float_t  track_coordx[22][2]; ///< XO and XE views, position (x and y) of the trajectory according to the fit
149        Float_t  track_coordy[22][2]; ///< YO and YE views, position (x and y) of the trajectory according to the fit
150        Float_t trk_z[22][2]; ///< Z position of calorimeter planes
151        //
152        // decode estrip
153        //
154        Float_t en; ///< energy [mip] for decodeestrip
155        Int_t view; ///< view for decodeestrip
156        Int_t plane; ///< plane for decodeestrip
157        Int_t strip; ///< strip for decodeestrip
158        Float_t enstrip[2][22][96]; ///< detected energy [MIP] for each strip of calorimeter
159        //                                                   y ^
160        //                                                    || 6 7 8
161        // Columns                                            || 3 4 5
162        //                                                    || 0 1 2
163        Int_t fColumn; ///< Column number for the event [0,8] =============> x
164        Int_t fColXE; ///< Column number for section XE
165        Int_t fColXO; ///< Column number for section XO
166        Int_t fColYE; ///< Column number for section YE
167        Int_t fColYO; ///< Column number for section YO
168        Bool_t multicol; ///< accept or not multicolumns events
169        //
170        // other stuff
171        //
172        Bool_t fSimu; ///< true if we are using simulated data, default false
173        CaloPreSampler *cp; ///< pointer to calopresampler object (object constructed only when invoking method UseCaloPreSampler() , default: use level2 data).
174        CaloLong *clong; ///< pointer to calolong object (object constructed only when invoking method UseLongFit(), default use energy up to maximum).
175        //
176        // private methods
177      //      //
178      Bool_t fSimu;      void DefineGeometry(); ///< called by constructors to fill geometrical variables (like xe1 etc).
179      void DefineGeometry();      void Set(); ///< called by contructors to define default variables
180    
181   public:   public:
182      //      //
183      CaloEnergy();      // constructors and destructors
184      CaloEnergy(PamLevel2 *L2);      //
185      CaloEnergy(PamLevel2 *L2, Bool_t simulation);      CaloEnergy(); ///< default constructor (does nothing)
186      ~CaloEnergy(){ Delete(); };      CaloEnergy(PamLevel2 *L2); ///< constructor
187      //      CaloEnergy(PamLevel2 *L2, Bool_t simulation); ///< constructor
188      void SetDebug(Bool_t d){ debug=d; };      ~CaloEnergy(){ Delete(); }; ///< default destructor
189      //      //
190      void Clear();      // Setters and behaviour methods
191      void Clear(Option_t *option){Clear();};      //
192      void Delete();      void SetDebug(Bool_t d){ debug=d; }; ///< set the debug flag (verbose print-out on STDOUT), default is false
193      void Delete(Option_t *option){Delete();};      //
194      //      void UseCaloPreSampler(); ///< use pre-sampler routine to refit the track (level2 default fitting could be wrong, in this case we force "shower fitting" in the DV library).
195      void Process();      void UseLevel2(); ///< use level2 default fitting
196      void Process(TString section);      //
197      void Print();      void UseLongFit();///< use or not the longitudinal fit to determine the energy      
198      void Print(Option_t *option){Print();};      void UseMeasuredEnergyUpToMax(){ fLong = false;}; ///< use the measured energy to determine the maximum (default)
199        //
200        void IndependentMode(){ indep = true; }; ///< Set the independent mode
201        void CoherentMode(){ indep = false; }; ///< Set the coherent mode
202        //
203        void MultiColumns(){multicol = true;}; ///< accept multicolumns events
204        void SingleColumn(){multicol = false;}; ///< accept events only if contained in a single column
205        //
206        void UseAllPlane2FindMax(){ fAllpl = true;};///< find the maximum (not long fit) integrating over all the 96 strips of the planes even if SetRadius has been used [default]
207        void UseMeasuredEnergy2FindMax(){ fAllpl = false;};///< find the maximum (not long fit) using the energy measured and used to calculate the result
208        //
209        void SetMargin(Float_t margin){fM = margin ; fM1 = margin - 0.122 - 0.096 + 0.096; if ( fM1 < 0. ) fM1 = 0.;}; ///< set the margin from the border of the silicon sensor (not from the first strip), set the same margin for both the directions
210        void SetMarginStripDirection(Float_t margin){fM = margin ;}; ///< set the margin from the border of the silicon sensor (not from the first strip) in the strip direction
211        void SetMarginStripReading(Float_t margin){fM1 = margin -0.122 - 0.096 + 0.096;};  ///< set the margin from the border of the silicon sensor (not from the first strip) in the strip reading direction
212        //
213        void SetRadius(Int_t strip){fRad = strip;}; ///< set the radius of the cylinder
214        void SetMaxPlaneOffset(Int_t noplanes){fPl = noplanes;}; ///< set the number of dE/dx measurements to be used after the maximum
215        //
216        void SetX0max(Float_t xm){ x0max = xm;}; ///< set the plane of maximum from external source X0 (test purpose only)
217        void SetRigX0max(Float_t rig){ x0max = -0.5+log(rig/0.0076);}; ///< set the plane of maximum from external source rigidity (GeV) (test purpose only)
218        //
219        void SetMinimumContainment(Int_t plane); ///< set the last plane [0,11] for which the trajectory MUST be contained in all the sections. Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY)
220        void SetMinimumContainment(TString section, Int_t plane); ///< set the last plane [0,11] for which the trajectory MUST be contained in section "section". Default 1000 means all the planes, if less than 10 events can be only partially contained in a section (NB: THIS INTRODUCE AN ENERGY DEPENDENT SELECTION CONTAINMENT EFFICIENCY)
221        //
222        void SetConversionFactor(Float_t conv_r); ///< Set the MIP-GV conversion factor for all the four sections.
223        void SetConversionFactor(TString section, Float_t conv_r); ///< Set the MIP-GV conversion factor for section "section".
224        //
225        void ForceProcessing(){atime=0; PKT=0; APKT=0; aatime=0;}; ///< Force processing the event even if the same request is made twice without a getentry from pamlevel2
226      //      //
227      Bool_t IsInsideAcceptance(TString section);      // Getters and checks methods
228      Bool_t IsInsideAcceptance(TString section, Bool_t fast);      //
229        //
230        Bool_t IsInsideAcceptance(TString section); ///< returns true if event is inside acceptance of the given sections (all if coherent mode, at least one in independent mode)
231        Bool_t IsInsideReducedAcceptance(){return fPartsel;}; ///< returns true if the event is inside acceptance only up to the last used plane (see fXomin etc)
232      //      //
233      Bool_t IsInsideXE(){return(IsInsideAcceptance("XE"));};      Bool_t IsInsideXE(){return(IsInsideAcceptance("XE"));};
234      Bool_t InsideXEcheck(){return fXesel;};      Bool_t InsideXEcheck(){return fXesel;};
# Line 135  class CaloEnergy : public TObject { Line 239  class CaloEnergy : public TObject {
239      Bool_t IsInsideYO(){return(IsInsideAcceptance("YO"));};      Bool_t IsInsideYO(){return(IsInsideAcceptance("YO"));};
240      Bool_t InsideYOcheck(){return fYosel;};      Bool_t InsideYOcheck(){return fYosel;};
241      //      //
242      Float_t GetEnergy(){ Process(); return fEnergy;};      Float_t GetEnergy(){ Process(); return fEnergy;}; ///< returns the energy [GV] determined for this event
243      Float_t GetEnergy(TString section){ Process(section); return fEnergy;};      Float_t GetEnergy(TString section){ Process(section); return fEnergy;}; ///< returns the energy [GV] determined for this event
244      Float_t GetCount(){ return fCount;};      //
245      //      Float_t GetCount(){ return fCount;}; ///< returns the number of section inside acceptance for this event (equal to the number of given section in coherent mode)
246      void UseLongitudinalFitEnergy(){ fPl = 0; fLong = true;};      //
247      void UseMeasuredEnergyUpToMax(){ fLong = false;};      Float_t GetEnergyAtMaxplane(TString section); ///< returns the energy [MIP] at the plane of maximum for section "section"
248      void SetMargin(Float_t margin){fM = margin; fM1 = fM - 0.122 -0.096; if ( fM1 < 0. ) fM1 = 0.;};      Float_t GetMipEnergyAtMaxplane(TString section); ///< returns the energy [MIP] at the plane of maximum for section "section"
249      void SetMaxPlaneOffset(Int_t noplanes){fPl = noplanes;};      //
250        Float_t GetMaxEnergy(); ///< returns the total energy [MIP] before conversion
251        Float_t GetMaxEnergy(TString section); ///< returns the total energy [MIP] before conversion for section "section"
252        Float_t GetMipEnergy(); ///< returns the total energy [MIP] before conversion
253        Float_t GetMipEnergy(TString section); ///< returns the total energy [MIP] before conversion for section "section"
254        //
255        Int_t GetMaxplane(TString section); ///< returns the plane of maximum (independent mode) or the last used plane (coherent mode) for section "section"
256        Float_t GetMaxplane(){ return fMax_plane;}; ///< returns the average max plane [0,11] (independent mode) or last plane for energy measurement [0,43] (coherent mode)    
257        //
258        Int_t GetMinimumContainment(TString section); ///< get the last plane [0,11] for which the trajectory MUST be contained in section "section".
259        //
260        Float_t GetConversionFactor(TString section); ///< Get the MIP-GV conversion factor for section "section".
261        //
262        Float_t *Get_track_coordx(){ return *track_coordx;}; ///< X position of the track for all the planes and views
263        Float_t *Get_track_coordy(){ return *track_coordy;}; ///< Y position of the track for all the planes and views
264        //
265        Float_t  Get_track_coordx(Int_t i, Int_t j){ return track_coordx[i][j];}; ///< X position of the track for plane i and view j
266        Float_t  Get_track_coordy(Int_t i, Int_t j){ return track_coordy[i][j];}; ///< X position of the track for plane i and view j
267        //
268        Float_t *GetEncol(){ return *encol;}; ///< integrated energy over columns (encol[2][3]) [MIP]
269        Float_t GetEncol(Int_t i, Int_t j){ return encol[i][j];}; ///< integrated energy over view i and column j [MIP]
270        Float_t GetEncol(Int_t i); ///< integrated energy over view i given fColumn [MIP]
271        Float_t *GetEntot(){ return entot;}; ///< integrated energy over views (entot[2])  [MIP]
272        Float_t GetEntot(Int_t i){ return entot[i];}; ///< integrated energy over all view i [MIP]
273        //
274        Int_t GetColumn(){return fColumn;}; ///< number of column which contains the track
275        Int_t GetColumn(TString section); ///< number of column which contains the track for section "section"
276        //
277        // Get pointers
278        //
279        CaloLong* GetCaloLong(){return clong;}; ///< Get calolong object.
280        CaloPreSampler* GetCaloPreSampler(){return cp;}; ///< Get pre-sampler object.
281        CaloEnergy* GetCaloEnergyPointer(){return this;}; ///< Get CaloEnergy pointer
282        //
283        // Other methods
284        //
285        void Clear(); ///< clear varibles
286        void Clear(Option_t *option){Clear();}; ///< compatibility with TObject
287        void Delete(); ///< delete object
288        void Delete(Option_t *option){Delete();}; ///< compatibility with TObject
289      //      //
290      void SetConversionFactor(Float_t conv_r){ fConv_r = conv_r;};      void Process(); ///< Process the event
291        void Process(TString section);  ///< Process the event for section "section"
292        void Print(); ///< Print variables on STDOUT
293        void Print(Option_t *option){Print();}; ///< compatibility with TObject
294      //      //
295      ClassDef(CaloEnergy,1);      ClassDef(CaloEnergy,2);
296  };  };
297    
298  #endif  #endif

Legend:
Removed from v.1.1  
changed lines
  Added in v.1.11

  ViewVC Help
Powered by ViewVC 1.1.23