26 |
debug = false; |
debug = false; |
27 |
usetrack = false; |
usetrack = false; |
28 |
usepl18x = false; |
usepl18x = false; |
29 |
|
newchi2 = false; |
30 |
|
usenewBB = false; |
31 |
|
fzeta = -1.; |
32 |
// |
// |
33 |
}; |
}; |
34 |
|
|
35 |
void CaloBragg::Clear(){ |
void CaloBragg::Clear(){ |
36 |
// |
// |
37 |
|
ndf = 0; |
38 |
tr = 0; |
tr = 0; |
39 |
sntr = 0; |
sntr = 0; |
40 |
// qtchi2 = 0.; |
// qtchi2 = 0.; |
43 |
// qtpskip = 0.; |
// qtpskip = 0.; |
44 |
lpchi2 = 0.; |
lpchi2 = 0.; |
45 |
lpz = 0.; |
lpz = 0.; |
46 |
|
lpisotope= 0.; |
47 |
lpetot = 0.; |
lpetot = 0.; |
48 |
lppskip = 0.; |
lppskip = 0.; |
49 |
|
|
50 |
memset(calorimetro,0,44*2*sizeof(Float_t)); |
memset(calorimetro,0,44*2*sizeof(Float_t)); |
51 |
memset(spessore,0,3*sizeof(Float_t)); |
memset(spessore,0,4*sizeof(Float_t)); |
52 |
memset(estremi,0,2*2*sizeof(Float_t)); |
memset(estremi,0,2*2*sizeof(Float_t)); |
53 |
Integrale=0.; |
Integrale=0.; |
54 |
|
|
73 |
// printf(" plane not used for truncated mean %f: \n", qtpskip); |
// printf(" plane not used for truncated mean %f: \n", qtpskip); |
74 |
printf(" chi 2 from loop %f: \n", lpchi2); |
printf(" chi 2 from loop %f: \n", lpchi2); |
75 |
printf(" Z from loop %f: \n", lpz); |
printf(" Z from loop %f: \n", lpz); |
76 |
|
printf(" isotope from loop %f: \n", lpisotope); |
77 |
printf(" energy from loop %f: \n", lpetot); |
printf(" energy from loop %f: \n", lpetot); |
78 |
printf(" plane not used for loop %f: \n", lppskip); |
printf(" plane not used for loop %f: \n", lppskip); |
79 |
|
printf(" ndf: %i \n",ndf); |
80 |
printf("========================================================================\n"); |
printf("========================================================================\n"); |
81 |
// |
// |
82 |
}; |
}; |
309 |
}; |
}; |
310 |
// }; |
// }; |
311 |
|
|
312 |
|
if ( startZero ) { |
313 |
|
estremi[0][0] = 0.; |
314 |
|
// estremi[0][1] = 0.; |
315 |
|
} |
316 |
|
|
317 |
/*integrale: energia totale rilasciata nel calo (aggiungendo quella 'teorica' nel W )*/ |
/*integrale: energia totale rilasciata nel calo (aggiungendo quella 'teorica' nel W )*/ |
318 |
for(Int_t pl=0; pl<(2*NPLA); pl++){ |
for(Int_t pl=0; pl<(2*NPLA); pl++){ |
331 |
// mediatroncata(); // out: 1)chi2, 2)z, 3)Etot, 4)Pskip |
// mediatroncata(); // out: 1)chi2, 2)z, 3)Etot, 4)Pskip |
332 |
|
|
333 |
/*z ed energia con loop*/ |
/*z ed energia con loop*/ |
334 |
|
if ( debug ) printf(" call Zdaloop with integrale %f \n",Integrale); |
335 |
Zdaloop(); // out: 1)chi2, 2)z, 3)Etot, 4)Pskip |
Zdaloop(); // out: 1)chi2, 2)z, 3)Etot, 4)Pskip |
336 |
|
|
337 |
|
|
341 |
}; |
}; |
342 |
|
|
343 |
|
|
344 |
|
Float_t CaloBragg::Integral(){ |
345 |
|
Process(); |
346 |
|
|
347 |
|
Float_t dEpianiloop[44]; |
348 |
|
Int_t tz1=(Int_t)lpz; |
349 |
|
Int_t ti1=(Int_t)lpisotope; |
350 |
|
|
351 |
|
Enetrack(&tz1, &ti1 , &lpetot, &estremi[0][0],&estremi[1][0], dEpianiloop);//calcola rilascio energetico sui piani da loop |
352 |
|
|
353 |
|
|
354 |
|
Float_t integ = 0.; |
355 |
|
for(Int_t i=0;i<=estremi[1][0];i++){ |
356 |
|
// integ += dEplan[i]; |
357 |
|
//printf(" step %i integ %f deplan %f \n",i,integ,dEplan[i]); |
358 |
|
integ += dEpianiloop[i]; |
359 |
|
// printf(" step %i integ %f deplan %f \n",i,integ,dEpianiloop[i]); |
360 |
|
} |
361 |
|
return integ; |
362 |
|
} |
363 |
|
|
364 |
|
Float_t CaloBragg::LastIntegral(){ |
365 |
|
Process(); |
366 |
|
|
367 |
|
Float_t integ = 0.; |
368 |
|
for(Int_t i=0;i<=estremi[1][0];i++){ |
369 |
|
integ += dEplan[i]; |
370 |
|
//printf(" step %i integ %f deplan %f \n",i,integ,dEplan[i]); |
371 |
|
} |
372 |
|
return integ; |
373 |
|
} |
374 |
|
|
375 |
|
|
376 |
void CaloBragg::Draw(){ |
void CaloBragg::Draw(){ |
377 |
|
|
378 |
Process(); |
Process(); |
379 |
|
|
380 |
|
this->Draw(0.,0.,0.); |
381 |
|
|
382 |
|
} |
383 |
|
|
384 |
|
void CaloBragg::Draw(Int_t Z, Int_t isotope, Float_t enetot){ |
385 |
|
|
386 |
// Float_t dEpianimean[44]; |
// Float_t dEpianimean[44]; |
387 |
Float_t dEpianiloop[44]; |
Float_t dEpianiloop[44]; |
388 |
Float_t Depth[44]; |
Float_t Depth[44]; |
389 |
// Int_t tz=(Int_t)qtz; |
// Int_t tz=(Int_t)qtz; |
390 |
Int_t tz1=(Int_t)lpz; |
Int_t tz1= Z; |
391 |
// Enetrack(&tz, &qtetot, &estremi[0][0],&estremi[1][0], dEpianimean);//calcola rilascio energetico sui piani da media troncata |
Int_t ti1= isotope; |
392 |
Enetrack(&tz1, &lpetot, &estremi[0][0],&estremi[1][0], dEpianiloop);//calcola rilascio energetico sui piani da loop |
Float_t enet = enetot; |
393 |
|
// Float_t enet = lpetot; |
394 |
|
|
395 |
|
if ( Z > 0. && enetot > 0. ){ |
396 |
|
estremi[0][0] = 0; |
397 |
|
estremi[1][0] = 43; |
398 |
|
|
399 |
|
|
400 |
|
Float_t ytgx = 0.; |
401 |
|
Float_t ytgy = 0.; |
402 |
|
|
403 |
|
//lunghezza effettiva di silicio attraversata (mm) |
404 |
|
Float_t SiCross = sqrt(SQ(ySi) + SQ(ytgx) + SQ(ytgy)); |
405 |
|
|
406 |
|
spessore[0] = (SiCross/10.) * rhoSi; //spessore silicio in g/cm2 |
407 |
|
|
408 |
|
/*tungsteno*/ |
409 |
|
|
410 |
|
//rapporto tra rilasci energetici nei due materiali |
411 |
|
Float_t WCross = sqrt((yW*yW) + (ytgx*ytgx) + (ytgy*ytgy));//mm* rapporto lunghezze rad |
412 |
|
//gcm2W = WCross/10. * rhoW; |
413 |
|
|
414 |
|
// (g/cm2W)/(g/cm2Si) |
415 |
|
spessore[3] = (WCross/10.) * rhoW; |
416 |
|
Float_t a=(WCross/SiCross)*(rhoW/rhoSi)*(1.145/1.664); //(gcm2W)/(SiCross/10. * rhoSi)* (1.145/1.664); |
417 |
|
spessore[1] = a; |
418 |
|
//riscala mip allo spessore attraversato |
419 |
|
spessore[2] = MIP*(SiCross/ySi); |
420 |
|
|
421 |
|
} else { |
422 |
|
tz1=(Int_t)lpz; |
423 |
|
ti1=(Int_t)lpisotope; |
424 |
|
enet = lpetot; |
425 |
|
// Enetrack(&tz, &qtetot, &estremi[0][0],&estremi[1][0], dEpianimean);//calcola rilascio energetico sui piani da media troncata |
426 |
|
|
427 |
|
} |
428 |
|
Enetrack(&tz1, &ti1, &enet, &estremi[0][0],&estremi[1][0], dEpianiloop);//calcola rilascio energetico sui piani da loop |
429 |
|
|
430 |
Float_t sp= spessore[0]*spessore[1]; |
Float_t sp= spessore[0]*spessore[1]; |
431 |
for(Int_t i=0;i<44;i++)Depth[i]=i*sp; |
for(Int_t i=0;i<44;i++)Depth[i]=i*sp; |
478 |
// tc->cd(2); |
// tc->cd(2); |
479 |
tc->cd(); |
tc->cd(); |
480 |
// |
// |
481 |
for(Int_t i=0;i<=estremi[1][0];i++)th3->Fill(Depth[i],dEpianiloop[i]); |
for(Int_t i=0;i<=estremi[1][0];i++){ |
482 |
|
th3->Fill(Depth[i],dEpianiloop[i]); |
483 |
|
// printf(" i %i Depth %f depianiloop %f \n",i,Depth[i],dEpianiloop[i]); |
484 |
|
} |
485 |
th3->Draw(); |
th3->Draw(); |
486 |
th2->Draw("same"); |
th2->Draw("same"); |
487 |
|
|
498 |
|
|
499 |
void CaloBragg::LoadParam(){ |
void CaloBragg::LoadParam(){ |
500 |
|
|
501 |
// |
// elem[Z-1][isotop] 0 is the most common one |
502 |
elem[0] = 1.00794; //H 1 |
// |
503 |
elem[1] = 4.0026; //He 2 |
|
504 |
elem[2] = 6.941; //Li 3 |
elem[0][0] = 1.00782; //H 1 |
505 |
elem[3] = 9.012182;//Be 4 |
elem[0][1] = 2.01410; // 2H (Isotope) |
506 |
elem[4] = 10.811; //B 5 |
elem[0][2] = -1.; |
507 |
elem[5] = 12.0107; //C 6 |
elem[0][3] = -1.; |
508 |
elem[6] = 14.00674;//N 7 |
elem[0][4] = -1.; |
509 |
elem[7] = 15.9994; //O 8 |
elem[0][5] = -1.; |
510 |
elem[8] = 18.9984; //F 9 |
elem[0][6] = -1.; |
511 |
elem[9] = 20.1797; //Ne 10 |
|
512 |
elem[10] = 22.98977;//Na 11 |
elem[1][0] = 4.002602; //He 2 |
513 |
elem[11] = 24.3050; //Mg 12 |
elem[1][1] = 3.016029; // 3He (Isotope) |
514 |
elem[12] = 26.9815; //Al 13 |
elem[1][2] = -1.; |
515 |
elem[13] = 28.0855; //Si 14 |
elem[1][3] = -1.; |
516 |
elem[14] = 30.974; //P 15 |
elem[1][4] = -1.; |
517 |
elem[15] = 32.066; //S 16 |
elem[1][5] = -1.; |
518 |
elem[16] = 35.4527; //Cl 17 |
elem[1][6] = -1.; |
519 |
elem[17] = 39.948; //Ar 18 |
|
520 |
elem[18] = 39.0983; //K 19 |
elem[2][0] = 7.016004; //Li 3 |
521 |
elem[19] = 40.078; //Ca 20 |
elem[2][1] = 6.015123; //6Li (Isotope) |
522 |
elem[20] = 44.95591;//Sc 21 |
elem[2][2] = -1.; |
523 |
elem[21] = 47.867; //Ti 22 |
elem[2][3] = -1.; |
524 |
elem[22] = 50.9415; //V 23 |
elem[2][4] = -1.; |
525 |
elem[23] = 51.9961; //Cr 24 |
elem[2][5] = -1.; |
526 |
elem[24] = 54.938049;//Mn 25 |
elem[2][6] = -1.; |
527 |
elem[25] = 55.845; //Fe 26 |
|
528 |
elem[26] = 58.9332; //Co 27 |
elem[3][0] = 9.012182; //Be 4 |
529 |
elem[27] = 58.6934; //Ni 28 |
elem[3][1] = 10.01353; //10Be (Isotope) (most stable) |
530 |
elem[28] = 63.546; //Cu 29 |
elem[3][2] = -1.; |
531 |
elem[29] = 65.39; //Zn 30 |
elem[3][3] = -1.; |
532 |
elem[30] = 69.723; //Ga 31 |
elem[3][4] = -1.; |
533 |
elem[31] = 72.61; //Ge 32 |
elem[3][5] = -1.; |
534 |
|
elem[3][6] = -1.; |
535 |
|
|
536 |
|
elem[4][0] = 11.0093; //B 5 |
537 |
|
elem[4][1] = 10.01294; //10B (Isotope) |
538 |
|
elem[4][2] = -1.; |
539 |
|
elem[4][3] = -1.; |
540 |
|
elem[4][4] = -1.; |
541 |
|
elem[4][5] = -1.; |
542 |
|
elem[4][5] = -1.; |
543 |
|
|
544 |
|
elem[5][0] = 12.0107; //C 6 |
545 |
|
elem[5][1] = 13.00335; //13C (Isotope) |
546 |
|
elem[5][2] = -1.; |
547 |
|
elem[5][3] = -1.; |
548 |
|
elem[5][4] = -1.; |
549 |
|
elem[5][5] = -1.; |
550 |
|
elem[5][5] = -1.; |
551 |
|
|
552 |
|
elem[6][0] = 14.00674; //N 7 |
553 |
|
elem[6][1] = 15.00011; //15N (Isotope) |
554 |
|
elem[6][2] = -1.; |
555 |
|
elem[6][3] = -1.; |
556 |
|
elem[6][4] = -1.; |
557 |
|
elem[6][5] = -1.; |
558 |
|
elem[6][5] = -1.; |
559 |
|
|
560 |
|
elem[7][0] = 15.99491; //O 8 |
561 |
|
elem[7][1] = 17.99916; //18O (Isotope) |
562 |
|
elem[7][2] = 16.99916; //17O (Isotope) |
563 |
|
elem[7][3] = -1.; |
564 |
|
elem[7][4] = -1.; |
565 |
|
elem[7][5] = -1.; |
566 |
|
elem[7][5] = -1.; |
567 |
|
|
568 |
|
elem[8][0] = 18.99840; //F 9 |
569 |
|
elem[8][1] = -1.; |
570 |
|
elem[8][2] = -1.; |
571 |
|
elem[8][3] = -1.; |
572 |
|
elem[8][4] = -1.; |
573 |
|
elem[8][5] = -1.; |
574 |
|
elem[8][5] = -1.; |
575 |
|
|
576 |
|
elem[9][0] = 19.99244; //Ne 10 |
577 |
|
elem[9][1] = 21.99138; //22Ne (Isotope) |
578 |
|
elem[9][2] = 20.99384; //21Ne 10 |
579 |
|
elem[9][3] = -1.; |
580 |
|
elem[9][4] = -1.; |
581 |
|
elem[9][5] = -1.; |
582 |
|
elem[9][6] = -1.; |
583 |
|
|
584 |
|
elem[10][0] = 22.98977; //Na 11 |
585 |
|
elem[10][1] = 21.99444; //22Na (Isotope) (most stable) |
586 |
|
elem[10][2] = -1.; |
587 |
|
elem[10][3] = -1.; |
588 |
|
elem[10][4] = -1.; |
589 |
|
elem[10][5] = -1.; |
590 |
|
elem[10][6] = -1.; |
591 |
|
|
592 |
|
elem[11][0] = 23.98504; //Mg 12 |
593 |
|
elem[11][1] = 25.98259; //26Mg (Isotope) |
594 |
|
elem[11][2] = 24.98504; //25Mg (Isotope) |
595 |
|
elem[11][3] = -1.; |
596 |
|
elem[11][4] = -1.; |
597 |
|
elem[11][5] = -1.; |
598 |
|
elem[11][6] = -1.; |
599 |
|
|
600 |
|
elem[12][0] = 26.98154; //Al 13 |
601 |
|
elem[12][1] = 25.98489; //26Al (Isotope) (most stable) |
602 |
|
elem[12][2] = -1.; |
603 |
|
elem[12][3] = -1.; |
604 |
|
elem[12][4] = -1.; |
605 |
|
elem[12][5] = -1.; |
606 |
|
elem[12][6] = -1.; |
607 |
|
|
608 |
|
elem[13][0] = 27.97692; //Si 14 |
609 |
|
elem[13][1] = 28.97649; //29Si (Isotope) |
610 |
|
elem[13][2] = 29.97377; //30Si (Isotope) |
611 |
|
elem[13][3] = -1.; |
612 |
|
elem[13][4] = -1.; |
613 |
|
elem[13][5] = -1.; |
614 |
|
elem[13][6] = -1.; |
615 |
|
|
616 |
|
elem[14][0] = 30.97376; //P 15 |
617 |
|
elem[14][1] = -1.; |
618 |
|
elem[14][2] = -1.; |
619 |
|
elem[14][3] = -1.; |
620 |
|
elem[14][4] = -1.; |
621 |
|
elem[14][5] = -1.; |
622 |
|
elem[14][6] = -1.; |
623 |
|
|
624 |
|
elem[15][0] = 31.97207; //S 16 |
625 |
|
elem[15][1] = 33.96787; //34S (Isotope) |
626 |
|
elem[15][2] = 32.97146; //33S (Isotope) |
627 |
|
elem[15][3] = 35.96708; //36S (Isotope) |
628 |
|
elem[15][4] = -1.; |
629 |
|
elem[15][5] = -1.; |
630 |
|
elem[15][6] = -1.; |
631 |
|
|
632 |
|
elem[16][0] = 34.96885; //Cl 17 |
633 |
|
elem[16][1] = 36.96831; //37Cl 17 |
634 |
|
elem[16][2] = 35.96890; //36Cl (Isotope) |
635 |
|
elem[16][3] = -1.; |
636 |
|
elem[16][4] = -1.; |
637 |
|
elem[16][5] = -1.; |
638 |
|
elem[16][6] = -1.; |
639 |
|
|
640 |
|
elem[17][0] = 39.962383; //Ar 18 |
641 |
|
elem[17][1] = 35.967545; //36Ar (Isotope) |
642 |
|
elem[17][2] = 37.962732; //38Ar (Isotope) |
643 |
|
elem[17][3] = 38.964313; //39Ar (Isotope) |
644 |
|
elem[17][4] = -1.; |
645 |
|
elem[17][5] = -1.; |
646 |
|
elem[17][6] = -1.; |
647 |
|
|
648 |
|
elem[18][0] = 38.963707; //K 19 |
649 |
|
elem[18][1] = 40.961825; //41K (Isotope) |
650 |
|
elem[18][2] = 39.963998; //40K (Isotope) |
651 |
|
elem[18][3] = -1.; |
652 |
|
elem[18][4] = -1.; |
653 |
|
elem[18][5] = -1.; |
654 |
|
elem[18][6] = -1.; |
655 |
|
|
656 |
|
elem[19][0] = 39.962590; //Ca 20 |
657 |
|
elem[19][1] = 43.955482; //44Ca (Isotope) |
658 |
|
elem[19][2] = 41.958618; //42Ca (Isotope) |
659 |
|
elem[19][3] = 42.958767; //43Ca (Isotope) |
660 |
|
elem[19][4] = 45.953693; //46Ca (Isotope) |
661 |
|
elem[19][5] = 40.962278; //41Ca (Isotope) |
662 |
|
elem[19][6] = -1.; |
663 |
|
|
664 |
|
elem[20][0] = 44.955912;//Sc 21 |
665 |
|
elem[20][1] = -1.; |
666 |
|
elem[20][2] = -1.; |
667 |
|
elem[20][3] = -1.; |
668 |
|
elem[20][4] = -1.; |
669 |
|
elem[20][5] = -1.; |
670 |
|
elem[20][6] = -1.; |
671 |
|
|
672 |
|
elem[21][0] = 47.947946; //Ti 22 |
673 |
|
elem[21][1] = 45.952632; //46Ti (Isotope) |
674 |
|
elem[21][2] = 46.951763; //47Ti (Isotope) |
675 |
|
elem[21][3] = 48.947870; //49Ti (Isotope) |
676 |
|
elem[21][4] = 49.944791; //50Ti (Isotope) |
677 |
|
elem[21][5] = 43.959690; //44Ti (Isotope) (half life 60y) |
678 |
|
elem[21][6] = -1.; |
679 |
|
|
680 |
|
elem[22][0] = 50.943960; //V 23 |
681 |
|
elem[22][1] = 49.947158; //50V (Isotope) |
682 |
|
elem[22][2] = -1.; |
683 |
|
elem[22][3] = -1.; |
684 |
|
elem[22][4] = -1.; |
685 |
|
elem[22][5] = -1.; |
686 |
|
elem[22][6] = -1.; |
687 |
|
|
688 |
|
elem[23][0] = 51.940507; //Cr 24 |
689 |
|
elem[23][1] = 52.940649; //53Cr (Isotope) |
690 |
|
elem[23][2] = 49.946044; //50Cr (Isotope) |
691 |
|
elem[23][3] = 53.938880; //54Cr (Isotope) |
692 |
|
elem[23][4] = -1.; |
693 |
|
elem[23][5] = -1.; |
694 |
|
elem[23][6] = -1.; |
695 |
|
|
696 |
|
elem[24][0] = 54.938049;//Mn 25 |
697 |
|
elem[24][1] = 52.941290;//53Mn (Isotope) |
698 |
|
elem[24][2] = -1.; |
699 |
|
elem[24][3] = -1.; |
700 |
|
elem[24][4] = -1.; |
701 |
|
elem[24][5] = -1.; |
702 |
|
elem[24][6] = -1.; |
703 |
|
|
704 |
|
elem[25][0] = 55.934937; //Fe 26 |
705 |
|
elem[25][1] = 53.939610; //54Fe (Isotope) |
706 |
|
elem[25][2] = 56.935394; //57Fe (Isotope) |
707 |
|
elem[25][3] = 57.933276; //58Fe (Isotope) |
708 |
|
elem[25][4] = 59.934072; //58Fe (Isotope) |
709 |
|
|
710 |
|
elem[26][0] = 58.933195; //Co 27 |
711 |
|
elem[26][1] = 59.933817; //60Co (Isotope) |
712 |
|
elem[26][2] = -1.; |
713 |
|
elem[26][3] = -1.; |
714 |
|
elem[26][4] = -1.; |
715 |
|
elem[26][5] = -1.; |
716 |
|
elem[26][6] = -1.; |
717 |
|
|
718 |
|
|
719 |
|
elem[27][0] = 57.935343; //Ni 28 |
720 |
|
elem[27][1] = 61.928345; //62Ni (Isotope) |
721 |
|
elem[27][2] = 59.930786; //60Ni (Isotope) |
722 |
|
elem[27][3] = 60.931056; //61Ni (Isotope) |
723 |
|
elem[27][4] = 63.927966; //64Ni (Isotope) |
724 |
|
elem[27][5] = 58.934346; //59Ni (Isotope) |
725 |
|
elem[27][6] = -1.; |
726 |
|
|
727 |
|
elem[28][0] = 62.929597; //Cu 29 |
728 |
|
elem[28][1] = 64.927789; //65Cu (Isotope) |
729 |
|
elem[28][2] = -1.; |
730 |
|
elem[28][3] = -1.; |
731 |
|
elem[28][4] = -1.; |
732 |
|
elem[28][5] = -1.; |
733 |
|
elem[28][6] = -1.; |
734 |
|
|
735 |
|
elem[29][0] = 63.929142; //Zn 30 |
736 |
|
elem[29][1] = 65.926033; //66Zn (Isotope) |
737 |
|
elem[29][2] = 67.924844; //68Zn (Isotope) |
738 |
|
elem[29][3] = 66.927127; //67Zn (Isotope) |
739 |
|
elem[29][4] = 69.925319; //70Zn (Isotope) |
740 |
|
elem[29][5] = -1.; |
741 |
|
elem[29][6] = -1.; |
742 |
|
|
743 |
|
elem[30][0] = 68.925573; //Ga 31 |
744 |
|
elem[30][1] = 70.924701; //71Ga (Isotope) |
745 |
|
elem[30][2] = -1.; |
746 |
|
elem[30][3] = -1.; |
747 |
|
elem[30][4] = -1.; |
748 |
|
elem[30][5] = -1.; |
749 |
|
elem[30][6] = -1.; |
750 |
|
|
751 |
|
elem[31][0] = 73.921177; //Ge 32 |
752 |
|
elem[31][1] = 71.922075; //72Ge (Isotope) |
753 |
|
elem[31][2] = 69.924247; //70Ge (Isotope) |
754 |
|
elem[31][3] = 75.921403; //76Ge (Isotope) |
755 |
|
elem[31][4] = 73.923459; //73Ge (Isotope) |
756 |
|
elem[31][5] = -1.; |
757 |
|
elem[31][6] = -1.; |
758 |
|
|
759 |
|
|
760 |
//parametri calorimetro |
//parametri calorimetro |
778 |
pigr = 3.1415; |
pigr = 3.1415; |
779 |
Na = 6.02e-23; |
Na = 6.02e-23; |
780 |
ZA = 0.49; /*Z/A per Si*/ |
ZA = 0.49; /*Z/A per Si*/ |
781 |
ISi =182e-06; /*MeV*/ |
// ISi =182e-06; /*MeV*/ |
782 |
|
ISi = 171e-06; /*MeV*/ |
783 |
|
IW = 735e-06; /*MeV*/ |
784 |
|
// ISi =0.0001059994; /*GeV!!*/ no era giusto!! |
785 |
Me = 0.511; /* MeV*/ |
Me = 0.511; /* MeV*/ |
786 |
MassP = 931.27;/*MeV*/ |
MassP = 931.27;/*MeV*/ |
787 |
r2 = 7.95e-26; /*ro*ro in cm */ |
r2 = 7.95e-26; /*ro*ro in cm */ |
816 |
//lunghezza effettiva di silicio attraversata (mm) |
//lunghezza effettiva di silicio attraversata (mm) |
817 |
SiCross = sqrt(SQ(ySi) + SQ(ytgx) + SQ(ytgy)); |
SiCross = sqrt(SQ(ySi) + SQ(ytgx) + SQ(ytgy)); |
818 |
|
|
819 |
spessore[0] = SiCross/10. * rhoSi; //spessore silicio in g/cm2 |
spessore[0] = (SiCross/10.) * rhoSi; //spessore silicio in g/cm2 |
820 |
|
|
821 |
/*tungsteno*/ |
/*tungsteno*/ |
822 |
ytgx = yW * L2->GetCaloLevel2()->tanx[0]; |
ytgx = yW * L2->GetCaloLevel2()->tanx[0]; |
826 |
WCross = sqrt((yW*yW) + (ytgx*ytgx) + (ytgy*ytgy));//mm* rapporto lunghezze rad |
WCross = sqrt((yW*yW) + (ytgx*ytgx) + (ytgy*ytgy));//mm* rapporto lunghezze rad |
827 |
//gcm2W = WCross/10. * rhoW; |
//gcm2W = WCross/10. * rhoW; |
828 |
|
|
|
a=(WCross/SiCross)*(rhoW/rhoSi)*(1.145/1.664); //(gcm2W)/(SiCross/10. * rhoSi)* (1.145/1.664); |
|
|
|
|
829 |
// (g/cm2W)/(g/cm2Si) |
// (g/cm2W)/(g/cm2Si) |
830 |
|
spessore[3] = (WCross/10.) * rhoW; |
831 |
|
a=(WCross/SiCross)*(rhoW/rhoSi)*(1.145/1.664); //(gcm2W)/(SiCross/10. * rhoSi)* (1.145/1.664); |
832 |
spessore[1] = a; |
spessore[1] = a; |
|
|
|
833 |
//riscala mip allo spessore attraversato |
//riscala mip allo spessore attraversato |
834 |
spessore[2] = MIP*(SiCross/ySi); |
spessore[2] = MIP*(SiCross/ySi); |
|
|
|
835 |
};//end conversione |
};//end conversione |
836 |
|
|
837 |
|
|
838 |
|
|
839 |
|
|
840 |
|
|
841 |
void CaloBragg::BetheBloch(Float_t *x, Float_t *z, Float_t *Mass, Float_t *gam, Float_t *Bet, Float_t *out){ |
void CaloBragg::BetheBloch(Float_t *x, Float_t *z, Float_t *Mass, Float_t *gam, Float_t *Bet, Float_t *out, Float_t II){ |
842 |
|
|
843 |
//rilascio energetico con bethe bloch con correzioni |
//rilascio energetico con bethe bloch con correzioni |
844 |
//in: x: g/cm2 |
//in: x: g/cm2 |
856 |
Float_t lg =0.; |
Float_t lg =0.; |
857 |
Float_t Energia=0.; |
Float_t Energia=0.; |
858 |
Float_t C=0.; |
Float_t C=0.; |
859 |
|
Float_t INo = ISi; |
860 |
|
|
861 |
|
if ( usenewBB ) INo = II; |
862 |
|
|
863 |
eta = (*gam)*(*Bet); |
eta = (*gam)*(*Bet); |
864 |
|
|
865 |
//Bet=3/gam; SQ(*gam) * SQ(*Bet) |
//Bet=3/gam; SQ(*gam) * SQ(*Bet) |
866 |
Wmax = 2.* Me * SQ(eta) / (1. + 2.*(*gam)*Me/(*Mass) + SQ(Me)/SQ(*Mass)); |
Wmax = 2.* Me * SQ(eta) / (1. + 2.*(*gam)*Me/(*Mass) + SQ(Me)/SQ(*Mass)); |
867 |
|
|
868 |
lg = 2.* Me * SQ(eta) * Wmax / SQ(ISi); |
lg = 2.* Me * SQ(eta) * Wmax / SQ(INo); |
869 |
// Energia = x* 2 * pigr * Na * r2 * Me * rhoSi *ZA* SQ(z)/SQ(Bet) * lg; |
// Energia = x* 2 * pigr * Na * r2 * Me * rhoSi *ZA* SQ(z)/SQ(Bet) * lg; |
870 |
C=(0.42237*pow(eta,-2.) + 0.0304*pow(eta,-4.) - 0.00038*pow(eta,-6.))*pow(10.,-6.)* pow(ISi,2.) + |
C=(0.42237*pow(eta,-2.) + 0.0304*pow(eta,-4.) - 0.00038*pow(eta,-6.))*pow(10.,-6.)* pow(INo,2.) + |
871 |
(3.858*pow(eta,-2.) - 0.1668*pow(eta,-4.) + 0.00158*pow(eta,-6.))*pow(10.,-9.)*pow(ISi,3.); |
(3.858*pow(eta,-2.) - 0.1668*pow(eta,-4.) + 0.00158*pow(eta,-6.))*pow(10.,-9.)*pow(INo,3.); |
872 |
|
|
873 |
if(eta <= 0.13) C= C * log(eta/0.0653)/log(0.13/0.0653); |
if(eta <= 0.13) C= C * log(eta/0.0653)/log(0.13/0.0653); |
874 |
|
|
881 |
|
|
882 |
|
|
883 |
|
|
884 |
void CaloBragg::ELOSS(Float_t *dx, Int_t *Z, Float_t *Etot, Float_t *out){ |
void CaloBragg::ELOSS(Float_t *dx, Int_t *Z, Int_t *isotope, Float_t *Etot, Float_t *out, Float_t II){ |
885 |
|
|
886 |
/*perdita di energia per ioni pesanti (come da routine geant)*/ |
/*perdita di energia per ioni pesanti (come da routine geant)*/ |
887 |
// in : dx => spessore g/cm2 |
// in : dx => spessore g/cm2 |
898 |
Float_t dEP=0.; |
Float_t dEP=0.; |
899 |
|
|
900 |
// gamma // Mass = A * MassP; /*in Mev/c2*/ |
// gamma // Mass = A * MassP; /*in Mev/c2*/ |
901 |
gam = (*Etot)/(elem[*Z-1]*MassP); // E = gamma M c2 |
gam = (*Etot)/(elem[*Z-1][*isotope]*MassP); // E = gamma M c2 |
902 |
|
|
903 |
|
|
904 |
Bet = sqrt((SQ(gam) -1.)/SQ(gam)); |
Bet = sqrt((SQ(gam) -1.)/SQ(gam)); |
905 |
|
|
906 |
v= 121.4139*(Bet/pow((*Z),(2./3.))) + 0.0378*sin(190.7165*(Bet/pow((*Z),(2./3.)))); |
// v= 121.4139*(Bet/pow((*Z),(2./3.))) + 0.0378*sin(190.7165*(Bet/pow((*Z),(2./3.)))); |
907 |
|
v= 121.4139*(Bet*pow((*Z),(2./3.))) + 0.0378*sin(190.7165*(Bet*pow((*Z),(2./3.)))); // EMI AAAAGGH!! |
908 |
|
|
909 |
//carica effettiva |
//carica effettiva |
910 |
Q= (*Z)*(1- (1.034 - 0.1777*exp(-0.08114*(*Z)))*exp(-v)); |
Q= (*Z)*(1- (1.034 - 0.1777*exp(-0.08114*(*Z)))*exp(-v)); |
911 |
|
|
912 |
//perdita energia per un protone |
//perdita energia per un protone |
913 |
Float_t protone =1.; |
Float_t protone =1.; |
914 |
Float_t Mass=(elem[*Z-1]*MassP); |
// Float_t Mass=(elem[*Z-1]*MassP); //EMI |
915 |
BetheBloch(dx, &protone, &Mass, &gam, &Bet, &dEP);//ene non serve..go gamma.. BetheBloch(dx, 1, MassP, Etot/A, gam, Bet, &dEP); |
// BetheBloch(dx, &protone, &Mass, &gam, &Bet, &dEP);//ene non serve..go gamma.. BetheBloch(dx, 1, MassP, Etot/A, gam, Bet, &dEP); |
916 |
|
|
917 |
|
BetheBloch(dx, &protone, &MassP, &gam, &Bet, &dEP, II);//ene non serve..go gamma.. BetheBloch(dx, 1, MassP, Etot/A, gam, Bet, &dEP); //EMI |
918 |
|
|
919 |
*out= (SQ(Q)*(dEP));//*dx; |
*out= (SQ(Q)*(dEP));//*dx; |
920 |
|
|
924 |
|
|
925 |
|
|
926 |
|
|
927 |
void CaloBragg::Enetrack(Int_t* Z, Float_t* E0, Float_t* primo,Float_t* ultimo, Float_t out[]){ |
void CaloBragg::Enetrack(Int_t* Z, Int_t* isotope, Float_t* E0, Float_t* primo,Float_t* ultimo, Float_t out[]){ |
928 |
|
|
929 |
//calcola energia rilasciata sulla traccia (usa ELOSS) |
//calcola energia rilasciata sulla traccia (usa ELOSS) |
930 |
// in : Z =>carica |
// in : Z =>carica |
942 |
//azzero energia rilasciata sui piani |
//azzero energia rilasciata sui piani |
943 |
memset(out, 0, 2*NPLA*sizeof(Float_t)); |
memset(out, 0, 2*NPLA*sizeof(Float_t)); |
944 |
|
|
945 |
Float_t Massa = (elem[(*Z)-1] * MassP); |
Float_t Massa = (elem[(*Z)-1][*isotope] * MassP); |
946 |
|
|
947 |
for( Int_t ipla=((int)(*primo)); ipla<= ((int)(*ultimo)); ipla++){ |
for( Int_t ipla=((int)(*primo)); ipla<= ((int)(*ultimo)); ipla++){ |
948 |
dE=0.; |
dE=0.; |
949 |
//spessore silicio corretto x inclinazione, z, energia, out:rilascio |
//spessore silicio corretto x inclinazione, z, energia, out:rilascio |
950 |
ELOSS(&spessore[0], Z, &Ezero, &dE);//spessore in g/cm2!! |
ELOSS(&spessore[0], Z , isotope , &Ezero, &dE, ISi);//spessore in g/cm2!! |
951 |
if((Ezero-dE) <= Massa){//se l'energia depositata e' maggiore dell'energia della perticella stop |
|
952 |
|
if(dE!=dE) return; //controlla che non sia un NaN |
953 |
|
|
954 |
|
if((Ezero-dE) <= Massa){//se l'energia depositata e' maggiore dell'energia della perticella stop |
955 |
out[ipla] = Ezero - Massa; //MeV |
out[ipla] = Ezero - Massa; //MeV |
956 |
return; |
return; |
957 |
|
|
958 |
}else{ |
}else{ |
959 |
out[ipla] = dE; //MeV |
out[ipla] = dE; //MeV |
960 |
Ezero = Ezero - dE;//energia residua |
Ezero = Ezero - dE;//energia residua |
961 |
|
if ( debug ) printf(" zompa %i out %f dE %f ezero %f \n",ipla,out[ipla],dE,Ezero); |
962 |
}; |
}; |
963 |
//se sono su un piano Y (tutti i pari) dopo c'e' il tungsteno |
//se sono su un piano Y (tutti i pari) dopo c'e' il tungsteno |
964 |
if(ipla%2 == 0){ |
if(ipla%2 == 0){ |
965 |
/*tungsteno*/ |
/*tungsteno*/ |
966 |
dE=0.; |
dE=0.; |
967 |
Float_t sp= spessore[0]*spessore[1]; //((gcm2Si)*(WinSi))//spessore attraversato in g/cm2 |
Float_t sp = 0.; |
968 |
ELOSS(&sp, Z, &Ezero, &dE); |
Float_t II = ISi; |
969 |
|
if ( usenewBB ){ |
970 |
|
sp = spessore[3]; |
971 |
|
II = IW; |
972 |
|
} else { |
973 |
|
sp = spessore[0]*spessore[1]; //((gcm2Si)*(WinSi))//spessore attraversato in g/cm2 |
974 |
|
} |
975 |
|
// printf(" sp %f II %f \n",sp,II); |
976 |
|
ELOSS(&sp, Z, isotope , &Ezero, &dE,II); |
977 |
if((Ezero-dE) <= Massa){//se l'energia depositata e' maggiore dell'energia della perticella stop |
if((Ezero-dE) <= Massa){//se l'energia depositata e' maggiore dell'energia della perticella stop |
978 |
return; |
return; |
979 |
}else{ |
}else{ |
1003 |
Float_t badplane=0.; |
Float_t badplane=0.; |
1004 |
Float_t badplanetot=0.; |
Float_t badplanetot=0.; |
1005 |
Float_t w,wi; |
Float_t w,wi; |
1006 |
|
// |
1007 |
for(Int_t ipla=0; ipla<2*NPLA; ipla++){ |
if ( newchi2 ){ |
1008 |
//tutti i piani attraversati dalla traiettoria |
ndf = 0; |
1009 |
if(calorimetro[ipla][0] != -1.){ // |
sum = 0.; |
1010 |
w=0.; //normalizzazione; |
for( Int_t ipla=((int)(estremi[0][0])); ipla<= ((int)(estremi[1][0])); ipla++){ |
1011 |
wi=1.;//peso |
sum += pow((dE[ipla] - (calorimetro[ipla][1] * spessore[2]))/(0.05*dE[ipla]),2.); |
1012 |
|
// printf(" quiqui: dE %f calor %f spessore[2] %f \n",dE[ipla],spessore[2]*calorimetro[ipla][1],spessore[2]); |
1013 |
|
ndf++; |
1014 |
|
} |
1015 |
|
ndf -= 2; |
1016 |
|
if ( ndf > 0 ) sum /= (float)ndf; |
1017 |
|
out[0] = sum; |
1018 |
|
out[1] = 0.; |
1019 |
|
out[2] = (int)(estremi[1][0])-ndf; |
1020 |
|
// printf(" sum %f ndf %i \n ",sum,ndf); |
1021 |
|
} else { |
1022 |
|
for(Int_t ipla=0; ipla<2*NPLA; ipla++){ |
1023 |
|
//tutti i piani attraversati dalla traiettoria |
1024 |
|
if(calorimetro[ipla][0] != -1.){ // |
1025 |
|
w=0.; //normalizzazione; |
1026 |
|
wi=1.;//peso |
1027 |
|
|
1028 |
//tolgo piani attraversati dalla traccia ma precedenti il piano individuato come ingresso |
//tolgo piani attraversati dalla traccia ma precedenti il piano individuato come ingresso |
1029 |
if (ipla<estremi[0][0]) wi=0.; |
if (ipla<estremi[0][0]) wi=0.; |
1030 |
|
|
1031 |
//tolgo piani attraversati da traccia ma successivi all'ultimo se sono diversi da 0 |
//tolgo piani attraversati da traccia ma successivi all'ultimo se sono diversi da 0 |
1032 |
//if((ipla>estremi[1][0]) && (calorimetro[ipla][1] >0.) ) wi=0.; |
//if((ipla>estremi[1][0]) && (calorimetro[ipla][1] >0.) ) wi=0.; |
1033 |
if((ipla>estremi[1][0])) wi=0.; |
if((ipla>estremi[1][0])) wi=0.; |
1034 |
|
|
1035 |
//normalizzazione |
//normalizzazione |
1036 |
if (calorimetro[ipla][1] != 0.) w=1./(calorimetro[ipla][1]* MIP); // |
if (calorimetro[ipla][1] != 0.) w=1./(calorimetro[ipla][1]* MIP); // |
1037 |
|
|
1038 |
//tolgo piani con rilasci inferiori al 30% del precedente |
//tolgo piani con rilasci inferiori al 30% del precedente |
1039 |
if(calorimetro[ipla][1] < (0.7*PianoPrecedente)){ // cosi' i piani senza rilascio non vengono considerati nel calcolo del chi2 |
if(calorimetro[ipla][1] < (0.7*PianoPrecedente)){ // cosi' i piani senza rilascio non vengono considerati nel calcolo del chi2 |
1040 |
wi=0.; |
wi=0.; |
1041 |
//se sono piani intermedi (non si e' fermta) li considero non buoni |
//se sono piani intermedi (non si e' fermta) li considero non buoni |
1042 |
if( (ipla <= estremi[1][0]) && (calorimetro[ipla][1] !=0.)){// |
if( (ipla <= estremi[1][0]) && (calorimetro[ipla][1] !=0.)){// |
1043 |
badplane+=1.; |
badplane+=1.; |
1044 |
badplanetot+=1.; |
badplanetot+=1.; |
1045 |
}; |
}; |
1046 |
|
}; |
1047 |
|
|
1048 |
|
//meno peso ai piani con rilasci maggiori di 1000 MIP |
1049 |
|
// if(calorimetro[ipla][1] > 1000) wi=0.5; |
1050 |
|
if(calorimetro[ipla][1] > 1200.) wi=0.5; |
1051 |
|
if(debug) printf("chiquadro start \n "); |
1052 |
|
Float_t arg = w*wi*(dE[ipla] - (calorimetro[ipla][1] * MIP)); |
1053 |
|
|
1054 |
|
sum += SQ(arg); // w*wi*(dEpiani[p][v]-(eplane[p][v]*MIP))));//( dEpiani[p][v] - (eplane[p][v]*MIP)); |
1055 |
|
if(debug){ |
1056 |
|
printf("dedx calcolata %f e reale %f \n",dE[ipla],(calorimetro[ipla][1] * MIP)); |
1057 |
|
} |
1058 |
|
//se trovo piano non buono (tolto quindi wi=0) non modifico il piano precedente |
1059 |
|
if(wi != 0.){// |
1060 |
|
PianoPrecedente= calorimetro[ipla][1];//tengo piano precedente |
1061 |
|
badplane = 0.;//azzero contatore piani scartati consecutivi |
1062 |
|
}; |
1063 |
}; |
}; |
|
|
|
|
//meno peso ai piani con rilasci maggiori di 1000 MIP |
|
|
// if(calorimetro[ipla][1] > 1000) wi=0.5; |
|
|
if(calorimetro[ipla][1] > 1200.) wi=0.5; |
|
|
|
|
|
Float_t arg = w*wi*(dE[ipla] - (calorimetro[ipla][1] * MIP)); |
|
|
|
|
|
sum += SQ(arg); // w*wi*(dEpiani[p][v]-(eplane[p][v]*MIP))));//( dEpiani[p][v] - (eplane[p][v]*MIP)); |
|
|
if(debug){ |
|
|
printf("dedx calcolata %f e reale %f \n",dE[ipla],(calorimetro[ipla][1] * MIP)); |
|
|
} |
|
|
//se trovo piano non buono (tolto quindi wi=0) non modifico il piano precedente |
|
|
if(wi != 0.){// |
|
|
PianoPrecedente= calorimetro[ipla][1];//tengo piano precedente |
|
|
badplane = 0.;//azzero contatore piani scartati consecutivi |
|
|
}; |
|
|
}; |
|
1064 |
|
|
1065 |
//da Emi |
//da Emi |
1066 |
if(badplane > 2){ |
if(badplane > 2){ |
1067 |
// printf(" AAAAAAAAAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG\n"); |
// printf(" AAAAAAAAAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG\n"); |
1068 |
out[1] =79.; |
out[1] =79.; |
1069 |
break; |
break; |
1070 |
}; |
}; |
|
|
|
|
};//fine loop piani |
|
|
//chi2,frammentato,pskip |
|
|
out[0]=sum; |
|
|
out[2]=badplanetot; |
|
1071 |
|
|
1072 |
|
};//fine loop piani |
1073 |
|
//chi2,frammentato,pskip |
1074 |
|
out[0]=sum; |
1075 |
|
out[2]=badplanetot; |
1076 |
|
} |
1077 |
};//end chiquadro |
};//end chiquadro |
1078 |
|
|
1079 |
|
|
1089 |
//out: array[4]=> chi2,Zbest,Ebest,piani saltati nel chi2 |
//out: array[4]=> chi2,Zbest,Ebest,piani saltati nel chi2 |
1090 |
// |
// |
1091 |
|
|
1092 |
|
//printf("entrato"); |
|
Float_t dEplan[2*NPLA];//energia rilasciata calcolata |
|
1093 |
memset(dEplan,0,2*NPLA*sizeof(Float_t)); |
memset(dEplan,0,2*NPLA*sizeof(Float_t)); |
1094 |
|
|
1095 |
Int_t Z = 0;// z iniziale |
Int_t Z = 0;// z iniziale |
1096 |
|
|
1097 |
|
Int_t isotope=0; |
1098 |
|
|
1099 |
Float_t Massa = 0.; |
Float_t Massa = 0.; |
1100 |
|
|
1103 |
Float_t energia =0.;//energia del loop |
Float_t energia =0.;//energia del loop |
1104 |
|
|
1105 |
Float_t chi2[3] = {0,0,0};//out dal calcolo chi2: chi2, piani consecutivi saltati, piani totali saltati |
Float_t chi2[3] = {0,0,0};//out dal calcolo chi2: chi2, piani consecutivi saltati, piani totali saltati |
1106 |
|
|
1107 |
|
Int_t zmin = (int)Zstart; |
1108 |
Int_t max=32;//max z di cui so la massa :P |
Int_t max=32;//max z di cui so la massa :P |
1109 |
if((Zlimite)<=31) max=(int)(Zlimite) + 1; |
if((Zlimite)<=31) max=(int)(Zlimite) + 1; |
1110 |
|
|
1111 |
|
if(debug) printf("loopze inizio max %d \n",max); |
1112 |
|
if ( fzeta > 0. ){ |
1113 |
|
zmin = fzeta; |
1114 |
|
max = fzeta+1; |
1115 |
|
} |
1116 |
|
|
1117 |
Int_t colmax=32; |
Int_t colmax=32; |
1118 |
Int_t rowmax=3000; |
Int_t rowmax=3000; |
1119 |
|
Int_t isomax=7; |
1120 |
|
|
1121 |
Float_t matrixchi2[colmax][rowmax][3]; |
Float_t matrixchi2[colmax][isomax][rowmax][3]; |
1122 |
memset(matrixchi2, 0, colmax*rowmax*3*sizeof(Float_t)); |
memset(matrixchi2, 0, colmax*isomax*rowmax*3*sizeof(Float_t)); |
1123 |
|
|
1124 |
Int_t imin = 1-nostep/2; |
Int_t imin = 1-nostep/2; |
1125 |
Int_t imax = nostep/2; |
Int_t imax = nostep/2; |
1126 |
|
|
1127 |
//loop elementi |
//loop elementi |
1128 |
for(Int_t inucl=(int)(Zstart); inucl<max; inucl++){ |
for(Int_t inucl=zmin; inucl<max; inucl++){ |
1129 |
|
|
1130 |
Z= inucl; |
Z= inucl; |
1131 |
|
|
1132 |
Massa = elem[inucl-1]*MassP; |
//loop isotopi |
1133 |
|
while ( elem[inucl-1][isotope] > 0. ){ |
1134 |
|
Massa = elem[inucl-1][isotope]*MassP; |
1135 |
|
|
1136 |
//loop energia |
//loop energia |
1137 |
Int_t iene2 = 0; |
Int_t iene2 = -1; |
1138 |
|
|
1139 |
// for(Int_t iene= 0; iene<1000; iene++){// da non cambiare in base a Stepint altrimenti cambia la matrice bestchi2!!!cosi' non raggiungo mai integrale!!!!! mettere <=?? |
// for(Int_t iene= 0; iene<1000; iene++){// da non cambiare in base a Stepint altrimenti cambia la matrice bestchi2!!!cosi' non raggiungo mai integrale!!!!! mettere <=?? |
|
for(Int_t iene= imin; iene<imax; iene++){// da non cambiare in base a Stepint altrimenti cambia la matrice bestchi2!!!cosi' non raggiungo mai integrale!!!!! mettere <=?? |
|
|
|
|
|
iene2++; |
|
|
energia= Massa + (E0)+ iene*Stepint;//gli do un'energia totale (momento) massa+energia cinetica, aumentando la cinetica.. |
|
1140 |
|
|
1141 |
Enetrack(&Z, &energia, &estremi[0][0],&estremi[1][0], dEplan);//calcola rilascio energetico sui piani |
for(Int_t iene= imin; iene<imax; iene++){// da non cambiare in base a Stepint altrimenti cambia la matrice bestchi2!!!cosi' non raggiungo mai integrale!!!!! mettere <=?? |
1142 |
|
iene2++; |
1143 |
//calcolo chi2 |
energia= Massa + (E0)+ iene*Stepint;//gli do un'energia totale (momento) massa+energia cinetica, aumentando la cinetica.. |
1144 |
chiquadro(dEplan,chi2); |
|
1145 |
|
|
1146 |
|
if( fene > 0. ) energia=fene; //forza l'energia |
1147 |
|
if (debug) printf("loopze energia %f, z %d, isotopo %d ,iene %d\n",energia,Z,isotope,iene); |
1148 |
|
// printf(" energia %f , forzata %f \n",energia,fene); |
1149 |
|
Enetrack(&Z, &isotope, &energia, &estremi[0][0],&estremi[1][0], dEplan);//calcola rilascio energetico sui piani |
1150 |
|
|
1151 |
if( (chi2[1] != 79.) ){//salto quelli che frammentano |
chiquadro(dEplan,chi2); //calcolo chi2 |
1152 |
matrixchi2[inucl][iene2][0]=chi2[0];//valore chi2 per questo z a questa energia |
if (debug) printf("loopze chi %f \n",chi2[0]); |
1153 |
matrixchi2[inucl][iene2][1]=energia;//energia per questo chi2 |
if(debug && TMath::Finite(chi2[0])==1 && (TMath::IsNaN(chi2[0])!=1) ) printf("loopze fin mat %f \n",chi2[0]); |
1154 |
matrixchi2[inucl][iene2][2]=chi2[2];//piani saltati nel chi2 |
// printf(" last deplan from: Z = %i iene %i energia %f chi2 %f \n",inucl,iene,energia,chi2[0]); |
1155 |
} else { |
if( (chi2[1] != 79.) ){//salto quelli che frammentano |
1156 |
matrixchi2[inucl][iene2][0]=1000.;//valore chi2 per questo z a questa energia |
matrixchi2[inucl][isotope][iene2][0]=chi2[0];//valore chi2 per questo z a questa energia |
1157 |
matrixchi2[inucl][iene2][1]=1000.;//energia per questo chi2 |
matrixchi2[inucl][isotope][iene2][1]=energia;//energia per questo chi2 |
1158 |
matrixchi2[inucl][iene2][2]=1000.;//piani saltati nel chi2 |
matrixchi2[inucl][isotope][iene2][2]=chi2[2];//piani saltati nel chi2 |
1159 |
break; |
if( fene > 0. ) break; |
1160 |
|
} else { |
1161 |
|
matrixchi2[inucl][isotope][iene2][0]=1000.;//valore chi2 per questo z a questa energia |
1162 |
|
matrixchi2[inucl][isotope][iene2][1]=1000.;//energia per questo chi2 |
1163 |
|
matrixchi2[inucl][isotope][iene2][2]=1000.;//piani saltati nel chi2 |
1164 |
|
break; |
1165 |
} |
} |
|
}//fine loop energia |
|
1166 |
|
|
1167 |
|
}//fine loop energia |
1168 |
|
|
1169 |
};//fine loop z |
isotope++; //incremento il contatore isotopi |
1170 |
|
}//fine loop isotopi |
1171 |
|
isotope=0; //riazzero il contatore isotopi |
1172 |
|
|
1173 |
|
}//fine loop z |
1174 |
|
|
1175 |
|
isotope=0;//non dovrebbe servire |
1176 |
|
|
1177 |
//Emi |
//Emi |
1178 |
for (Int_t nu=(int)(Zstart); nu<max; nu++){ |
for (Int_t nu=zmin; nu<max; nu++){ |
1179 |
for (Int_t en=0; en<nostep; en++){ |
while(elem[nu-1][isotope]> 0.){ |
1180 |
if((matrixchi2[nu][en][0]<bestchi2[0]) && (matrixchi2[nu][en][0] >0.)){ |
for (Int_t en=0; en<nostep; en++){ |
1181 |
bestchi2[0]= matrixchi2[nu][en][0];// chi2 |
if((matrixchi2[nu][isotope][en][0]<bestchi2[0]) && (matrixchi2[nu][isotope][en][0] >0.)){ |
1182 |
bestchi2[1]= (Float_t)nu; // z |
bestchi2[0]= matrixchi2[nu][isotope][en][0];// chi2 |
1183 |
bestchi2[2]= matrixchi2[nu][en][1];//energia; |
bestchi2[1]= (Float_t)nu; // z |
1184 |
bestchi2[3]= matrixchi2[nu][en][2];// totale piani saltati |
bestchi2[2]= matrixchi2[nu][isotope][en][1];//energia; |
1185 |
|
bestchi2[3]= matrixchi2[nu][isotope][en][2];// totale piani saltati |
1186 |
|
bestchi2[4]= (Float_t)isotope; //isotopo |
1187 |
|
} |
1188 |
} |
} |
1189 |
|
isotope++; |
1190 |
} |
} |
1191 |
|
isotope=0; |
1192 |
} |
} |
1193 |
|
|
|
|
|
1194 |
};//endloopze |
};//endloopze |
1195 |
|
|
1196 |
|
|
1313 |
|
|
1314 |
Float_t zmin=1.; |
Float_t zmin=1.; |
1315 |
Float_t zmax=32.; |
Float_t zmax=32.; |
1316 |
Float_t bestchitemp[4] = {0,0,0,0}; |
Float_t bestchitemp[5] = {0,0,0,0,0}; |
1317 |
|
|
1318 |
bestchi2[0]=10000.; |
bestchi2[0]=numeric_limits<Float_t>::max(); |
1319 |
bestchi2[1]=0.; |
bestchi2[1]=0.; |
1320 |
bestchi2[2]=0.; |
bestchi2[2]=0.; |
1321 |
bestchi2[3]=0.; |
bestchi2[3]=0.; |
1322 |
|
bestchi2[4]=0.; |
1323 |
Float_t zero=0.; |
Float_t zero=0.; |
1324 |
//------------primo loop ---------------------- |
//------------primo loop ---------------------- |
1325 |
// energia ezero, zstart zstop |
// energia ezero, zstart zstop |
1326 |
// loopze(Integrale,zero,zmin,zmax); |
// loopze(Integrale,zero,zmin,zmax); |
1327 |
loopze(Integrale*1.2/500.,Integrale/1000.,zmin,zmax,50); |
|
1328 |
|
//-> loopze(Integrale*1.2/500.,Integrale/1000.,zmin,zmax,50); |
1329 |
|
loopze(Integrale*1.2/500.,Integrale/1000.,zmin,zmax,200); |
1330 |
|
|
1331 |
// loopze(Integrale*2.,Integrale/100.,zmin,zmax); |
// loopze(Integrale*2.,Integrale/100.,zmin,zmax); |
1332 |
// printf(" Integrale %f , outene %f \n",Integrale,bestchi2[2]); |
if ( debug) printf("Zdaloop start Integrale %f , outene %f \n",Integrale,bestchi2[2]); |
1333 |
|
|
1334 |
//------------secondo loop ---------------------- |
//------------secondo loop ---------------------- |
1335 |
for(Int_t i=0;i<4;i++) bestchitemp[i]=bestchi2[i]; |
for(Int_t i=0;i<5;i++) bestchitemp[i]=bestchi2[i]; |
1336 |
bestchi2[0] = 10000.; |
bestchi2[0]=numeric_limits<Float_t>::max(); |
1337 |
bestchi2[1] = 0.; |
bestchi2[1] = 0.; |
1338 |
bestchi2[2] = 0.; |
bestchi2[2] = 0.; |
1339 |
bestchi2[3] = 0.;//riazzero |
bestchi2[3] = 0.; |
1340 |
|
bestchi2[4] = 0.;//riazzero |
1341 |
|
|
1342 |
Float_t step = bestchitemp[2];// |
Float_t step = bestchitemp[2];// |
1343 |
zero=0.; // qualsiasi altro valore peggiora le cose |
zero=0.; // qualsiasi altro valore peggiora le cose |
1344 |
// zmin=zmax=bestchitemp[1]; |
// zmin=zmax=bestchitemp[1]; |
1345 |
zmin=bestchitemp[1]-1; |
zmin=bestchitemp[1]-1; |
1346 |
zmax=bestchitemp[1]+1; |
zmax=bestchitemp[1]+1; |
1347 |
// loopze(step,zero,zmin,zmax); // |
//loopze(step,zero,zmin,zmax); // |
1348 |
loopze(step,step/2.,zmin,zmax,200); // |
|
1349 |
|
//-> loopze(step,step/2.,zmin,zmax,200); // |
1350 |
|
loopze(step,step/2.,zmin,zmax,500); // |
1351 |
|
|
1352 |
|
//step = bestchitemp[2];// |
1353 |
|
|
1354 |
|
//loopze(step/2,3*step/4.,zmin,zmax,500); // |
1355 |
|
|
1356 |
|
if ( debug ) printf("Zdaloop Integrale2 %f , outene %f step %f \n",Integrale,bestchi2[2],step); |
1357 |
|
|
|
|
|
1358 |
//chi2,z,Etot,Pskip |
//chi2,z,Etot,Pskip |
1359 |
lpchi2=bestchi2[0]; |
lpchi2=bestchi2[0]; |
1360 |
lpz=bestchi2[1]; |
lpz=bestchi2[1]; |
1361 |
lpetot=bestchi2[2]; |
lpetot=bestchi2[2]; |
1362 |
lppskip=bestchi2[3]; |
lppskip=bestchi2[3]; |
1363 |
|
lpisotope=bestchi2[4]; |
1364 |
};//endZdaloop |
};//endZdaloop |
1365 |
|
|
1366 |
|
|