/[PAMELA software]/calo/flight/CaloBragg/src/CaloBragg.cpp
ViewVC logotype

Contents of /calo/flight/CaloBragg/src/CaloBragg.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.15 - (show annotations) (download)
Wed Nov 23 14:33:32 2011 UTC (13 years, 2 months ago) by biancoa
Branch: MAIN
Changes since 1.14: +29 -9 lines
New methods added

1 #include <CaloBragg.h>
2
3
4 ClassImp(CaloBragg);
5 //--------------------------------------
6 /*
7 * Default constructor
8 */
9 CaloBragg::CaloBragg(){
10 Clear();
11 };
12
13 CaloBragg::CaloBragg(PamLevel2 *l2p){
14 //
15 Clear();
16 LoadParam();
17 //
18 L2 = l2p;
19 //
20 if ( !L2->IsORB() ) printf(" WARNING: OrbitalInfo Tree is needed, the plugin could not work properly without it \n");
21 //
22 OBT = 0;
23 PKT = 0;
24 atime = 0;
25 //
26 debug = false;
27 usetrack = false;
28 usepl18x = false;
29 newchi2 = false;
30 usenewBB = false;
31 fzeta = -1.;
32 //
33 };
34
35 void CaloBragg::Clear(){
36 //
37 ndf = 0;
38 tr = 0;
39 sntr = 0;
40 // qtchi2 = 0.;
41 // qtz = 0.;
42 // qtetot = 0.;
43 // qtpskip = 0.;
44 lpchi2 = 0.;
45 lpz = 0.;
46 lpisotope= 0.;
47 lpetot = 0.;
48 lppskip = 0.;
49
50 memset(calorimetro,0,44*2*sizeof(Float_t));
51 memset(spessore,0,4*sizeof(Float_t));
52 memset(estremi,0,2*2*sizeof(Float_t));
53 Integrale=0.;
54
55 for(Int_t l=0;l<44;l++){
56 calorimetro[l][0]=-1.;
57 }
58
59 };
60
61 void CaloBragg::Print(){
62 //
63
64 if(!debug) Process();
65 //
66 printf("========================================================================\n");
67 printf(" OBT: %u PKT: %u ATIME: %u Track %i Use track %i \n",OBT,PKT,atime,tr,usetrack);
68 printf(" first plane: %f \n", estremi[0][0]);
69 printf(" last plane: %f \n", estremi[1][0]);
70 // printf(" chi 2 from truncated mean: %f \n", qtchi2);
71 // printf(" Z from truncated mean %f: \n", qtz);
72 // printf(" energy from truncated mean %f: \n", qtetot);
73 // printf(" plane not used for truncated mean %f: \n", qtpskip);
74 printf(" chi 2 from loop %f: \n", lpchi2);
75 printf(" Z from loop %f: \n", lpz);
76 printf(" isotope from loop %f: \n", lpisotope);
77 printf(" energy from loop %f: \n", lpetot);
78 printf(" plane not used for loop %f: \n", lppskip);
79 printf(" ndf: %i \n",ndf);
80 printf("========================================================================\n");
81 //
82 };
83
84 void CaloBragg::Delete(){
85 Clear();
86 //delete this;
87 };
88
89
90 void CaloBragg::Process(){
91 Process(-1);
92 };
93
94
95 void CaloBragg::CleanPlanes(Float_t epiano[22][2], Bool_t zpiano[22][2]){
96 // return;
97 Int_t hitplanes = 0;
98 Float_t f5 = 0.;
99 for (Int_t i = 0; i<22; i++){
100 for (Int_t j = 1; j>=0; j--){
101 zpiano[i][j] = false;
102 if ( epiano[i][j] > 0.7 ){
103 if ( hitplanes < 100 ) f5 += epiano[i][j];
104 hitplanes++;
105 };
106 };
107 };
108 Int_t atl5 = TMath::Min(hitplanes,100);
109 atl5 = TMath::Max(atl5,1);
110 Float_t lowlim = 0.85;
111 //Float_t lowlim = 1.;
112 Float_t dedxone = 0.;
113 // Float_t step1 = 0.8*L2->GetCaloLevel2()->qtot/(Float_t)hitplanes;
114 Float_t step1 = 0.8*f5/atl5;
115 // while ( dedxone < step1 ){
116 for (Int_t i = 0; i<22; i++){
117 for (Int_t j = 1; j>=0; j--){
118 if (debug) printf("Acleanplanes: i %i j %i step1 %f dedxone %f epiano[i][j] %f \n",i,j,step1,dedxone,epiano[i][j]);
119 if ( epiano[i][j] >= step1 && dedxone < 0.7 ) dedxone = epiano[i][j];
120 if ( dedxone >= step1 ) break; // new
121 };
122 if ( dedxone >= step1 ) break; // new
123 };
124 // }
125 if ( dedxone < 0.7 ){ // here we could have instead while dedxone == 0. ... perhaps better...
126 for (Int_t i = 0; i<22; i++){
127 for (Int_t j = 1; j>=0; j--){
128 if (debug) printf("Bcleanplanes dedxone < 0.7: i %i j %i step1 %f dedxone %f epiano[i][j] %f \n",i,j,step1,dedxone,epiano[i][j]);
129 if ( epiano[i][j] > 0. && dedxone < 0.7 ) dedxone = epiano[i][j];
130 if ( dedxone >= 0.7 ) break; // new
131 };
132 if ( dedxone >= 0.7 ) break; // new
133 };
134 }
135 //
136 // printf(" dedxone = %f step1 %f \n",dedxone,step1);
137 Bool_t revulsera = false;
138 Bool_t nullius = false;
139 Int_t nulliferus = 0;
140 for (Int_t i = 0; i<22; i++){
141 for (Int_t j = 1; j>=0; j--){
142 if ( epiano[i][j] < dedxone*lowlim ){
143 if ( debug ) printf("Ccleanplanes: %i %i epiano %f limit %f nulliferus %i nullius %i \n",i,j,epiano[i][j],dedxone*lowlim,nulliferus,nullius);
144 // epiano[i][j] = 0.;
145 zpiano[i][j] = true;
146 if ( epiano[i][j] < dedxone*0.05 ) epiano[i][j] = 0.;
147 } else {
148 if ( debug ) printf("Dcleanplanes else: %i %i epiano %f limit %f nulliferus %i nullius %i \n",i,j,epiano[i][j],dedxone*lowlim,nulliferus,nullius);
149 nulliferus = 0;
150 revulsera = true;
151 };
152 // if ( epiano[i][j] < 0.7 && revulsera ) nulliferus++;
153 if ( (zpiano[i][j] || epiano[i][j] < 0.7 ) && revulsera ) nulliferus++;
154 if ( nulliferus > 10 ) nullius = true;
155 // if ( nullius ) epiano[i][j] = 0.;
156 if ( nullius ) zpiano[i][j] = true;
157 };
158 };
159
160 }
161
162
163 void CaloBragg::Process(Int_t ntr){
164 //
165 if ( !L2 ){
166 printf(" ERROR: cannot find PamLevel2 object, use the correct constructor or check your program!\n");
167 printf(" ERROR: CaloBragg variables not filled \n");
168 return;
169 };
170 //
171 Bool_t newentry = false;
172 //
173 if ( L2->IsORB() ){
174 if ( L2->GetOrbitalInfo()->pkt_num != PKT || L2->GetOrbitalInfo()->OBT != OBT || L2->GetOrbitalInfo()->absTime != atime || ntr != sntr ){
175 newentry = true;
176 OBT = L2->GetOrbitalInfo()->OBT;
177 PKT = L2->GetOrbitalInfo()->pkt_num;
178 atime = L2->GetOrbitalInfo()->absTime;
179 sntr = ntr;
180 };
181 } else {
182 newentry = true;
183 };
184 //
185 if ( !newentry ) return;
186 //
187 tr = ntr;
188 //
189 if ( debug ) printf(" Processing event at OBT %u PKT %u time %u \n",OBT,PKT,atime);
190 //
191 Clear();
192
193 //
194 //
195 //
196 Int_t view = 0;
197 Int_t plane = 0;
198 Int_t strip = 0;
199 Float_t mip = 0.;
200 Float_t epiano[22][2];
201 memset(epiano,0,22*2*sizeof(Float_t));
202 for ( Int_t i=0; i<L2->GetCaloLevel1()->istrip; i++ ){
203 //
204 mip = L2->GetCaloLevel1()->DecodeEstrip(i,view,plane,strip);
205 //
206 if ( !usepl18x && view==0 && plane==18 ) mip = 0.;
207 //
208 epiano[plane][view]+=mip;
209 //
210 //
211 };
212 //
213 Bool_t zpiano[22][2];
214 this->CleanPlanes(*&epiano, *&zpiano);
215 //
216 PamTrack *ptrack = 0;
217 CaloTrkVar *track = 0;
218 //
219 if ( usetrack ){
220 if ( ntr >= 0 ){
221 ptrack = L2->GetTrack(ntr);
222 if ( ptrack ) track = ptrack->GetCaloTrack();
223 } else {
224 track = L2->GetCaloStoredTrack(ntr); //al momento e' vera solo questa riga
225 };
226 //
227 if ( !track && ntr >= 0 ){
228 printf(" ERROR: cannot find any track!\n");
229 printf(" ERROR: CaloBragg variables not completely filled \n");
230 return;
231 };
232 } else {
233 if ( ntr >= 0 ){
234 if ( debug ) printf(" ERROR: you asked not to use a track but you are looking for track number %i !\n",ntr);
235 if ( debug ) printf(" ERROR: CaloBragg variables not completely filled \n");
236 return;
237 };
238 };
239 //
240 if(L2->GetCaloLevel2()->npcfit[0]==0 && L2->GetCaloLevel2()->npcfit[1]==0 && L2->GetCaloLevel2()->npcfit[2]==0 && L2->GetCaloLevel2()->npcfit[3]==0) return;// controllo sulla traccia nel calorimetro
241
242 //
243 Bool_t zcalo[44];
244 for(Int_t p=0; p<22; p++){
245 for(Int_t v=0; v<2; v++){
246 /*per usare traccia non del calo camboare cibar*/
247 calorimetro[(2*p)+1-v][0] = L2->GetCaloLevel2()->cibar[p][v];//strip attraversata
248 calorimetro[(2*p)+1-v][1] = epiano[p][v]; //energia del piano //(epiano[p][v])/0.89
249 zcalo[(2*p)+1-v] = zpiano[p][v];
250 if ( debug ) printf(" idx %i %f %i \n",(2*p)+1-v,epiano[p][v], zpiano[p][v]);
251 };
252 };
253
254 /*per ogni evento calcolo la conversione mip e w attraversato in equivalente Si*/
255 conversione(); // out: 1) g/cm2 Si , 2) spessoreW equivalente in Si, 3)Mip corretta per inclinazione
256
257 /*settaggio della soglia per il loop sulla determinazione del piano di partenza */
258 Float_t ordplane[44];//mi serve per la media troncata
259 memset(ordplane,0,44*sizeof(Float_t));
260
261 for(Int_t ipla=0; ipla< 2*NPLA; ipla++) ordplane[ipla]=calorimetro[ipla][1]; //energia del piano
262
263
264 //ordino tutte le energie dei piani in ordine crescente
265
266 Long64_t work[200];
267 Int_t ind = 0;
268 //Int_t l = 0;
269 Int_t RN = 0;
270 Float_t sum4 = 0.;
271 Float_t qm = 0.;
272 while ( RN < 4 && ind < 44 ){
273 qm = TMath::KOrdStat((Long64_t)44,ordplane,(Long64_t)ind,work);
274 if (qm >= 0.7 ){
275 if ( RN < 4 ){
276 sum4 += qm;
277 RN++;
278 };
279 };
280 ind++;
281 };
282 //
283 //sum4 /= (Float_t)RN;
284 Float_t Zmean = (sqrt((sum4*MIP)/(((Float_t)RN)*spessore[2])));
285 if(Zmean ==0.) Zmean=1.;
286 if ( Zmean < 1. ) Zmean = 1.;
287
288
289 /*trova primo e ultimo piano attraversati*/
290 Int_t p = 0;//contatore piani
291 //per il primo parte da 0 e va in giu'
292 while( estremi[0][1] <= 0. && p<(2*NPLA) ){ // era ==0 ma ricorda i problemi con Float == !!!!!
293 // if( (calorimetro[p][0] != -1) && (calorimetro[p][1] >50.)){
294 // if( (calorimetro[p][0] >0) && (calorimetro[p][1]*MIP >0.3)){ //0.7 mip = 70MeV soglia minima
295 if( (calorimetro[p][0] >0) && (calorimetro[p][1]*MIP >Zmean*0.7)){ // 70% della MIP
296 estremi[0][0]=p;
297 estremi[0][1]=calorimetro[p][1] *MIP; //energia in MeV
298 };
299 p++;
300 };
301
302 //ultimo parte da 44 e sale
303 p=43;
304 while( (estremi[1][1] <= 0.) && (p>(int)estremi[0][0]) ){
305 if( (calorimetro[p][0] != -1) && (calorimetro[p][1] >0.7)){
306 estremi[1][0]=p;//
307 estremi[1][1]=calorimetro[p][1] *MIP;//energia in MeV
308 };
309 p = p-1;
310 };
311 //
312
313 Float_t lastok = 0.;
314 // if ( false ){
315 // Bool_t goback = false;
316 for ( int o = 0; o < estremi[1][0]; o++ ){
317 //
318 if (debug) printf(" goforth1: o %i calo %f lastok %f \n",o,calorimetro[o][1],lastok);
319 if ( calorimetro[o][1] > 0.7 && !zcalo[o] ) lastok = calorimetro[o][1];
320 if ( (zcalo[o] || calorimetro[o][1] < 0.7) && lastok > 0. ){
321 if ( fabs(calorimetro[o][1]-lastok)/calorimetro[o][1] > 0.5 ) {
322 if (debug) printf(" goforthchange %f %f \n",calorimetro[o][1],lastok);
323 calorimetro[o][1] = lastok;
324 if (debug) printf(" goforthchang+ %f %f \n",calorimetro[o][1],lastok);
325 }
326 }
327 if (debug) printf(" goforth2: o %i calo %f lastok %f \n",o,calorimetro[o][1],lastok);
328 // if ( calorimetro[o][1] < 0.7 ) goback = true;
329 //
330 };
331 lastok = 0.;
332 // if ( goback ){
333 for ( int o = estremi[1][0]; o >= 0; o-- ){
334 //
335 if (debug) printf(" goback1: o %i calo %f lastok %f \n",o,calorimetro[o][1],lastok);
336 if ( o < estremi[1][0] && calorimetro[o][1] > calorimetro[o+1][1]*1.2 && lastok > 0. ) calorimetro[o][1] = lastok;
337 if ( calorimetro[o][1] > 0.7 && !zcalo[o] ) lastok = calorimetro[o][1];
338 if ( (zcalo[o] || calorimetro[o][1] < 0.7) && lastok > 0. ){
339 if ( fabs(calorimetro[o][1]-lastok)/calorimetro[o][1] > 0.5 ) {
340 if ( debug ) printf(" gobackchange \n");
341 calorimetro[o][1] = lastok;
342 }
343 }
344 if (debug) printf(" goback2: o %i calo %f lastok %f \n",o,calorimetro[o][1],lastok);
345 //
346 };
347 // };
348 //}
349
350 if ( startZero ) {
351 estremi[0][0] = 0.;
352 // estremi[0][1] = 0.;
353 }
354
355 /*integrale: energia totale rilasciata nel calo (aggiungendo quella 'teorica' nel W )*/
356 for(Int_t pl=0; pl<(2*NPLA); pl++){
357 // printf(" integrale: calorimetro %f \n",calorimetro[pl][1]);
358 //calcolo intergale in unita di spessori di silicio
359 Integrale += calorimetro[pl][1] * MIP;//piano di silicio
360 // se non e'il 1o dopo l'Y (tutti i pari) c'e' il W
361 if(pl%2!=0){ //equival W in Si
362 Integrale+= 0.5*((calorimetro[pl-1][1] * MIP)+(calorimetro[pl][1] * MIP))*(spessore[1]);
363 };
364 };
365 //Integrale=24000;//Integrale*1000;
366 Integrale *= 1000.;
367
368 /*z ed energia con media troncata*/
369 // mediatroncata(); // out: 1)chi2, 2)z, 3)Etot, 4)Pskip
370
371 /*z ed energia con loop*/
372 if ( debug ) printf(" call Zdaloop with integrale %f \n",Integrale);
373 Zdaloop(); // out: 1)chi2, 2)z, 3)Etot, 4)Pskip
374
375
376 if ( debug ) this->Print();
377 if ( debug ) printf(" fine evento \n");
378 //
379 };
380
381
382 Float_t CaloBragg::Integral(){
383 Process();
384
385 Float_t dEpianiloop[44];
386 Int_t tz1=(Int_t)lpz;
387 Int_t ti1=(Int_t)lpisotope;
388
389 Enetrack(&tz1, &ti1 , &lpetot, &estremi[0][0],&estremi[1][0], dEpianiloop);//calcola rilascio energetico sui piani da loop
390
391
392 Float_t integ = 0.;
393 for(Int_t i=0;i<=estremi[1][0];i++){
394 // integ += dEplan[i];
395 //printf(" step %i integ %f deplan %f \n",i,integ,dEplan[i]);
396 integ += dEpianiloop[i];
397 // printf(" step %i integ %f deplan %f \n",i,integ,dEpianiloop[i]);
398 }
399 return integ;
400 }
401
402 Float_t CaloBragg::LastIntegral(){
403 Process();
404
405 Float_t integ = 0.;
406 for(Int_t i=0;i<=estremi[1][0];i++){
407 integ += dEplan[i];
408 //printf(" step %i integ %f deplan %f \n",i,integ,dEplan[i]);
409 }
410 return integ;
411 }
412
413
414 void CaloBragg::Draw(){
415
416 Process();
417
418 this->Draw(0.,0.,0.);
419
420 }
421
422 void CaloBragg::Draw(Int_t Z, Int_t isotope, Float_t enetot){
423
424 // Float_t dEpianimean[44];
425 Float_t dEpianiloop[44];
426 Float_t Depth[44];
427 // Int_t tz=(Int_t)qtz;
428 Int_t tz1= Z;
429 Int_t ti1= isotope;
430 Float_t enet = enetot;
431 // Float_t enet = lpetot;
432
433 if ( Z > 0. && enetot > 0. ){
434 estremi[0][0] = 0;
435 estremi[1][0] = 43;
436
437
438 Float_t ytgx = 0.;
439 Float_t ytgy = 0.;
440
441 //lunghezza effettiva di silicio attraversata (mm)
442 Float_t SiCross = sqrt(SQ(ySi) + SQ(ytgx) + SQ(ytgy));
443
444 spessore[0] = (SiCross/10.) * rhoSi; //spessore silicio in g/cm2
445
446 /*tungsteno*/
447
448 //rapporto tra rilasci energetici nei due materiali
449 Float_t WCross = sqrt((yW*yW) + (ytgx*ytgx) + (ytgy*ytgy));//mm* rapporto lunghezze rad
450 //gcm2W = WCross/10. * rhoW;
451
452 // (g/cm2W)/(g/cm2Si)
453 spessore[3] = (WCross/10.) * rhoW;
454 Float_t a=(WCross/SiCross)*(rhoW/rhoSi)*(1.145/1.664); //(gcm2W)/(SiCross/10. * rhoSi)* (1.145/1.664);
455 spessore[1] = a;
456 //riscala mip allo spessore attraversato
457 spessore[2] = MIP*(SiCross/ySi);
458
459 } else {
460 tz1=(Int_t)lpz;
461 ti1=(Int_t)lpisotope;
462 enet = lpetot;
463 // Enetrack(&tz, &qtetot, &estremi[0][0],&estremi[1][0], dEpianimean);//calcola rilascio energetico sui piani da media troncata
464
465 }
466 Enetrack(&tz1, &ti1, &enet, &estremi[0][0],&estremi[1][0], dEpianiloop);//calcola rilascio energetico sui piani da loop
467
468 Float_t sp= spessore[0]*spessore[1];
469 for(Int_t i=0;i<44;i++)Depth[i]=i*sp;
470 //
471 gStyle->SetLabelSize(0.04);
472 gStyle->SetNdivisions(510,"XY");
473 //
474 TString hid = Form("cCaloBragg");
475 TCanvas *tc = dynamic_cast<TCanvas*>(gDirectory->FindObject(hid));
476 if ( tc ){
477 // tc->Clear();
478 } else {
479 tc = new TCanvas(hid,hid);
480 // tc->Divide(1,2);
481 };
482 //
483 // TString thid = Form("hCaloBragg");
484 // TH2F *th = dynamic_cast<TH2F*>(gDirectory->FindObject(thid));
485 // if ( th ) th->Delete();
486 // th->Clear();
487 // th->Reset();
488 // } else {
489 // th = new TH2F(thid,thid,300,-0.5,300.,1000,0.,150.);
490 // th->SetMarkerStyle(20);
491 // };
492 //
493 tc->cd();
494 TString thid2 = Form("hCaloBragg2");
495 TH2F *th2 = dynamic_cast<TH2F*>(gDirectory->FindObject(thid2));
496 if ( th2 ) th2->Delete();
497 th2 = new TH2F(thid2,thid2,300,-0.5,300.,1000,0.,25.); //150
498 th2->SetMarkerStyle(20);
499 th2->SetMarkerColor(kRed);
500 //
501 TString thid3 = Form("hCaloBragg3");
502 TH2F *th3 = dynamic_cast<TH2F*>(gDirectory->FindObject(thid3));
503 if ( th3 ) th3->Delete();
504 th3 = new TH2F(thid3,thid3,300,-0.5,300.,1000,0.,25.);//150.
505 th3->SetMarkerStyle(20);
506 th3->SetMarkerColor(kBlue);
507
508
509 // tc->cd(1);
510 //
511 // for(Int_t i=0;i<=estremi[1][0];i++)th->Fill(Depth[i],dEpianimean[i]);
512 for(Int_t i=0;i<=estremi[1][0];i++)th2->Fill(Depth[i],calorimetro[i][1]*MIP);
513 // th->Draw();
514 th2->Draw("same");
515
516 // tc->cd(2);
517 tc->cd();
518 //
519 for(Int_t i=0;i<=estremi[1][0];i++){
520 th3->Fill(Depth[i],dEpianiloop[i]);
521 // printf(" i %i Depth %f depianiloop %f \n",i,Depth[i],dEpianiloop[i]);
522 }
523 th3->Draw();
524 th2->Draw("same");
525
526 tc->Modified();
527 tc->Update();
528
529 //
530 gStyle->SetLabelSize(0);
531 gStyle->SetNdivisions(1,"XY");
532 //
533 };
534
535
536
537 void CaloBragg::LoadParam(){
538
539 // elem[Z-1][isotop] 0 is the most common one
540 //
541
542 elem[0][0] = 1.00782; //H 1
543 elem[0][1] = 2.01410; // 2H (Isotope)
544 elem[0][2] = -1.;
545 elem[0][3] = -1.;
546 elem[0][4] = -1.;
547 elem[0][5] = -1.;
548 elem[0][6] = -1.;
549
550 elem[1][0] = 4.002602; //He 2
551 elem[1][1] = 3.016029; // 3He (Isotope)
552 elem[1][2] = -1.;
553 elem[1][3] = -1.;
554 elem[1][4] = -1.;
555 elem[1][5] = -1.;
556 elem[1][6] = -1.;
557
558 elem[2][0] = 7.016004; //Li 3
559 elem[2][1] = 6.015123; //6Li (Isotope)
560 elem[2][2] = -1.;
561 elem[2][3] = -1.;
562 elem[2][4] = -1.;
563 elem[2][5] = -1.;
564 elem[2][6] = -1.;
565
566 elem[3][0] = 9.012182; //Be 4
567 elem[3][1] = 10.01353; //10Be (Isotope) (most stable)
568 elem[3][2] = 7.01693; //9Be no EC in space?
569 elem[3][3] = -1.;
570 elem[3][4] = -1.;
571 elem[3][5] = -1.;
572 elem[3][6] = -1.;
573
574 elem[4][0] = 11.00930; //B 5
575 elem[4][1] = 10.01294; //10B (Isotope)
576 elem[4][2] = -1.;
577 elem[4][3] = -1.;
578 elem[4][4] = -1.;
579 elem[4][5] = -1.;
580 elem[4][5] = -1.;
581
582 elem[5][0] = 12.0107; //C 6
583 elem[5][1] = 13.00335; //13C (Isotope)
584 elem[5][2] = -1.;
585 elem[5][3] = -1.;
586 elem[5][4] = -1.;
587 elem[5][5] = -1.;
588 elem[5][5] = -1.;
589
590 elem[6][0] = 14.00674; //N 7
591 elem[6][1] = 15.00011; //15N (Isotope)
592 elem[6][2] = -1.;
593 elem[6][3] = -1.;
594 elem[6][4] = -1.;
595 elem[6][5] = -1.;
596 elem[6][5] = -1.;
597
598 elem[7][0] = 15.99491; //O 8
599 elem[7][1] = 17.99916; //18O (Isotope)
600 elem[7][2] = 16.99916; //17O (Isotope)
601 elem[7][3] = -1.;
602 elem[7][4] = -1.;
603 elem[7][5] = -1.;
604 elem[7][5] = -1.;
605
606 elem[8][0] = 18.99840; //F 9
607 elem[8][1] = -1.;
608 elem[8][2] = -1.;
609 elem[8][3] = -1.;
610 elem[8][4] = -1.;
611 elem[8][5] = -1.;
612 elem[8][5] = -1.;
613
614 elem[9][0] = 19.99244; //Ne 10
615 elem[9][1] = 21.99138; //22Ne (Isotope)
616 elem[9][2] = 20.99384; //21Ne 10
617 elem[9][3] = -1.;
618 elem[9][4] = -1.;
619 elem[9][5] = -1.;
620 elem[9][6] = -1.;
621
622 elem[10][0] = 22.98977; //Na 11
623 elem[10][1] = 21.99444; //22Na (Isotope) (most stable)
624 elem[10][2] = -1.;
625 elem[10][3] = -1.;
626 elem[10][4] = -1.;
627 elem[10][5] = -1.;
628 elem[10][6] = -1.;
629
630 elem[11][0] = 23.98504; //Mg 12
631 elem[11][1] = 25.98259; //26Mg (Isotope)
632 elem[11][2] = 24.98504; //25Mg (Isotope)
633 elem[11][3] = -1.;
634 elem[11][4] = -1.;
635 elem[11][5] = -1.;
636 elem[11][6] = -1.;
637
638 elem[12][0] = 26.98154; //Al 13
639 elem[12][1] = 25.98489; //26Al (Isotope) (most stable)
640 elem[12][2] = -1.;
641 elem[12][3] = -1.;
642 elem[12][4] = -1.;
643 elem[12][5] = -1.;
644 elem[12][6] = -1.;
645
646 elem[13][0] = 27.97692; //Si 14
647 elem[13][1] = 28.97649; //29Si (Isotope)
648 elem[13][2] = 29.97377; //30Si (Isotope)
649 elem[13][3] = -1.;
650 elem[13][4] = -1.;
651 elem[13][5] = -1.;
652 elem[13][6] = -1.;
653
654 elem[14][0] = 30.97376; //P 15
655 elem[14][1] = -1.;
656 elem[14][2] = -1.;
657 elem[14][3] = -1.;
658 elem[14][4] = -1.;
659 elem[14][5] = -1.;
660 elem[14][6] = -1.;
661
662 elem[15][0] = 31.97207; //S 16
663 elem[15][1] = 33.96787; //34S (Isotope)
664 elem[15][2] = 32.97146; //33S (Isotope)
665 elem[15][3] = 35.96708; //36S (Isotope)
666 elem[15][4] = -1.;
667 elem[15][5] = -1.;
668 elem[15][6] = -1.;
669
670 elem[16][0] = 34.96885; //Cl 17
671 elem[16][1] = 36.96831; //37Cl 17
672 elem[16][2] = 35.96890; //36Cl (Isotope)
673 elem[16][3] = -1.;
674 elem[16][4] = -1.;
675 elem[16][5] = -1.;
676 elem[16][6] = -1.;
677
678 elem[17][0] = 39.962383; //Ar 18
679 elem[17][1] = 35.967545; //36Ar (Isotope)
680 elem[17][2] = 37.962732; //38Ar (Isotope)
681 elem[17][3] = 38.964313; //39Ar (Isotope)
682 elem[17][4] = -1.;
683 elem[17][5] = -1.;
684 elem[17][6] = -1.;
685
686 elem[18][0] = 38.963707; //K 19
687 elem[18][1] = 40.961825; //41K (Isotope)
688 elem[18][2] = 39.963998; //40K (Isotope)
689 elem[18][3] = -1.;
690 elem[18][4] = -1.;
691 elem[18][5] = -1.;
692 elem[18][6] = -1.;
693
694 elem[19][0] = 39.962590; //Ca 20
695 elem[19][1] = 43.955482; //44Ca (Isotope)
696 elem[19][2] = 41.958618; //42Ca (Isotope)
697 elem[19][3] = 42.958767; //43Ca (Isotope)
698 elem[19][4] = 45.953693; //46Ca (Isotope)
699 elem[19][5] = 40.962278; //41Ca (Isotope)
700 elem[19][6] = -1.;
701
702 elem[20][0] = 44.955912;//Sc 21
703 elem[20][1] = -1.;
704 elem[20][2] = -1.;
705 elem[20][3] = -1.;
706 elem[20][4] = -1.;
707 elem[20][5] = -1.;
708 elem[20][6] = -1.;
709
710 elem[21][0] = 47.947946; //Ti 22
711 elem[21][1] = 45.952632; //46Ti (Isotope)
712 elem[21][2] = 46.951763; //47Ti (Isotope)
713 elem[21][3] = 48.947870; //49Ti (Isotope)
714 elem[21][4] = 49.944791; //50Ti (Isotope)
715 elem[21][5] = 43.959690; //44Ti (Isotope) (half life 60y)
716 elem[21][6] = -1.;
717
718 elem[22][0] = 50.943960; //V 23
719 elem[22][1] = 49.947158; //50V (Isotope)
720 elem[22][2] = -1.;
721 elem[22][3] = -1.;
722 elem[22][4] = -1.;
723 elem[22][5] = -1.;
724 elem[22][6] = -1.;
725
726 elem[23][0] = 51.940507; //Cr 24
727 elem[23][1] = 52.940649; //53Cr (Isotope)
728 elem[23][2] = 49.946044; //50Cr (Isotope)
729 elem[23][3] = 53.938880; //54Cr (Isotope)
730 elem[23][4] = -1.;
731 elem[23][5] = -1.;
732 elem[23][6] = -1.;
733
734 elem[24][0] = 54.938049;//Mn 25
735 elem[24][1] = 52.941290;//53Mn (Isotope)
736 elem[24][2] = -1.;
737 elem[24][3] = -1.;
738 elem[24][4] = -1.;
739 elem[24][5] = -1.;
740 elem[24][6] = -1.;
741
742 elem[25][0] = 55.934937; //Fe 26
743 elem[25][1] = 53.939610; //54Fe (Isotope)
744 elem[25][2] = 56.935394; //57Fe (Isotope)
745 elem[25][3] = 57.933276; //58Fe (Isotope)
746 elem[25][4] = 59.934072; //58Fe (Isotope)
747
748 elem[26][0] = 58.933195; //Co 27
749 elem[26][1] = 59.933817; //60Co (Isotope)
750 elem[26][2] = -1.;
751 elem[26][3] = -1.;
752 elem[26][4] = -1.;
753 elem[26][5] = -1.;
754 elem[26][6] = -1.;
755
756
757 elem[27][0] = 57.935343; //Ni 28
758 elem[27][1] = 61.928345; //62Ni (Isotope)
759 elem[27][2] = 59.930786; //60Ni (Isotope)
760 elem[27][3] = 60.931056; //61Ni (Isotope)
761 elem[27][4] = 63.927966; //64Ni (Isotope)
762 elem[27][5] = 58.934346; //59Ni (Isotope)
763 elem[27][6] = -1.;
764
765 elem[28][0] = 62.929597; //Cu 29
766 elem[28][1] = 64.927789; //65Cu (Isotope)
767 elem[28][2] = -1.;
768 elem[28][3] = -1.;
769 elem[28][4] = -1.;
770 elem[28][5] = -1.;
771 elem[28][6] = -1.;
772
773 elem[29][0] = 63.929142; //Zn 30
774 elem[29][1] = 65.926033; //66Zn (Isotope)
775 elem[29][2] = 67.924844; //68Zn (Isotope)
776 elem[29][3] = 66.927127; //67Zn (Isotope)
777 elem[29][4] = 69.925319; //70Zn (Isotope)
778 elem[29][5] = -1.;
779 elem[29][6] = -1.;
780
781 elem[30][0] = 68.925573; //Ga 31
782 elem[30][1] = 70.924701; //71Ga (Isotope)
783 elem[30][2] = -1.;
784 elem[30][3] = -1.;
785 elem[30][4] = -1.;
786 elem[30][5] = -1.;
787 elem[30][6] = -1.;
788
789 elem[31][0] = 73.921177; //Ge 32
790 elem[31][1] = 71.922075; //72Ge (Isotope)
791 elem[31][2] = 69.924247; //70Ge (Isotope)
792 elem[31][3] = 75.921403; //76Ge (Isotope)
793 elem[31][4] = 73.923459; //73Ge (Isotope)
794 elem[31][5] = -1.;
795 elem[31][6] = -1.;
796
797
798 //parametri calorimetro
799 NPLA = 22;
800 NCHA = 96;
801 nView = 2;
802
803 AA = 0.96;//mm larghezza strip
804 ADIST = 80.5;//mm distanza tra pad
805 PIANO = 8.59;//mm distanza
806
807 ySi = 0.38;//mm spessore silicio
808 yW = 2.66;//mm spessore tungsteno
809 rhoSi = 2.33;//g/cm3 densita' silicio
810 rhoW = 19.3;//g/cm3 densita' tugsteno
811 MIP = 0.106;//Mev g/cm2 energia al minimo nel silicio per 0.38 mm
812
813 emin = 0.;
814
815 //parametri bethe-bloch
816 pigr = 3.1415;
817 Na = 6.02e-23;
818 ZA = 0.49; /*Z/A per Si*/
819 // ISi =182e-06; /*MeV*/
820 ISi = 171e-06; /*MeV*/
821 IW = 735e-06; /*MeV*/
822 // ISi =0.0001059994; /*GeV!!*/ no era giusto!!
823 Me = 0.511; /* MeV*/
824 MassP = 931.27;/*MeV*/
825 r2 = 7.95e-26; /*ro*ro in cm */
826
827 };
828
829
830
831 //
832 void CaloBragg::conversione(){
833
834 // calcolo spessore Si attraverato in funzione dell'inclinazione
835 // e conversione dello spessore di W in Si e correzione del valore
836 // della Mip pe lo spessore effettivo
837 //
838 // in : evento
839 //
840 // out: out[0] = gcm2Si = spessore silicio attraversato nel piano
841 // out[1] = WinSi = spessore equivalente in Si del W attraversato
842 // out[2] = Mip = fattore conversione energia riscalato allo spessore attrversatonel piano
843
844 Float_t SiCross=0.;
845 Float_t WCross = 0.;
846 Float_t ytgx = 0;
847 Float_t ytgy = 0;
848 Float_t a = 0.;
849
850 /*silicio*/
851 ytgx = ySi * L2->GetCaloLevel2()->tanx[0];
852 ytgy = ySi * L2->GetCaloLevel2()->tany[0];
853
854 //lunghezza effettiva di silicio attraversata (mm)
855 SiCross = sqrt(SQ(ySi) + SQ(ytgx) + SQ(ytgy));
856
857 spessore[0] = (SiCross/10.) * rhoSi; //spessore silicio in g/cm2
858
859 /*tungsteno*/
860 ytgx = yW * L2->GetCaloLevel2()->tanx[0];
861 ytgy = yW * L2->GetCaloLevel2()->tany[0];
862
863 //rapporto tra rilasci energetici nei due materiali
864 WCross = sqrt((yW*yW) + (ytgx*ytgx) + (ytgy*ytgy));//mm* rapporto lunghezze rad
865 //gcm2W = WCross/10. * rhoW;
866
867 // (g/cm2W)/(g/cm2Si)
868 spessore[3] = (WCross/10.) * rhoW;
869 a=(WCross/SiCross)*(rhoW/rhoSi)*(1.145/1.664); //(gcm2W)/(SiCross/10. * rhoSi)* (1.145/1.664);
870 spessore[1] = a;
871 //riscala mip allo spessore attraversato
872 spessore[2] = MIP*(SiCross/ySi);
873 };//end conversione
874
875
876
877
878
879 void CaloBragg::BetheBloch(Float_t *x, Float_t *z, Float_t *Mass, Float_t *gam, Float_t *Bet, Float_t *out, Float_t II){
880
881 //rilascio energetico con bethe bloch con correzioni
882 //in: x: g/cm2
883 // z: carica
884 // Mass: Massa uma
885 // Ene: energia particella MeV//tolta
886 // gam: (etot/massa)
887 // Bet: rad((g2-1)/g2)
888 //
889 //out: energia rilasciata MeV
890
891
892 Float_t eta =0.;
893 Float_t Wmax =0.;
894 Float_t lg =0.;
895 Float_t Energia=0.;
896 Float_t C=0.;
897 Float_t INo = ISi;
898
899 if ( usenewBB ) INo = II;
900
901 eta = (*gam)*(*Bet);
902
903 //Bet=3/gam; SQ(*gam) * SQ(*Bet)
904 Wmax = 2.* Me * SQ(eta) / (1. + 2.*(*gam)*Me/(*Mass) + SQ(Me)/SQ(*Mass));
905
906 lg = 2.* Me * SQ(eta) * Wmax / SQ(INo);
907 // Energia = x* 2 * pigr * Na * r2 * Me * rhoSi *ZA* SQ(z)/SQ(Bet) * lg;
908 C=(0.42237*pow(eta,-2.) + 0.0304*pow(eta,-4.) - 0.00038*pow(eta,-6.))*pow(10.,-6.)* pow(INo,2.) +
909 (3.858*pow(eta,-2.) - 0.1668*pow(eta,-4.) + 0.00158*pow(eta,-6.))*pow(10.,-9.)*pow(INo,3.);
910
911 if(eta <= 0.13) C= C * log(eta/0.0653)/log(0.13/0.0653);
912
913 Energia = (*x) * 0.307/28.09 * 14. *SQ(*z)/SQ(*Bet)*(0.5*log(lg) - SQ(*Bet) - C/14.);
914
915 *out =Energia;//out
916
917 };//end Bethebloch
918
919
920
921
922 void CaloBragg::ELOSS(Float_t *dx, Int_t *Z, Int_t *isotope, Float_t *Etot, Float_t *out, Float_t II){
923
924 /*perdita di energia per ioni pesanti (come da routine geant)*/
925 // in : dx => spessore g/cm2
926 // Z => carica
927 // Etot => energia perticella
928 //
929 // out: energia persa
930
931
932 Float_t Q=0.;
933 Float_t v=0.;
934 Float_t gam=0.;
935 Float_t Bet=0.;
936 Float_t dEP=0.;
937
938 // gamma // Mass = A * MassP; /*in Mev/c2*/
939 gam = (*Etot)/(elem[*Z-1][*isotope]*MassP); // E = gamma M c2
940
941
942 Bet = sqrt((SQ(gam) -1.)/SQ(gam));
943
944 // v= 121.4139*(Bet/pow((*Z),(2./3.))) + 0.0378*sin(190.7165*(Bet/pow((*Z),(2./3.))));
945 v= 121.4139*(Bet*pow((*Z),(2./3.))) + 0.0378*sin(190.7165*(Bet*pow((*Z),(2./3.)))); // EMI AAAAGGH!!
946
947 //carica effettiva
948 Q= (*Z)*(1- (1.034 - 0.1777*exp(-0.08114*(*Z)))*exp(-v));
949
950 //perdita energia per un protone
951 Float_t protone =1.;
952 // Float_t Mass=(elem[*Z-1]*MassP); //EMI
953 // BetheBloch(dx, &protone, &Mass, &gam, &Bet, &dEP);//ene non serve..go gamma.. BetheBloch(dx, 1, MassP, Etot/A, gam, Bet, &dEP);
954
955 BetheBloch(dx, &protone, &MassP, &gam, &Bet, &dEP, II);//ene non serve..go gamma.. BetheBloch(dx, 1, MassP, Etot/A, gam, Bet, &dEP); //EMI
956
957 *out= (SQ(Q)*(dEP));//*dx;
958
959
960 };//end ELOSS
961
962
963
964
965 void CaloBragg::Enetrack(Int_t* Z, Int_t* isotope, Float_t* E0, Float_t* primo,Float_t* ultimo, Float_t out[]){
966
967 //calcola energia rilasciata sulla traccia (usa ELOSS)
968 // in : Z =>carica
969 // E0 =>energia
970 // spess2[3] => conversione spessore Si, Si in W, mip
971 // primo => posizione primo piano attraversato
972 //
973 // out: array[44] =>rilasci energetici calcolati per ogni piano[44] dopo il primo(estremi[0][0])
974
975
976
977 Float_t dE=0.; //energia rilasciata
978 Float_t Ezero= *E0;//energia iniziale
979
980 //azzero energia rilasciata sui piani
981 memset(out, 0, 2*NPLA*sizeof(Float_t));
982
983 Float_t Massa = (elem[(*Z)-1][*isotope] * MassP);
984
985 for( Int_t ipla=((int)(*primo)); ipla<= ((int)(*ultimo)); ipla++){
986 dE=0.;
987 //spessore silicio corretto x inclinazione, z, energia, out:rilascio
988 ELOSS(&spessore[0], Z , isotope , &Ezero, &dE, ISi);//spessore in g/cm2!!
989
990 if(dE!=dE) return; //controlla che non sia un NaN
991
992 if((Ezero-dE) <= Massa){//se l'energia depositata e' maggiore dell'energia della perticella stop
993 out[ipla] = Ezero - Massa; //MeV
994 return;
995
996 }else{
997 out[ipla] = dE; //MeV
998 Ezero = Ezero - dE;//energia residua
999 // if ( debug ) printf(" zompa %i out %f dE %f ezero %f \n",ipla,out[ipla],dE,Ezero);
1000 };
1001 //se sono su un piano Y (tutti i pari) dopo c'e' il tungsteno
1002 if(ipla%2 == 0){
1003 /*tungsteno*/
1004 dE=0.;
1005 Float_t sp = 0.;
1006 Float_t II = ISi;
1007 if ( usenewBB ){
1008 sp = spessore[3];
1009 II = IW;
1010 } else {
1011 sp = spessore[0]*spessore[1]; //((gcm2Si)*(WinSi))//spessore attraversato in g/cm2
1012 }
1013 // printf(" sp %f II %f \n",sp,II);
1014 ELOSS(&sp, Z, isotope , &Ezero, &dE,II);
1015 if((Ezero-dE) <= Massa){//se l'energia depositata e' maggiore dell'energia della perticella stop
1016 return;
1017 }else{
1018 Ezero = Ezero -dE;//energia residua
1019 };
1020 };
1021
1022 };//fine loop piani
1023
1024
1025 };//end Enetrack
1026
1027
1028
1029 void CaloBragg::chiquadro(Float_t dE[], Float_t out[]){
1030
1031 // calcola chi2 tra energia calcolata e misurata
1032 // in : dE[44] =>energia calcolata
1033 // calo3[44][2]=> [0]strip attraversata [1]energia misurata per ogni piano
1034 // estr2 => array con primo[0][0] e ultimo[1][0] piano attraversati ed energie[][1]
1035 //
1036 // out: array[3]=> (chi2; piani scartati consecutivi(79= >3 quindi frammentato); piani scartati totale)
1037
1038
1039 Float_t sum = 0.;
1040 Float_t PianoPrecedente=0.;
1041 Float_t badplane=0.;
1042 Float_t badplanetot=0.;
1043 Float_t w,wi;
1044 //
1045 if ( newchi2 ){
1046 ndf = 0;
1047 sum = 0.;
1048 for( Int_t ipla=((int)(estremi[0][0])); ipla<= ((int)(estremi[1][0])); ipla++){
1049 sum += pow((dE[ipla] - (calorimetro[ipla][1] * spessore[2]))/(0.05*dE[ipla]),2.);
1050 // printf(" quiqui: dE %f calor %f spessore[2] %f \n",dE[ipla],spessore[2]*calorimetro[ipla][1],spessore[2]);
1051 ndf++;
1052 }
1053 ndf -= 2;
1054 if ( ndf > 0 ) sum /= (float)ndf;
1055 out[0] = sum;
1056 out[1] = 0.;
1057 out[2] = (int)(estremi[1][0])-ndf;
1058 // printf(" sum %f ndf %i \n ",sum,ndf);
1059 } else {
1060 for(Int_t ipla=0; ipla<2*NPLA; ipla++){
1061 //tutti i piani attraversati dalla traiettoria
1062 if(calorimetro[ipla][0] != -1.){ //
1063 w=0.; //normalizzazione;
1064 wi=1.;//peso
1065
1066 //tolgo piani attraversati dalla traccia ma precedenti il piano individuato come ingresso
1067 if (ipla<estremi[0][0]) wi=0.;
1068
1069 //tolgo piani attraversati da traccia ma successivi all'ultimo se sono diversi da 0
1070 //if((ipla>estremi[1][0]) && (calorimetro[ipla][1] >0.) ) wi=0.;
1071 if((ipla>estremi[1][0])) wi=0.;
1072
1073 //normalizzazione
1074 if (calorimetro[ipla][1] != 0.) w=1./(calorimetro[ipla][1]* MIP); //
1075
1076 //tolgo piani con rilasci inferiori al 30% del precedente
1077 if(calorimetro[ipla][1] < (0.7*PianoPrecedente)){ // cosi' i piani senza rilascio non vengono considerati nel calcolo del chi2
1078 wi=0.;
1079 //se sono piani intermedi (non si e' fermta) li considero non buoni
1080 if( (ipla <= estremi[1][0]) && (calorimetro[ipla][1] !=0.)){//
1081 badplane+=1.;
1082 badplanetot+=1.;
1083 };
1084 };
1085
1086 //meno peso ai piani con rilasci maggiori di 1000 MIP
1087 // if(calorimetro[ipla][1] > 1000) wi=0.5;
1088 if(calorimetro[ipla][1] > 1200.) wi=0.5;
1089 if(debug) printf("chiquadro start \n ");
1090 Float_t arg = w*wi*(dE[ipla] - (calorimetro[ipla][1] * MIP));
1091
1092 sum += SQ(arg); // w*wi*(dEpiani[p][v]-(eplane[p][v]*MIP))));//( dEpiani[p][v] - (eplane[p][v]*MIP));
1093 if(debug){
1094 printf("dedx calcolata %f e reale %f \n",dE[ipla],(calorimetro[ipla][1] * MIP));
1095 }
1096 //se trovo piano non buono (tolto quindi wi=0) non modifico il piano precedente
1097 if(wi != 0.){//
1098 PianoPrecedente= calorimetro[ipla][1];//tengo piano precedente
1099 badplane = 0.;//azzero contatore piani scartati consecutivi
1100 };
1101 };
1102
1103 //da Emi
1104 if(badplane > 2){
1105 // printf(" AAAAAAAAAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG\n");
1106 out[1] =79.;
1107 break;
1108 };
1109
1110 };//fine loop piani
1111 //chi2,frammentato,pskip
1112 out[0]=sum;
1113 out[2]=badplanetot;
1114 }
1115 };//end chiquadro
1116
1117
1118
1119 void CaloBragg::loopze( Float_t step, Float_t E0,Float_t Zstart, Float_t Zlimite, Int_t nostep = 1000){
1120 //
1121 //loop su z ed energie per trovare miglior z (ed energia)
1122 //in: nloop => energia massima da provare (nloop x E0)
1123 // E0 => energia iniziale (intergale)
1124 // Zstart => minimo z da cui patire
1125 // Zlimite => z a cui fermarsi (z al minimo di ionizz sul 1o piano)
1126 //
1127 //out: array[4]=> chi2,Zbest,Ebest,piani saltati nel chi2
1128 //
1129
1130 //printf("entrato");
1131 memset(dEplan,0,2*NPLA*sizeof(Float_t));
1132
1133 Int_t Z = 0;// z iniziale
1134
1135 Int_t isotope=0;
1136
1137 Float_t Massa = 0.;
1138
1139 Float_t Stepint =(step)/(Float_t)nostep;//passo per il calcolo di energia
1140
1141 Float_t energia =0.;//energia del loop
1142
1143 Float_t chi2[3] = {0,0,0};//out dal calcolo chi2: chi2, piani consecutivi saltati, piani totali saltati
1144
1145 Int_t zmin = (int)Zstart;
1146 Int_t max=32;//max z di cui so la massa :P
1147 if((Zlimite)<=31) max=(int)(Zlimite) + 1;
1148
1149 if(debug) printf("loopze inizio max %d \n",max);
1150 if ( fzeta > 0. ){
1151 zmin = fzeta;
1152 max = fzeta+1;
1153 }
1154
1155 Int_t colmax=32;
1156 Int_t rowmax=3000;
1157 Int_t isomax=7;
1158
1159 Float_t matrixchi2[colmax][isomax][rowmax][3];
1160 memset(matrixchi2, 0, colmax*isomax*rowmax*3*sizeof(Float_t));
1161
1162 Int_t imin = 1-nostep/2;
1163 Int_t imax = nostep/2;
1164
1165 //loop elementi
1166 for(Int_t inucl=zmin; inucl<max; inucl++){
1167
1168 Z= inucl;
1169
1170 //loop isotopi
1171 while ( elem[inucl-1][isotope] > 0. ){
1172
1173 if( fiso != -1 ){
1174 isotope=fiso;
1175 if(debug) printf("In Loopze - Isotope N %d",isotope);
1176 }
1177 Massa = elem[inucl-1][isotope]*MassP;
1178
1179 //loop energia
1180 Int_t iene2 = -1;
1181
1182 // for(Int_t iene= 0; iene<1000; iene++){// da non cambiare in base a Stepint altrimenti cambia la matrice bestchi2!!!cosi' non raggiungo mai integrale!!!!! mettere <=??
1183
1184 for(Int_t iene= imin; iene<imax; iene++){// da non cambiare in base a Stepint altrimenti cambia la matrice bestchi2!!!cosi' non raggiungo mai integrale!!!!! mettere <=??
1185 iene2++;
1186 energia= Massa + (E0)+ iene*Stepint;//gli do un'energia totale (momento) massa+energia cinetica, aumentando la cinetica..
1187
1188
1189 if( fene > 0. ) energia=fene; //forza l'energia
1190 if (debug) printf("loopze energia %f, z %d, isotopo %d ,iene %d\n",energia,Z,isotope,iene);
1191 // printf(" energia %f , forzata %f \n",energia,fene);
1192 Enetrack(&Z, &isotope, &energia, &estremi[0][0],&estremi[1][0], dEplan);//calcola rilascio energetico sui piani
1193
1194 chiquadro(dEplan,chi2); //calcolo chi2
1195 if (debug) printf("loopze chi %f \n",chi2[0]);
1196 if(debug && TMath::Finite(chi2[0])==1 && (TMath::IsNaN(chi2[0])!=1) ) printf("loopze fin mat %f \n",chi2[0]);
1197 // printf(" last deplan from: Z = %i iene %i energia %f chi2 %f \n",inucl,iene,energia,chi2[0]);
1198 if( (chi2[1] != 79.) ){//salto quelli che frammentano
1199 matrixchi2[inucl][isotope][iene2][0]=chi2[0];//valore chi2 per questo z a questa energia
1200 matrixchi2[inucl][isotope][iene2][1]=energia;//energia per questo chi2
1201 matrixchi2[inucl][isotope][iene2][2]=chi2[2];//piani saltati nel chi2
1202 if( fene > 0. ) break;
1203 } else {
1204 matrixchi2[inucl][isotope][iene2][0]=numeric_limits<Float_t>::max();//valore chi2 per questo z a questa energia
1205 matrixchi2[inucl][isotope][iene2][1]=numeric_limits<Float_t>::max();//energia per questo chi2
1206 matrixchi2[inucl][isotope][iene2][2]=numeric_limits<Float_t>::max();//piani saltati nel chi2
1207 break;
1208 }
1209
1210 }//fine loop energia
1211
1212 if( fiso != -1 ){
1213 if(debug) printf("exited form isotopes loop");
1214 break;
1215 }
1216
1217 isotope++; //incremento il contatore isotopi
1218 }//fine loop isotopi
1219 isotope=0; //riazzero il contatore isotopi
1220
1221 }//fine loop z
1222
1223 isotope=0;//non dovrebbe servire
1224
1225 //Emi
1226 for (Int_t nu=zmin; nu<max; nu++){
1227 if( fiso != -1 ){
1228 isotope=fiso;
1229 if(debug) printf("In Loopze EMI - Isotope N %d",isotope);
1230 }
1231 while(elem[nu-1][isotope]> 0.){
1232 for (Int_t en=0; en<nostep; en++){
1233 if((matrixchi2[nu][isotope][en][0]<bestchi2[0]) && (matrixchi2[nu][isotope][en][0] >0.)){
1234 bestchi2[0]= matrixchi2[nu][isotope][en][0];// chi2
1235 bestchi2[1]= (Float_t)nu; // z
1236 bestchi2[2]= matrixchi2[nu][isotope][en][1];//energia;
1237 bestchi2[3]= matrixchi2[nu][isotope][en][2];// totale piani saltati
1238 bestchi2[4]= (Float_t)isotope; //isotopo
1239 }
1240 }
1241
1242 if( fiso != -1 ){
1243 if(debug) printf("exited form isotopes loop");
1244 break;
1245 }
1246
1247 isotope++;
1248 }
1249 isotope=0;
1250 }
1251
1252 };//endloopze
1253
1254
1255
1256
1257
1258 // void CaloBragg::mediatroncata(){
1259 // //calcolo Z con media troncata e utilizzo questo Z per trovare l'energia migliore
1260 // //in: ordplane[44] => array con energia dei piani
1261 // // spess[3] => conversioni spessore di silicio, w, mip
1262 // // estr[2][2] => primo[0][0] e ultimo[1][0] piano attraversati ed energie[][1]
1263 // // calo[44][2]=> energia[][1] e strip[][0] passaggio su ogni piano
1264 // // integrale => energia totale nel calorimetro considerando il W
1265 // //
1266 // // out[4] chi2,z,Etot,Pskip
1267
1268 // Float_t ordplane[44];//mi serve per la media troncata
1269 // memset(ordplane,0,44*sizeof(Float_t));
1270
1271 // for(Int_t ipla=0; ipla< 2*NPLA; ipla++) ordplane[ipla]=calorimetro[ipla][1]; //energia del piano
1272
1273
1274 // //ordino tutte le energie dei piani in ordine crescente
1275
1276 // Long64_t work[200];
1277 // Int_t ind = 0;
1278 // //Int_t l = 0;
1279 // Int_t RN = 0;
1280 // Float_t sum4 = 0.;
1281 // Float_t qm = 0.;
1282 // //
1283 // //Float_t qmt = ethr*0.8; // *0.9
1284 // //
1285 // //Int_t uplim = TMath::Max(3,N);
1286 // //
1287 // while ( RN < 4 && ind < 44 ){
1288 // qm = TMath::KOrdStat(44,ordplane,ind,work);
1289 // if (qm >= 0.7 ){
1290 // if ( RN < 4 ){
1291 // sum4 += qm;
1292 // RN++;
1293 // };
1294 // // l++;
1295 // // if ( debug ) printf(" value no %i qm %f sum4 %f \n",l,qm,sum4);
1296 // };
1297 // ind++;
1298 // };
1299 // //
1300 // sum4 /= (Float_t)RN;
1301 // Float_t Zmean = (sqrt((sum4*MIP)/(((Float_t)RN)*spessore[2])));//ma non e'/1??
1302 // if(Zmean ==0.) Zmean=1.;
1303 // if ( Zmean < 1. ) Zmean = 1.;
1304
1305
1306 // // Zmean =round(Zmean);
1307 // // if(Zmean <1.) Zmean=1.;
1308
1309 // // if(Zmean >0.)Zmean =round(Zmean);
1310
1311 // //======== per i nuclei=======
1312 // if (Zmean >=2.){
1313 // ind = 0;
1314 // RN = 0;
1315 // sum4 = 0.;
1316 // qm = 0.;
1317 // while ( RN < 4 && ind < 44 ){
1318 // qm = TMath::KOrdStat(44,ordplane,ind,work);
1319 // if (qm >= (Zmean*Zmean)-Zmean*Zmean*0.2 ){
1320 // if ( RN < 4 ){
1321 // sum4 += qm;
1322 // RN++;
1323 // };
1324 // };
1325 // ind++;
1326 // };
1327 // //
1328 // sum4 /= (Float_t)RN;
1329 // Zmean = (sqrt((sum4*MIP)/(4.*spessore[2])));//ma non e' /1??
1330 // }
1331
1332
1333 // //calcolo energia migliore per Z trovato con media troncata
1334 // // Float_t zmin=Zmean;
1335 // Float_t zmin=round(Zmean);
1336
1337 // bestchi2[0]=10000.;
1338 // bestchi2[1]=0.;
1339 // bestchi2[2]=0.;
1340 // bestchi2[3]=0.;
1341 // Float_t zero=0.;
1342
1343 // // step energia zstart zstop
1344 // loopze(Integrale,zero,zmin,zmin);
1345
1346
1347 // qtchi2=bestchi2[0];
1348 // qtz=bestchi2[1];
1349 // qtetot=bestchi2[2];
1350 // qtpskip=bestchi2[3];
1351 // };//end mediatroncata
1352
1353
1354
1355 void CaloBragg::Zdaloop(){
1356 //calcolo Z con un loop su tutti i possibli Z ed energie
1357 //in: ordplane[44]=> array con energia dei piani
1358 // spess1[3]=> conversioni spessore di silicio, w e mip
1359 // estr3[2][2]=> primo[0][0] e ultimo[1][0] piano ed energie
1360 // calo1[44][2]=> energia[][1] e strip[][0] passaggio su ogni piano
1361 // integrale=> energia totale nel calorimetro considerando il W
1362 //
1363 // out[4] chi2,z,Etot,Pskip
1364
1365
1366 /*z se particella fosse al minimo*/ //energia1piano/mip corretta
1367 // Float_t zmax = round(sqrt(estremi[0][1]/spessore[2]));
1368 // if(zmax<31)zmax=zmax+1;
1369
1370 /*calcolo Z ed E con loop sui vari elementi ed energie*/
1371
1372 Float_t zmin=1.;
1373 Float_t zmax=32.;
1374 Float_t bestchitemp[5] = {0,0,0,0,0};
1375
1376 bestchi2[0]=numeric_limits<Float_t>::max();
1377 bestchi2[1]=0.;
1378 bestchi2[2]=0.;
1379 bestchi2[3]=0.;
1380 bestchi2[4]=0.;
1381 Float_t zero=0.;
1382 //------------primo loop ----------------------
1383 // energia ezero, zstart zstop
1384 // loopze(Integrale,zero,zmin,zmax);
1385
1386 //-> loopze(Integrale*1.2/500.,Integrale/1000.,zmin,zmax,50);
1387 loopze(Integrale*1.2/500.,Integrale/1000.,zmin,zmax,200);
1388
1389 // loopze(Integrale*2.,Integrale/100.,zmin,zmax);
1390 if ( debug) printf("Zdaloop start Integrale %f , outene %f \n",Integrale,bestchi2[2]);
1391
1392 //------------secondo loop ----------------------
1393 for(Int_t i=0;i<5;i++) bestchitemp[i]=bestchi2[i];
1394 bestchi2[0]=numeric_limits<Float_t>::max();
1395 bestchi2[1] = 0.;
1396 bestchi2[2] = 0.;
1397 bestchi2[3] = 0.;
1398 bestchi2[4] = 0.;//riazzero
1399
1400 Float_t step = bestchitemp[2];//
1401 zero=0.; // qualsiasi altro valore peggiora le cose
1402 // zmin=zmax=bestchitemp[1];
1403 zmin=bestchitemp[1]-1;
1404 zmax=bestchitemp[1]+1;
1405 //loopze(step,zero,zmin,zmax); //
1406
1407 //-> loopze(step,step/2.,zmin,zmax,200); //
1408 loopze(step,step/2.,zmin,zmax,500); //
1409
1410 //step = bestchitemp[2];//
1411
1412 //loopze(step/2,3*step/4.,zmin,zmax,500); //
1413
1414 if ( debug ) printf("Zdaloop Integrale2 %f , outene %f step %f \n",Integrale,bestchi2[2],step);
1415
1416 //chi2,z,Etot,Pskip
1417 lpchi2=bestchi2[0];
1418 lpz=bestchi2[1];
1419 lpetot=bestchi2[2];
1420 lppskip=bestchi2[3];
1421 lpisotope=bestchi2[4];
1422 };//endZdaloop
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434

  ViewVC Help
Powered by ViewVC 1.1.23