| 26 |
debug = false; |
debug = false; |
| 27 |
usetrack = false; |
usetrack = false; |
| 28 |
usepl18x = false; |
usepl18x = false; |
| 29 |
|
newchi2 = false; |
| 30 |
|
usenewBB = false; |
| 31 |
|
fzeta = -1.; |
| 32 |
// |
// |
| 33 |
}; |
}; |
| 34 |
|
|
| 35 |
void CaloBragg::Clear(){ |
void CaloBragg::Clear(){ |
| 36 |
// |
// |
| 37 |
|
ndf = 0; |
| 38 |
tr = 0; |
tr = 0; |
| 39 |
sntr = 0; |
sntr = 0; |
| 40 |
// qtchi2 = 0.; |
// qtchi2 = 0.; |
| 43 |
// qtpskip = 0.; |
// qtpskip = 0.; |
| 44 |
lpchi2 = 0.; |
lpchi2 = 0.; |
| 45 |
lpz = 0.; |
lpz = 0.; |
| 46 |
|
lpisotope= 0.; |
| 47 |
lpetot = 0.; |
lpetot = 0.; |
| 48 |
lppskip = 0.; |
lppskip = 0.; |
| 49 |
|
|
| 50 |
memset(calorimetro,0,44*2*sizeof(Float_t)); |
memset(calorimetro,0,44*2*sizeof(Float_t)); |
| 51 |
memset(spessore,0,3*sizeof(Float_t)); |
memset(spessore,0,4*sizeof(Float_t)); |
| 52 |
memset(estremi,0,2*2*sizeof(Float_t)); |
memset(estremi,0,2*2*sizeof(Float_t)); |
| 53 |
Integrale=0.; |
Integrale=0.; |
| 54 |
|
|
| 73 |
// printf(" plane not used for truncated mean %f: \n", qtpskip); |
// printf(" plane not used for truncated mean %f: \n", qtpskip); |
| 74 |
printf(" chi 2 from loop %f: \n", lpchi2); |
printf(" chi 2 from loop %f: \n", lpchi2); |
| 75 |
printf(" Z from loop %f: \n", lpz); |
printf(" Z from loop %f: \n", lpz); |
| 76 |
|
printf(" isotope from loop %f: \n", lpisotope); |
| 77 |
printf(" energy from loop %f: \n", lpetot); |
printf(" energy from loop %f: \n", lpetot); |
| 78 |
printf(" plane not used for loop %f: \n", lppskip); |
printf(" plane not used for loop %f: \n", lppskip); |
| 79 |
|
printf(" ndf: %i \n",ndf); |
| 80 |
printf("========================================================================\n"); |
printf("========================================================================\n"); |
| 81 |
// |
// |
| 82 |
}; |
}; |
| 309 |
}; |
}; |
| 310 |
// }; |
// }; |
| 311 |
|
|
| 312 |
|
if ( startZero ) { |
| 313 |
|
estremi[0][0] = 0.; |
| 314 |
|
// estremi[0][1] = 0.; |
| 315 |
|
} |
| 316 |
|
|
| 317 |
/*integrale: energia totale rilasciata nel calo (aggiungendo quella 'teorica' nel W )*/ |
/*integrale: energia totale rilasciata nel calo (aggiungendo quella 'teorica' nel W )*/ |
| 318 |
for(Int_t pl=0; pl<(2*NPLA); pl++){ |
for(Int_t pl=0; pl<(2*NPLA); pl++){ |
| 331 |
// mediatroncata(); // out: 1)chi2, 2)z, 3)Etot, 4)Pskip |
// mediatroncata(); // out: 1)chi2, 2)z, 3)Etot, 4)Pskip |
| 332 |
|
|
| 333 |
/*z ed energia con loop*/ |
/*z ed energia con loop*/ |
| 334 |
|
if ( debug ) printf(" call Zdaloop with integrale %f \n",Integrale); |
| 335 |
Zdaloop(); // out: 1)chi2, 2)z, 3)Etot, 4)Pskip |
Zdaloop(); // out: 1)chi2, 2)z, 3)Etot, 4)Pskip |
| 336 |
|
|
| 337 |
|
|
| 341 |
}; |
}; |
| 342 |
|
|
| 343 |
|
|
| 344 |
|
Float_t CaloBragg::Integral(){ |
| 345 |
|
Process(); |
| 346 |
|
|
| 347 |
|
Float_t dEpianiloop[44]; |
| 348 |
|
Int_t tz1=(Int_t)lpz; |
| 349 |
|
Int_t ti1=(Int_t)lpisotope; |
| 350 |
|
|
| 351 |
|
Enetrack(&tz1, &ti1 , &lpetot, &estremi[0][0],&estremi[1][0], dEpianiloop);//calcola rilascio energetico sui piani da loop |
| 352 |
|
|
| 353 |
|
|
| 354 |
|
Float_t integ = 0.; |
| 355 |
|
for(Int_t i=0;i<=estremi[1][0];i++){ |
| 356 |
|
// integ += dEplan[i]; |
| 357 |
|
//printf(" step %i integ %f deplan %f \n",i,integ,dEplan[i]); |
| 358 |
|
integ += dEpianiloop[i]; |
| 359 |
|
// printf(" step %i integ %f deplan %f \n",i,integ,dEpianiloop[i]); |
| 360 |
|
} |
| 361 |
|
return integ; |
| 362 |
|
} |
| 363 |
|
|
| 364 |
|
Float_t CaloBragg::LastIntegral(){ |
| 365 |
|
Process(); |
| 366 |
|
|
| 367 |
|
Float_t integ = 0.; |
| 368 |
|
for(Int_t i=0;i<=estremi[1][0];i++){ |
| 369 |
|
integ += dEplan[i]; |
| 370 |
|
//printf(" step %i integ %f deplan %f \n",i,integ,dEplan[i]); |
| 371 |
|
} |
| 372 |
|
return integ; |
| 373 |
|
} |
| 374 |
|
|
| 375 |
|
|
| 376 |
void CaloBragg::Draw(){ |
void CaloBragg::Draw(){ |
| 377 |
|
|
| 378 |
Process(); |
Process(); |
| 379 |
|
|
| 380 |
|
this->Draw(0.,0.,0.); |
| 381 |
|
|
| 382 |
|
} |
| 383 |
|
|
| 384 |
|
void CaloBragg::Draw(Int_t Z, Int_t isotope, Float_t enetot){ |
| 385 |
|
|
| 386 |
// Float_t dEpianimean[44]; |
// Float_t dEpianimean[44]; |
| 387 |
Float_t dEpianiloop[44]; |
Float_t dEpianiloop[44]; |
| 388 |
Float_t Depth[44]; |
Float_t Depth[44]; |
| 389 |
// Int_t tz=(Int_t)qtz; |
// Int_t tz=(Int_t)qtz; |
| 390 |
Int_t tz1=(Int_t)lpz; |
Int_t tz1= Z; |
| 391 |
// Enetrack(&tz, &qtetot, &estremi[0][0],&estremi[1][0], dEpianimean);//calcola rilascio energetico sui piani da media troncata |
Int_t ti1= isotope; |
| 392 |
Enetrack(&tz1, &lpetot, &estremi[0][0],&estremi[1][0], dEpianiloop);//calcola rilascio energetico sui piani da loop |
Float_t enet = enetot; |
| 393 |
|
// Float_t enet = lpetot; |
| 394 |
|
|
| 395 |
|
if ( Z > 0. && enetot > 0. ){ |
| 396 |
|
estremi[0][0] = 0; |
| 397 |
|
estremi[1][0] = 43; |
| 398 |
|
|
| 399 |
|
|
| 400 |
|
Float_t ytgx = 0.; |
| 401 |
|
Float_t ytgy = 0.; |
| 402 |
|
|
| 403 |
|
//lunghezza effettiva di silicio attraversata (mm) |
| 404 |
|
Float_t SiCross = sqrt(SQ(ySi) + SQ(ytgx) + SQ(ytgy)); |
| 405 |
|
|
| 406 |
|
spessore[0] = (SiCross/10.) * rhoSi; //spessore silicio in g/cm2 |
| 407 |
|
|
| 408 |
|
/*tungsteno*/ |
| 409 |
|
|
| 410 |
|
//rapporto tra rilasci energetici nei due materiali |
| 411 |
|
Float_t WCross = sqrt((yW*yW) + (ytgx*ytgx) + (ytgy*ytgy));//mm* rapporto lunghezze rad |
| 412 |
|
//gcm2W = WCross/10. * rhoW; |
| 413 |
|
|
| 414 |
|
// (g/cm2W)/(g/cm2Si) |
| 415 |
|
spessore[3] = (WCross/10.) * rhoW; |
| 416 |
|
Float_t a=(WCross/SiCross)*(rhoW/rhoSi)*(1.145/1.664); //(gcm2W)/(SiCross/10. * rhoSi)* (1.145/1.664); |
| 417 |
|
spessore[1] = a; |
| 418 |
|
//riscala mip allo spessore attraversato |
| 419 |
|
spessore[2] = MIP*(SiCross/ySi); |
| 420 |
|
|
| 421 |
|
} else { |
| 422 |
|
tz1=(Int_t)lpz; |
| 423 |
|
ti1=(Int_t)lpisotope; |
| 424 |
|
enet = lpetot; |
| 425 |
|
// Enetrack(&tz, &qtetot, &estremi[0][0],&estremi[1][0], dEpianimean);//calcola rilascio energetico sui piani da media troncata |
| 426 |
|
|
| 427 |
|
} |
| 428 |
|
Enetrack(&tz1, &ti1, &enet, &estremi[0][0],&estremi[1][0], dEpianiloop);//calcola rilascio energetico sui piani da loop |
| 429 |
|
|
| 430 |
Float_t sp= spessore[0]*spessore[1]; |
Float_t sp= spessore[0]*spessore[1]; |
| 431 |
for(Int_t i=0;i<44;i++)Depth[i]=i*sp; |
for(Int_t i=0;i<44;i++)Depth[i]=i*sp; |
| 478 |
// tc->cd(2); |
// tc->cd(2); |
| 479 |
tc->cd(); |
tc->cd(); |
| 480 |
// |
// |
| 481 |
for(Int_t i=0;i<=estremi[1][0];i++)th3->Fill(Depth[i],dEpianiloop[i]); |
for(Int_t i=0;i<=estremi[1][0];i++){ |
| 482 |
|
th3->Fill(Depth[i],dEpianiloop[i]); |
| 483 |
|
// printf(" i %i Depth %f depianiloop %f \n",i,Depth[i],dEpianiloop[i]); |
| 484 |
|
} |
| 485 |
th3->Draw(); |
th3->Draw(); |
| 486 |
th2->Draw("same"); |
th2->Draw("same"); |
| 487 |
|
|
| 498 |
|
|
| 499 |
void CaloBragg::LoadParam(){ |
void CaloBragg::LoadParam(){ |
| 500 |
|
|
| 501 |
// |
// elem[Z-1][isotop] 0 is the most common one |
| 502 |
elem[0] = 1.00794; //H 1 |
// |
| 503 |
elem[1] = 4.0026; //He 2 |
|
| 504 |
elem[2] = 6.941; //Li 3 |
elem[0][0] = 1.00782; //H 1 |
| 505 |
elem[3] = 9.012182;//Be 4 |
elem[0][1] = 2.01410; // 2H (Isotope) |
| 506 |
elem[4] = 10.811; //B 5 |
elem[0][2] = -1.; |
| 507 |
elem[5] = 12.0107; //C 6 |
elem[0][3] = -1.; |
| 508 |
elem[6] = 14.00674;//N 7 |
elem[0][4] = -1.; |
| 509 |
elem[7] = 15.9994; //O 8 |
elem[0][5] = -1.; |
| 510 |
elem[8] = 18.9984; //F 9 |
elem[0][6] = -1.; |
| 511 |
elem[9] = 20.1797; //Ne 10 |
|
| 512 |
elem[10] = 22.98977;//Na 11 |
elem[1][0] = 4.002602; //He 2 |
| 513 |
elem[11] = 24.3050; //Mg 12 |
elem[1][1] = 3.016029; // 3He (Isotope) |
| 514 |
elem[12] = 26.9815; //Al 13 |
elem[1][2] = -1.; |
| 515 |
elem[13] = 28.0855; //Si 14 |
elem[1][3] = -1.; |
| 516 |
elem[14] = 30.974; //P 15 |
elem[1][4] = -1.; |
| 517 |
elem[15] = 32.066; //S 16 |
elem[1][5] = -1.; |
| 518 |
elem[16] = 35.4527; //Cl 17 |
elem[1][6] = -1.; |
| 519 |
elem[17] = 39.948; //Ar 18 |
|
| 520 |
elem[18] = 39.0983; //K 19 |
elem[2][0] = 7.016004; //Li 3 |
| 521 |
elem[19] = 40.078; //Ca 20 |
elem[2][1] = 6.015123; //6Li (Isotope) |
| 522 |
elem[20] = 44.95591;//Sc 21 |
elem[2][2] = -1.; |
| 523 |
elem[21] = 47.867; //Ti 22 |
elem[2][3] = -1.; |
| 524 |
elem[22] = 50.9415; //V 23 |
elem[2][4] = -1.; |
| 525 |
elem[23] = 51.9961; //Cr 24 |
elem[2][5] = -1.; |
| 526 |
elem[24] = 54.938049;//Mn 25 |
elem[2][6] = -1.; |
| 527 |
elem[25] = 55.845; //Fe 26 |
|
| 528 |
elem[26] = 58.9332; //Co 27 |
elem[3][0] = 9.012182; //Be 4 |
| 529 |
elem[27] = 58.6934; //Ni 28 |
elem[3][1] = 10.01353; //10Be (Isotope) (most stable) |
| 530 |
elem[28] = 63.546; //Cu 29 |
elem[3][2] = -1.; |
| 531 |
elem[29] = 65.39; //Zn 30 |
elem[3][3] = -1.; |
| 532 |
elem[30] = 69.723; //Ga 31 |
elem[3][4] = -1.; |
| 533 |
elem[31] = 72.61; //Ge 32 |
elem[3][5] = -1.; |
| 534 |
|
elem[3][6] = -1.; |
| 535 |
|
|
| 536 |
|
elem[4][0] = 11.0093; //B 5 |
| 537 |
|
elem[4][1] = 10.01294; //10B (Isotope) |
| 538 |
|
elem[4][2] = -1.; |
| 539 |
|
elem[4][3] = -1.; |
| 540 |
|
elem[4][4] = -1.; |
| 541 |
|
elem[4][5] = -1.; |
| 542 |
|
elem[4][5] = -1.; |
| 543 |
|
|
| 544 |
|
elem[5][0] = 12.0107; //C 6 |
| 545 |
|
elem[5][1] = 13.00335; //13C (Isotope) |
| 546 |
|
elem[5][2] = -1.; |
| 547 |
|
elem[5][3] = -1.; |
| 548 |
|
elem[5][4] = -1.; |
| 549 |
|
elem[5][5] = -1.; |
| 550 |
|
elem[5][5] = -1.; |
| 551 |
|
|
| 552 |
|
elem[6][0] = 14.00674; //N 7 |
| 553 |
|
elem[6][1] = 15.00011; //15N (Isotope) |
| 554 |
|
elem[6][2] = -1.; |
| 555 |
|
elem[6][3] = -1.; |
| 556 |
|
elem[6][4] = -1.; |
| 557 |
|
elem[6][5] = -1.; |
| 558 |
|
elem[6][5] = -1.; |
| 559 |
|
|
| 560 |
|
elem[7][0] = 15.99491; //O 8 |
| 561 |
|
elem[7][1] = 17.99916; //18O (Isotope) |
| 562 |
|
elem[7][2] = 16.99916; //17O (Isotope) |
| 563 |
|
elem[7][3] = -1.; |
| 564 |
|
elem[7][4] = -1.; |
| 565 |
|
elem[7][5] = -1.; |
| 566 |
|
elem[7][5] = -1.; |
| 567 |
|
|
| 568 |
|
elem[8][0] = 18.99840; //F 9 |
| 569 |
|
elem[8][1] = -1.; |
| 570 |
|
elem[8][2] = -1.; |
| 571 |
|
elem[8][3] = -1.; |
| 572 |
|
elem[8][4] = -1.; |
| 573 |
|
elem[8][5] = -1.; |
| 574 |
|
elem[8][5] = -1.; |
| 575 |
|
|
| 576 |
|
elem[9][0] = 19.99244; //Ne 10 |
| 577 |
|
elem[9][1] = 21.99138; //22Ne (Isotope) |
| 578 |
|
elem[9][2] = 20.99384; //21Ne 10 |
| 579 |
|
elem[9][3] = -1.; |
| 580 |
|
elem[9][4] = -1.; |
| 581 |
|
elem[9][5] = -1.; |
| 582 |
|
elem[9][6] = -1.; |
| 583 |
|
|
| 584 |
|
elem[10][0] = 22.98977; //Na 11 |
| 585 |
|
elem[10][1] = 21.99444; //22Na (Isotope) (most stable) |
| 586 |
|
elem[10][2] = -1.; |
| 587 |
|
elem[10][3] = -1.; |
| 588 |
|
elem[10][4] = -1.; |
| 589 |
|
elem[10][5] = -1.; |
| 590 |
|
elem[10][6] = -1.; |
| 591 |
|
|
| 592 |
|
elem[11][0] = 23.98504; //Mg 12 |
| 593 |
|
elem[11][1] = 25.98259; //26Mg (Isotope) |
| 594 |
|
elem[11][2] = 24.98504; //25Mg (Isotope) |
| 595 |
|
elem[11][3] = -1.; |
| 596 |
|
elem[11][4] = -1.; |
| 597 |
|
elem[11][5] = -1.; |
| 598 |
|
elem[11][6] = -1.; |
| 599 |
|
|
| 600 |
|
elem[12][0] = 26.98154; //Al 13 |
| 601 |
|
elem[12][1] = 25.98489; //26Al (Isotope) (most stable) |
| 602 |
|
elem[12][2] = -1.; |
| 603 |
|
elem[12][3] = -1.; |
| 604 |
|
elem[12][4] = -1.; |
| 605 |
|
elem[12][5] = -1.; |
| 606 |
|
elem[12][6] = -1.; |
| 607 |
|
|
| 608 |
|
elem[13][0] = 27.97692; //Si 14 |
| 609 |
|
elem[13][1] = 28.97649; //29Si (Isotope) |
| 610 |
|
elem[13][2] = 29.97377; //30Si (Isotope) |
| 611 |
|
elem[13][3] = -1.; |
| 612 |
|
elem[13][4] = -1.; |
| 613 |
|
elem[13][5] = -1.; |
| 614 |
|
elem[13][6] = -1.; |
| 615 |
|
|
| 616 |
|
elem[14][0] = 30.97376; //P 15 |
| 617 |
|
elem[14][1] = -1.; |
| 618 |
|
elem[14][2] = -1.; |
| 619 |
|
elem[14][3] = -1.; |
| 620 |
|
elem[14][4] = -1.; |
| 621 |
|
elem[14][5] = -1.; |
| 622 |
|
elem[14][6] = -1.; |
| 623 |
|
|
| 624 |
|
elem[15][0] = 31.97207; //S 16 |
| 625 |
|
elem[15][1] = 33.96787; //34S (Isotope) |
| 626 |
|
elem[15][2] = 32.97146; //33S (Isotope) |
| 627 |
|
elem[15][3] = 35.96708; //36S (Isotope) |
| 628 |
|
elem[15][4] = -1.; |
| 629 |
|
elem[15][5] = -1.; |
| 630 |
|
elem[15][6] = -1.; |
| 631 |
|
|
| 632 |
|
elem[16][0] = 34.96885; //Cl 17 |
| 633 |
|
elem[16][1] = 36.96831; //37Cl 17 |
| 634 |
|
elem[16][2] = 35.96890; //36Cl (Isotope) |
| 635 |
|
elem[16][3] = -1.; |
| 636 |
|
elem[16][4] = -1.; |
| 637 |
|
elem[16][5] = -1.; |
| 638 |
|
elem[16][6] = -1.; |
| 639 |
|
|
| 640 |
|
elem[17][0] = 39.962383; //Ar 18 |
| 641 |
|
elem[17][1] = 35.967545; //36Ar (Isotope) |
| 642 |
|
elem[17][2] = 37.962732; //38Ar (Isotope) |
| 643 |
|
elem[17][3] = 38.964313; //39Ar (Isotope) |
| 644 |
|
elem[17][4] = -1.; |
| 645 |
|
elem[17][5] = -1.; |
| 646 |
|
elem[17][6] = -1.; |
| 647 |
|
|
| 648 |
|
elem[18][0] = 38.963707; //K 19 |
| 649 |
|
elem[18][1] = 40.961825; //41K (Isotope) |
| 650 |
|
elem[18][2] = 39.963998; //40K (Isotope) |
| 651 |
|
elem[18][3] = -1.; |
| 652 |
|
elem[18][4] = -1.; |
| 653 |
|
elem[18][5] = -1.; |
| 654 |
|
elem[18][6] = -1.; |
| 655 |
|
|
| 656 |
|
elem[19][0] = 39.962590; //Ca 20 |
| 657 |
|
elem[19][1] = 43.955482; //44Ca (Isotope) |
| 658 |
|
elem[19][2] = 41.958618; //42Ca (Isotope) |
| 659 |
|
elem[19][3] = 42.958767; //43Ca (Isotope) |
| 660 |
|
elem[19][4] = 45.953693; //46Ca (Isotope) |
| 661 |
|
elem[19][5] = 40.962278; //41Ca (Isotope) |
| 662 |
|
elem[19][6] = -1.; |
| 663 |
|
|
| 664 |
|
elem[20][0] = 44.955912;//Sc 21 |
| 665 |
|
elem[20][1] = -1.; |
| 666 |
|
elem[20][2] = -1.; |
| 667 |
|
elem[20][3] = -1.; |
| 668 |
|
elem[20][4] = -1.; |
| 669 |
|
elem[20][5] = -1.; |
| 670 |
|
elem[20][6] = -1.; |
| 671 |
|
|
| 672 |
|
elem[21][0] = 47.947946; //Ti 22 |
| 673 |
|
elem[21][1] = 45.952632; //46Ti (Isotope) |
| 674 |
|
elem[21][2] = 46.951763; //47Ti (Isotope) |
| 675 |
|
elem[21][3] = 48.947870; //49Ti (Isotope) |
| 676 |
|
elem[21][4] = 49.944791; //50Ti (Isotope) |
| 677 |
|
elem[21][5] = 43.959690; //44Ti (Isotope) (half life 60y) |
| 678 |
|
elem[21][6] = -1.; |
| 679 |
|
|
| 680 |
|
elem[22][0] = 50.943960; //V 23 |
| 681 |
|
elem[22][1] = 49.947158; //50V (Isotope) |
| 682 |
|
elem[22][2] = -1.; |
| 683 |
|
elem[22][3] = -1.; |
| 684 |
|
elem[22][4] = -1.; |
| 685 |
|
elem[22][5] = -1.; |
| 686 |
|
elem[22][6] = -1.; |
| 687 |
|
|
| 688 |
|
elem[23][0] = 51.940507; //Cr 24 |
| 689 |
|
elem[23][1] = 52.940649; //53Cr (Isotope) |
| 690 |
|
elem[23][2] = 49.946044; //50Cr (Isotope) |
| 691 |
|
elem[23][3] = 53.938880; //54Cr (Isotope) |
| 692 |
|
elem[23][4] = -1.; |
| 693 |
|
elem[23][5] = -1.; |
| 694 |
|
elem[23][6] = -1.; |
| 695 |
|
|
| 696 |
|
elem[24][0] = 54.938049;//Mn 25 |
| 697 |
|
elem[24][1] = 52.941290;//53Mn (Isotope) |
| 698 |
|
elem[24][2] = -1.; |
| 699 |
|
elem[24][3] = -1.; |
| 700 |
|
elem[24][4] = -1.; |
| 701 |
|
elem[24][5] = -1.; |
| 702 |
|
elem[24][6] = -1.; |
| 703 |
|
|
| 704 |
|
elem[25][0] = 55.934937; //Fe 26 |
| 705 |
|
elem[25][1] = 53.939610; //54Fe (Isotope) |
| 706 |
|
elem[25][2] = 56.935394; //57Fe (Isotope) |
| 707 |
|
elem[25][3] = 57.933276; //58Fe (Isotope) |
| 708 |
|
elem[25][4] = 59.934072; //58Fe (Isotope) |
| 709 |
|
|
| 710 |
|
elem[26][0] = 58.933195; //Co 27 |
| 711 |
|
elem[26][1] = 59.933817; //60Co (Isotope) |
| 712 |
|
elem[26][2] = -1.; |
| 713 |
|
elem[26][3] = -1.; |
| 714 |
|
elem[26][4] = -1.; |
| 715 |
|
elem[26][5] = -1.; |
| 716 |
|
elem[26][6] = -1.; |
| 717 |
|
|
| 718 |
|
|
| 719 |
|
elem[27][0] = 57.935343; //Ni 28 |
| 720 |
|
elem[27][1] = 61.928345; //62Ni (Isotope) |
| 721 |
|
elem[27][2] = 59.930786; //60Ni (Isotope) |
| 722 |
|
elem[27][3] = 60.931056; //61Ni (Isotope) |
| 723 |
|
elem[27][4] = 63.927966; //64Ni (Isotope) |
| 724 |
|
elem[27][5] = 58.934346; //59Ni (Isotope) |
| 725 |
|
elem[27][6] = -1.; |
| 726 |
|
|
| 727 |
|
elem[28][0] = 62.929597; //Cu 29 |
| 728 |
|
elem[28][1] = 64.927789; //65Cu (Isotope) |
| 729 |
|
elem[28][2] = -1.; |
| 730 |
|
elem[28][3] = -1.; |
| 731 |
|
elem[28][4] = -1.; |
| 732 |
|
elem[28][5] = -1.; |
| 733 |
|
elem[28][6] = -1.; |
| 734 |
|
|
| 735 |
|
elem[29][0] = 63.929142; //Zn 30 |
| 736 |
|
elem[29][1] = 65.926033; //66Zn (Isotope) |
| 737 |
|
elem[29][2] = 67.924844; //68Zn (Isotope) |
| 738 |
|
elem[29][3] = 66.927127; //67Zn (Isotope) |
| 739 |
|
elem[29][4] = 69.925319; //70Zn (Isotope) |
| 740 |
|
elem[29][5] = -1.; |
| 741 |
|
elem[29][6] = -1.; |
| 742 |
|
|
| 743 |
|
elem[30][0] = 68.925573; //Ga 31 |
| 744 |
|
elem[30][1] = 70.924701; //71Ga (Isotope) |
| 745 |
|
elem[30][2] = -1.; |
| 746 |
|
elem[30][3] = -1.; |
| 747 |
|
elem[30][4] = -1.; |
| 748 |
|
elem[30][5] = -1.; |
| 749 |
|
elem[30][6] = -1.; |
| 750 |
|
|
| 751 |
|
elem[31][0] = 73.921177; //Ge 32 |
| 752 |
|
elem[31][1] = 71.922075; //72Ge (Isotope) |
| 753 |
|
elem[31][2] = 69.924247; //70Ge (Isotope) |
| 754 |
|
elem[31][3] = 75.921403; //76Ge (Isotope) |
| 755 |
|
elem[31][4] = 73.923459; //73Ge (Isotope) |
| 756 |
|
elem[31][5] = -1.; |
| 757 |
|
elem[31][6] = -1.; |
| 758 |
|
|
| 759 |
|
|
| 760 |
//parametri calorimetro |
//parametri calorimetro |
| 778 |
pigr = 3.1415; |
pigr = 3.1415; |
| 779 |
Na = 6.02e-23; |
Na = 6.02e-23; |
| 780 |
ZA = 0.49; /*Z/A per Si*/ |
ZA = 0.49; /*Z/A per Si*/ |
| 781 |
ISi =182e-06; /*MeV*/ |
// ISi =182e-06; /*MeV*/ |
| 782 |
|
ISi = 171e-06; /*MeV*/ |
| 783 |
|
IW = 735e-06; /*MeV*/ |
| 784 |
|
// ISi =0.0001059994; /*GeV!!*/ no era giusto!! |
| 785 |
Me = 0.511; /* MeV*/ |
Me = 0.511; /* MeV*/ |
| 786 |
MassP = 931.27;/*MeV*/ |
MassP = 931.27;/*MeV*/ |
| 787 |
r2 = 7.95e-26; /*ro*ro in cm */ |
r2 = 7.95e-26; /*ro*ro in cm */ |
| 816 |
//lunghezza effettiva di silicio attraversata (mm) |
//lunghezza effettiva di silicio attraversata (mm) |
| 817 |
SiCross = sqrt(SQ(ySi) + SQ(ytgx) + SQ(ytgy)); |
SiCross = sqrt(SQ(ySi) + SQ(ytgx) + SQ(ytgy)); |
| 818 |
|
|
| 819 |
spessore[0] = SiCross/10. * rhoSi; //spessore silicio in g/cm2 |
spessore[0] = (SiCross/10.) * rhoSi; //spessore silicio in g/cm2 |
| 820 |
|
|
| 821 |
/*tungsteno*/ |
/*tungsteno*/ |
| 822 |
ytgx = yW * L2->GetCaloLevel2()->tanx[0]; |
ytgx = yW * L2->GetCaloLevel2()->tanx[0]; |
| 826 |
WCross = sqrt((yW*yW) + (ytgx*ytgx) + (ytgy*ytgy));//mm* rapporto lunghezze rad |
WCross = sqrt((yW*yW) + (ytgx*ytgx) + (ytgy*ytgy));//mm* rapporto lunghezze rad |
| 827 |
//gcm2W = WCross/10. * rhoW; |
//gcm2W = WCross/10. * rhoW; |
| 828 |
|
|
|
a=(WCross/SiCross)*(rhoW/rhoSi)*(1.145/1.664); //(gcm2W)/(SiCross/10. * rhoSi)* (1.145/1.664); |
|
|
|
|
| 829 |
// (g/cm2W)/(g/cm2Si) |
// (g/cm2W)/(g/cm2Si) |
| 830 |
|
spessore[3] = (WCross/10.) * rhoW; |
| 831 |
|
a=(WCross/SiCross)*(rhoW/rhoSi)*(1.145/1.664); //(gcm2W)/(SiCross/10. * rhoSi)* (1.145/1.664); |
| 832 |
spessore[1] = a; |
spessore[1] = a; |
|
|
|
| 833 |
//riscala mip allo spessore attraversato |
//riscala mip allo spessore attraversato |
| 834 |
spessore[2] = MIP*(SiCross/ySi); |
spessore[2] = MIP*(SiCross/ySi); |
|
|
|
| 835 |
};//end conversione |
};//end conversione |
| 836 |
|
|
| 837 |
|
|
| 838 |
|
|
| 839 |
|
|
| 840 |
|
|
| 841 |
void CaloBragg::BetheBloch(Float_t *x, Float_t *z, Float_t *Mass, Float_t *gam, Float_t *Bet, Float_t *out){ |
void CaloBragg::BetheBloch(Float_t *x, Float_t *z, Float_t *Mass, Float_t *gam, Float_t *Bet, Float_t *out, Float_t II){ |
| 842 |
|
|
| 843 |
//rilascio energetico con bethe bloch con correzioni |
//rilascio energetico con bethe bloch con correzioni |
| 844 |
//in: x: g/cm2 |
//in: x: g/cm2 |
| 856 |
Float_t lg =0.; |
Float_t lg =0.; |
| 857 |
Float_t Energia=0.; |
Float_t Energia=0.; |
| 858 |
Float_t C=0.; |
Float_t C=0.; |
| 859 |
|
Float_t INo = ISi; |
| 860 |
|
|
| 861 |
|
if ( usenewBB ) INo = II; |
| 862 |
|
|
| 863 |
eta = (*gam)*(*Bet); |
eta = (*gam)*(*Bet); |
| 864 |
|
|
| 865 |
//Bet=3/gam; SQ(*gam) * SQ(*Bet) |
//Bet=3/gam; SQ(*gam) * SQ(*Bet) |
| 866 |
Wmax = 2.* Me * SQ(eta) / (1. + 2.*(*gam)*Me/(*Mass) + SQ(Me)/SQ(*Mass)); |
Wmax = 2.* Me * SQ(eta) / (1. + 2.*(*gam)*Me/(*Mass) + SQ(Me)/SQ(*Mass)); |
| 867 |
|
|
| 868 |
lg = 2.* Me * SQ(eta) * Wmax / SQ(ISi); |
lg = 2.* Me * SQ(eta) * Wmax / SQ(INo); |
| 869 |
// Energia = x* 2 * pigr * Na * r2 * Me * rhoSi *ZA* SQ(z)/SQ(Bet) * lg; |
// Energia = x* 2 * pigr * Na * r2 * Me * rhoSi *ZA* SQ(z)/SQ(Bet) * lg; |
| 870 |
C=(0.42237*pow(eta,-2.) + 0.0304*pow(eta,-4.) - 0.00038*pow(eta,-6.))*pow(10.,-6.)* pow(ISi,2.) + |
C=(0.42237*pow(eta,-2.) + 0.0304*pow(eta,-4.) - 0.00038*pow(eta,-6.))*pow(10.,-6.)* pow(INo,2.) + |
| 871 |
(3.858*pow(eta,-2.) - 0.1668*pow(eta,-4.) + 0.00158*pow(eta,-6.))*pow(10.,-9.)*pow(ISi,3.); |
(3.858*pow(eta,-2.) - 0.1668*pow(eta,-4.) + 0.00158*pow(eta,-6.))*pow(10.,-9.)*pow(INo,3.); |
| 872 |
|
|
| 873 |
if(eta <= 0.13) C= C * log(eta/0.0653)/log(0.13/0.0653); |
if(eta <= 0.13) C= C * log(eta/0.0653)/log(0.13/0.0653); |
| 874 |
|
|
| 881 |
|
|
| 882 |
|
|
| 883 |
|
|
| 884 |
void CaloBragg::ELOSS(Float_t *dx, Int_t *Z, Float_t *Etot, Float_t *out){ |
void CaloBragg::ELOSS(Float_t *dx, Int_t *Z, Int_t *isotope, Float_t *Etot, Float_t *out, Float_t II){ |
| 885 |
|
|
| 886 |
/*perdita di energia per ioni pesanti (come da routine geant)*/ |
/*perdita di energia per ioni pesanti (come da routine geant)*/ |
| 887 |
// in : dx => spessore g/cm2 |
// in : dx => spessore g/cm2 |
| 898 |
Float_t dEP=0.; |
Float_t dEP=0.; |
| 899 |
|
|
| 900 |
// gamma // Mass = A * MassP; /*in Mev/c2*/ |
// gamma // Mass = A * MassP; /*in Mev/c2*/ |
| 901 |
gam = (*Etot)/(elem[*Z-1]*MassP); // E = gamma M c2 |
gam = (*Etot)/(elem[*Z-1][*isotope]*MassP); // E = gamma M c2 |
| 902 |
|
|
| 903 |
|
|
| 904 |
Bet = sqrt((SQ(gam) -1.)/SQ(gam)); |
Bet = sqrt((SQ(gam) -1.)/SQ(gam)); |
| 905 |
|
|
| 906 |
v= 121.4139*(Bet/pow((*Z),(2./3.))) + 0.0378*sin(190.7165*(Bet/pow((*Z),(2./3.)))); |
// v= 121.4139*(Bet/pow((*Z),(2./3.))) + 0.0378*sin(190.7165*(Bet/pow((*Z),(2./3.)))); |
| 907 |
|
v= 121.4139*(Bet*pow((*Z),(2./3.))) + 0.0378*sin(190.7165*(Bet*pow((*Z),(2./3.)))); // EMI AAAAGGH!! |
| 908 |
|
|
| 909 |
//carica effettiva |
//carica effettiva |
| 910 |
Q= (*Z)*(1- (1.034 - 0.1777*exp(-0.08114*(*Z)))*exp(-v)); |
Q= (*Z)*(1- (1.034 - 0.1777*exp(-0.08114*(*Z)))*exp(-v)); |
| 911 |
|
|
| 912 |
//perdita energia per un protone |
//perdita energia per un protone |
| 913 |
Float_t protone =1.; |
Float_t protone =1.; |
| 914 |
Float_t Mass=(elem[*Z-1]*MassP); |
// Float_t Mass=(elem[*Z-1]*MassP); //EMI |
| 915 |
BetheBloch(dx, &protone, &Mass, &gam, &Bet, &dEP);//ene non serve..go gamma.. BetheBloch(dx, 1, MassP, Etot/A, gam, Bet, &dEP); |
// BetheBloch(dx, &protone, &Mass, &gam, &Bet, &dEP);//ene non serve..go gamma.. BetheBloch(dx, 1, MassP, Etot/A, gam, Bet, &dEP); |
| 916 |
|
|
| 917 |
|
BetheBloch(dx, &protone, &MassP, &gam, &Bet, &dEP, II);//ene non serve..go gamma.. BetheBloch(dx, 1, MassP, Etot/A, gam, Bet, &dEP); //EMI |
| 918 |
|
|
| 919 |
*out= (SQ(Q)*(dEP));//*dx; |
*out= (SQ(Q)*(dEP));//*dx; |
| 920 |
|
|
| 924 |
|
|
| 925 |
|
|
| 926 |
|
|
| 927 |
void CaloBragg::Enetrack(Int_t* Z, Float_t* E0, Float_t* primo,Float_t* ultimo, Float_t out[]){ |
void CaloBragg::Enetrack(Int_t* Z, Int_t* isotope, Float_t* E0, Float_t* primo,Float_t* ultimo, Float_t out[]){ |
| 928 |
|
|
| 929 |
//calcola energia rilasciata sulla traccia (usa ELOSS) |
//calcola energia rilasciata sulla traccia (usa ELOSS) |
| 930 |
// in : Z =>carica |
// in : Z =>carica |
| 942 |
//azzero energia rilasciata sui piani |
//azzero energia rilasciata sui piani |
| 943 |
memset(out, 0, 2*NPLA*sizeof(Float_t)); |
memset(out, 0, 2*NPLA*sizeof(Float_t)); |
| 944 |
|
|
| 945 |
Float_t Massa = (elem[(*Z)-1] * MassP); |
Float_t Massa = (elem[(*Z)-1][*isotope] * MassP); |
| 946 |
|
|
| 947 |
for( Int_t ipla=((int)(*primo)); ipla<= ((int)(*ultimo)); ipla++){ |
for( Int_t ipla=((int)(*primo)); ipla<= ((int)(*ultimo)); ipla++){ |
| 948 |
dE=0.; |
dE=0.; |
| 949 |
//spessore silicio corretto x inclinazione, z, energia, out:rilascio |
//spessore silicio corretto x inclinazione, z, energia, out:rilascio |
| 950 |
ELOSS(&spessore[0], Z, &Ezero, &dE);//spessore in g/cm2!! |
ELOSS(&spessore[0], Z , isotope , &Ezero, &dE, ISi);//spessore in g/cm2!! |
| 951 |
if((Ezero-dE) <= Massa){//se l'energia depositata e' maggiore dell'energia della perticella stop |
|
| 952 |
|
if(dE!=dE) return; //controlla che non sia un NaN |
| 953 |
|
|
| 954 |
|
if((Ezero-dE) <= Massa){//se l'energia depositata e' maggiore dell'energia della perticella stop |
| 955 |
out[ipla] = Ezero - Massa; //MeV |
out[ipla] = Ezero - Massa; //MeV |
| 956 |
return; |
return; |
| 957 |
|
|
| 958 |
}else{ |
}else{ |
| 959 |
out[ipla] = dE; //MeV |
out[ipla] = dE; //MeV |
| 960 |
Ezero = Ezero - dE;//energia residua |
Ezero = Ezero - dE;//energia residua |
| 961 |
|
if ( debug ) printf(" zompa %i out %f dE %f ezero %f \n",ipla,out[ipla],dE,Ezero); |
| 962 |
}; |
}; |
| 963 |
//se sono su un piano Y (tutti i pari) dopo c'e' il tungsteno |
//se sono su un piano Y (tutti i pari) dopo c'e' il tungsteno |
| 964 |
if(ipla%2 == 0){ |
if(ipla%2 == 0){ |
| 965 |
/*tungsteno*/ |
/*tungsteno*/ |
| 966 |
dE=0.; |
dE=0.; |
| 967 |
Float_t sp= spessore[0]*spessore[1]; //((gcm2Si)*(WinSi))//spessore attraversato in g/cm2 |
Float_t sp = 0.; |
| 968 |
ELOSS(&sp, Z, &Ezero, &dE); |
Float_t II = ISi; |
| 969 |
|
if ( usenewBB ){ |
| 970 |
|
sp = spessore[3]; |
| 971 |
|
II = IW; |
| 972 |
|
} else { |
| 973 |
|
sp = spessore[0]*spessore[1]; //((gcm2Si)*(WinSi))//spessore attraversato in g/cm2 |
| 974 |
|
} |
| 975 |
|
// printf(" sp %f II %f \n",sp,II); |
| 976 |
|
ELOSS(&sp, Z, isotope , &Ezero, &dE,II); |
| 977 |
if((Ezero-dE) <= Massa){//se l'energia depositata e' maggiore dell'energia della perticella stop |
if((Ezero-dE) <= Massa){//se l'energia depositata e' maggiore dell'energia della perticella stop |
| 978 |
return; |
return; |
| 979 |
}else{ |
}else{ |
| 1003 |
Float_t badplane=0.; |
Float_t badplane=0.; |
| 1004 |
Float_t badplanetot=0.; |
Float_t badplanetot=0.; |
| 1005 |
Float_t w,wi; |
Float_t w,wi; |
| 1006 |
|
// |
| 1007 |
for(Int_t ipla=0; ipla<2*NPLA; ipla++){ |
if ( newchi2 ){ |
| 1008 |
//tutti i piani attraversati dalla traiettoria |
ndf = 0; |
| 1009 |
if(calorimetro[ipla][0] != -1.){ // |
sum = 0.; |
| 1010 |
w=0.; //normalizzazione; |
for( Int_t ipla=((int)(estremi[0][0])); ipla<= ((int)(estremi[1][0])); ipla++){ |
| 1011 |
wi=1.;//peso |
sum += pow((dE[ipla] - (calorimetro[ipla][1] * spessore[2]))/(0.05*dE[ipla]),2.); |
| 1012 |
|
// printf(" quiqui: dE %f calor %f spessore[2] %f \n",dE[ipla],spessore[2]*calorimetro[ipla][1],spessore[2]); |
| 1013 |
|
ndf++; |
| 1014 |
|
} |
| 1015 |
|
ndf -= 2; |
| 1016 |
|
if ( ndf > 0 ) sum /= (float)ndf; |
| 1017 |
|
out[0] = sum; |
| 1018 |
|
out[1] = 0.; |
| 1019 |
|
out[2] = (int)(estremi[1][0])-ndf; |
| 1020 |
|
// printf(" sum %f ndf %i \n ",sum,ndf); |
| 1021 |
|
} else { |
| 1022 |
|
for(Int_t ipla=0; ipla<2*NPLA; ipla++){ |
| 1023 |
|
//tutti i piani attraversati dalla traiettoria |
| 1024 |
|
if(calorimetro[ipla][0] != -1.){ // |
| 1025 |
|
w=0.; //normalizzazione; |
| 1026 |
|
wi=1.;//peso |
| 1027 |
|
|
| 1028 |
//tolgo piani attraversati dalla traccia ma precedenti il piano individuato come ingresso |
//tolgo piani attraversati dalla traccia ma precedenti il piano individuato come ingresso |
| 1029 |
if (ipla<estremi[0][0]) wi=0.; |
if (ipla<estremi[0][0]) wi=0.; |
| 1030 |
|
|
| 1031 |
//tolgo piani attraversati da traccia ma successivi all'ultimo se sono diversi da 0 |
//tolgo piani attraversati da traccia ma successivi all'ultimo se sono diversi da 0 |
| 1032 |
//if((ipla>estremi[1][0]) && (calorimetro[ipla][1] >0.) ) wi=0.; |
//if((ipla>estremi[1][0]) && (calorimetro[ipla][1] >0.) ) wi=0.; |
| 1033 |
if((ipla>estremi[1][0])) wi=0.; |
if((ipla>estremi[1][0])) wi=0.; |
| 1034 |
|
|
| 1035 |
//normalizzazione |
//normalizzazione |
| 1036 |
if (calorimetro[ipla][1] != 0.) w=1./(calorimetro[ipla][1]* MIP); // |
if (calorimetro[ipla][1] != 0.) w=1./(calorimetro[ipla][1]* MIP); // |
| 1037 |
|
|
| 1038 |
//tolgo piani con rilasci inferiori al 30% del precedente |
//tolgo piani con rilasci inferiori al 30% del precedente |
| 1039 |
if(calorimetro[ipla][1] < (0.7*PianoPrecedente)){ // cosi' i piani senza rilascio non vengono considerati nel calcolo del chi2 |
if(calorimetro[ipla][1] < (0.7*PianoPrecedente)){ // cosi' i piani senza rilascio non vengono considerati nel calcolo del chi2 |
| 1040 |
wi=0.; |
wi=0.; |
| 1041 |
//se sono piani intermedi (non si e' fermta) li considero non buoni |
//se sono piani intermedi (non si e' fermta) li considero non buoni |
| 1042 |
if( (ipla <= estremi[1][0]) && (calorimetro[ipla][1] !=0.)){// |
if( (ipla <= estremi[1][0]) && (calorimetro[ipla][1] !=0.)){// |
| 1043 |
badplane+=1.; |
badplane+=1.; |
| 1044 |
badplanetot+=1.; |
badplanetot+=1.; |
| 1045 |
}; |
}; |
| 1046 |
|
}; |
| 1047 |
|
|
| 1048 |
|
//meno peso ai piani con rilasci maggiori di 1000 MIP |
| 1049 |
|
// if(calorimetro[ipla][1] > 1000) wi=0.5; |
| 1050 |
|
if(calorimetro[ipla][1] > 1200.) wi=0.5; |
| 1051 |
|
if(debug) printf("chiquadro start \n "); |
| 1052 |
|
Float_t arg = w*wi*(dE[ipla] - (calorimetro[ipla][1] * MIP)); |
| 1053 |
|
|
| 1054 |
|
sum += SQ(arg); // w*wi*(dEpiani[p][v]-(eplane[p][v]*MIP))));//( dEpiani[p][v] - (eplane[p][v]*MIP)); |
| 1055 |
|
if(debug){ |
| 1056 |
|
printf("dedx calcolata %f e reale %f \n",dE[ipla],(calorimetro[ipla][1] * MIP)); |
| 1057 |
|
} |
| 1058 |
|
//se trovo piano non buono (tolto quindi wi=0) non modifico il piano precedente |
| 1059 |
|
if(wi != 0.){// |
| 1060 |
|
PianoPrecedente= calorimetro[ipla][1];//tengo piano precedente |
| 1061 |
|
badplane = 0.;//azzero contatore piani scartati consecutivi |
| 1062 |
|
}; |
| 1063 |
}; |
}; |
|
|
|
|
//meno peso ai piani con rilasci maggiori di 1000 MIP |
|
|
// if(calorimetro[ipla][1] > 1000) wi=0.5; |
|
|
if(calorimetro[ipla][1] > 1200.) wi=0.5; |
|
|
|
|
|
Float_t arg = w*wi*(dE[ipla] - (calorimetro[ipla][1] * MIP)); |
|
|
|
|
|
sum += SQ(arg); // w*wi*(dEpiani[p][v]-(eplane[p][v]*MIP))));//( dEpiani[p][v] - (eplane[p][v]*MIP)); |
|
|
if(debug){ |
|
|
printf("dedx calcolata %f e reale %f \n",dE[ipla],(calorimetro[ipla][1] * MIP)); |
|
|
} |
|
|
//se trovo piano non buono (tolto quindi wi=0) non modifico il piano precedente |
|
|
if(wi != 0.){// |
|
|
PianoPrecedente= calorimetro[ipla][1];//tengo piano precedente |
|
|
badplane = 0.;//azzero contatore piani scartati consecutivi |
|
|
}; |
|
|
}; |
|
| 1064 |
|
|
| 1065 |
//da Emi |
//da Emi |
| 1066 |
if(badplane > 2){ |
if(badplane > 2){ |
| 1067 |
// printf(" AAAAAAAAAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG\n"); |
// printf(" AAAAAAAAAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG\n"); |
| 1068 |
out[1] =79.; |
out[1] =79.; |
| 1069 |
break; |
break; |
| 1070 |
}; |
}; |
|
|
|
|
};//fine loop piani |
|
|
//chi2,frammentato,pskip |
|
|
out[0]=sum; |
|
|
out[2]=badplanetot; |
|
| 1071 |
|
|
| 1072 |
|
};//fine loop piani |
| 1073 |
|
//chi2,frammentato,pskip |
| 1074 |
|
out[0]=sum; |
| 1075 |
|
out[2]=badplanetot; |
| 1076 |
|
} |
| 1077 |
};//end chiquadro |
};//end chiquadro |
| 1078 |
|
|
| 1079 |
|
|
| 1089 |
//out: array[4]=> chi2,Zbest,Ebest,piani saltati nel chi2 |
//out: array[4]=> chi2,Zbest,Ebest,piani saltati nel chi2 |
| 1090 |
// |
// |
| 1091 |
|
|
| 1092 |
|
//printf("entrato"); |
|
Float_t dEplan[2*NPLA];//energia rilasciata calcolata |
|
| 1093 |
memset(dEplan,0,2*NPLA*sizeof(Float_t)); |
memset(dEplan,0,2*NPLA*sizeof(Float_t)); |
| 1094 |
|
|
| 1095 |
Int_t Z = 0;// z iniziale |
Int_t Z = 0;// z iniziale |
| 1096 |
|
|
| 1097 |
|
Int_t isotope=0; |
| 1098 |
|
|
| 1099 |
Float_t Massa = 0.; |
Float_t Massa = 0.; |
| 1100 |
|
|
| 1103 |
Float_t energia =0.;//energia del loop |
Float_t energia =0.;//energia del loop |
| 1104 |
|
|
| 1105 |
Float_t chi2[3] = {0,0,0};//out dal calcolo chi2: chi2, piani consecutivi saltati, piani totali saltati |
Float_t chi2[3] = {0,0,0};//out dal calcolo chi2: chi2, piani consecutivi saltati, piani totali saltati |
| 1106 |
|
|
| 1107 |
|
Int_t zmin = (int)Zstart; |
| 1108 |
Int_t max=32;//max z di cui so la massa :P |
Int_t max=32;//max z di cui so la massa :P |
| 1109 |
if((Zlimite)<=31) max=(int)(Zlimite) + 1; |
if((Zlimite)<=31) max=(int)(Zlimite) + 1; |
| 1110 |
|
|
| 1111 |
|
if(debug) printf("loopze inizio max %d \n",max); |
| 1112 |
|
if ( fzeta > 0. ){ |
| 1113 |
|
zmin = fzeta; |
| 1114 |
|
max = fzeta+1; |
| 1115 |
|
} |
| 1116 |
|
|
| 1117 |
Int_t colmax=32; |
Int_t colmax=32; |
| 1118 |
Int_t rowmax=3000; |
Int_t rowmax=3000; |
| 1119 |
|
Int_t isomax=7; |
| 1120 |
|
|
| 1121 |
Float_t matrixchi2[colmax][rowmax][3]; |
Float_t matrixchi2[colmax][isomax][rowmax][3]; |
| 1122 |
memset(matrixchi2, 0, colmax*rowmax*3*sizeof(Float_t)); |
memset(matrixchi2, 0, colmax*isomax*rowmax*3*sizeof(Float_t)); |
| 1123 |
|
|
| 1124 |
Int_t imin = 1-nostep/2; |
Int_t imin = 1-nostep/2; |
| 1125 |
Int_t imax = nostep/2; |
Int_t imax = nostep/2; |
| 1126 |
|
|
| 1127 |
//loop elementi |
//loop elementi |
| 1128 |
for(Int_t inucl=(int)(Zstart); inucl<max; inucl++){ |
for(Int_t inucl=zmin; inucl<max; inucl++){ |
| 1129 |
|
|
| 1130 |
Z= inucl; |
Z= inucl; |
| 1131 |
|
|
| 1132 |
Massa = elem[inucl-1]*MassP; |
//loop isotopi |
| 1133 |
|
while ( elem[inucl-1][isotope] > 0. ){ |
| 1134 |
|
Massa = elem[inucl-1][isotope]*MassP; |
| 1135 |
|
|
| 1136 |
//loop energia |
//loop energia |
| 1137 |
Int_t iene2 = 0; |
Int_t iene2 = -1; |
| 1138 |
|
|
| 1139 |
// for(Int_t iene= 0; iene<1000; iene++){// da non cambiare in base a Stepint altrimenti cambia la matrice bestchi2!!!cosi' non raggiungo mai integrale!!!!! mettere <=?? |
// for(Int_t iene= 0; iene<1000; iene++){// da non cambiare in base a Stepint altrimenti cambia la matrice bestchi2!!!cosi' non raggiungo mai integrale!!!!! mettere <=?? |
|
for(Int_t iene= imin; iene<imax; iene++){// da non cambiare in base a Stepint altrimenti cambia la matrice bestchi2!!!cosi' non raggiungo mai integrale!!!!! mettere <=?? |
|
|
|
|
|
iene2++; |
|
|
energia= Massa + (E0)+ iene*Stepint;//gli do un'energia totale (momento) massa+energia cinetica, aumentando la cinetica.. |
|
| 1140 |
|
|
| 1141 |
Enetrack(&Z, &energia, &estremi[0][0],&estremi[1][0], dEplan);//calcola rilascio energetico sui piani |
for(Int_t iene= imin; iene<imax; iene++){// da non cambiare in base a Stepint altrimenti cambia la matrice bestchi2!!!cosi' non raggiungo mai integrale!!!!! mettere <=?? |
| 1142 |
|
iene2++; |
| 1143 |
//calcolo chi2 |
energia= Massa + (E0)+ iene*Stepint;//gli do un'energia totale (momento) massa+energia cinetica, aumentando la cinetica.. |
| 1144 |
chiquadro(dEplan,chi2); |
|
| 1145 |
|
|
| 1146 |
|
if( fene > 0. ) energia=fene; //forza l'energia |
| 1147 |
|
if (debug) printf("loopze energia %f, z %d, isotopo %d ,iene %d\n",energia,Z,isotope,iene); |
| 1148 |
|
// printf(" energia %f , forzata %f \n",energia,fene); |
| 1149 |
|
Enetrack(&Z, &isotope, &energia, &estremi[0][0],&estremi[1][0], dEplan);//calcola rilascio energetico sui piani |
| 1150 |
|
|
| 1151 |
if( (chi2[1] != 79.) ){//salto quelli che frammentano |
chiquadro(dEplan,chi2); //calcolo chi2 |
| 1152 |
matrixchi2[inucl][iene2][0]=chi2[0];//valore chi2 per questo z a questa energia |
if (debug) printf("loopze chi %f \n",chi2[0]); |
| 1153 |
matrixchi2[inucl][iene2][1]=energia;//energia per questo chi2 |
if(debug && TMath::Finite(chi2[0])==1 && (TMath::IsNaN(chi2[0])!=1) ) printf("loopze fin mat %f \n",chi2[0]); |
| 1154 |
matrixchi2[inucl][iene2][2]=chi2[2];//piani saltati nel chi2 |
// printf(" last deplan from: Z = %i iene %i energia %f chi2 %f \n",inucl,iene,energia,chi2[0]); |
| 1155 |
} else { |
if( (chi2[1] != 79.) ){//salto quelli che frammentano |
| 1156 |
matrixchi2[inucl][iene2][0]=1000.;//valore chi2 per questo z a questa energia |
matrixchi2[inucl][isotope][iene2][0]=chi2[0];//valore chi2 per questo z a questa energia |
| 1157 |
matrixchi2[inucl][iene2][1]=1000.;//energia per questo chi2 |
matrixchi2[inucl][isotope][iene2][1]=energia;//energia per questo chi2 |
| 1158 |
matrixchi2[inucl][iene2][2]=1000.;//piani saltati nel chi2 |
matrixchi2[inucl][isotope][iene2][2]=chi2[2];//piani saltati nel chi2 |
| 1159 |
break; |
if( fene > 0. ) break; |
| 1160 |
|
} else { |
| 1161 |
|
matrixchi2[inucl][isotope][iene2][0]=1000.;//valore chi2 per questo z a questa energia |
| 1162 |
|
matrixchi2[inucl][isotope][iene2][1]=1000.;//energia per questo chi2 |
| 1163 |
|
matrixchi2[inucl][isotope][iene2][2]=1000.;//piani saltati nel chi2 |
| 1164 |
|
break; |
| 1165 |
} |
} |
|
}//fine loop energia |
|
| 1166 |
|
|
| 1167 |
|
}//fine loop energia |
| 1168 |
|
|
| 1169 |
};//fine loop z |
isotope++; //incremento il contatore isotopi |
| 1170 |
|
}//fine loop isotopi |
| 1171 |
|
isotope=0; //riazzero il contatore isotopi |
| 1172 |
|
|
| 1173 |
|
}//fine loop z |
| 1174 |
|
|
| 1175 |
|
isotope=0;//non dovrebbe servire |
| 1176 |
|
|
| 1177 |
//Emi |
//Emi |
| 1178 |
for (Int_t nu=(int)(Zstart); nu<max; nu++){ |
for (Int_t nu=zmin; nu<max; nu++){ |
| 1179 |
for (Int_t en=0; en<nostep; en++){ |
while(elem[nu-1][isotope]> 0.){ |
| 1180 |
if((matrixchi2[nu][en][0]<bestchi2[0]) && (matrixchi2[nu][en][0] >0.)){ |
for (Int_t en=0; en<nostep; en++){ |
| 1181 |
bestchi2[0]= matrixchi2[nu][en][0];// chi2 |
if((matrixchi2[nu][isotope][en][0]<bestchi2[0]) && (matrixchi2[nu][isotope][en][0] >0.)){ |
| 1182 |
bestchi2[1]= (Float_t)nu; // z |
bestchi2[0]= matrixchi2[nu][isotope][en][0];// chi2 |
| 1183 |
bestchi2[2]= matrixchi2[nu][en][1];//energia; |
bestchi2[1]= (Float_t)nu; // z |
| 1184 |
bestchi2[3]= matrixchi2[nu][en][2];// totale piani saltati |
bestchi2[2]= matrixchi2[nu][isotope][en][1];//energia; |
| 1185 |
|
bestchi2[3]= matrixchi2[nu][isotope][en][2];// totale piani saltati |
| 1186 |
|
bestchi2[4]= (Float_t)isotope; //isotopo |
| 1187 |
|
} |
| 1188 |
} |
} |
| 1189 |
|
isotope++; |
| 1190 |
} |
} |
| 1191 |
|
isotope=0; |
| 1192 |
} |
} |
| 1193 |
|
|
|
|
|
| 1194 |
};//endloopze |
};//endloopze |
| 1195 |
|
|
| 1196 |
|
|
| 1313 |
|
|
| 1314 |
Float_t zmin=1.; |
Float_t zmin=1.; |
| 1315 |
Float_t zmax=32.; |
Float_t zmax=32.; |
| 1316 |
Float_t bestchitemp[4] = {0,0,0,0}; |
Float_t bestchitemp[5] = {0,0,0,0,0}; |
| 1317 |
|
|
| 1318 |
bestchi2[0]=10000.; |
bestchi2[0]=numeric_limits<Float_t>::max(); |
| 1319 |
bestchi2[1]=0.; |
bestchi2[1]=0.; |
| 1320 |
bestchi2[2]=0.; |
bestchi2[2]=0.; |
| 1321 |
bestchi2[3]=0.; |
bestchi2[3]=0.; |
| 1322 |
|
bestchi2[4]=0.; |
| 1323 |
Float_t zero=0.; |
Float_t zero=0.; |
| 1324 |
//------------primo loop ---------------------- |
//------------primo loop ---------------------- |
| 1325 |
// energia ezero, zstart zstop |
// energia ezero, zstart zstop |
| 1326 |
// loopze(Integrale,zero,zmin,zmax); |
// loopze(Integrale,zero,zmin,zmax); |
| 1327 |
loopze(Integrale*1.2/500.,Integrale/1000.,zmin,zmax,50); |
|
| 1328 |
|
//-> loopze(Integrale*1.2/500.,Integrale/1000.,zmin,zmax,50); |
| 1329 |
|
loopze(Integrale*1.2/500.,Integrale/1000.,zmin,zmax,200); |
| 1330 |
|
|
| 1331 |
// loopze(Integrale*2.,Integrale/100.,zmin,zmax); |
// loopze(Integrale*2.,Integrale/100.,zmin,zmax); |
| 1332 |
// printf(" Integrale %f , outene %f \n",Integrale,bestchi2[2]); |
if ( debug) printf("Zdaloop start Integrale %f , outene %f \n",Integrale,bestchi2[2]); |
| 1333 |
|
|
| 1334 |
//------------secondo loop ---------------------- |
//------------secondo loop ---------------------- |
| 1335 |
for(Int_t i=0;i<4;i++) bestchitemp[i]=bestchi2[i]; |
for(Int_t i=0;i<5;i++) bestchitemp[i]=bestchi2[i]; |
| 1336 |
bestchi2[0] = 10000.; |
bestchi2[0]=numeric_limits<Float_t>::max(); |
| 1337 |
bestchi2[1] = 0.; |
bestchi2[1] = 0.; |
| 1338 |
bestchi2[2] = 0.; |
bestchi2[2] = 0.; |
| 1339 |
bestchi2[3] = 0.;//riazzero |
bestchi2[3] = 0.; |
| 1340 |
|
bestchi2[4] = 0.;//riazzero |
| 1341 |
|
|
| 1342 |
Float_t step = bestchitemp[2];// |
Float_t step = bestchitemp[2];// |
| 1343 |
zero=0.; // qualsiasi altro valore peggiora le cose |
zero=0.; // qualsiasi altro valore peggiora le cose |
| 1344 |
// zmin=zmax=bestchitemp[1]; |
// zmin=zmax=bestchitemp[1]; |
| 1345 |
zmin=bestchitemp[1]-1; |
zmin=bestchitemp[1]-1; |
| 1346 |
zmax=bestchitemp[1]+1; |
zmax=bestchitemp[1]+1; |
| 1347 |
// loopze(step,zero,zmin,zmax); // |
//loopze(step,zero,zmin,zmax); // |
| 1348 |
loopze(step,step/2.,zmin,zmax,200); // |
|
| 1349 |
|
//-> loopze(step,step/2.,zmin,zmax,200); // |
| 1350 |
|
loopze(step,step/2.,zmin,zmax,500); // |
| 1351 |
|
|
| 1352 |
|
//step = bestchitemp[2];// |
| 1353 |
|
|
| 1354 |
|
//loopze(step/2,3*step/4.,zmin,zmax,500); // |
| 1355 |
|
|
| 1356 |
|
if ( debug ) printf("Zdaloop Integrale2 %f , outene %f step %f \n",Integrale,bestchi2[2],step); |
| 1357 |
|
|
|
|
|
| 1358 |
//chi2,z,Etot,Pskip |
//chi2,z,Etot,Pskip |
| 1359 |
lpchi2=bestchi2[0]; |
lpchi2=bestchi2[0]; |
| 1360 |
lpz=bestchi2[1]; |
lpz=bestchi2[1]; |
| 1361 |
lpetot=bestchi2[2]; |
lpetot=bestchi2[2]; |
| 1362 |
lppskip=bestchi2[3]; |
lppskip=bestchi2[3]; |
| 1363 |
|
lpisotope=bestchi2[4]; |
| 1364 |
};//endZdaloop |
};//endZdaloop |
| 1365 |
|
|
| 1366 |
|
|