1 |
#include <CaloBragg.h> |
2 |
|
3 |
|
4 |
ClassImp(CaloBragg); |
5 |
//-------------------------------------- |
6 |
/* |
7 |
* Default constructor |
8 |
*/ |
9 |
CaloBragg::CaloBragg(){ |
10 |
Clear(); |
11 |
}; |
12 |
|
13 |
CaloBragg::CaloBragg(PamLevel2 *l2p){ |
14 |
// |
15 |
Clear(); |
16 |
LoadParam(); |
17 |
// |
18 |
L2 = l2p; |
19 |
// |
20 |
if ( !L2->IsORB() ) printf(" WARNING: OrbitalInfo Tree is needed, the plugin could not work properly without it \n"); |
21 |
// |
22 |
OBT = 0; |
23 |
PKT = 0; |
24 |
atime = 0; |
25 |
// |
26 |
debug = false; |
27 |
usetrack = false; |
28 |
usepl18x = false; |
29 |
newchi2 = false; |
30 |
usenewBB = false; |
31 |
fzeta = -1.; |
32 |
// |
33 |
}; |
34 |
|
35 |
void CaloBragg::Clear(){ |
36 |
// |
37 |
ndf = 0; |
38 |
tr = 0; |
39 |
sntr = 0; |
40 |
// qtchi2 = 0.; |
41 |
// qtz = 0.; |
42 |
// qtetot = 0.; |
43 |
// qtpskip = 0.; |
44 |
lpchi2 = 0.; |
45 |
lpz = 0.; |
46 |
lpisotope= 0.; |
47 |
lpetot = 0.; |
48 |
lppskip = 0.; |
49 |
|
50 |
memset(calorimetro,0,44*2*sizeof(Float_t)); |
51 |
memset(spessore,0,4*sizeof(Float_t)); |
52 |
memset(estremi,0,2*2*sizeof(Float_t)); |
53 |
Integrale=0.; |
54 |
|
55 |
for(Int_t l=0;l<44;l++){ |
56 |
calorimetro[l][0]=-1.; |
57 |
} |
58 |
|
59 |
}; |
60 |
|
61 |
void CaloBragg::Print(){ |
62 |
// |
63 |
|
64 |
if(!debug) Process(); |
65 |
// |
66 |
printf("========================================================================\n"); |
67 |
printf(" OBT: %u PKT: %u ATIME: %u Track %i Use track %i \n",OBT,PKT,atime,tr,usetrack); |
68 |
printf(" first plane: %f \n", estremi[0][0]); |
69 |
printf(" last plane: %f \n", estremi[1][0]); |
70 |
// printf(" chi 2 from truncated mean: %f \n", qtchi2); |
71 |
// printf(" Z from truncated mean %f: \n", qtz); |
72 |
// printf(" energy from truncated mean %f: \n", qtetot); |
73 |
// printf(" plane not used for truncated mean %f: \n", qtpskip); |
74 |
printf(" chi 2 from loop %f: \n", lpchi2); |
75 |
printf(" Z from loop %f: \n", lpz); |
76 |
printf(" isotope from loop %f: \n", lpisotope); |
77 |
printf(" energy from loop %f: \n", lpetot); |
78 |
printf(" plane not used for loop %f: \n", lppskip); |
79 |
printf(" ndf: %i \n",ndf); |
80 |
printf("========================================================================\n"); |
81 |
// |
82 |
}; |
83 |
|
84 |
void CaloBragg::Delete(){ |
85 |
Clear(); |
86 |
//delete this; |
87 |
}; |
88 |
|
89 |
|
90 |
void CaloBragg::Process(){ |
91 |
Process(-1); |
92 |
}; |
93 |
|
94 |
|
95 |
void CaloBragg::CleanPlanes(Float_t epiano[22][2]){ |
96 |
// return; |
97 |
Int_t hitplanes = 0; |
98 |
for (Int_t i = 0; i<22; i++){ |
99 |
for (Int_t j = 1; j>=0; j--){ |
100 |
if ( epiano[i][j] > 0.7 ) hitplanes++; |
101 |
}; |
102 |
}; |
103 |
Float_t lowlim = 0.85; |
104 |
Float_t dedxone = 0.; |
105 |
Float_t step1 = 0.8*L2->GetCaloLevel2()->qtot/(Float_t)hitplanes; |
106 |
while ( dedxone < step1 ){ |
107 |
for (Int_t i = 0; i<22; i++){ |
108 |
for (Int_t j = 1; j>=0; j--){ |
109 |
if ( epiano[i][j] >= step1 && dedxone < 0.7 ) dedxone = epiano[i][j]; |
110 |
}; |
111 |
}; |
112 |
} |
113 |
if ( dedxone < 0.7 ){ |
114 |
for (Int_t i = 0; i<22; i++){ |
115 |
for (Int_t j = 1; j>=0; j--){ |
116 |
if ( epiano[i][j] > 0. && dedxone < 0.7 ) dedxone = epiano[i][j]; |
117 |
}; |
118 |
}; |
119 |
} |
120 |
// |
121 |
// printf(" dedxone = %f step1 %f \n",dedxone,step1); |
122 |
Bool_t revulsera = false; |
123 |
Bool_t nullius = false; |
124 |
Int_t nulliferus = 0; |
125 |
for (Int_t i = 0; i<22; i++){ |
126 |
for (Int_t j = 1; j>=0; j--){ |
127 |
if ( epiano[i][j] < dedxone*lowlim ){ |
128 |
// printf(" %i %i epiano %f limit %f nulliferus %i nullius %i \n",i,j,epiano[i][j],dedxone*lowlim,nulliferus,nullius); |
129 |
epiano[i][j] = 0.; |
130 |
} else { |
131 |
//x printf(" %i %i epiano %f limit %f nulliferus %i nullius %i \n",i,j,epiano[i][j],dedxone*lowlim,nulliferus,nullius); |
132 |
nulliferus = 0; |
133 |
revulsera = true; |
134 |
}; |
135 |
if ( epiano[i][j] < 0.7 && revulsera ) nulliferus++; |
136 |
if ( nulliferus > 10 ) nullius = true; |
137 |
if ( nullius ) epiano[i][j] = 0.; |
138 |
}; |
139 |
}; |
140 |
|
141 |
} |
142 |
|
143 |
|
144 |
void CaloBragg::Process(Int_t ntr){ |
145 |
// |
146 |
if ( !L2 ){ |
147 |
printf(" ERROR: cannot find PamLevel2 object, use the correct constructor or check your program!\n"); |
148 |
printf(" ERROR: CaloBragg variables not filled \n"); |
149 |
return; |
150 |
}; |
151 |
// |
152 |
Bool_t newentry = false; |
153 |
// |
154 |
if ( L2->IsORB() ){ |
155 |
if ( L2->GetOrbitalInfo()->pkt_num != PKT || L2->GetOrbitalInfo()->OBT != OBT || L2->GetOrbitalInfo()->absTime != atime || ntr != sntr ){ |
156 |
newentry = true; |
157 |
OBT = L2->GetOrbitalInfo()->OBT; |
158 |
PKT = L2->GetOrbitalInfo()->pkt_num; |
159 |
atime = L2->GetOrbitalInfo()->absTime; |
160 |
sntr = ntr; |
161 |
}; |
162 |
} else { |
163 |
newentry = true; |
164 |
}; |
165 |
// |
166 |
if ( !newentry ) return; |
167 |
// |
168 |
tr = ntr; |
169 |
// |
170 |
if ( debug ) printf(" Processing event at OBT %u PKT %u time %u \n",OBT,PKT,atime); |
171 |
// |
172 |
Clear(); |
173 |
|
174 |
// |
175 |
// |
176 |
// |
177 |
Int_t view = 0; |
178 |
Int_t plane = 0; |
179 |
Int_t strip = 0; |
180 |
Float_t mip = 0.; |
181 |
Float_t epiano[22][2]; |
182 |
memset(epiano,0,22*2*sizeof(Float_t)); |
183 |
for ( Int_t i=0; i<L2->GetCaloLevel1()->istrip; i++ ){ |
184 |
// |
185 |
mip = L2->GetCaloLevel1()->DecodeEstrip(i,view,plane,strip); |
186 |
// |
187 |
if ( !usepl18x && view==0 && plane==18 ) mip = 0.; |
188 |
// |
189 |
epiano[plane][view]+=mip; |
190 |
// |
191 |
// |
192 |
}; |
193 |
// |
194 |
this->CleanPlanes(*&epiano); |
195 |
// |
196 |
PamTrack *ptrack = 0; |
197 |
CaloTrkVar *track = 0; |
198 |
// |
199 |
if ( usetrack ){ |
200 |
if ( ntr >= 0 ){ |
201 |
ptrack = L2->GetTrack(ntr); |
202 |
if ( ptrack ) track = ptrack->GetCaloTrack(); |
203 |
} else { |
204 |
track = L2->GetCaloStoredTrack(ntr); //al momento e' vera solo questa riga |
205 |
}; |
206 |
// |
207 |
if ( !track && ntr >= 0 ){ |
208 |
printf(" ERROR: cannot find any track!\n"); |
209 |
printf(" ERROR: CaloBragg variables not completely filled \n"); |
210 |
return; |
211 |
}; |
212 |
} else { |
213 |
if ( ntr >= 0 ){ |
214 |
if ( debug ) printf(" ERROR: you asked not to use a track but you are looking for track number %i !\n",ntr); |
215 |
if ( debug ) printf(" ERROR: CaloBragg variables not completely filled \n"); |
216 |
return; |
217 |
}; |
218 |
}; |
219 |
// |
220 |
if(L2->GetCaloLevel2()->npcfit[0]==0 && L2->GetCaloLevel2()->npcfit[1]==0 && L2->GetCaloLevel2()->npcfit[2]==0 && L2->GetCaloLevel2()->npcfit[3]==0) return;// controllo sulla traccia nel calorimetro |
221 |
|
222 |
// |
223 |
for(Int_t p=0; p<22; p++){ |
224 |
for(Int_t v=0; v<2; v++){ |
225 |
/*per usare traccia non del calo camboare cibar*/ |
226 |
calorimetro[(2*p)+1-v][0] = L2->GetCaloLevel2()->cibar[p][v];//strip attraversata |
227 |
calorimetro[(2*p)+1-v][1] = epiano[p][v]; //energia del piano //(epiano[p][v])/0.89 |
228 |
}; |
229 |
}; |
230 |
|
231 |
/*per ogni evento calcolo la conversione mip e w attraversato in equivalente Si*/ |
232 |
conversione(); // out: 1) g/cm2 Si , 2) spessoreW equivalente in Si, 3)Mip corretta per inclinazione |
233 |
|
234 |
/*settaggio della soglia per il loop sulla determinazione del piano di partenza */ |
235 |
Float_t ordplane[44];//mi serve per la media troncata |
236 |
memset(ordplane,0,44*sizeof(Float_t)); |
237 |
|
238 |
for(Int_t ipla=0; ipla< 2*NPLA; ipla++) ordplane[ipla]=calorimetro[ipla][1]; //energia del piano |
239 |
|
240 |
|
241 |
//ordino tutte le energie dei piani in ordine crescente |
242 |
|
243 |
Long64_t work[200]; |
244 |
Int_t ind = 0; |
245 |
//Int_t l = 0; |
246 |
Int_t RN = 0; |
247 |
Float_t sum4 = 0.; |
248 |
Float_t qm = 0.; |
249 |
while ( RN < 4 && ind < 44 ){ |
250 |
qm = TMath::KOrdStat((Long64_t)44,ordplane,(Long64_t)ind,work); |
251 |
if (qm >= 0.7 ){ |
252 |
if ( RN < 4 ){ |
253 |
sum4 += qm; |
254 |
RN++; |
255 |
}; |
256 |
}; |
257 |
ind++; |
258 |
}; |
259 |
// |
260 |
//sum4 /= (Float_t)RN; |
261 |
Float_t Zmean = (sqrt((sum4*MIP)/(((Float_t)RN)*spessore[2]))); |
262 |
if(Zmean ==0.) Zmean=1.; |
263 |
if ( Zmean < 1. ) Zmean = 1.; |
264 |
|
265 |
|
266 |
/*trova primo e ultimo piano attraversati*/ |
267 |
Int_t p = 0;//contatore piani |
268 |
//per il primo parte da 0 e va in giu' |
269 |
while( estremi[0][1] <= 0. && p<(2*NPLA) ){ // era ==0 ma ricorda i problemi con Float == !!!!! |
270 |
// if( (calorimetro[p][0] != -1) && (calorimetro[p][1] >50.)){ |
271 |
// if( (calorimetro[p][0] >0) && (calorimetro[p][1]*MIP >0.3)){ //0.7 mip = 70MeV soglia minima |
272 |
if( (calorimetro[p][0] >0) && (calorimetro[p][1]*MIP >Zmean*0.7)){ // 70% della MIP |
273 |
estremi[0][0]=p; |
274 |
estremi[0][1]=calorimetro[p][1] *MIP; //energia in MeV |
275 |
}; |
276 |
p++; |
277 |
}; |
278 |
|
279 |
//ultimo parte da 44 e sale |
280 |
p=43; |
281 |
while( (estremi[1][1] <= 0.) && (p>(int)estremi[0][0]) ){ |
282 |
if( (calorimetro[p][0] != -1) && (calorimetro[p][1] >0.7)){ |
283 |
estremi[1][0]=p;// |
284 |
estremi[1][1]=calorimetro[p][1] *MIP;//energia in MeV |
285 |
}; |
286 |
p = p-1; |
287 |
}; |
288 |
// |
289 |
|
290 |
Float_t lastok = 0.; |
291 |
// Bool_t goback = false; |
292 |
for ( int o = 0; o < estremi[1][0]; o++ ){ |
293 |
// |
294 |
if ( calorimetro[o][1] > 0.7 ) lastok = calorimetro[o][1]; |
295 |
if ( calorimetro[o][1] < 0.7 && lastok > 0. ) calorimetro[o][1] = lastok; |
296 |
// if ( calorimetro[o][1] < 0.7 ) goback = true; |
297 |
// |
298 |
}; |
299 |
lastok = 0.; |
300 |
// if ( goback ){ |
301 |
for ( int o = estremi[1][0]; o >= 0; o-- ){ |
302 |
// |
303 |
// printf(" goback1: o %i calo %f lastok %f \n",o,calorimetro[o][1],lastok); |
304 |
if ( o < estremi[1][0] && calorimetro[o][1] > calorimetro[o+1][1]*1.2 && lastok > 0. ) calorimetro[o][1] = lastok; |
305 |
if ( calorimetro[o][1] > 0.7 ) lastok = calorimetro[o][1]; |
306 |
if ( calorimetro[o][1] < 0.7 && lastok > 0. ) calorimetro[o][1] = lastok; |
307 |
// printf(" goback2: o %i calo %f lastok %f \n",o,calorimetro[o][1],lastok); |
308 |
// |
309 |
}; |
310 |
// }; |
311 |
|
312 |
if ( startZero ) { |
313 |
estremi[0][0] = 0.; |
314 |
// estremi[0][1] = 0.; |
315 |
} |
316 |
|
317 |
/*integrale: energia totale rilasciata nel calo (aggiungendo quella 'teorica' nel W )*/ |
318 |
for(Int_t pl=0; pl<(2*NPLA); pl++){ |
319 |
// printf(" integrale: calorimetro %f \n",calorimetro[pl][1]); |
320 |
//calcolo intergale in unita di spessori di silicio |
321 |
Integrale += calorimetro[pl][1] * MIP;//piano di silicio |
322 |
// se non e'il 1o dopo l'Y (tutti i pari) c'e' il W |
323 |
if(pl%2!=0){ //equival W in Si |
324 |
Integrale+= 0.5*((calorimetro[pl-1][1] * MIP)+(calorimetro[pl][1] * MIP))*(spessore[1]); |
325 |
}; |
326 |
}; |
327 |
//Integrale=24000;//Integrale*1000; |
328 |
Integrale *= 1000.; |
329 |
|
330 |
/*z ed energia con media troncata*/ |
331 |
// mediatroncata(); // out: 1)chi2, 2)z, 3)Etot, 4)Pskip |
332 |
|
333 |
/*z ed energia con loop*/ |
334 |
if ( debug ) printf(" call Zdaloop with integrale %f \n",Integrale); |
335 |
Zdaloop(); // out: 1)chi2, 2)z, 3)Etot, 4)Pskip |
336 |
|
337 |
|
338 |
if ( debug ) this->Print(); |
339 |
if ( debug ) printf(" fine evento \n"); |
340 |
// |
341 |
}; |
342 |
|
343 |
|
344 |
Float_t CaloBragg::Integral(){ |
345 |
Process(); |
346 |
|
347 |
Float_t dEpianiloop[44]; |
348 |
Int_t tz1=(Int_t)lpz; |
349 |
Int_t ti1=(Int_t)lpisotope; |
350 |
|
351 |
Enetrack(&tz1, &ti1 , &lpetot, &estremi[0][0],&estremi[1][0], dEpianiloop);//calcola rilascio energetico sui piani da loop |
352 |
|
353 |
|
354 |
Float_t integ = 0.; |
355 |
for(Int_t i=0;i<=estremi[1][0];i++){ |
356 |
// integ += dEplan[i]; |
357 |
//printf(" step %i integ %f deplan %f \n",i,integ,dEplan[i]); |
358 |
integ += dEpianiloop[i]; |
359 |
// printf(" step %i integ %f deplan %f \n",i,integ,dEpianiloop[i]); |
360 |
} |
361 |
return integ; |
362 |
} |
363 |
|
364 |
Float_t CaloBragg::LastIntegral(){ |
365 |
Process(); |
366 |
|
367 |
Float_t integ = 0.; |
368 |
for(Int_t i=0;i<=estremi[1][0];i++){ |
369 |
integ += dEplan[i]; |
370 |
//printf(" step %i integ %f deplan %f \n",i,integ,dEplan[i]); |
371 |
} |
372 |
return integ; |
373 |
} |
374 |
|
375 |
|
376 |
void CaloBragg::Draw(){ |
377 |
|
378 |
Process(); |
379 |
|
380 |
this->Draw(0.,0.,0.); |
381 |
|
382 |
} |
383 |
|
384 |
void CaloBragg::Draw(Int_t Z, Int_t isotope, Float_t enetot){ |
385 |
|
386 |
// Float_t dEpianimean[44]; |
387 |
Float_t dEpianiloop[44]; |
388 |
Float_t Depth[44]; |
389 |
// Int_t tz=(Int_t)qtz; |
390 |
Int_t tz1= Z; |
391 |
Int_t ti1= isotope; |
392 |
Float_t enet = enetot; |
393 |
// Float_t enet = lpetot; |
394 |
|
395 |
if ( Z > 0. && enetot > 0. ){ |
396 |
estremi[0][0] = 0; |
397 |
estremi[1][0] = 43; |
398 |
|
399 |
|
400 |
Float_t ytgx = 0.; |
401 |
Float_t ytgy = 0.; |
402 |
|
403 |
//lunghezza effettiva di silicio attraversata (mm) |
404 |
Float_t SiCross = sqrt(SQ(ySi) + SQ(ytgx) + SQ(ytgy)); |
405 |
|
406 |
spessore[0] = (SiCross/10.) * rhoSi; //spessore silicio in g/cm2 |
407 |
|
408 |
/*tungsteno*/ |
409 |
|
410 |
//rapporto tra rilasci energetici nei due materiali |
411 |
Float_t WCross = sqrt((yW*yW) + (ytgx*ytgx) + (ytgy*ytgy));//mm* rapporto lunghezze rad |
412 |
//gcm2W = WCross/10. * rhoW; |
413 |
|
414 |
// (g/cm2W)/(g/cm2Si) |
415 |
spessore[3] = (WCross/10.) * rhoW; |
416 |
Float_t a=(WCross/SiCross)*(rhoW/rhoSi)*(1.145/1.664); //(gcm2W)/(SiCross/10. * rhoSi)* (1.145/1.664); |
417 |
spessore[1] = a; |
418 |
//riscala mip allo spessore attraversato |
419 |
spessore[2] = MIP*(SiCross/ySi); |
420 |
|
421 |
} else { |
422 |
tz1=(Int_t)lpz; |
423 |
ti1=(Int_t)lpisotope; |
424 |
enet = lpetot; |
425 |
// Enetrack(&tz, &qtetot, &estremi[0][0],&estremi[1][0], dEpianimean);//calcola rilascio energetico sui piani da media troncata |
426 |
|
427 |
} |
428 |
Enetrack(&tz1, &ti1, &enet, &estremi[0][0],&estremi[1][0], dEpianiloop);//calcola rilascio energetico sui piani da loop |
429 |
|
430 |
Float_t sp= spessore[0]*spessore[1]; |
431 |
for(Int_t i=0;i<44;i++)Depth[i]=i*sp; |
432 |
// |
433 |
gStyle->SetLabelSize(0.04); |
434 |
gStyle->SetNdivisions(510,"XY"); |
435 |
// |
436 |
TString hid = Form("cCaloBragg"); |
437 |
TCanvas *tc = dynamic_cast<TCanvas*>(gDirectory->FindObject(hid)); |
438 |
if ( tc ){ |
439 |
// tc->Clear(); |
440 |
} else { |
441 |
tc = new TCanvas(hid,hid); |
442 |
// tc->Divide(1,2); |
443 |
}; |
444 |
// |
445 |
// TString thid = Form("hCaloBragg"); |
446 |
// TH2F *th = dynamic_cast<TH2F*>(gDirectory->FindObject(thid)); |
447 |
// if ( th ) th->Delete(); |
448 |
// th->Clear(); |
449 |
// th->Reset(); |
450 |
// } else { |
451 |
// th = new TH2F(thid,thid,300,-0.5,300.,1000,0.,150.); |
452 |
// th->SetMarkerStyle(20); |
453 |
// }; |
454 |
// |
455 |
tc->cd(); |
456 |
TString thid2 = Form("hCaloBragg2"); |
457 |
TH2F *th2 = dynamic_cast<TH2F*>(gDirectory->FindObject(thid2)); |
458 |
if ( th2 ) th2->Delete(); |
459 |
th2 = new TH2F(thid2,thid2,300,-0.5,300.,1000,0.,150.); |
460 |
th2->SetMarkerStyle(20); |
461 |
th2->SetMarkerColor(kRed); |
462 |
// |
463 |
TString thid3 = Form("hCaloBragg3"); |
464 |
TH2F *th3 = dynamic_cast<TH2F*>(gDirectory->FindObject(thid3)); |
465 |
if ( th3 ) th3->Delete(); |
466 |
th3 = new TH2F(thid3,thid3,300,-0.5,300.,1000,0.,150.); |
467 |
th3->SetMarkerStyle(20); |
468 |
th3->SetMarkerColor(kBlue); |
469 |
|
470 |
|
471 |
// tc->cd(1); |
472 |
// |
473 |
// for(Int_t i=0;i<=estremi[1][0];i++)th->Fill(Depth[i],dEpianimean[i]); |
474 |
for(Int_t i=0;i<=estremi[1][0];i++)th2->Fill(Depth[i],calorimetro[i][1]*MIP); |
475 |
// th->Draw(); |
476 |
th2->Draw("same"); |
477 |
|
478 |
// tc->cd(2); |
479 |
tc->cd(); |
480 |
// |
481 |
for(Int_t i=0;i<=estremi[1][0];i++){ |
482 |
th3->Fill(Depth[i],dEpianiloop[i]); |
483 |
// printf(" i %i Depth %f depianiloop %f \n",i,Depth[i],dEpianiloop[i]); |
484 |
} |
485 |
th3->Draw(); |
486 |
th2->Draw("same"); |
487 |
|
488 |
tc->Modified(); |
489 |
tc->Update(); |
490 |
|
491 |
// |
492 |
gStyle->SetLabelSize(0); |
493 |
gStyle->SetNdivisions(1,"XY"); |
494 |
// |
495 |
}; |
496 |
|
497 |
|
498 |
|
499 |
void CaloBragg::LoadParam(){ |
500 |
|
501 |
// elem[Z-1][isotop] 0 is the most common one |
502 |
// |
503 |
|
504 |
elem[0][0] = 1.00782; //H 1 |
505 |
elem[0][1] = 2.01410; // 2H (Isotope) |
506 |
elem[0][2] = -1.; |
507 |
elem[0][3] = -1.; |
508 |
elem[0][4] = -1.; |
509 |
elem[0][5] = -1.; |
510 |
elem[0][6] = -1.; |
511 |
|
512 |
elem[1][0] = 4.002602; //He 2 |
513 |
elem[1][1] = 3.016029; // 3He (Isotope) |
514 |
elem[1][2] = -1.; |
515 |
elem[1][3] = -1.; |
516 |
elem[1][4] = -1.; |
517 |
elem[1][5] = -1.; |
518 |
elem[1][6] = -1.; |
519 |
|
520 |
elem[2][0] = 7.016004; //Li 3 |
521 |
elem[2][1] = 6.015123; //6Li (Isotope) |
522 |
elem[2][2] = -1.; |
523 |
elem[2][3] = -1.; |
524 |
elem[2][4] = -1.; |
525 |
elem[2][5] = -1.; |
526 |
elem[2][6] = -1.; |
527 |
|
528 |
elem[3][0] = 9.012182; //Be 4 |
529 |
elem[3][1] = 10.01353; //10Be (Isotope) (most stable) |
530 |
elem[3][2] = -1.; |
531 |
elem[3][3] = -1.; |
532 |
elem[3][4] = -1.; |
533 |
elem[3][5] = -1.; |
534 |
elem[3][6] = -1.; |
535 |
|
536 |
elem[4][0] = 11.0093; //B 5 |
537 |
elem[4][1] = 10.01294; //10B (Isotope) |
538 |
elem[4][2] = -1.; |
539 |
elem[4][3] = -1.; |
540 |
elem[4][4] = -1.; |
541 |
elem[4][5] = -1.; |
542 |
elem[4][5] = -1.; |
543 |
|
544 |
elem[5][0] = 12.0107; //C 6 |
545 |
elem[5][1] = 13.00335; //13C (Isotope) |
546 |
elem[5][2] = -1.; |
547 |
elem[5][3] = -1.; |
548 |
elem[5][4] = -1.; |
549 |
elem[5][5] = -1.; |
550 |
elem[5][5] = -1.; |
551 |
|
552 |
elem[6][0] = 14.00674; //N 7 |
553 |
elem[6][1] = 15.00011; //15N (Isotope) |
554 |
elem[6][2] = -1.; |
555 |
elem[6][3] = -1.; |
556 |
elem[6][4] = -1.; |
557 |
elem[6][5] = -1.; |
558 |
elem[6][5] = -1.; |
559 |
|
560 |
elem[7][0] = 15.99491; //O 8 |
561 |
elem[7][1] = 17.99916; //18O (Isotope) |
562 |
elem[7][2] = 16.99916; //17O (Isotope) |
563 |
elem[7][3] = -1.; |
564 |
elem[7][4] = -1.; |
565 |
elem[7][5] = -1.; |
566 |
elem[7][5] = -1.; |
567 |
|
568 |
elem[8][0] = 18.99840; //F 9 |
569 |
elem[8][1] = -1.; |
570 |
elem[8][2] = -1.; |
571 |
elem[8][3] = -1.; |
572 |
elem[8][4] = -1.; |
573 |
elem[8][5] = -1.; |
574 |
elem[8][5] = -1.; |
575 |
|
576 |
elem[9][0] = 19.99244; //Ne 10 |
577 |
elem[9][1] = 21.99138; //22Ne (Isotope) |
578 |
elem[9][2] = 20.99384; //21Ne 10 |
579 |
elem[9][3] = -1.; |
580 |
elem[9][4] = -1.; |
581 |
elem[9][5] = -1.; |
582 |
elem[9][6] = -1.; |
583 |
|
584 |
elem[10][0] = 22.98977; //Na 11 |
585 |
elem[10][1] = 21.99444; //22Na (Isotope) (most stable) |
586 |
elem[10][2] = -1.; |
587 |
elem[10][3] = -1.; |
588 |
elem[10][4] = -1.; |
589 |
elem[10][5] = -1.; |
590 |
elem[10][6] = -1.; |
591 |
|
592 |
elem[11][0] = 23.98504; //Mg 12 |
593 |
elem[11][1] = 25.98259; //26Mg (Isotope) |
594 |
elem[11][2] = 24.98504; //25Mg (Isotope) |
595 |
elem[11][3] = -1.; |
596 |
elem[11][4] = -1.; |
597 |
elem[11][5] = -1.; |
598 |
elem[11][6] = -1.; |
599 |
|
600 |
elem[12][0] = 26.98154; //Al 13 |
601 |
elem[12][1] = 25.98489; //26Al (Isotope) (most stable) |
602 |
elem[12][2] = -1.; |
603 |
elem[12][3] = -1.; |
604 |
elem[12][4] = -1.; |
605 |
elem[12][5] = -1.; |
606 |
elem[12][6] = -1.; |
607 |
|
608 |
elem[13][0] = 27.97692; //Si 14 |
609 |
elem[13][1] = 28.97649; //29Si (Isotope) |
610 |
elem[13][2] = 29.97377; //30Si (Isotope) |
611 |
elem[13][3] = -1.; |
612 |
elem[13][4] = -1.; |
613 |
elem[13][5] = -1.; |
614 |
elem[13][6] = -1.; |
615 |
|
616 |
elem[14][0] = 30.97376; //P 15 |
617 |
elem[14][1] = -1.; |
618 |
elem[14][2] = -1.; |
619 |
elem[14][3] = -1.; |
620 |
elem[14][4] = -1.; |
621 |
elem[14][5] = -1.; |
622 |
elem[14][6] = -1.; |
623 |
|
624 |
elem[15][0] = 31.97207; //S 16 |
625 |
elem[15][1] = 33.96787; //34S (Isotope) |
626 |
elem[15][2] = 32.97146; //33S (Isotope) |
627 |
elem[15][3] = 35.96708; //36S (Isotope) |
628 |
elem[15][4] = -1.; |
629 |
elem[15][5] = -1.; |
630 |
elem[15][6] = -1.; |
631 |
|
632 |
elem[16][0] = 34.96885; //Cl 17 |
633 |
elem[16][1] = 36.96831; //37Cl 17 |
634 |
elem[16][2] = 35.96890; //36Cl (Isotope) |
635 |
elem[16][3] = -1.; |
636 |
elem[16][4] = -1.; |
637 |
elem[16][5] = -1.; |
638 |
elem[16][6] = -1.; |
639 |
|
640 |
elem[17][0] = 39.962383; //Ar 18 |
641 |
elem[17][1] = 35.967545; //36Ar (Isotope) |
642 |
elem[17][2] = 37.962732; //38Ar (Isotope) |
643 |
elem[17][3] = 38.964313; //39Ar (Isotope) |
644 |
elem[17][4] = -1.; |
645 |
elem[17][5] = -1.; |
646 |
elem[17][6] = -1.; |
647 |
|
648 |
elem[18][0] = 38.963707; //K 19 |
649 |
elem[18][1] = 40.961825; //41K (Isotope) |
650 |
elem[18][2] = 39.963998; //40K (Isotope) |
651 |
elem[18][3] = -1.; |
652 |
elem[18][4] = -1.; |
653 |
elem[18][5] = -1.; |
654 |
elem[18][6] = -1.; |
655 |
|
656 |
elem[19][0] = 39.962590; //Ca 20 |
657 |
elem[19][1] = 43.955482; //44Ca (Isotope) |
658 |
elem[19][2] = 41.958618; //42Ca (Isotope) |
659 |
elem[19][3] = 42.958767; //43Ca (Isotope) |
660 |
elem[19][4] = 45.953693; //46Ca (Isotope) |
661 |
elem[19][5] = 40.962278; //41Ca (Isotope) |
662 |
elem[19][6] = -1.; |
663 |
|
664 |
elem[20][0] = 44.955912;//Sc 21 |
665 |
elem[20][1] = -1.; |
666 |
elem[20][2] = -1.; |
667 |
elem[20][3] = -1.; |
668 |
elem[20][4] = -1.; |
669 |
elem[20][5] = -1.; |
670 |
elem[20][6] = -1.; |
671 |
|
672 |
elem[21][0] = 47.947946; //Ti 22 |
673 |
elem[21][1] = 45.952632; //46Ti (Isotope) |
674 |
elem[21][2] = 46.951763; //47Ti (Isotope) |
675 |
elem[21][3] = 48.947870; //49Ti (Isotope) |
676 |
elem[21][4] = 49.944791; //50Ti (Isotope) |
677 |
elem[21][5] = 43.959690; //44Ti (Isotope) (half life 60y) |
678 |
elem[21][6] = -1.; |
679 |
|
680 |
elem[22][0] = 50.943960; //V 23 |
681 |
elem[22][1] = 49.947158; //50V (Isotope) |
682 |
elem[22][2] = -1.; |
683 |
elem[22][3] = -1.; |
684 |
elem[22][4] = -1.; |
685 |
elem[22][5] = -1.; |
686 |
elem[22][6] = -1.; |
687 |
|
688 |
elem[23][0] = 51.940507; //Cr 24 |
689 |
elem[23][1] = 52.940649; //53Cr (Isotope) |
690 |
elem[23][2] = 49.946044; //50Cr (Isotope) |
691 |
elem[23][3] = 53.938880; //54Cr (Isotope) |
692 |
elem[23][4] = -1.; |
693 |
elem[23][5] = -1.; |
694 |
elem[23][6] = -1.; |
695 |
|
696 |
elem[24][0] = 54.938049;//Mn 25 |
697 |
elem[24][1] = 52.941290;//53Mn (Isotope) |
698 |
elem[24][2] = -1.; |
699 |
elem[24][3] = -1.; |
700 |
elem[24][4] = -1.; |
701 |
elem[24][5] = -1.; |
702 |
elem[24][6] = -1.; |
703 |
|
704 |
elem[25][0] = 55.934937; //Fe 26 |
705 |
elem[25][1] = 53.939610; //54Fe (Isotope) |
706 |
elem[25][2] = 56.935394; //57Fe (Isotope) |
707 |
elem[25][3] = 57.933276; //58Fe (Isotope) |
708 |
elem[25][4] = 59.934072; //58Fe (Isotope) |
709 |
|
710 |
elem[26][0] = 58.933195; //Co 27 |
711 |
elem[26][1] = 59.933817; //60Co (Isotope) |
712 |
elem[26][2] = -1.; |
713 |
elem[26][3] = -1.; |
714 |
elem[26][4] = -1.; |
715 |
elem[26][5] = -1.; |
716 |
elem[26][6] = -1.; |
717 |
|
718 |
|
719 |
elem[27][0] = 57.935343; //Ni 28 |
720 |
elem[27][1] = 61.928345; //62Ni (Isotope) |
721 |
elem[27][2] = 59.930786; //60Ni (Isotope) |
722 |
elem[27][3] = 60.931056; //61Ni (Isotope) |
723 |
elem[27][4] = 63.927966; //64Ni (Isotope) |
724 |
elem[27][5] = 58.934346; //59Ni (Isotope) |
725 |
elem[27][6] = -1.; |
726 |
|
727 |
elem[28][0] = 62.929597; //Cu 29 |
728 |
elem[28][1] = 64.927789; //65Cu (Isotope) |
729 |
elem[28][2] = -1.; |
730 |
elem[28][3] = -1.; |
731 |
elem[28][4] = -1.; |
732 |
elem[28][5] = -1.; |
733 |
elem[28][6] = -1.; |
734 |
|
735 |
elem[29][0] = 63.929142; //Zn 30 |
736 |
elem[29][1] = 65.926033; //66Zn (Isotope) |
737 |
elem[29][2] = 67.924844; //68Zn (Isotope) |
738 |
elem[29][3] = 66.927127; //67Zn (Isotope) |
739 |
elem[29][4] = 69.925319; //70Zn (Isotope) |
740 |
elem[29][5] = -1.; |
741 |
elem[29][6] = -1.; |
742 |
|
743 |
elem[30][0] = 68.925573; //Ga 31 |
744 |
elem[30][1] = 70.924701; //71Ga (Isotope) |
745 |
elem[30][2] = -1.; |
746 |
elem[30][3] = -1.; |
747 |
elem[30][4] = -1.; |
748 |
elem[30][5] = -1.; |
749 |
elem[30][6] = -1.; |
750 |
|
751 |
elem[31][0] = 73.921177; //Ge 32 |
752 |
elem[31][1] = 71.922075; //72Ge (Isotope) |
753 |
elem[31][2] = 69.924247; //70Ge (Isotope) |
754 |
elem[31][3] = 75.921403; //76Ge (Isotope) |
755 |
elem[31][4] = 73.923459; //73Ge (Isotope) |
756 |
elem[31][5] = -1.; |
757 |
elem[31][6] = -1.; |
758 |
|
759 |
|
760 |
//parametri calorimetro |
761 |
NPLA = 22; |
762 |
NCHA = 96; |
763 |
nView = 2; |
764 |
|
765 |
AA = 0.96;//mm larghezza strip |
766 |
ADIST = 80.5;//mm distanza tra pad |
767 |
PIANO = 8.59;//mm distanza |
768 |
|
769 |
ySi = 0.38;//mm spessore silicio |
770 |
yW = 2.66;//mm spessore tungsteno |
771 |
rhoSi = 2.33;//g/cm3 densita' silicio |
772 |
rhoW = 19.3;//g/cm3 densita' tugsteno |
773 |
MIP = 0.106;//Mev g/cm2 energia al minimo nel silicio per 0.38 mm |
774 |
|
775 |
emin = 0.; |
776 |
|
777 |
//parametri bethe-bloch |
778 |
pigr = 3.1415; |
779 |
Na = 6.02e-23; |
780 |
ZA = 0.49; /*Z/A per Si*/ |
781 |
// ISi =182e-06; /*MeV*/ |
782 |
ISi = 171e-06; /*MeV*/ |
783 |
IW = 735e-06; /*MeV*/ |
784 |
// ISi =0.0001059994; /*GeV!!*/ no era giusto!! |
785 |
Me = 0.511; /* MeV*/ |
786 |
MassP = 931.27;/*MeV*/ |
787 |
r2 = 7.95e-26; /*ro*ro in cm */ |
788 |
|
789 |
}; |
790 |
|
791 |
|
792 |
|
793 |
// |
794 |
void CaloBragg::conversione(){ |
795 |
|
796 |
// calcolo spessore Si attraverato in funzione dell'inclinazione |
797 |
// e conversione dello spessore di W in Si e correzione del valore |
798 |
// della Mip pe lo spessore effettivo |
799 |
// |
800 |
// in : evento |
801 |
// |
802 |
// out: out[0] = gcm2Si = spessore silicio attraversato nel piano |
803 |
// out[1] = WinSi = spessore equivalente in Si del W attraversato |
804 |
// out[2] = Mip = fattore conversione energia riscalato allo spessore attrversatonel piano |
805 |
|
806 |
Float_t SiCross=0.; |
807 |
Float_t WCross = 0.; |
808 |
Float_t ytgx = 0; |
809 |
Float_t ytgy = 0; |
810 |
Float_t a = 0.; |
811 |
|
812 |
/*silicio*/ |
813 |
ytgx = ySi * L2->GetCaloLevel2()->tanx[0]; |
814 |
ytgy = ySi * L2->GetCaloLevel2()->tany[0]; |
815 |
|
816 |
//lunghezza effettiva di silicio attraversata (mm) |
817 |
SiCross = sqrt(SQ(ySi) + SQ(ytgx) + SQ(ytgy)); |
818 |
|
819 |
spessore[0] = (SiCross/10.) * rhoSi; //spessore silicio in g/cm2 |
820 |
|
821 |
/*tungsteno*/ |
822 |
ytgx = yW * L2->GetCaloLevel2()->tanx[0]; |
823 |
ytgy = yW * L2->GetCaloLevel2()->tany[0]; |
824 |
|
825 |
//rapporto tra rilasci energetici nei due materiali |
826 |
WCross = sqrt((yW*yW) + (ytgx*ytgx) + (ytgy*ytgy));//mm* rapporto lunghezze rad |
827 |
//gcm2W = WCross/10. * rhoW; |
828 |
|
829 |
// (g/cm2W)/(g/cm2Si) |
830 |
spessore[3] = (WCross/10.) * rhoW; |
831 |
a=(WCross/SiCross)*(rhoW/rhoSi)*(1.145/1.664); //(gcm2W)/(SiCross/10. * rhoSi)* (1.145/1.664); |
832 |
spessore[1] = a; |
833 |
//riscala mip allo spessore attraversato |
834 |
spessore[2] = MIP*(SiCross/ySi); |
835 |
};//end conversione |
836 |
|
837 |
|
838 |
|
839 |
|
840 |
|
841 |
void CaloBragg::BetheBloch(Float_t *x, Float_t *z, Float_t *Mass, Float_t *gam, Float_t *Bet, Float_t *out, Float_t II){ |
842 |
|
843 |
//rilascio energetico con bethe bloch con correzioni |
844 |
//in: x: g/cm2 |
845 |
// z: carica |
846 |
// Mass: Massa uma |
847 |
// Ene: energia particella MeV//tolta |
848 |
// gam: (etot/massa) |
849 |
// Bet: rad((g2-1)/g2) |
850 |
// |
851 |
//out: energia rilasciata MeV |
852 |
|
853 |
|
854 |
Float_t eta =0.; |
855 |
Float_t Wmax =0.; |
856 |
Float_t lg =0.; |
857 |
Float_t Energia=0.; |
858 |
Float_t C=0.; |
859 |
Float_t INo = ISi; |
860 |
|
861 |
if ( usenewBB ) INo = II; |
862 |
|
863 |
eta = (*gam)*(*Bet); |
864 |
|
865 |
//Bet=3/gam; SQ(*gam) * SQ(*Bet) |
866 |
Wmax = 2.* Me * SQ(eta) / (1. + 2.*(*gam)*Me/(*Mass) + SQ(Me)/SQ(*Mass)); |
867 |
|
868 |
lg = 2.* Me * SQ(eta) * Wmax / SQ(INo); |
869 |
// Energia = x* 2 * pigr * Na * r2 * Me * rhoSi *ZA* SQ(z)/SQ(Bet) * lg; |
870 |
C=(0.42237*pow(eta,-2.) + 0.0304*pow(eta,-4.) - 0.00038*pow(eta,-6.))*pow(10.,-6.)* pow(INo,2.) + |
871 |
(3.858*pow(eta,-2.) - 0.1668*pow(eta,-4.) + 0.00158*pow(eta,-6.))*pow(10.,-9.)*pow(INo,3.); |
872 |
|
873 |
if(eta <= 0.13) C= C * log(eta/0.0653)/log(0.13/0.0653); |
874 |
|
875 |
Energia = (*x) * 0.307/28.09 * 14. *SQ(*z)/SQ(*Bet)*(0.5*log(lg) - SQ(*Bet) - C/14.); |
876 |
|
877 |
*out =Energia;//out |
878 |
|
879 |
};//end Bethebloch |
880 |
|
881 |
|
882 |
|
883 |
|
884 |
void CaloBragg::ELOSS(Float_t *dx, Int_t *Z, Int_t *isotope, Float_t *Etot, Float_t *out, Float_t II){ |
885 |
|
886 |
/*perdita di energia per ioni pesanti (come da routine geant)*/ |
887 |
// in : dx => spessore g/cm2 |
888 |
// Z => carica |
889 |
// Etot => energia perticella |
890 |
// |
891 |
// out: energia persa |
892 |
|
893 |
|
894 |
Float_t Q=0.; |
895 |
Float_t v=0.; |
896 |
Float_t gam=0.; |
897 |
Float_t Bet=0.; |
898 |
Float_t dEP=0.; |
899 |
|
900 |
// gamma // Mass = A * MassP; /*in Mev/c2*/ |
901 |
gam = (*Etot)/(elem[*Z-1][*isotope]*MassP); // E = gamma M c2 |
902 |
|
903 |
|
904 |
Bet = sqrt((SQ(gam) -1.)/SQ(gam)); |
905 |
|
906 |
// v= 121.4139*(Bet/pow((*Z),(2./3.))) + 0.0378*sin(190.7165*(Bet/pow((*Z),(2./3.)))); |
907 |
v= 121.4139*(Bet*pow((*Z),(2./3.))) + 0.0378*sin(190.7165*(Bet*pow((*Z),(2./3.)))); // EMI AAAAGGH!! |
908 |
|
909 |
//carica effettiva |
910 |
Q= (*Z)*(1- (1.034 - 0.1777*exp(-0.08114*(*Z)))*exp(-v)); |
911 |
|
912 |
//perdita energia per un protone |
913 |
Float_t protone =1.; |
914 |
// Float_t Mass=(elem[*Z-1]*MassP); //EMI |
915 |
// BetheBloch(dx, &protone, &Mass, &gam, &Bet, &dEP);//ene non serve..go gamma.. BetheBloch(dx, 1, MassP, Etot/A, gam, Bet, &dEP); |
916 |
|
917 |
BetheBloch(dx, &protone, &MassP, &gam, &Bet, &dEP, II);//ene non serve..go gamma.. BetheBloch(dx, 1, MassP, Etot/A, gam, Bet, &dEP); //EMI |
918 |
|
919 |
*out= (SQ(Q)*(dEP));//*dx; |
920 |
|
921 |
|
922 |
};//end ELOSS |
923 |
|
924 |
|
925 |
|
926 |
|
927 |
void CaloBragg::Enetrack(Int_t* Z, Int_t* isotope, Float_t* E0, Float_t* primo,Float_t* ultimo, Float_t out[]){ |
928 |
|
929 |
//calcola energia rilasciata sulla traccia (usa ELOSS) |
930 |
// in : Z =>carica |
931 |
// E0 =>energia |
932 |
// spess2[3] => conversione spessore Si, Si in W, mip |
933 |
// primo => posizione primo piano attraversato |
934 |
// |
935 |
// out: array[44] =>rilasci energetici calcolati per ogni piano[44] dopo il primo(estremi[0][0]) |
936 |
|
937 |
|
938 |
|
939 |
Float_t dE=0.; //energia rilasciata |
940 |
Float_t Ezero= *E0;//energia iniziale |
941 |
|
942 |
//azzero energia rilasciata sui piani |
943 |
memset(out, 0, 2*NPLA*sizeof(Float_t)); |
944 |
|
945 |
Float_t Massa = (elem[(*Z)-1][*isotope] * MassP); |
946 |
|
947 |
for( Int_t ipla=((int)(*primo)); ipla<= ((int)(*ultimo)); ipla++){ |
948 |
dE=0.; |
949 |
//spessore silicio corretto x inclinazione, z, energia, out:rilascio |
950 |
ELOSS(&spessore[0], Z , isotope , &Ezero, &dE, ISi);//spessore in g/cm2!! |
951 |
|
952 |
if(dE!=dE) return; //controlla che non sia un NaN |
953 |
|
954 |
if((Ezero-dE) <= Massa){//se l'energia depositata e' maggiore dell'energia della perticella stop |
955 |
out[ipla] = Ezero - Massa; //MeV |
956 |
return; |
957 |
|
958 |
}else{ |
959 |
out[ipla] = dE; //MeV |
960 |
Ezero = Ezero - dE;//energia residua |
961 |
if ( debug ) printf(" zompa %i out %f dE %f ezero %f \n",ipla,out[ipla],dE,Ezero); |
962 |
}; |
963 |
//se sono su un piano Y (tutti i pari) dopo c'e' il tungsteno |
964 |
if(ipla%2 == 0){ |
965 |
/*tungsteno*/ |
966 |
dE=0.; |
967 |
Float_t sp = 0.; |
968 |
Float_t II = ISi; |
969 |
if ( usenewBB ){ |
970 |
sp = spessore[3]; |
971 |
II = IW; |
972 |
} else { |
973 |
sp = spessore[0]*spessore[1]; //((gcm2Si)*(WinSi))//spessore attraversato in g/cm2 |
974 |
} |
975 |
// printf(" sp %f II %f \n",sp,II); |
976 |
ELOSS(&sp, Z, isotope , &Ezero, &dE,II); |
977 |
if((Ezero-dE) <= Massa){//se l'energia depositata e' maggiore dell'energia della perticella stop |
978 |
return; |
979 |
}else{ |
980 |
Ezero = Ezero -dE;//energia residua |
981 |
}; |
982 |
}; |
983 |
|
984 |
};//fine loop piani |
985 |
|
986 |
|
987 |
};//end Enetrack |
988 |
|
989 |
|
990 |
|
991 |
void CaloBragg::chiquadro(Float_t dE[], Float_t out[]){ |
992 |
|
993 |
// calcola chi2 tra energia calcolata e misurata |
994 |
// in : dE[44] =>energia calcolata |
995 |
// calo3[44][2]=> [0]strip attraversata [1]energia misurata per ogni piano |
996 |
// estr2 => array con primo[0][0] e ultimo[1][0] piano attraversati ed energie[][1] |
997 |
// |
998 |
// out: array[3]=> (chi2; piani scartati consecutivi(79= >3 quindi frammentato); piani scartati totale) |
999 |
|
1000 |
|
1001 |
Float_t sum = 0.; |
1002 |
Float_t PianoPrecedente=0.; |
1003 |
Float_t badplane=0.; |
1004 |
Float_t badplanetot=0.; |
1005 |
Float_t w,wi; |
1006 |
// |
1007 |
if ( newchi2 ){ |
1008 |
ndf = 0; |
1009 |
sum = 0.; |
1010 |
for( Int_t ipla=((int)(estremi[0][0])); ipla<= ((int)(estremi[1][0])); ipla++){ |
1011 |
sum += pow((dE[ipla] - (calorimetro[ipla][1] * spessore[2]))/(0.05*dE[ipla]),2.); |
1012 |
// printf(" quiqui: dE %f calor %f spessore[2] %f \n",dE[ipla],spessore[2]*calorimetro[ipla][1],spessore[2]); |
1013 |
ndf++; |
1014 |
} |
1015 |
ndf -= 2; |
1016 |
if ( ndf > 0 ) sum /= (float)ndf; |
1017 |
out[0] = sum; |
1018 |
out[1] = 0.; |
1019 |
out[2] = (int)(estremi[1][0])-ndf; |
1020 |
// printf(" sum %f ndf %i \n ",sum,ndf); |
1021 |
} else { |
1022 |
for(Int_t ipla=0; ipla<2*NPLA; ipla++){ |
1023 |
//tutti i piani attraversati dalla traiettoria |
1024 |
if(calorimetro[ipla][0] != -1.){ // |
1025 |
w=0.; //normalizzazione; |
1026 |
wi=1.;//peso |
1027 |
|
1028 |
//tolgo piani attraversati dalla traccia ma precedenti il piano individuato come ingresso |
1029 |
if (ipla<estremi[0][0]) wi=0.; |
1030 |
|
1031 |
//tolgo piani attraversati da traccia ma successivi all'ultimo se sono diversi da 0 |
1032 |
//if((ipla>estremi[1][0]) && (calorimetro[ipla][1] >0.) ) wi=0.; |
1033 |
if((ipla>estremi[1][0])) wi=0.; |
1034 |
|
1035 |
//normalizzazione |
1036 |
if (calorimetro[ipla][1] != 0.) w=1./(calorimetro[ipla][1]* MIP); // |
1037 |
|
1038 |
//tolgo piani con rilasci inferiori al 30% del precedente |
1039 |
if(calorimetro[ipla][1] < (0.7*PianoPrecedente)){ // cosi' i piani senza rilascio non vengono considerati nel calcolo del chi2 |
1040 |
wi=0.; |
1041 |
//se sono piani intermedi (non si e' fermta) li considero non buoni |
1042 |
if( (ipla <= estremi[1][0]) && (calorimetro[ipla][1] !=0.)){// |
1043 |
badplane+=1.; |
1044 |
badplanetot+=1.; |
1045 |
}; |
1046 |
}; |
1047 |
|
1048 |
//meno peso ai piani con rilasci maggiori di 1000 MIP |
1049 |
// if(calorimetro[ipla][1] > 1000) wi=0.5; |
1050 |
if(calorimetro[ipla][1] > 1200.) wi=0.5; |
1051 |
if(debug) printf("chiquadro start \n "); |
1052 |
Float_t arg = w*wi*(dE[ipla] - (calorimetro[ipla][1] * MIP)); |
1053 |
|
1054 |
sum += SQ(arg); // w*wi*(dEpiani[p][v]-(eplane[p][v]*MIP))));//( dEpiani[p][v] - (eplane[p][v]*MIP)); |
1055 |
if(debug){ |
1056 |
printf("dedx calcolata %f e reale %f \n",dE[ipla],(calorimetro[ipla][1] * MIP)); |
1057 |
} |
1058 |
//se trovo piano non buono (tolto quindi wi=0) non modifico il piano precedente |
1059 |
if(wi != 0.){// |
1060 |
PianoPrecedente= calorimetro[ipla][1];//tengo piano precedente |
1061 |
badplane = 0.;//azzero contatore piani scartati consecutivi |
1062 |
}; |
1063 |
}; |
1064 |
|
1065 |
//da Emi |
1066 |
if(badplane > 2){ |
1067 |
// printf(" AAAAAAAAAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG\n"); |
1068 |
out[1] =79.; |
1069 |
break; |
1070 |
}; |
1071 |
|
1072 |
};//fine loop piani |
1073 |
//chi2,frammentato,pskip |
1074 |
out[0]=sum; |
1075 |
out[2]=badplanetot; |
1076 |
} |
1077 |
};//end chiquadro |
1078 |
|
1079 |
|
1080 |
|
1081 |
void CaloBragg::loopze( Float_t step, Float_t E0,Float_t Zstart, Float_t Zlimite, Int_t nostep = 1000){ |
1082 |
// |
1083 |
//loop su z ed energie per trovare miglior z (ed energia) |
1084 |
//in: nloop => energia massima da provare (nloop x E0) |
1085 |
// E0 => energia iniziale (intergale) |
1086 |
// Zstart => minimo z da cui patire |
1087 |
// Zlimite => z a cui fermarsi (z al minimo di ionizz sul 1o piano) |
1088 |
// |
1089 |
//out: array[4]=> chi2,Zbest,Ebest,piani saltati nel chi2 |
1090 |
// |
1091 |
|
1092 |
//printf("entrato"); |
1093 |
memset(dEplan,0,2*NPLA*sizeof(Float_t)); |
1094 |
|
1095 |
Int_t Z = 0;// z iniziale |
1096 |
|
1097 |
Int_t isotope=0; |
1098 |
|
1099 |
Float_t Massa = 0.; |
1100 |
|
1101 |
Float_t Stepint =(step)/(Float_t)nostep;//passo per il calcolo di energia |
1102 |
|
1103 |
Float_t energia =0.;//energia del loop |
1104 |
|
1105 |
Float_t chi2[3] = {0,0,0};//out dal calcolo chi2: chi2, piani consecutivi saltati, piani totali saltati |
1106 |
|
1107 |
Int_t zmin = (int)Zstart; |
1108 |
Int_t max=32;//max z di cui so la massa :P |
1109 |
if((Zlimite)<=31) max=(int)(Zlimite) + 1; |
1110 |
|
1111 |
if(debug) printf("loopze inizio max %d \n",max); |
1112 |
if ( fzeta > 0. ){ |
1113 |
zmin = fzeta; |
1114 |
max = fzeta+1; |
1115 |
} |
1116 |
|
1117 |
Int_t colmax=32; |
1118 |
Int_t rowmax=3000; |
1119 |
Int_t isomax=7; |
1120 |
|
1121 |
Float_t matrixchi2[colmax][isomax][rowmax][3]; |
1122 |
memset(matrixchi2, 0, colmax*isomax*rowmax*3*sizeof(Float_t)); |
1123 |
|
1124 |
Int_t imin = 1-nostep/2; |
1125 |
Int_t imax = nostep/2; |
1126 |
|
1127 |
//loop elementi |
1128 |
for(Int_t inucl=zmin; inucl<max; inucl++){ |
1129 |
|
1130 |
Z= inucl; |
1131 |
|
1132 |
//loop isotopi |
1133 |
while ( elem[inucl-1][isotope] > 0. ){ |
1134 |
Massa = elem[inucl-1][isotope]*MassP; |
1135 |
|
1136 |
//loop energia |
1137 |
Int_t iene2 = -1; |
1138 |
|
1139 |
// for(Int_t iene= 0; iene<1000; iene++){// da non cambiare in base a Stepint altrimenti cambia la matrice bestchi2!!!cosi' non raggiungo mai integrale!!!!! mettere <=?? |
1140 |
|
1141 |
for(Int_t iene= imin; iene<imax; iene++){// da non cambiare in base a Stepint altrimenti cambia la matrice bestchi2!!!cosi' non raggiungo mai integrale!!!!! mettere <=?? |
1142 |
iene2++; |
1143 |
energia= Massa + (E0)+ iene*Stepint;//gli do un'energia totale (momento) massa+energia cinetica, aumentando la cinetica.. |
1144 |
|
1145 |
|
1146 |
if( fene > 0. ) energia=fene; //forza l'energia |
1147 |
if (debug) printf("loopze energia %f, z %d, isotopo %d ,iene %d\n",energia,Z,isotope,iene); |
1148 |
// printf(" energia %f , forzata %f \n",energia,fene); |
1149 |
Enetrack(&Z, &isotope, &energia, &estremi[0][0],&estremi[1][0], dEplan);//calcola rilascio energetico sui piani |
1150 |
|
1151 |
chiquadro(dEplan,chi2); //calcolo chi2 |
1152 |
if (debug) printf("loopze chi %f \n",chi2[0]); |
1153 |
if(debug && TMath::Finite(chi2[0])==1 && (TMath::IsNaN(chi2[0])!=1) ) printf("loopze fin mat %f \n",chi2[0]); |
1154 |
// printf(" last deplan from: Z = %i iene %i energia %f chi2 %f \n",inucl,iene,energia,chi2[0]); |
1155 |
if( (chi2[1] != 79.) ){//salto quelli che frammentano |
1156 |
matrixchi2[inucl][isotope][iene2][0]=chi2[0];//valore chi2 per questo z a questa energia |
1157 |
matrixchi2[inucl][isotope][iene2][1]=energia;//energia per questo chi2 |
1158 |
matrixchi2[inucl][isotope][iene2][2]=chi2[2];//piani saltati nel chi2 |
1159 |
if( fene > 0. ) break; |
1160 |
} else { |
1161 |
matrixchi2[inucl][isotope][iene2][0]=1000.;//valore chi2 per questo z a questa energia |
1162 |
matrixchi2[inucl][isotope][iene2][1]=1000.;//energia per questo chi2 |
1163 |
matrixchi2[inucl][isotope][iene2][2]=1000.;//piani saltati nel chi2 |
1164 |
break; |
1165 |
} |
1166 |
|
1167 |
}//fine loop energia |
1168 |
|
1169 |
isotope++; //incremento il contatore isotopi |
1170 |
}//fine loop isotopi |
1171 |
isotope=0; //riazzero il contatore isotopi |
1172 |
|
1173 |
}//fine loop z |
1174 |
|
1175 |
isotope=0;//non dovrebbe servire |
1176 |
|
1177 |
//Emi |
1178 |
for (Int_t nu=zmin; nu<max; nu++){ |
1179 |
while(elem[nu-1][isotope]> 0.){ |
1180 |
for (Int_t en=0; en<nostep; en++){ |
1181 |
if((matrixchi2[nu][isotope][en][0]<bestchi2[0]) && (matrixchi2[nu][isotope][en][0] >0.)){ |
1182 |
bestchi2[0]= matrixchi2[nu][isotope][en][0];// chi2 |
1183 |
bestchi2[1]= (Float_t)nu; // z |
1184 |
bestchi2[2]= matrixchi2[nu][isotope][en][1];//energia; |
1185 |
bestchi2[3]= matrixchi2[nu][isotope][en][2];// totale piani saltati |
1186 |
bestchi2[4]= (Float_t)isotope; //isotopo |
1187 |
} |
1188 |
} |
1189 |
isotope++; |
1190 |
} |
1191 |
isotope=0; |
1192 |
} |
1193 |
|
1194 |
};//endloopze |
1195 |
|
1196 |
|
1197 |
|
1198 |
|
1199 |
|
1200 |
// void CaloBragg::mediatroncata(){ |
1201 |
// //calcolo Z con media troncata e utilizzo questo Z per trovare l'energia migliore |
1202 |
// //in: ordplane[44] => array con energia dei piani |
1203 |
// // spess[3] => conversioni spessore di silicio, w, mip |
1204 |
// // estr[2][2] => primo[0][0] e ultimo[1][0] piano attraversati ed energie[][1] |
1205 |
// // calo[44][2]=> energia[][1] e strip[][0] passaggio su ogni piano |
1206 |
// // integrale => energia totale nel calorimetro considerando il W |
1207 |
// // |
1208 |
// // out[4] chi2,z,Etot,Pskip |
1209 |
|
1210 |
// Float_t ordplane[44];//mi serve per la media troncata |
1211 |
// memset(ordplane,0,44*sizeof(Float_t)); |
1212 |
|
1213 |
// for(Int_t ipla=0; ipla< 2*NPLA; ipla++) ordplane[ipla]=calorimetro[ipla][1]; //energia del piano |
1214 |
|
1215 |
|
1216 |
// //ordino tutte le energie dei piani in ordine crescente |
1217 |
|
1218 |
// Long64_t work[200]; |
1219 |
// Int_t ind = 0; |
1220 |
// //Int_t l = 0; |
1221 |
// Int_t RN = 0; |
1222 |
// Float_t sum4 = 0.; |
1223 |
// Float_t qm = 0.; |
1224 |
// // |
1225 |
// //Float_t qmt = ethr*0.8; // *0.9 |
1226 |
// // |
1227 |
// //Int_t uplim = TMath::Max(3,N); |
1228 |
// // |
1229 |
// while ( RN < 4 && ind < 44 ){ |
1230 |
// qm = TMath::KOrdStat(44,ordplane,ind,work); |
1231 |
// if (qm >= 0.7 ){ |
1232 |
// if ( RN < 4 ){ |
1233 |
// sum4 += qm; |
1234 |
// RN++; |
1235 |
// }; |
1236 |
// // l++; |
1237 |
// // if ( debug ) printf(" value no %i qm %f sum4 %f \n",l,qm,sum4); |
1238 |
// }; |
1239 |
// ind++; |
1240 |
// }; |
1241 |
// // |
1242 |
// sum4 /= (Float_t)RN; |
1243 |
// Float_t Zmean = (sqrt((sum4*MIP)/(((Float_t)RN)*spessore[2])));//ma non e'/1?? |
1244 |
// if(Zmean ==0.) Zmean=1.; |
1245 |
// if ( Zmean < 1. ) Zmean = 1.; |
1246 |
|
1247 |
|
1248 |
// // Zmean =round(Zmean); |
1249 |
// // if(Zmean <1.) Zmean=1.; |
1250 |
|
1251 |
// // if(Zmean >0.)Zmean =round(Zmean); |
1252 |
|
1253 |
// //======== per i nuclei======= |
1254 |
// if (Zmean >=2.){ |
1255 |
// ind = 0; |
1256 |
// RN = 0; |
1257 |
// sum4 = 0.; |
1258 |
// qm = 0.; |
1259 |
// while ( RN < 4 && ind < 44 ){ |
1260 |
// qm = TMath::KOrdStat(44,ordplane,ind,work); |
1261 |
// if (qm >= (Zmean*Zmean)-Zmean*Zmean*0.2 ){ |
1262 |
// if ( RN < 4 ){ |
1263 |
// sum4 += qm; |
1264 |
// RN++; |
1265 |
// }; |
1266 |
// }; |
1267 |
// ind++; |
1268 |
// }; |
1269 |
// // |
1270 |
// sum4 /= (Float_t)RN; |
1271 |
// Zmean = (sqrt((sum4*MIP)/(4.*spessore[2])));//ma non e' /1?? |
1272 |
// } |
1273 |
|
1274 |
|
1275 |
// //calcolo energia migliore per Z trovato con media troncata |
1276 |
// // Float_t zmin=Zmean; |
1277 |
// Float_t zmin=round(Zmean); |
1278 |
|
1279 |
// bestchi2[0]=10000.; |
1280 |
// bestchi2[1]=0.; |
1281 |
// bestchi2[2]=0.; |
1282 |
// bestchi2[3]=0.; |
1283 |
// Float_t zero=0.; |
1284 |
|
1285 |
// // step energia zstart zstop |
1286 |
// loopze(Integrale,zero,zmin,zmin); |
1287 |
|
1288 |
|
1289 |
// qtchi2=bestchi2[0]; |
1290 |
// qtz=bestchi2[1]; |
1291 |
// qtetot=bestchi2[2]; |
1292 |
// qtpskip=bestchi2[3]; |
1293 |
// };//end mediatroncata |
1294 |
|
1295 |
|
1296 |
|
1297 |
void CaloBragg::Zdaloop(){ |
1298 |
//calcolo Z con un loop su tutti i possibli Z ed energie |
1299 |
//in: ordplane[44]=> array con energia dei piani |
1300 |
// spess1[3]=> conversioni spessore di silicio, w e mip |
1301 |
// estr3[2][2]=> primo[0][0] e ultimo[1][0] piano ed energie |
1302 |
// calo1[44][2]=> energia[][1] e strip[][0] passaggio su ogni piano |
1303 |
// integrale=> energia totale nel calorimetro considerando il W |
1304 |
// |
1305 |
// out[4] chi2,z,Etot,Pskip |
1306 |
|
1307 |
|
1308 |
/*z se particella fosse al minimo*/ //energia1piano/mip corretta |
1309 |
// Float_t zmax = round(sqrt(estremi[0][1]/spessore[2])); |
1310 |
// if(zmax<31)zmax=zmax+1; |
1311 |
|
1312 |
/*calcolo Z ed E con loop sui vari elementi ed energie*/ |
1313 |
|
1314 |
Float_t zmin=1.; |
1315 |
Float_t zmax=32.; |
1316 |
Float_t bestchitemp[5] = {0,0,0,0,0}; |
1317 |
|
1318 |
bestchi2[0]=numeric_limits<Float_t>::max(); |
1319 |
bestchi2[1]=0.; |
1320 |
bestchi2[2]=0.; |
1321 |
bestchi2[3]=0.; |
1322 |
bestchi2[4]=0.; |
1323 |
Float_t zero=0.; |
1324 |
//------------primo loop ---------------------- |
1325 |
// energia ezero, zstart zstop |
1326 |
// loopze(Integrale,zero,zmin,zmax); |
1327 |
|
1328 |
//-> loopze(Integrale*1.2/500.,Integrale/1000.,zmin,zmax,50); |
1329 |
loopze(Integrale*1.2/500.,Integrale/1000.,zmin,zmax,200); |
1330 |
|
1331 |
// loopze(Integrale*2.,Integrale/100.,zmin,zmax); |
1332 |
if ( debug) printf("Zdaloop start Integrale %f , outene %f \n",Integrale,bestchi2[2]); |
1333 |
|
1334 |
//------------secondo loop ---------------------- |
1335 |
for(Int_t i=0;i<5;i++) bestchitemp[i]=bestchi2[i]; |
1336 |
bestchi2[0]=numeric_limits<Float_t>::max(); |
1337 |
bestchi2[1] = 0.; |
1338 |
bestchi2[2] = 0.; |
1339 |
bestchi2[3] = 0.; |
1340 |
bestchi2[4] = 0.;//riazzero |
1341 |
|
1342 |
Float_t step = bestchitemp[2];// |
1343 |
zero=0.; // qualsiasi altro valore peggiora le cose |
1344 |
// zmin=zmax=bestchitemp[1]; |
1345 |
zmin=bestchitemp[1]-1; |
1346 |
zmax=bestchitemp[1]+1; |
1347 |
//loopze(step,zero,zmin,zmax); // |
1348 |
|
1349 |
//-> loopze(step,step/2.,zmin,zmax,200); // |
1350 |
loopze(step,step/2.,zmin,zmax,500); // |
1351 |
|
1352 |
//step = bestchitemp[2];// |
1353 |
|
1354 |
//loopze(step/2,3*step/4.,zmin,zmax,500); // |
1355 |
|
1356 |
if ( debug ) printf("Zdaloop Integrale2 %f , outene %f step %f \n",Integrale,bestchi2[2],step); |
1357 |
|
1358 |
//chi2,z,Etot,Pskip |
1359 |
lpchi2=bestchi2[0]; |
1360 |
lpz=bestchi2[1]; |
1361 |
lpetot=bestchi2[2]; |
1362 |
lppskip=bestchi2[3]; |
1363 |
lpisotope=bestchi2[4]; |
1364 |
};//endZdaloop |
1365 |
|
1366 |
|
1367 |
|
1368 |
|
1369 |
|
1370 |
|
1371 |
|
1372 |
|
1373 |
|
1374 |
|
1375 |
|
1376 |
|