33 |
// |
// |
34 |
tr = 0; |
tr = 0; |
35 |
sntr = 0; |
sntr = 0; |
36 |
// qtchi2 = 0.; |
// qtchi2 = 0.; |
37 |
// qtz = 0.; |
// qtz = 0.; |
38 |
// qtetot = 0.; |
// qtetot = 0.; |
39 |
// qtpskip = 0.; |
// qtpskip = 0.; |
40 |
lpchi2 = 0.; |
lpchi2 = 0.; |
41 |
lpz = 0.; |
lpz = 0.; |
42 |
lpetot = 0.; |
lpetot = 0.; |
61 |
printf(" OBT: %u PKT: %u ATIME: %u Track %i Use track %i \n",OBT,PKT,atime,tr,usetrack); |
printf(" OBT: %u PKT: %u ATIME: %u Track %i Use track %i \n",OBT,PKT,atime,tr,usetrack); |
62 |
printf(" first plane: %f \n", estremi[0][0]); |
printf(" first plane: %f \n", estremi[0][0]); |
63 |
printf(" last plane: %f \n", estremi[1][0]); |
printf(" last plane: %f \n", estremi[1][0]); |
64 |
// printf(" chi 2 from truncated mean: %f \n", qtchi2); |
// printf(" chi 2 from truncated mean: %f \n", qtchi2); |
65 |
// printf(" Z from truncated mean %f: \n", qtz); |
// printf(" Z from truncated mean %f: \n", qtz); |
66 |
// printf(" energy from truncated mean %f: \n", qtetot); |
// printf(" energy from truncated mean %f: \n", qtetot); |
67 |
// printf(" plane not used for truncated mean %f: \n", qtpskip); |
// printf(" plane not used for truncated mean %f: \n", qtpskip); |
68 |
printf(" chi 2 from loop %f: \n", lpchi2); |
printf(" chi 2 from loop %f: \n", lpchi2); |
69 |
printf(" Z from loop %f: \n", lpz); |
printf(" Z from loop %f: \n", lpz); |
70 |
printf(" energy from loop %f: \n", lpetot); |
printf(" energy from loop %f: \n", lpetot); |
83 |
Process(-1); |
Process(-1); |
84 |
}; |
}; |
85 |
|
|
86 |
|
|
87 |
|
void CaloBragg::CleanPlanes(Float_t epiano[22][2]){ |
88 |
|
// return; |
89 |
|
Int_t hitplanes = 0; |
90 |
|
for (Int_t i = 0; i<22; i++){ |
91 |
|
for (Int_t j = 1; j>=0; j--){ |
92 |
|
if ( epiano[i][j] > 0.7 ) hitplanes++; |
93 |
|
}; |
94 |
|
}; |
95 |
|
Float_t lowlim = 0.85; |
96 |
|
Float_t dedxone = 0.; |
97 |
|
Float_t step1 = 0.8*L2->GetCaloLevel2()->qtot/(Float_t)hitplanes; |
98 |
|
while ( dedxone < step1 ){ |
99 |
|
for (Int_t i = 0; i<22; i++){ |
100 |
|
for (Int_t j = 1; j>=0; j--){ |
101 |
|
if ( epiano[i][j] >= step1 && dedxone < 0.7 ) dedxone = epiano[i][j]; |
102 |
|
}; |
103 |
|
}; |
104 |
|
} |
105 |
|
if ( dedxone < 0.7 ){ |
106 |
|
for (Int_t i = 0; i<22; i++){ |
107 |
|
for (Int_t j = 1; j>=0; j--){ |
108 |
|
if ( epiano[i][j] > 0. && dedxone < 0.7 ) dedxone = epiano[i][j]; |
109 |
|
}; |
110 |
|
}; |
111 |
|
} |
112 |
|
// |
113 |
|
// printf(" dedxone = %f step1 %f \n",dedxone,step1); |
114 |
|
Bool_t revulsera = false; |
115 |
|
Bool_t nullius = false; |
116 |
|
Int_t nulliferus = 0; |
117 |
|
for (Int_t i = 0; i<22; i++){ |
118 |
|
for (Int_t j = 1; j>=0; j--){ |
119 |
|
if ( epiano[i][j] < dedxone*lowlim ){ |
120 |
|
// printf(" %i %i epiano %f limit %f nulliferus %i nullius %i \n",i,j,epiano[i][j],dedxone*lowlim,nulliferus,nullius); |
121 |
|
epiano[i][j] = 0.; |
122 |
|
} else { |
123 |
|
//x printf(" %i %i epiano %f limit %f nulliferus %i nullius %i \n",i,j,epiano[i][j],dedxone*lowlim,nulliferus,nullius); |
124 |
|
nulliferus = 0; |
125 |
|
revulsera = true; |
126 |
|
}; |
127 |
|
if ( epiano[i][j] < 0.7 && revulsera ) nulliferus++; |
128 |
|
if ( nulliferus > 10 ) nullius = true; |
129 |
|
if ( nullius ) epiano[i][j] = 0.; |
130 |
|
}; |
131 |
|
}; |
132 |
|
|
133 |
|
} |
134 |
|
|
135 |
|
|
136 |
void CaloBragg::Process(Int_t ntr){ |
void CaloBragg::Process(Int_t ntr){ |
137 |
// |
// |
138 |
if ( !L2 ){ |
if ( !L2 ){ |
183 |
// |
// |
184 |
}; |
}; |
185 |
// |
// |
186 |
|
this->CleanPlanes(*&epiano); |
187 |
// |
// |
188 |
PamTrack *ptrack = 0; |
PamTrack *ptrack = 0; |
189 |
CaloTrkVar *track = 0; |
CaloTrkVar *track = 0; |
215 |
for(Int_t p=0; p<22; p++){ |
for(Int_t p=0; p<22; p++){ |
216 |
for(Int_t v=0; v<2; v++){ |
for(Int_t v=0; v<2; v++){ |
217 |
/*per usare traccia non del calo camboare cibar*/ |
/*per usare traccia non del calo camboare cibar*/ |
218 |
calorimetro[(2*p)+1-v][0] = L2->GetCaloLevel2()->cibar[p][v];//strip attraversata |
calorimetro[(2*p)+1-v][0] = L2->GetCaloLevel2()->cibar[p][v];//strip attraversata |
219 |
calorimetro[(2*p)+1-v][1] = (epiano[p][v]); //energia del piano //(epiano[p][v])/0.89 |
calorimetro[(2*p)+1-v][1] = epiano[p][v]; //energia del piano //(epiano[p][v])/0.89 |
220 |
}; |
}; |
221 |
}; |
}; |
222 |
|
|
232 |
|
|
233 |
//ordino tutte le energie dei piani in ordine crescente |
//ordino tutte le energie dei piani in ordine crescente |
234 |
|
|
235 |
Long64_t work[200]; |
Long64_t work[200]; |
236 |
Int_t ind = 0; |
Int_t ind = 0; |
237 |
//Int_t l = 0; |
//Int_t l = 0; |
238 |
Int_t RN = 0; |
Int_t RN = 0; |
239 |
Float_t sum4 = 0.; |
Float_t sum4 = 0.; |
240 |
Float_t qm = 0.; |
Float_t qm = 0.; |
241 |
while ( RN < 4 && ind < 44 ){ |
while ( RN < 4 && ind < 44 ){ |
242 |
qm = TMath::KOrdStat((Long64_t)44,ordplane,(Long64_t)ind,work); |
qm = TMath::KOrdStat((Long64_t)44,ordplane,(Long64_t)ind,work); |
243 |
if (qm >= 0.7 ){ |
if (qm >= 0.7 ){ |
244 |
if ( RN < 4 ){ |
if ( RN < 4 ){ |
245 |
sum4 += qm; |
sum4 += qm; |
246 |
RN++; |
RN++; |
|
}; |
|
247 |
}; |
}; |
|
ind++; |
|
248 |
}; |
}; |
249 |
// |
ind++; |
250 |
//sum4 /= (Float_t)RN; |
}; |
251 |
Float_t Zmean = (sqrt((sum4*MIP)/(((Float_t)RN)*spessore[2]))); |
// |
252 |
if(Zmean ==0.) Zmean=1.; |
//sum4 /= (Float_t)RN; |
253 |
if ( Zmean < 1. ) Zmean = 1.; |
Float_t Zmean = (sqrt((sum4*MIP)/(((Float_t)RN)*spessore[2]))); |
254 |
|
if(Zmean ==0.) Zmean=1.; |
255 |
|
if ( Zmean < 1. ) Zmean = 1.; |
256 |
|
|
257 |
|
|
258 |
/*trova primo e ultimo piano attraversati*/ |
/*trova primo e ultimo piano attraversati*/ |
267 |
}; |
}; |
268 |
p++; |
p++; |
269 |
}; |
}; |
270 |
//ultimo parte da 44 e sale |
|
271 |
|
//ultimo parte da 44 e sale |
272 |
p=43; |
p=43; |
273 |
while( (estremi[1][1] <= 0.) && (p>(int)estremi[0][0]) ){ |
while( (estremi[1][1] <= 0.) && (p>(int)estremi[0][0]) ){ |
274 |
if( (calorimetro[p][0] != -1) && (calorimetro[p][1] >0.7)){ |
if( (calorimetro[p][0] != -1) && (calorimetro[p][1] >0.7)){ |
278 |
p = p-1; |
p = p-1; |
279 |
}; |
}; |
280 |
// |
// |
281 |
|
|
282 |
|
Float_t lastok = 0.; |
283 |
|
// Bool_t goback = false; |
284 |
|
for ( int o = 0; o < estremi[1][0]; o++ ){ |
285 |
|
// |
286 |
|
if ( calorimetro[o][1] > 0.7 ) lastok = calorimetro[o][1]; |
287 |
|
if ( calorimetro[o][1] < 0.7 && lastok > 0. ) calorimetro[o][1] = lastok; |
288 |
|
// if ( calorimetro[o][1] < 0.7 ) goback = true; |
289 |
|
// |
290 |
|
}; |
291 |
|
lastok = 0.; |
292 |
|
// if ( goback ){ |
293 |
|
for ( int o = estremi[1][0]; o >= 0; o-- ){ |
294 |
|
// |
295 |
|
// printf(" goback1: o %i calo %f lastok %f \n",o,calorimetro[o][1],lastok); |
296 |
|
if ( o < estremi[1][0] && calorimetro[o][1] > calorimetro[o+1][1]*1.2 && lastok > 0. ) calorimetro[o][1] = lastok; |
297 |
|
if ( calorimetro[o][1] > 0.7 ) lastok = calorimetro[o][1]; |
298 |
|
if ( calorimetro[o][1] < 0.7 && lastok > 0. ) calorimetro[o][1] = lastok; |
299 |
|
// printf(" goback2: o %i calo %f lastok %f \n",o,calorimetro[o][1],lastok); |
300 |
|
// |
301 |
|
}; |
302 |
|
// }; |
303 |
|
|
304 |
|
|
305 |
|
|
306 |
/*integrale: energia totale rilasciata nel calo (aggiungendo quella 'teorica' nel W )*/ |
/*integrale: energia totale rilasciata nel calo (aggiungendo quella 'teorica' nel W )*/ |
307 |
for(Int_t pl=0; pl<(2*NPLA); pl++){ |
for(Int_t pl=0; pl<(2*NPLA); pl++){ |
308 |
|
// printf(" integrale: calorimetro %f \n",calorimetro[pl][1]); |
309 |
//calcolo intergale in unita di spessori di silicio |
//calcolo intergale in unita di spessori di silicio |
310 |
Integrale += calorimetro[pl][1] * MIP;//piano di silicio |
Integrale += calorimetro[pl][1] * MIP;//piano di silicio |
311 |
// se non e'il 1o dopo l'Y (tutti i pari) c'e' il W |
// se non e'il 1o dopo l'Y (tutti i pari) c'e' il W |
313 |
Integrale+= 0.5*((calorimetro[pl-1][1] * MIP)+(calorimetro[pl][1] * MIP))*(spessore[1]); |
Integrale+= 0.5*((calorimetro[pl-1][1] * MIP)+(calorimetro[pl][1] * MIP))*(spessore[1]); |
314 |
}; |
}; |
315 |
}; |
}; |
316 |
Integrale=24000;//Integrale*1000; |
//Integrale=24000;//Integrale*1000; |
317 |
|
Integrale *= 1000.; |
318 |
|
|
319 |
/*z ed energia con media troncata*/ |
/*z ed energia con media troncata*/ |
320 |
// mediatroncata(); // out: 1)chi2, 2)z, 3)Etot, 4)Pskip |
// mediatroncata(); // out: 1)chi2, 2)z, 3)Etot, 4)Pskip |
321 |
|
|
322 |
/*z ed energia con loop*/ |
/*z ed energia con loop*/ |
323 |
Zdaloop(); // out: 1)chi2, 2)z, 3)Etot, 4)Pskip |
Zdaloop(); // out: 1)chi2, 2)z, 3)Etot, 4)Pskip |
324 |
|
|
325 |
|
|
326 |
if ( debug ) this->Print(); |
if ( debug ) this->Print(); |
333 |
|
|
334 |
Process(); |
Process(); |
335 |
|
|
336 |
// Float_t dEpianimean[44]; |
// Float_t dEpianimean[44]; |
337 |
Float_t dEpianiloop[44]; |
Float_t dEpianiloop[44]; |
338 |
Float_t Depth[44]; |
Float_t Depth[44]; |
339 |
// Int_t tz=(Int_t)qtz; |
// Int_t tz=(Int_t)qtz; |
340 |
Int_t tz1=(Int_t)lpz; |
Int_t tz1=(Int_t)lpz; |
341 |
// Enetrack(&tz, &qtetot, &estremi[0][0],&estremi[1][0], dEpianimean);//calcola rilascio energetico sui piani da media troncata |
// Enetrack(&tz, &qtetot, &estremi[0][0],&estremi[1][0], dEpianimean);//calcola rilascio energetico sui piani da media troncata |
342 |
Enetrack(&tz1, &lpetot, &estremi[0][0],&estremi[1][0], dEpianiloop);//calcola rilascio energetico sui piani da loop |
Enetrack(&tz1, &lpetot, &estremi[0][0],&estremi[1][0], dEpianiloop);//calcola rilascio energetico sui piani da loop |
343 |
|
|
344 |
Float_t sp= spessore[0]*spessore[1]; |
Float_t sp= spessore[0]*spessore[1]; |
345 |
for(Int_t i=0;i<44;i++)Depth[i]=i*sp; |
for(Int_t i=0;i<44;i++)Depth[i]=i*sp; |
346 |
// |
// |
347 |
gStyle->SetLabelSize(0.04); |
gStyle->SetLabelSize(0.04); |
348 |
gStyle->SetNdivisions(510,"XY"); |
gStyle->SetNdivisions(510,"XY"); |
349 |
// |
// |
350 |
TString hid = Form("cCaloBragg"); |
TString hid = Form("cCaloBragg"); |
351 |
TCanvas *tc = dynamic_cast<TCanvas*>(gDirectory->FindObject(hid)); |
TCanvas *tc = dynamic_cast<TCanvas*>(gDirectory->FindObject(hid)); |
352 |
if ( tc ){ |
if ( tc ){ |
353 |
// tc->Clear(); |
// tc->Clear(); |
354 |
} else { |
} else { |
355 |
tc = new TCanvas(hid,hid); |
tc = new TCanvas(hid,hid); |
356 |
// tc->Divide(1,2); |
// tc->Divide(1,2); |
357 |
}; |
}; |
358 |
// |
// |
359 |
// TString thid = Form("hCaloBragg"); |
// TString thid = Form("hCaloBragg"); |
360 |
// TH2F *th = dynamic_cast<TH2F*>(gDirectory->FindObject(thid)); |
// TH2F *th = dynamic_cast<TH2F*>(gDirectory->FindObject(thid)); |
361 |
// if ( th ) th->Delete(); |
// if ( th ) th->Delete(); |
362 |
// th->Clear(); |
// th->Clear(); |
363 |
// th->Reset(); |
// th->Reset(); |
364 |
// } else { |
// } else { |
365 |
// th = new TH2F(thid,thid,300,-0.5,300.,1000,0.,150.); |
// th = new TH2F(thid,thid,300,-0.5,300.,1000,0.,150.); |
366 |
// th->SetMarkerStyle(20); |
// th->SetMarkerStyle(20); |
367 |
// }; |
// }; |
368 |
// |
// |
369 |
TString thid2 = Form("hCaloBragg2"); |
tc->cd(); |
370 |
TH2F *th2 = dynamic_cast<TH2F*>(gDirectory->FindObject(thid2)); |
TString thid2 = Form("hCaloBragg2"); |
371 |
if ( th2 ) th2->Delete(); |
TH2F *th2 = dynamic_cast<TH2F*>(gDirectory->FindObject(thid2)); |
372 |
th2 = new TH2F(thid2,thid2,300,-0.5,300.,1000,0.,150.); |
if ( th2 ) th2->Delete(); |
373 |
th2->SetMarkerStyle(20); |
th2 = new TH2F(thid2,thid2,300,-0.5,300.,1000,0.,150.); |
374 |
th2->SetMarkerColor(kRed); |
th2->SetMarkerStyle(20); |
375 |
// |
th2->SetMarkerColor(kRed); |
376 |
TString thid3 = Form("hCaloBragg3"); |
// |
377 |
TH2F *th3 = dynamic_cast<TH2F*>(gDirectory->FindObject(thid3)); |
TString thid3 = Form("hCaloBragg3"); |
378 |
if ( th3 ) th3->Delete(); |
TH2F *th3 = dynamic_cast<TH2F*>(gDirectory->FindObject(thid3)); |
379 |
th3 = new TH2F(thid3,thid3,300,-0.5,300.,1000,0.,150.); |
if ( th3 ) th3->Delete(); |
380 |
th3->SetMarkerStyle(20); |
th3 = new TH2F(thid3,thid3,300,-0.5,300.,1000,0.,150.); |
381 |
th3->SetMarkerColor(kBlue); |
th3->SetMarkerStyle(20); |
382 |
|
th3->SetMarkerColor(kBlue); |
383 |
|
|
384 |
tc->cd(1); |
|
385 |
// |
// tc->cd(1); |
386 |
// for(Int_t i=0;i<=estremi[1][0];i++)th->Fill(Depth[i],dEpianimean[i]); |
// |
387 |
for(Int_t i=0;i<=estremi[1][0];i++)th2->Fill(Depth[i],calorimetro[i][1]*MIP); |
// for(Int_t i=0;i<=estremi[1][0];i++)th->Fill(Depth[i],dEpianimean[i]); |
388 |
// th->Draw(); |
for(Int_t i=0;i<=estremi[1][0];i++)th2->Fill(Depth[i],calorimetro[i][1]*MIP); |
389 |
th2->Draw("same"); |
// th->Draw(); |
390 |
|
th2->Draw("same"); |
391 |
tc->cd(2); |
|
392 |
// |
// tc->cd(2); |
393 |
for(Int_t i=0;i<=estremi[1][0];i++)th3->Fill(Depth[i],dEpianiloop[i]); |
tc->cd(); |
394 |
th3->Draw(); |
// |
395 |
th2->Draw("same"); |
for(Int_t i=0;i<=estremi[1][0];i++)th3->Fill(Depth[i],dEpianiloop[i]); |
396 |
|
th3->Draw(); |
397 |
|
th2->Draw("same"); |
398 |
|
|
399 |
tc->Modified(); |
tc->Modified(); |
400 |
tc->Update(); |
tc->Update(); |
401 |
|
|
402 |
// |
// |
403 |
gStyle->SetLabelSize(0); |
gStyle->SetLabelSize(0); |
444 |
elem[31] = 72.61; //Ge 32 |
elem[31] = 72.61; //Ge 32 |
445 |
|
|
446 |
|
|
447 |
//parametri calorimetro |
//parametri calorimetro |
448 |
NPLA = 22; |
NPLA = 22; |
449 |
NCHA = 96; |
NCHA = 96; |
450 |
nView = 2; |
nView = 2; |
510 |
WCross = sqrt((yW*yW) + (ytgx*ytgx) + (ytgy*ytgy));//mm* rapporto lunghezze rad |
WCross = sqrt((yW*yW) + (ytgx*ytgx) + (ytgy*ytgy));//mm* rapporto lunghezze rad |
511 |
//gcm2W = WCross/10. * rhoW; |
//gcm2W = WCross/10. * rhoW; |
512 |
|
|
513 |
a=(WCross/SiCross)*(rhoW/rhoSi)*(1.145/1.664); //(gcm2W)/(SiCross/10. * rhoSi)* (1.145/1.664); |
a=(WCross/SiCross)*(rhoW/rhoSi)*(1.145/1.664); //(gcm2W)/(SiCross/10. * rhoSi)* (1.145/1.664); |
514 |
|
|
515 |
// (g/cm2W)/(g/cm2Si) |
// (g/cm2W)/(g/cm2Si) |
516 |
spessore[1] = a; |
spessore[1] = a; |
549 |
Wmax = 2.* Me * SQ(eta) / (1. + 2.*(*gam)*Me/(*Mass) + SQ(Me)/SQ(*Mass)); |
Wmax = 2.* Me * SQ(eta) / (1. + 2.*(*gam)*Me/(*Mass) + SQ(Me)/SQ(*Mass)); |
550 |
|
|
551 |
lg = 2.* Me * SQ(eta) * Wmax / SQ(ISi); |
lg = 2.* Me * SQ(eta) * Wmax / SQ(ISi); |
552 |
// Energia = x* 2 * pigr * Na * r2 * Me * rhoSi *ZA* SQ(z)/SQ(Bet) * lg; |
// Energia = x* 2 * pigr * Na * r2 * Me * rhoSi *ZA* SQ(z)/SQ(Bet) * lg; |
553 |
C=(0.42237*pow(eta,-2.) + 0.0304*pow(eta,-4.) - 0.00038*pow(eta,-6.))*pow(10.,-6.)* pow(ISi,2.) + |
C=(0.42237*pow(eta,-2.) + 0.0304*pow(eta,-4.) - 0.00038*pow(eta,-6.))*pow(10.,-6.)* pow(ISi,2.) + |
554 |
(3.858*pow(eta,-2.) - 0.1668*pow(eta,-4.) + 0.00158*pow(eta,-6.))*pow(10.,-9.)*pow(ISi,3.); |
(3.858*pow(eta,-2.) - 0.1668*pow(eta,-4.) + 0.00158*pow(eta,-6.))*pow(10.,-9.)*pow(ISi,3.); |
555 |
|
|
556 |
if(eta <= 0.13) C= C * log(eta/0.0653)/log(0.13/0.0653); |
if(eta <= 0.13) C= C * log(eta/0.0653)/log(0.13/0.0653); |
557 |
|
|
558 |
Energia = (*x) * 0.307/28.09 * 14. *SQ(*z)/SQ(*Bet)*(0.5*log(lg) - SQ(*Bet) - C/14.); |
Energia = (*x) * 0.307/28.09 * 14. *SQ(*z)/SQ(*Bet)*(0.5*log(lg) - SQ(*Bet) - C/14.); |
559 |
|
|
560 |
*out =Energia;//out |
*out =Energia;//out |
561 |
|
|
699 |
}; |
}; |
700 |
|
|
701 |
//meno peso ai piani con rilasci maggiori di 1000 MIP |
//meno peso ai piani con rilasci maggiori di 1000 MIP |
702 |
if(calorimetro[ipla][1] > 1000) wi=0.5; |
// if(calorimetro[ipla][1] > 1000) wi=0.5; |
703 |
|
if(calorimetro[ipla][1] > 1200.) wi=0.5; |
704 |
|
|
705 |
Float_t arg = w*wi*(dE[ipla] - (calorimetro[ipla][1] * MIP)); |
Float_t arg = w*wi*(dE[ipla] - (calorimetro[ipla][1] * MIP)); |
706 |
|
|
717 |
|
|
718 |
//da Emi |
//da Emi |
719 |
if(badplane > 2){ |
if(badplane > 2){ |
720 |
|
// printf(" AAAAAAAAAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG\n"); |
721 |
out[1] =79.; |
out[1] =79.; |
722 |
break; |
break; |
723 |
}; |
}; |
731 |
|
|
732 |
|
|
733 |
|
|
734 |
void CaloBragg::loopze( Float_t step, Float_t E0,Float_t Zstart, Float_t Zlimite){ |
void CaloBragg::loopze( Float_t step, Float_t E0,Float_t Zstart, Float_t Zlimite, Int_t nostep = 1000){ |
735 |
// |
// |
736 |
//loop su z ed energie per trovare miglior z (ed energia) |
//loop su z ed energie per trovare miglior z (ed energia) |
737 |
//in: nloop => energia massima da provare (nloop x E0) |
//in: nloop => energia massima da provare (nloop x E0) |
738 |
// E0 => energia iniziale (intergale) |
// E0 => energia iniziale (intergale) |
750 |
|
|
751 |
Float_t Massa = 0.; |
Float_t Massa = 0.; |
752 |
|
|
753 |
Float_t Stepint =(step)/1000.;//passo per il calcolo di energia |
Float_t Stepint =(step)/(Float_t)nostep;//passo per il calcolo di energia |
754 |
|
|
755 |
Float_t energia =0.;//energia del loop |
Float_t energia =0.;//energia del loop |
756 |
|
|
765 |
Float_t matrixchi2[colmax][rowmax][3]; |
Float_t matrixchi2[colmax][rowmax][3]; |
766 |
memset(matrixchi2, 0, colmax*rowmax*3*sizeof(Float_t)); |
memset(matrixchi2, 0, colmax*rowmax*3*sizeof(Float_t)); |
767 |
|
|
768 |
|
Int_t imin = 1-nostep/2; |
769 |
|
Int_t imax = nostep/2; |
770 |
|
|
771 |
//loop elementi |
//loop elementi |
772 |
for(Int_t inucl=(int)(Zstart); inucl<max; inucl++){ |
for(Int_t inucl=(int)(Zstart); inucl<max; inucl++){ |
776 |
Massa = elem[inucl-1]*MassP; |
Massa = elem[inucl-1]*MassP; |
777 |
|
|
778 |
//loop energia |
//loop energia |
779 |
for(Int_t iene= 0; iene<1000; iene++){// da non cambiare in base a Stepint altrimenti cambia la matrice bestchi2!!!cosi' non raggiungo mai integrale!!!!! mettere <=?? |
Int_t iene2 = 0; |
780 |
|
// for(Int_t iene= 0; iene<1000; iene++){// da non cambiare in base a Stepint altrimenti cambia la matrice bestchi2!!!cosi' non raggiungo mai integrale!!!!! mettere <=?? |
781 |
|
for(Int_t iene= imin; iene<imax; iene++){// da non cambiare in base a Stepint altrimenti cambia la matrice bestchi2!!!cosi' non raggiungo mai integrale!!!!! mettere <=?? |
782 |
|
|
783 |
|
iene2++; |
784 |
energia= Massa + (E0)+ iene*Stepint;//gli do un'energia totale (momento) massa+energia cinetica, aumentando la cinetica.. |
energia= Massa + (E0)+ iene*Stepint;//gli do un'energia totale (momento) massa+energia cinetica, aumentando la cinetica.. |
785 |
|
|
786 |
Enetrack(&Z, &energia, &estremi[0][0],&estremi[1][0], dEplan);//calcola rilascio energetico sui piani |
Enetrack(&Z, &energia, &estremi[0][0],&estremi[1][0], dEplan);//calcola rilascio energetico sui piani |
789 |
chiquadro(dEplan,chi2); |
chiquadro(dEplan,chi2); |
790 |
|
|
791 |
if( (chi2[1] != 79.) ){//salto quelli che frammentano |
if( (chi2[1] != 79.) ){//salto quelli che frammentano |
792 |
matrixchi2[inucl][iene][0]=chi2[0];//valore chi2 per questo z a questa energia |
matrixchi2[inucl][iene2][0]=chi2[0];//valore chi2 per questo z a questa energia |
793 |
matrixchi2[inucl][iene][1]=energia;//energia per questo chi2 |
matrixchi2[inucl][iene2][1]=energia;//energia per questo chi2 |
794 |
matrixchi2[inucl][iene][2]=chi2[2];//piani saltati nel chi2 |
matrixchi2[inucl][iene2][2]=chi2[2];//piani saltati nel chi2 |
795 |
} else { |
} else { |
796 |
matrixchi2[inucl][iene][0]=1000;//valore chi2 per questo z a questa energia |
matrixchi2[inucl][iene2][0]=1000.;//valore chi2 per questo z a questa energia |
797 |
matrixchi2[inucl][iene][1]=1000;//energia per questo chi2 |
matrixchi2[inucl][iene2][1]=1000.;//energia per questo chi2 |
798 |
matrixchi2[inucl][iene][2]=1000;//piani saltati nel chi2 |
matrixchi2[inucl][iene2][2]=1000.;//piani saltati nel chi2 |
799 |
break; |
break; |
800 |
} |
} |
801 |
}//fine loop energia |
}//fine loop energia |
802 |
|
|
803 |
|
|
804 |
};//fine loop z |
};//fine loop z |
805 |
|
|
806 |
|
|
807 |
//Emi |
//Emi |
808 |
for (Int_t nu=(int)(Zstart); nu<max; nu++){ |
for (Int_t nu=(int)(Zstart); nu<max; nu++){ |
809 |
for (Int_t en=0; en<1000; en++){ |
for (Int_t en=0; en<nostep; en++){ |
810 |
if((matrixchi2[nu][en][0]<bestchi2[0]) && (matrixchi2[nu][en][0] >0.)){ |
if((matrixchi2[nu][en][0]<bestchi2[0]) && (matrixchi2[nu][en][0] >0.)){ |
811 |
bestchi2[0]= matrixchi2[nu][en][0];// chi2 |
bestchi2[0]= matrixchi2[nu][en][0];// chi2 |
812 |
bestchi2[1]= (Float_t)nu; // z |
bestchi2[1]= (Float_t)nu; // z |
932 |
|
|
933 |
|
|
934 |
/*z se particella fosse al minimo*/ //energia1piano/mip corretta |
/*z se particella fosse al minimo*/ //energia1piano/mip corretta |
935 |
Float_t zmax = round(sqrt(estremi[0][1]/spessore[2])); |
// Float_t zmax = round(sqrt(estremi[0][1]/spessore[2])); |
936 |
if(zmax<31)zmax=zmax+1; |
// if(zmax<31)zmax=zmax+1; |
937 |
|
|
938 |
/*calcolo Z ed E con loop sui vari elementi ed energie*/ |
/*calcolo Z ed E con loop sui vari elementi ed energie*/ |
939 |
|
|
940 |
Float_t zmin=1.; |
Float_t zmin=1.; |
941 |
|
Float_t zmax=32.; |
942 |
Float_t bestchitemp[4] = {0,0,0,0}; |
Float_t bestchitemp[4] = {0,0,0,0}; |
943 |
|
|
944 |
bestchi2[0]=10000.; |
bestchi2[0]=10000.; |
948 |
Float_t zero=0.; |
Float_t zero=0.; |
949 |
//------------primo loop ---------------------- |
//------------primo loop ---------------------- |
950 |
// energia ezero, zstart zstop |
// energia ezero, zstart zstop |
951 |
loopze(Integrale,zero,zmin,zmax); |
// loopze(Integrale,zero,zmin,zmax); |
952 |
|
loopze(Integrale*1.2/500.,Integrale/1000.,zmin,zmax,50); |
953 |
|
// loopze(Integrale*2.,Integrale/100.,zmin,zmax); |
954 |
|
// printf(" Integrale %f , outene %f \n",Integrale,bestchi2[2]); |
955 |
|
|
956 |
//------------secondo loop ---------------------- |
//------------secondo loop ---------------------- |
957 |
for(Int_t i=0;i<4;i++) bestchitemp[i]=bestchi2[i]; |
for(Int_t i=0;i<4;i++) bestchitemp[i]=bestchi2[i]; |
961 |
bestchi2[3] = 0.;//riazzero |
bestchi2[3] = 0.;//riazzero |
962 |
|
|
963 |
Float_t step = bestchitemp[2];// |
Float_t step = bestchitemp[2];// |
964 |
zero=0; // qualsiasi altro valore peggiora le cose |
zero=0.; // qualsiasi altro valore peggiora le cose |
965 |
zmin=zmax=bestchitemp[1]; |
// zmin=zmax=bestchitemp[1]; |
966 |
loopze(step,zero,zmin,zmax); // |
zmin=bestchitemp[1]-1; |
967 |
|
zmax=bestchitemp[1]+1; |
968 |
|
// loopze(step,zero,zmin,zmax); // |
969 |
|
loopze(step,step/2.,zmin,zmax,200); // |
970 |
|
|
971 |
|
|
972 |
//chi2,z,Etot,Pskip |
//chi2,z,Etot,Pskip |