| 1 |
// |
| 2 |
// globals.cpp |
| 3 |
// |
| 4 |
#include <sgp4.h> |
| 5 |
|
| 6 |
////////////////////////////////////////////////////////////////////////////// |
| 7 |
double sqr(const double x) |
| 8 |
{ |
| 9 |
return (x * x); |
| 10 |
} |
| 11 |
|
| 12 |
////////////////////////////////////////////////////////////////////////////// |
| 13 |
double Fmod2p(const double arg) |
| 14 |
{ |
| 15 |
double modu = fmod(arg, TWOPI); |
| 16 |
|
| 17 |
if (modu < 0.0) |
| 18 |
modu += TWOPI; |
| 19 |
|
| 20 |
return modu; |
| 21 |
} |
| 22 |
|
| 23 |
////////////////////////////////////////////////////////////////////////////// |
| 24 |
// AcTan() |
| 25 |
// ArcTangent of sin(x) / cos(x). The advantage of this function over arctan() |
| 26 |
// is that it returns the correct quadrant of the angle. |
| 27 |
double AcTan(const double sinx, const double cosx) |
| 28 |
{ |
| 29 |
double ret; |
| 30 |
|
| 31 |
if (cosx == 0.0) |
| 32 |
{ |
| 33 |
if (sinx > 0.0) |
| 34 |
ret = PI / 2.0; |
| 35 |
else |
| 36 |
ret = 3.0 * PI / 2.0; |
| 37 |
} |
| 38 |
else |
| 39 |
{ |
| 40 |
if (cosx > 0.0) |
| 41 |
ret = atan(sinx / cosx); |
| 42 |
else |
| 43 |
ret = PI + atan(sinx / cosx); |
| 44 |
} |
| 45 |
|
| 46 |
return ret; |
| 47 |
} |
| 48 |
|
| 49 |
////////////////////////////////////////////////////////////////////////////// |
| 50 |
double rad2deg(const double r) |
| 51 |
{ |
| 52 |
const double DEG_PER_RAD = 180.0 / PI; |
| 53 |
return r * DEG_PER_RAD; |
| 54 |
} |
| 55 |
|
| 56 |
////////////////////////////////////////////////////////////////////////////// |
| 57 |
double deg2rad(const double d) |
| 58 |
{ |
| 59 |
const double RAD_PER_DEG = PI / 180.0; |
| 60 |
return d * RAD_PER_DEG; |
| 61 |
} |
| 62 |
|
| 63 |
// |
| 64 |
// coord.cpp |
| 65 |
// |
| 66 |
// Copyright (c) 2003 Michael F. Henry |
| 67 |
// |
| 68 |
|
| 69 |
////////////////////////////////////////////////////////////////////// |
| 70 |
// cCoordGeo Class |
| 71 |
////////////////////////////////////////////////////////////////////// |
| 72 |
|
| 73 |
cCoordGeo::cCoordGeo() |
| 74 |
{ |
| 75 |
m_Lat = 0.0; |
| 76 |
m_Lon = 0.0; |
| 77 |
m_Alt = 0.0; |
| 78 |
} |
| 79 |
|
| 80 |
////////////////////////////////////////////////////////////////////// |
| 81 |
// cCoordTopo Class |
| 82 |
////////////////////////////////////////////////////////////////////// |
| 83 |
|
| 84 |
cCoordTopo::cCoordTopo() |
| 85 |
{ |
| 86 |
m_Az = 0.0; |
| 87 |
m_El = 0.0; |
| 88 |
m_Range = 0.0; |
| 89 |
m_RangeRate = 0.0; |
| 90 |
|
| 91 |
} |
| 92 |
|
| 93 |
|
| 94 |
|
| 95 |
// |
| 96 |
// cVector.cpp |
| 97 |
// |
| 98 |
// Copyright (c) 2001-2003 Michael F. Henry |
| 99 |
// |
| 100 |
//***************************************************************************** |
| 101 |
// Multiply each component in the vector by 'factor'. |
| 102 |
//***************************************************************************** |
| 103 |
void cVector::Mul(double factor) |
| 104 |
{ |
| 105 |
m_x *= factor; |
| 106 |
m_y *= factor; |
| 107 |
m_z *= factor; |
| 108 |
m_w *= fabs(factor); |
| 109 |
} |
| 110 |
|
| 111 |
//***************************************************************************** |
| 112 |
// Subtract a vector from this one. |
| 113 |
//***************************************************************************** |
| 114 |
void cVector::Sub(const cVector& vec) |
| 115 |
{ |
| 116 |
m_x -= vec.m_x; |
| 117 |
m_y -= vec.m_y; |
| 118 |
m_z -= vec.m_z; |
| 119 |
m_w -= vec.m_w; |
| 120 |
} |
| 121 |
|
| 122 |
//***************************************************************************** |
| 123 |
// Calculate the angle between this vector and another |
| 124 |
//***************************************************************************** |
| 125 |
double cVector::Angle(const cVector& vec) const |
| 126 |
{ |
| 127 |
return acos(Dot(vec) / (Magnitude() * vec.Magnitude())); |
| 128 |
} |
| 129 |
|
| 130 |
//***************************************************************************** |
| 131 |
// |
| 132 |
//***************************************************************************** |
| 133 |
double cVector::Magnitude() const |
| 134 |
{ |
| 135 |
return sqrt((m_x * m_x) + |
| 136 |
(m_y * m_y) + |
| 137 |
(m_z * m_z)); |
| 138 |
} |
| 139 |
|
| 140 |
//***************************************************************************** |
| 141 |
// Return the dot product |
| 142 |
//***************************************************************************** |
| 143 |
double cVector::Dot(const cVector& vec) const |
| 144 |
{ |
| 145 |
return (m_x * vec.m_x) + |
| 146 |
(m_y * vec.m_y) + |
| 147 |
(m_z * vec.m_z); |
| 148 |
} |
| 149 |
// |
| 150 |
// cJulian.cpp |
| 151 |
// |
| 152 |
// This class encapsulates Julian dates with the epoch of 12:00 noon (12:00 UT) |
| 153 |
// on January 1, 4713 B.C. Some epoch dates: |
| 154 |
// 01/01/1990 00:00 UTC - 2447892.5 |
| 155 |
// 01/01/1990 12:00 UTC - 2447893.0 |
| 156 |
// 01/01/2000 00:00 UTC - 2451544.5 |
| 157 |
// 01/01/2001 00:00 UTC - 2451910.5 |
| 158 |
// |
| 159 |
// Note the Julian day begins at noon, which allows astronomers to have all |
| 160 |
// the dates in a single observing session the same. |
| 161 |
// |
| 162 |
// References: |
| 163 |
// "Astronomical Formulae for Calculators", Jean Meeus |
| 164 |
// "Satellite Communications", Dennis Roddy, 2nd Edition, 1995. |
| 165 |
// |
| 166 |
// Copyright (c) 2003 Michael F. Henry |
| 167 |
// |
| 168 |
// mfh 12/24/2003 |
| 169 |
// |
| 170 |
|
| 171 |
////////////////////////////////////////////////////////////////////////////// |
| 172 |
// Create a Julian date object from a time_t object. time_t objects store the |
| 173 |
// number of seconds since midnight UTC January 1, 1970. |
| 174 |
cJulian::cJulian(time_t time) |
| 175 |
{ |
| 176 |
struct tm *ptm = gmtime(&time); |
| 177 |
assert(ptm); |
| 178 |
|
| 179 |
int year = ptm->tm_year + 1900; |
| 180 |
double day = ptm->tm_yday + 1 + |
| 181 |
(ptm->tm_hour + |
| 182 |
((ptm->tm_min + |
| 183 |
(ptm->tm_sec / 60.0)) / 60.0)) / 24.0; |
| 184 |
|
| 185 |
Initialize(year, day); |
| 186 |
} |
| 187 |
|
| 188 |
////////////////////////////////////////////////////////////////////////////// |
| 189 |
// Create a Julian date object from a year and day of year. |
| 190 |
// Example parameters: year = 2001, day = 1.5 (Jan 1 12h) |
| 191 |
cJulian::cJulian(int year, double day) |
| 192 |
{ |
| 193 |
Initialize(year, day); |
| 194 |
} |
| 195 |
|
| 196 |
////////////////////////////////////////////////////////////////////////////// |
| 197 |
// Create a Julian date object. |
| 198 |
cJulian::cJulian(int year, // i.e., 2004 |
| 199 |
int mon, // 1..12 |
| 200 |
int day, // 1..31 |
| 201 |
int hour, // 0..23 |
| 202 |
int min, // 0..59 |
| 203 |
double sec /* = 0.0 */) // 0..(59.999999...) |
| 204 |
|
| 205 |
{ |
| 206 |
// Calculate N, the day of the year (1..366) |
| 207 |
int N; |
| 208 |
int F1 = (int)((275.0 * mon) / 9.0); |
| 209 |
int F2 = (int)((mon + 9.0) / 12.0); |
| 210 |
|
| 211 |
if (IsLeapYear(year)) |
| 212 |
{ |
| 213 |
// Leap year |
| 214 |
N = F1 - F2 + day - 30; |
| 215 |
} |
| 216 |
else |
| 217 |
{ |
| 218 |
// Common year |
| 219 |
N = F1 - (2 * F2) + day - 30; |
| 220 |
} |
| 221 |
|
| 222 |
double dblDay = N + (hour + (min + (sec / 60.0)) / 60.0) / 24.0; |
| 223 |
|
| 224 |
Initialize(year, dblDay); |
| 225 |
} |
| 226 |
|
| 227 |
////////////////////////////////////////////////////////////////////////////// |
| 228 |
void cJulian::Initialize(int year, double day) |
| 229 |
{ |
| 230 |
// 1582 A.D.: 10 days removed from calendar |
| 231 |
// 3000 A.D.: Arbitrary error checking limit |
| 232 |
assert((year > 1582) && (year < 3000)); |
| 233 |
assert((day >= 0.0) && (day <= 366.5)); |
| 234 |
|
| 235 |
// Now calculate Julian date |
| 236 |
|
| 237 |
year--; |
| 238 |
|
| 239 |
// Centuries are not leap years unless they divide by 400 |
| 240 |
int A = (year / 100); |
| 241 |
int B = 2 - A + (A / 4); |
| 242 |
|
| 243 |
double NewYears = (int)(365.25 * year) + |
| 244 |
(int)(30.6001 * 14) + |
| 245 |
1720994.5 + B; // 1720994.5 = Oct 30, year -1 |
| 246 |
|
| 247 |
m_Date = NewYears + day; |
| 248 |
} |
| 249 |
|
| 250 |
////////////////////////////////////////////////////////////////////////////// |
| 251 |
// getComponent() |
| 252 |
// Return requested components of date. |
| 253 |
// Year : Includes the century. |
| 254 |
// Month: 1..12 |
| 255 |
// Day : 1..31 including fractional part |
| 256 |
void cJulian::getComponent(int *pYear, |
| 257 |
int *pMon /* = NULL */, |
| 258 |
double *pDOM /* = NULL */) const |
| 259 |
{ |
| 260 |
assert(pYear != NULL); |
| 261 |
|
| 262 |
double jdAdj = getDate() + 0.5; |
| 263 |
int Z = (int)jdAdj; // integer part |
| 264 |
double F = jdAdj - Z; // fractional part |
| 265 |
double alpha = (int)((Z - 1867216.25) / 36524.25); |
| 266 |
double A = Z + 1 + alpha - (int)(alpha / 4.0); |
| 267 |
double B = A + 1524.0; |
| 268 |
int C = (int)((B - 122.1) / 365.25); |
| 269 |
int D = (int)(C * 365.25); |
| 270 |
int E = (int)((B - D) / 30.6001); |
| 271 |
|
| 272 |
double DOM = B - D - (int)(E * 30.6001) + F; |
| 273 |
int month = (E < 13.5) ? (E - 1) : (E - 13); |
| 274 |
int year = (month > 2.5) ? (C - 4716) : (C - 4715); |
| 275 |
|
| 276 |
*pYear = year; |
| 277 |
|
| 278 |
if (pMon != NULL) |
| 279 |
*pMon = month; |
| 280 |
|
| 281 |
if (pDOM != NULL) |
| 282 |
*pDOM = DOM; |
| 283 |
} |
| 284 |
|
| 285 |
////////////////////////////////////////////////////////////////////////////// |
| 286 |
// toGMST() |
| 287 |
// Calculate Greenwich Mean Sidereal Time for the Julian date. The return value |
| 288 |
// is the angle, in radians, measuring eastward from the Vernal Equinox to the |
| 289 |
// prime meridian. This angle is also referred to as "ThetaG" (Theta GMST). |
| 290 |
// |
| 291 |
// References: |
| 292 |
// The 1992 Astronomical Almanac, page B6. |
| 293 |
// Explanatory Supplement to the Astronomical Almanac, page 50. |
| 294 |
// Orbital Coordinate Systems, Part III, Dr. T.S. Kelso, Satellite Times, |
| 295 |
// Nov/Dec 1995 |
| 296 |
double cJulian::toGMST() const |
| 297 |
{ |
| 298 |
const double UT = fmod(m_Date + 0.5, 1.0); |
| 299 |
const double TU = (FromJan1_12h_2000() - UT) / 36525.0; |
| 300 |
|
| 301 |
double GMST = 24110.54841 + TU * |
| 302 |
(8640184.812866 + TU * (0.093104 - TU * 6.2e-06)); |
| 303 |
|
| 304 |
GMST = fmod(GMST + SEC_PER_DAY * OMEGA_E * UT, SEC_PER_DAY); |
| 305 |
|
| 306 |
if (GMST < 0.0) |
| 307 |
GMST += SEC_PER_DAY; // "wrap" negative modulo value |
| 308 |
|
| 309 |
return (TWOPI * (GMST / SEC_PER_DAY)); |
| 310 |
} |
| 311 |
|
| 312 |
////////////////////////////////////////////////////////////////////////////// |
| 313 |
// toLMST() |
| 314 |
// Calculate Local Mean Sidereal Time for given longitude (for this date). |
| 315 |
// The longitude is assumed to be in radians measured west from Greenwich. |
| 316 |
// The return value is the angle, in radians, measuring eastward from the |
| 317 |
// Vernal Equinox to the given longitude. |
| 318 |
double cJulian::toLMST(double lon) const |
| 319 |
{ |
| 320 |
return fmod(toGMST() + lon, TWOPI); |
| 321 |
} |
| 322 |
|
| 323 |
////////////////////////////////////////////////////////////////////////////// |
| 324 |
// toTime() |
| 325 |
// Convert to type time_t |
| 326 |
// Avoid using this function as it discards the fractional seconds of the |
| 327 |
// time component. |
| 328 |
time_t cJulian::toTime() const |
| 329 |
{ |
| 330 |
int nYear; |
| 331 |
int nMonth; |
| 332 |
double dblDay; |
| 333 |
|
| 334 |
getComponent(&nYear, &nMonth, &dblDay); |
| 335 |
|
| 336 |
// dblDay is the fractional Julian Day (i.e., 29.5577). |
| 337 |
// Save the whole number day in nDOM and convert dblDay to |
| 338 |
// the fractional portion of day. |
| 339 |
int nDOM = (int)dblDay; |
| 340 |
|
| 341 |
dblDay -= nDOM; |
| 342 |
|
| 343 |
const int SEC_PER_MIN = 60; |
| 344 |
const int SEC_PER_HR = 60 * SEC_PER_MIN; |
| 345 |
const int SEC_PER_DAY = 24 * SEC_PER_HR; |
| 346 |
|
| 347 |
int secs = (int)((dblDay * SEC_PER_DAY) + 0.5); |
| 348 |
|
| 349 |
// Create a "struct tm" type. |
| 350 |
// NOTE: |
| 351 |
// The "struct tm" type has a 1-second resolution. Any fractional |
| 352 |
// component of the "seconds" time value is discarded. |
| 353 |
struct tm tGMT; |
| 354 |
memset(&tGMT, 0, sizeof(tGMT)); |
| 355 |
|
| 356 |
tGMT.tm_year = nYear - 1900; // 2001 is 101 |
| 357 |
tGMT.tm_mon = nMonth - 1; // January is 0 |
| 358 |
tGMT.tm_mday = nDOM; // First day is 1 |
| 359 |
tGMT.tm_hour = secs / SEC_PER_HR; |
| 360 |
tGMT.tm_min = (secs % SEC_PER_HR) / SEC_PER_MIN; |
| 361 |
tGMT.tm_sec = (secs % SEC_PER_HR) % SEC_PER_MIN; |
| 362 |
tGMT.tm_isdst = 0; // No conversion desired |
| 363 |
|
| 364 |
time_t tEpoch = mktime(&tGMT); |
| 365 |
|
| 366 |
if (tEpoch != -1) |
| 367 |
{ |
| 368 |
// Valid time_t value returned from mktime(). |
| 369 |
// mktime() expects a local time which means that tEpoch now needs |
| 370 |
// to be adjusted by the difference between this time zone and GMT. |
| 371 |
tEpoch -= timezone; |
| 372 |
} |
| 373 |
|
| 374 |
return tEpoch; |
| 375 |
} |
| 376 |
// |
| 377 |
// cTle.cpp |
| 378 |
// This class encapsulates a single set of standard NORAD two line elements. |
| 379 |
// |
| 380 |
// Copyright 1996-2005 Michael F. Henry |
| 381 |
// |
| 382 |
// Note: The column offsets are ZERO based. |
| 383 |
|
| 384 |
// Name |
| 385 |
const int TLE_LEN_LINE_DATA = 69; const int TLE_LEN_LINE_NAME = 22; |
| 386 |
|
| 387 |
// Line 1 |
| 388 |
const int TLE1_COL_SATNUM = 2; const int TLE1_LEN_SATNUM = 5; |
| 389 |
const int TLE1_COL_INTLDESC_A = 9; const int TLE1_LEN_INTLDESC_A = 2; |
| 390 |
const int TLE1_COL_INTLDESC_B = 11; const int TLE1_LEN_INTLDESC_B = 3; |
| 391 |
const int TLE1_COL_INTLDESC_C = 14; const int TLE1_LEN_INTLDESC_C = 3; |
| 392 |
const int TLE1_COL_EPOCH_A = 18; const int TLE1_LEN_EPOCH_A = 2; |
| 393 |
const int TLE1_COL_EPOCH_B = 20; const int TLE1_LEN_EPOCH_B = 12; |
| 394 |
const int TLE1_COL_MEANMOTIONDT = 33; const int TLE1_LEN_MEANMOTIONDT = 10; |
| 395 |
const int TLE1_COL_MEANMOTIONDT2 = 44; const int TLE1_LEN_MEANMOTIONDT2 = 8; |
| 396 |
const int TLE1_COL_BSTAR = 53; const int TLE1_LEN_BSTAR = 8; |
| 397 |
const int TLE1_COL_EPHEMTYPE = 62; const int TLE1_LEN_EPHEMTYPE = 1; |
| 398 |
const int TLE1_COL_ELNUM = 64; const int TLE1_LEN_ELNUM = 4; |
| 399 |
|
| 400 |
// Line 2 |
| 401 |
const int TLE2_COL_SATNUM = 2; const int TLE2_LEN_SATNUM = 5; |
| 402 |
const int TLE2_COL_INCLINATION = 8; const int TLE2_LEN_INCLINATION = 8; |
| 403 |
const int TLE2_COL_RAASCENDNODE = 17; const int TLE2_LEN_RAASCENDNODE = 8; |
| 404 |
const int TLE2_COL_ECCENTRICITY = 26; const int TLE2_LEN_ECCENTRICITY = 7; |
| 405 |
const int TLE2_COL_ARGPERIGEE = 34; const int TLE2_LEN_ARGPERIGEE = 8; |
| 406 |
const int TLE2_COL_MEANANOMALY = 43; const int TLE2_LEN_MEANANOMALY = 8; |
| 407 |
const int TLE2_COL_MEANMOTION = 52; const int TLE2_LEN_MEANMOTION = 11; |
| 408 |
const int TLE2_COL_REVATEPOCH = 63; const int TLE2_LEN_REVATEPOCH = 5; |
| 409 |
|
| 410 |
///////////////////////////////////////////////////////////////////////////// |
| 411 |
cTle::cTle(string& strName, string& strLine1, string& strLine2) |
| 412 |
{ |
| 413 |
m_strName = strName; |
| 414 |
m_strLine1 = strLine1; |
| 415 |
m_strLine2 = strLine2; |
| 416 |
|
| 417 |
Initialize(); |
| 418 |
} |
| 419 |
|
| 420 |
///////////////////////////////////////////////////////////////////////////// |
| 421 |
cTle::cTle(const cTle &tle) |
| 422 |
{ |
| 423 |
m_strName = tle.m_strName; |
| 424 |
m_strLine1 = tle.m_strLine1; |
| 425 |
m_strLine2 = tle.m_strLine2; |
| 426 |
|
| 427 |
for (int fld = FLD_FIRST; fld < FLD_LAST; fld++) |
| 428 |
{ |
| 429 |
m_Field[fld] = tle.m_Field[fld]; |
| 430 |
} |
| 431 |
|
| 432 |
m_mapCache = tle.m_mapCache; |
| 433 |
} |
| 434 |
|
| 435 |
///////////////////////////////////////////////////////////////////////////// |
| 436 |
cTle::~cTle() |
| 437 |
{ |
| 438 |
} |
| 439 |
|
| 440 |
///////////////////////////////////////////////////////////////////////////// |
| 441 |
// getField() |
| 442 |
// Return requested field as a double (function return value) or as a text |
| 443 |
// string (*pstr) in the units requested (eUnit). Set 'bStrUnits' to true |
| 444 |
// to have units appended to text string. |
| 445 |
// |
| 446 |
// Note: numeric return values are cached; asking for the same field more |
| 447 |
// than once incurs minimal overhead. |
| 448 |
double cTle::getField(eField fld, |
| 449 |
eUnits units, /* = U_NATIVE */ |
| 450 |
string *pstr /* = NULL */, |
| 451 |
bool bStrUnits /* = false */) const |
| 452 |
{ |
| 453 |
assert((FLD_FIRST <= fld) && (fld < FLD_LAST)); |
| 454 |
assert((U_FIRST <= units) && (units < U_LAST)); |
| 455 |
|
| 456 |
if (pstr) |
| 457 |
{ |
| 458 |
// Return requested field in string form. |
| 459 |
*pstr = m_Field[fld]; |
| 460 |
|
| 461 |
if (bStrUnits) |
| 462 |
*pstr += getUnits(fld); |
| 463 |
|
| 464 |
return 0.0; |
| 465 |
} |
| 466 |
else |
| 467 |
{ |
| 468 |
// Return requested field in floating-point form. |
| 469 |
// Return cache contents if it exists, else populate cache |
| 470 |
FldKey key = Key(units, fld); |
| 471 |
|
| 472 |
if (m_mapCache.find(key) == m_mapCache.end()) |
| 473 |
{ |
| 474 |
// Value not in cache; add it |
| 475 |
double valNative = atof(m_Field[fld].c_str()); |
| 476 |
double valConv = ConvertUnits(valNative, fld, units); |
| 477 |
m_mapCache[key] = valConv; |
| 478 |
|
| 479 |
return valConv; |
| 480 |
} |
| 481 |
else |
| 482 |
{ |
| 483 |
// return cached value |
| 484 |
return m_mapCache[key]; |
| 485 |
} |
| 486 |
} |
| 487 |
} |
| 488 |
|
| 489 |
////////////////////////////////////////////////////////////////////////////// |
| 490 |
// Convert the given field into the requested units. It is assumed that |
| 491 |
// the value being converted is in the TLE format's "native" form. |
| 492 |
double cTle::ConvertUnits(double valNative, // value to convert |
| 493 |
eField fld, // what field the value is |
| 494 |
eUnits units) // what units to convert to |
| 495 |
{ |
| 496 |
switch (fld) |
| 497 |
{ |
| 498 |
case FLD_I: |
| 499 |
case FLD_RAAN: |
| 500 |
case FLD_ARGPER: |
| 501 |
case FLD_M: |
| 502 |
{ |
| 503 |
// The native TLE format is DEGREES |
| 504 |
if (units == U_RAD) |
| 505 |
return valNative * RADS_PER_DEG; |
| 506 |
} |
| 507 |
|
| 508 |
case FLD_NORADNUM: |
| 509 |
case FLD_INTLDESC: |
| 510 |
case FLD_SET: |
| 511 |
case FLD_EPOCHYEAR: |
| 512 |
case FLD_EPOCHDAY: |
| 513 |
case FLD_ORBITNUM: |
| 514 |
case FLD_E: |
| 515 |
case FLD_MMOTION: |
| 516 |
case FLD_MMOTIONDT: |
| 517 |
case FLD_MMOTIONDT2: |
| 518 |
case FLD_BSTAR: |
| 519 |
case FLD_LAST: |
| 520 |
{ // do nothing |
| 521 |
|
| 522 |
} |
| 523 |
|
| 524 |
} |
| 525 |
|
| 526 |
return valNative; // return value in unconverted native format |
| 527 |
} |
| 528 |
|
| 529 |
////////////////////////////////////////////////////////////////////////////// |
| 530 |
string cTle::getUnits(eField fld) const |
| 531 |
{ |
| 532 |
static const string strDegrees = " degrees"; |
| 533 |
static const string strRevsPerDay = " revs / day"; |
| 534 |
static const string strNull; |
| 535 |
|
| 536 |
switch (fld) |
| 537 |
{ |
| 538 |
case FLD_I: |
| 539 |
case FLD_RAAN: |
| 540 |
case FLD_ARGPER: |
| 541 |
case FLD_M: |
| 542 |
return strDegrees; |
| 543 |
|
| 544 |
case FLD_MMOTION: |
| 545 |
return strRevsPerDay; |
| 546 |
|
| 547 |
default: |
| 548 |
return strNull; |
| 549 |
} |
| 550 |
} |
| 551 |
|
| 552 |
///////////////////////////////////////////////////////////////////////////// |
| 553 |
// ExpToDecimal() |
| 554 |
// Converts TLE-style exponential notation of the form [ |-]00000[+|-]0 to |
| 555 |
// decimal notation. Assumes implied decimal point to the left of the first |
| 556 |
// number in the string, i.e., |
| 557 |
// " 12345-3" = 0.00012345 |
| 558 |
// "-23429-5" = -0.0000023429 |
| 559 |
// " 40436+1" = 4.0436 |
| 560 |
string cTle::ExpToDecimal(const string &str) |
| 561 |
{ |
| 562 |
const int COL_EXP_SIGN = 6; |
| 563 |
const int LEN_EXP = 2; |
| 564 |
|
| 565 |
const int LEN_BUFREAL = 32; // max length of buffer to hold floating point |
| 566 |
// representation of input string. |
| 567 |
int nMan; |
| 568 |
int nExp; |
| 569 |
|
| 570 |
// sscanf(%d) will read up to the exponent sign |
| 571 |
sscanf(str.c_str(), "%d", &nMan); |
| 572 |
|
| 573 |
double dblMan = nMan; |
| 574 |
bool bNeg = (nMan < 0); |
| 575 |
|
| 576 |
if (bNeg) |
| 577 |
dblMan *= -1; |
| 578 |
|
| 579 |
// Move decimal place to left of first digit |
| 580 |
while (dblMan >= 1.0) |
| 581 |
dblMan /= 10.0; |
| 582 |
|
| 583 |
if (bNeg) |
| 584 |
dblMan *= -1; |
| 585 |
|
| 586 |
// now read exponent |
| 587 |
sscanf(str.substr(COL_EXP_SIGN, LEN_EXP).c_str(), "%d", &nExp); |
| 588 |
|
| 589 |
double dblVal = dblMan * pow(10.0, nExp); |
| 590 |
char szVal[LEN_BUFREAL]; |
| 591 |
|
| 592 |
snprintf(szVal, sizeof(szVal), "%.9f", dblVal); |
| 593 |
|
| 594 |
string strVal = szVal; |
| 595 |
|
| 596 |
return strVal; |
| 597 |
|
| 598 |
} // ExpToDecimal() |
| 599 |
|
| 600 |
///////////////////////////////////////////////////////////////////////////// |
| 601 |
// Initialize() |
| 602 |
// Initialize the string array. |
| 603 |
void cTle::Initialize() |
| 604 |
{ |
| 605 |
// Have we already been initialized? |
| 606 |
if (m_Field[FLD_NORADNUM].size()) |
| 607 |
return; |
| 608 |
|
| 609 |
assert(!m_strName.empty()); |
| 610 |
assert(!m_strLine1.empty()); |
| 611 |
assert(!m_strLine2.empty()); |
| 612 |
|
| 613 |
m_Field[FLD_NORADNUM] = m_strLine1.substr(TLE1_COL_SATNUM, TLE1_LEN_SATNUM); |
| 614 |
m_Field[FLD_INTLDESC] = m_strLine1.substr(TLE1_COL_INTLDESC_A, |
| 615 |
TLE1_LEN_INTLDESC_A + |
| 616 |
TLE1_LEN_INTLDESC_B + |
| 617 |
TLE1_LEN_INTLDESC_C); |
| 618 |
m_Field[FLD_EPOCHYEAR] = |
| 619 |
m_strLine1.substr(TLE1_COL_EPOCH_A, TLE1_LEN_EPOCH_A); |
| 620 |
|
| 621 |
m_Field[FLD_EPOCHDAY] = |
| 622 |
m_strLine1.substr(TLE1_COL_EPOCH_B, TLE1_LEN_EPOCH_B); |
| 623 |
|
| 624 |
if (m_strLine1[TLE1_COL_MEANMOTIONDT] == '-') |
| 625 |
{ |
| 626 |
// value is negative |
| 627 |
m_Field[FLD_MMOTIONDT] = "-0"; |
| 628 |
} |
| 629 |
else |
| 630 |
m_Field[FLD_MMOTIONDT] = "0"; |
| 631 |
|
| 632 |
m_Field[FLD_MMOTIONDT] += m_strLine1.substr(TLE1_COL_MEANMOTIONDT + 1, |
| 633 |
TLE1_LEN_MEANMOTIONDT); |
| 634 |
|
| 635 |
// decimal point assumed; exponential notation |
| 636 |
m_Field[FLD_MMOTIONDT2] = ExpToDecimal( |
| 637 |
m_strLine1.substr(TLE1_COL_MEANMOTIONDT2, |
| 638 |
TLE1_LEN_MEANMOTIONDT2)); |
| 639 |
// decimal point assumed; exponential notation |
| 640 |
m_Field[FLD_BSTAR] = ExpToDecimal(m_strLine1.substr(TLE1_COL_BSTAR, |
| 641 |
TLE1_LEN_BSTAR)); |
| 642 |
//TLE1_COL_EPHEMTYPE |
| 643 |
//TLE1_LEN_EPHEMTYPE |
| 644 |
m_Field[FLD_SET] = m_strLine1.substr(TLE1_COL_ELNUM, TLE1_LEN_ELNUM); |
| 645 |
|
| 646 |
TrimLeft(m_Field[FLD_SET]); |
| 647 |
|
| 648 |
//TLE2_COL_SATNUM |
| 649 |
//TLE2_LEN_SATNUM |
| 650 |
|
| 651 |
m_Field[FLD_I] = m_strLine2.substr(TLE2_COL_INCLINATION, |
| 652 |
TLE2_LEN_INCLINATION); |
| 653 |
TrimLeft(m_Field[FLD_I]); |
| 654 |
|
| 655 |
m_Field[FLD_RAAN] = m_strLine2.substr(TLE2_COL_RAASCENDNODE, |
| 656 |
TLE2_LEN_RAASCENDNODE); |
| 657 |
TrimLeft(m_Field[FLD_RAAN]); |
| 658 |
|
| 659 |
// decimal point is assumed |
| 660 |
m_Field[FLD_E] = "0."; |
| 661 |
m_Field[FLD_E] += m_strLine2.substr(TLE2_COL_ECCENTRICITY, |
| 662 |
TLE2_LEN_ECCENTRICITY); |
| 663 |
|
| 664 |
m_Field[FLD_ARGPER] = m_strLine2.substr(TLE2_COL_ARGPERIGEE, |
| 665 |
TLE2_LEN_ARGPERIGEE); |
| 666 |
TrimLeft(m_Field[FLD_ARGPER]); |
| 667 |
|
| 668 |
m_Field[FLD_M] = m_strLine2.substr(TLE2_COL_MEANANOMALY, |
| 669 |
TLE2_LEN_MEANANOMALY); |
| 670 |
TrimLeft(m_Field[FLD_M]); |
| 671 |
|
| 672 |
m_Field[FLD_MMOTION] = m_strLine2.substr(TLE2_COL_MEANMOTION, |
| 673 |
TLE2_LEN_MEANMOTION); |
| 674 |
TrimLeft(m_Field[FLD_MMOTION]); |
| 675 |
|
| 676 |
m_Field[FLD_ORBITNUM] = m_strLine2.substr(TLE2_COL_REVATEPOCH, |
| 677 |
TLE2_LEN_REVATEPOCH); |
| 678 |
TrimLeft(m_Field[FLD_ORBITNUM]); |
| 679 |
|
| 680 |
} // InitStrVars() |
| 681 |
|
| 682 |
///////////////////////////////////////////////////////////////////////////// |
| 683 |
// IsTleFormat() |
| 684 |
// Returns true if "str" is a valid data line of a two-line element set, |
| 685 |
// else false. |
| 686 |
// |
| 687 |
// To be valid a line must: |
| 688 |
// Have as the first character the line number |
| 689 |
// Have as the second character a blank |
| 690 |
// Be TLE_LEN_LINE_DATA characters long |
| 691 |
// Have a valid checksum (note: no longer required as of 12/96) |
| 692 |
// |
| 693 |
bool cTle::IsValidLine(string& str, eTleLine line) |
| 694 |
{ |
| 695 |
TrimLeft(str); |
| 696 |
TrimRight(str); |
| 697 |
|
| 698 |
size_t nLen = str.size(); |
| 699 |
|
| 700 |
if (nLen != (uint)TLE_LEN_LINE_DATA) |
| 701 |
return false; |
| 702 |
|
| 703 |
// First char in string must be line number |
| 704 |
if ((str[0] - '0') != line) |
| 705 |
return false; |
| 706 |
|
| 707 |
// Second char in string must be blank |
| 708 |
if (str[1] != ' ') |
| 709 |
return false; |
| 710 |
|
| 711 |
/* |
| 712 |
NOTE: 12/96 |
| 713 |
The requirement that the last char in the line data must be a valid |
| 714 |
checksum is too restrictive. |
| 715 |
|
| 716 |
// Last char in string must be checksum |
| 717 |
int nSum = CheckSum(str); |
| 718 |
|
| 719 |
if (nSum != (str[TLE_LEN_LINE_DATA - 1] - '0')) |
| 720 |
return false; |
| 721 |
*/ |
| 722 |
|
| 723 |
return true; |
| 724 |
|
| 725 |
} // IsTleFormat() |
| 726 |
|
| 727 |
///////////////////////////////////////////////////////////////////////////// |
| 728 |
// CheckSum() |
| 729 |
// Calculate the check sum for a given line of TLE data, the last character |
| 730 |
// of which is the current checksum. (Although there is no check here, |
| 731 |
// the current checksum should match the one we calculate.) |
| 732 |
// The checksum algorithm: |
| 733 |
// Each number in the data line is summed, modulo 10. |
| 734 |
// Non-numeric characters are zero, except minus signs, which are 1. |
| 735 |
// |
| 736 |
int cTle::CheckSum(const string& str) |
| 737 |
{ |
| 738 |
// The length is "- 1" because we don't include the current (existing) |
| 739 |
// checksum character in the checksum calculation. |
| 740 |
size_t len = str.size() - 1; |
| 741 |
int xsum = 0; |
| 742 |
|
| 743 |
for (size_t i = 0; i < len; i++) |
| 744 |
{ |
| 745 |
char ch = str[i]; |
| 746 |
if (isdigit(ch)) |
| 747 |
xsum += (ch - '0'); |
| 748 |
else if (ch == '-') |
| 749 |
xsum++; |
| 750 |
} |
| 751 |
|
| 752 |
return (xsum % 10); |
| 753 |
|
| 754 |
} // CheckSum() |
| 755 |
|
| 756 |
///////////////////////////////////////////////////////////////////////////// |
| 757 |
void cTle::TrimLeft(string& s) |
| 758 |
{ |
| 759 |
while (s[0] == ' ') |
| 760 |
s.erase(0, 1); |
| 761 |
} |
| 762 |
|
| 763 |
///////////////////////////////////////////////////////////////////////////// |
| 764 |
void cTle::TrimRight(string& s) |
| 765 |
{ |
| 766 |
while (s[s.size() - 1] == ' ') |
| 767 |
s.erase(s.size() - 1); |
| 768 |
} |
| 769 |
|
| 770 |
// |
| 771 |
// cEci.cpp |
| 772 |
// |
| 773 |
// Copyright (c) 2002-2003 Michael F. Henry |
| 774 |
// |
| 775 |
////////////////////////////////////////////////////////////////////// |
| 776 |
// cEci Class |
| 777 |
////////////////////////////////////////////////////////////////////// |
| 778 |
cEci::cEci(const cVector &pos, |
| 779 |
const cVector &vel, |
| 780 |
const cJulian &date, |
| 781 |
bool IsAeUnits /* = true */) |
| 782 |
{ |
| 783 |
m_pos = pos; |
| 784 |
m_vel = vel; |
| 785 |
m_date = date; |
| 786 |
m_VecUnits = (IsAeUnits ? UNITS_AE : UNITS_NONE); |
| 787 |
} |
| 788 |
|
| 789 |
////////////////////////////////////////////////////////////////////// |
| 790 |
// cEci(cCoordGeo&, cJulian&) |
| 791 |
// Calculate the ECI coordinates of the location "geo" at time "date". |
| 792 |
// Assumes geo coordinates are km-based. |
| 793 |
// Assumes the earth is an oblate spheroid as defined in WGS '72. |
| 794 |
// Reference: The 1992 Astronomical Almanac, page K11 |
| 795 |
// Reference: www.celestrak.com (Dr. TS Kelso) |
| 796 |
cEci::cEci(const cCoordGeo &geo, const cJulian &date) |
| 797 |
{ |
| 798 |
m_VecUnits = UNITS_KM; |
| 799 |
|
| 800 |
double mfactor = TWOPI * (OMEGA_E / SEC_PER_DAY); |
| 801 |
double lat = geo.m_Lat; |
| 802 |
double lon = geo.m_Lon; |
| 803 |
double alt = geo.m_Alt; |
| 804 |
|
| 805 |
// Calculate Local Mean Sidereal Time (theta) |
| 806 |
double theta = date.toLMST(lon); |
| 807 |
double c = 1.0 / sqrt(1.0 + F * (F - 2.0) * sqr(sin(lat))); |
| 808 |
double s = sqr(1.0 - F) * c; |
| 809 |
double achcp = (XKMPER_WGS72 * c + alt) * cos(lat); |
| 810 |
|
| 811 |
m_date = date; |
| 812 |
|
| 813 |
m_pos.m_x = achcp * cos(theta); // km |
| 814 |
m_pos.m_y = achcp * sin(theta); // km |
| 815 |
m_pos.m_z = (XKMPER_WGS72 * s + alt) * sin(lat); // km |
| 816 |
m_pos.m_w = sqrt(sqr(m_pos.m_x) + |
| 817 |
sqr(m_pos.m_y) + |
| 818 |
sqr(m_pos.m_z)); // range, km |
| 819 |
|
| 820 |
m_vel.m_x = -mfactor * m_pos.m_y; // km / sec |
| 821 |
m_vel.m_y = mfactor * m_pos.m_x; |
| 822 |
m_vel.m_z = 0.0; |
| 823 |
m_vel.m_w = sqrt(sqr(m_vel.m_x) + // range rate km/sec^2 |
| 824 |
sqr(m_vel.m_y)); |
| 825 |
} |
| 826 |
|
| 827 |
////////////////////////////////////////////////////////////////////////////// |
| 828 |
// toGeo() |
| 829 |
// Return the corresponding geodetic position (based on the current ECI |
| 830 |
// coordinates/Julian date). |
| 831 |
// Assumes the earth is an oblate spheroid as defined in WGS '72. |
| 832 |
// Side effects: Converts the position and velocity vectors to km-based units. |
| 833 |
// Reference: The 1992 Astronomical Almanac, page K12. |
| 834 |
// Reference: www.celestrak.com (Dr. TS Kelso) |
| 835 |
cCoordGeo cEci::toGeo() |
| 836 |
{ |
| 837 |
ae2km(); // Vectors must be in kilometer-based units |
| 838 |
|
| 839 |
double theta = AcTan(m_pos.m_y, m_pos.m_x); |
| 840 |
double lon = fmod(theta - m_date.toGMST(), TWOPI); |
| 841 |
|
| 842 |
if (lon < 0.0) |
| 843 |
lon += TWOPI; // "wrap" negative modulo |
| 844 |
|
| 845 |
double r = sqrt(sqr(m_pos.m_x) + sqr(m_pos.m_y)); |
| 846 |
double e2 = F * (2.0 - F); |
| 847 |
double lat = AcTan(m_pos.m_z, r); |
| 848 |
|
| 849 |
const double delta = 1.0e-07; |
| 850 |
double phi; |
| 851 |
double c; |
| 852 |
|
| 853 |
do |
| 854 |
{ |
| 855 |
phi = lat; |
| 856 |
c = 1.0 / sqrt(1.0 - e2 * sqr(sin(phi))); |
| 857 |
lat = AcTan(m_pos.m_z + XKMPER_WGS72 * c * e2 * sin(phi), r); |
| 858 |
} |
| 859 |
while (fabs(lat - phi) > delta); |
| 860 |
|
| 861 |
double alt = r / cos(lat) - XKMPER_WGS72 * c; |
| 862 |
|
| 863 |
return cCoordGeo(lat, lon, alt); // radians, radians, kilometers |
| 864 |
} |
| 865 |
|
| 866 |
////////////////////////////////////////////////////////////////////////////// |
| 867 |
// ae2km() |
| 868 |
// Convert the position and velocity vector units from AE-based units |
| 869 |
// to kilometer based units. |
| 870 |
void cEci::ae2km() |
| 871 |
{ |
| 872 |
if (UnitsAreAe()) |
| 873 |
{ |
| 874 |
MulPos(XKMPER_WGS72 / AE); // km |
| 875 |
MulVel((XKMPER_WGS72 / AE) * (MIN_PER_DAY / 86400)); // km/sec |
| 876 |
m_VecUnits = UNITS_KM; |
| 877 |
} |
| 878 |
} |