1 |
mocchiut |
1.1 |
// |
2 |
|
|
// globals.cpp |
3 |
|
|
// |
4 |
|
|
#include <sgp4.h> |
5 |
|
|
|
6 |
|
|
////////////////////////////////////////////////////////////////////////////// |
7 |
|
|
double sqr(const double x) |
8 |
|
|
{ |
9 |
|
|
return (x * x); |
10 |
|
|
} |
11 |
|
|
|
12 |
|
|
////////////////////////////////////////////////////////////////////////////// |
13 |
|
|
double Fmod2p(const double arg) |
14 |
|
|
{ |
15 |
|
|
double modu = fmod(arg, TWOPI); |
16 |
|
|
|
17 |
|
|
if (modu < 0.0) |
18 |
|
|
modu += TWOPI; |
19 |
|
|
|
20 |
|
|
return modu; |
21 |
|
|
} |
22 |
|
|
|
23 |
|
|
////////////////////////////////////////////////////////////////////////////// |
24 |
|
|
// AcTan() |
25 |
|
|
// ArcTangent of sin(x) / cos(x). The advantage of this function over arctan() |
26 |
|
|
// is that it returns the correct quadrant of the angle. |
27 |
|
|
double AcTan(const double sinx, const double cosx) |
28 |
|
|
{ |
29 |
|
|
double ret; |
30 |
|
|
|
31 |
|
|
if (cosx == 0.0) |
32 |
|
|
{ |
33 |
|
|
if (sinx > 0.0) |
34 |
|
|
ret = PI / 2.0; |
35 |
|
|
else |
36 |
|
|
ret = 3.0 * PI / 2.0; |
37 |
|
|
} |
38 |
|
|
else |
39 |
|
|
{ |
40 |
|
|
if (cosx > 0.0) |
41 |
|
|
ret = atan(sinx / cosx); |
42 |
|
|
else |
43 |
|
|
ret = PI + atan(sinx / cosx); |
44 |
|
|
} |
45 |
|
|
|
46 |
|
|
return ret; |
47 |
|
|
} |
48 |
|
|
|
49 |
|
|
////////////////////////////////////////////////////////////////////////////// |
50 |
|
|
double rad2deg(const double r) |
51 |
|
|
{ |
52 |
|
|
const double DEG_PER_RAD = 180.0 / PI; |
53 |
|
|
return r * DEG_PER_RAD; |
54 |
|
|
} |
55 |
|
|
|
56 |
|
|
////////////////////////////////////////////////////////////////////////////// |
57 |
|
|
double deg2rad(const double d) |
58 |
|
|
{ |
59 |
|
|
const double RAD_PER_DEG = PI / 180.0; |
60 |
|
|
return d * RAD_PER_DEG; |
61 |
|
|
} |
62 |
|
|
|
63 |
|
|
// |
64 |
|
|
// coord.cpp |
65 |
|
|
// |
66 |
|
|
// Copyright (c) 2003 Michael F. Henry |
67 |
|
|
// |
68 |
|
|
|
69 |
|
|
////////////////////////////////////////////////////////////////////// |
70 |
|
|
// cCoordGeo Class |
71 |
|
|
////////////////////////////////////////////////////////////////////// |
72 |
|
|
|
73 |
|
|
cCoordGeo::cCoordGeo() |
74 |
|
|
{ |
75 |
|
|
m_Lat = 0.0; |
76 |
|
|
m_Lon = 0.0; |
77 |
|
|
m_Alt = 0.0; |
78 |
|
|
} |
79 |
|
|
|
80 |
|
|
////////////////////////////////////////////////////////////////////// |
81 |
|
|
// cCoordTopo Class |
82 |
|
|
////////////////////////////////////////////////////////////////////// |
83 |
|
|
|
84 |
|
|
cCoordTopo::cCoordTopo() |
85 |
|
|
{ |
86 |
|
|
m_Az = 0.0; |
87 |
|
|
m_El = 0.0; |
88 |
|
|
m_Range = 0.0; |
89 |
|
|
m_RangeRate = 0.0; |
90 |
|
|
|
91 |
|
|
} |
92 |
|
|
|
93 |
|
|
|
94 |
|
|
|
95 |
|
|
// |
96 |
|
|
// cVector.cpp |
97 |
|
|
// |
98 |
|
|
// Copyright (c) 2001-2003 Michael F. Henry |
99 |
|
|
// |
100 |
|
|
//***************************************************************************** |
101 |
|
|
// Multiply each component in the vector by 'factor'. |
102 |
|
|
//***************************************************************************** |
103 |
|
|
void cVector::Mul(double factor) |
104 |
|
|
{ |
105 |
|
|
m_x *= factor; |
106 |
|
|
m_y *= factor; |
107 |
|
|
m_z *= factor; |
108 |
|
|
m_w *= fabs(factor); |
109 |
|
|
} |
110 |
|
|
|
111 |
|
|
//***************************************************************************** |
112 |
|
|
// Subtract a vector from this one. |
113 |
|
|
//***************************************************************************** |
114 |
|
|
void cVector::Sub(const cVector& vec) |
115 |
|
|
{ |
116 |
|
|
m_x -= vec.m_x; |
117 |
|
|
m_y -= vec.m_y; |
118 |
|
|
m_z -= vec.m_z; |
119 |
|
|
m_w -= vec.m_w; |
120 |
|
|
} |
121 |
|
|
|
122 |
|
|
//***************************************************************************** |
123 |
|
|
// Calculate the angle between this vector and another |
124 |
|
|
//***************************************************************************** |
125 |
|
|
double cVector::Angle(const cVector& vec) const |
126 |
|
|
{ |
127 |
|
|
return acos(Dot(vec) / (Magnitude() * vec.Magnitude())); |
128 |
|
|
} |
129 |
|
|
|
130 |
|
|
//***************************************************************************** |
131 |
|
|
// |
132 |
|
|
//***************************************************************************** |
133 |
|
|
double cVector::Magnitude() const |
134 |
|
|
{ |
135 |
|
|
return sqrt((m_x * m_x) + |
136 |
|
|
(m_y * m_y) + |
137 |
|
|
(m_z * m_z)); |
138 |
|
|
} |
139 |
|
|
|
140 |
|
|
//***************************************************************************** |
141 |
|
|
// Return the dot product |
142 |
|
|
//***************************************************************************** |
143 |
|
|
double cVector::Dot(const cVector& vec) const |
144 |
|
|
{ |
145 |
|
|
return (m_x * vec.m_x) + |
146 |
|
|
(m_y * vec.m_y) + |
147 |
|
|
(m_z * vec.m_z); |
148 |
|
|
} |
149 |
|
|
// |
150 |
|
|
// cJulian.cpp |
151 |
|
|
// |
152 |
|
|
// This class encapsulates Julian dates with the epoch of 12:00 noon (12:00 UT) |
153 |
|
|
// on January 1, 4713 B.C. Some epoch dates: |
154 |
|
|
// 01/01/1990 00:00 UTC - 2447892.5 |
155 |
|
|
// 01/01/1990 12:00 UTC - 2447893.0 |
156 |
|
|
// 01/01/2000 00:00 UTC - 2451544.5 |
157 |
|
|
// 01/01/2001 00:00 UTC - 2451910.5 |
158 |
|
|
// |
159 |
|
|
// Note the Julian day begins at noon, which allows astronomers to have all |
160 |
|
|
// the dates in a single observing session the same. |
161 |
|
|
// |
162 |
|
|
// References: |
163 |
|
|
// "Astronomical Formulae for Calculators", Jean Meeus |
164 |
|
|
// "Satellite Communications", Dennis Roddy, 2nd Edition, 1995. |
165 |
|
|
// |
166 |
|
|
// Copyright (c) 2003 Michael F. Henry |
167 |
|
|
// |
168 |
|
|
// mfh 12/24/2003 |
169 |
|
|
// |
170 |
|
|
|
171 |
|
|
////////////////////////////////////////////////////////////////////////////// |
172 |
|
|
// Create a Julian date object from a time_t object. time_t objects store the |
173 |
|
|
// number of seconds since midnight UTC January 1, 1970. |
174 |
|
|
cJulian::cJulian(time_t time) |
175 |
|
|
{ |
176 |
|
|
struct tm *ptm = gmtime(&time); |
177 |
|
|
assert(ptm); |
178 |
|
|
|
179 |
|
|
int year = ptm->tm_year + 1900; |
180 |
|
|
double day = ptm->tm_yday + 1 + |
181 |
|
|
(ptm->tm_hour + |
182 |
|
|
((ptm->tm_min + |
183 |
|
|
(ptm->tm_sec / 60.0)) / 60.0)) / 24.0; |
184 |
|
|
|
185 |
|
|
Initialize(year, day); |
186 |
|
|
} |
187 |
|
|
|
188 |
|
|
////////////////////////////////////////////////////////////////////////////// |
189 |
|
|
// Create a Julian date object from a year and day of year. |
190 |
|
|
// Example parameters: year = 2001, day = 1.5 (Jan 1 12h) |
191 |
|
|
cJulian::cJulian(int year, double day) |
192 |
|
|
{ |
193 |
|
|
Initialize(year, day); |
194 |
|
|
} |
195 |
|
|
|
196 |
|
|
////////////////////////////////////////////////////////////////////////////// |
197 |
|
|
// Create a Julian date object. |
198 |
|
|
cJulian::cJulian(int year, // i.e., 2004 |
199 |
|
|
int mon, // 1..12 |
200 |
|
|
int day, // 1..31 |
201 |
|
|
int hour, // 0..23 |
202 |
|
|
int min, // 0..59 |
203 |
|
|
double sec /* = 0.0 */) // 0..(59.999999...) |
204 |
|
|
|
205 |
|
|
{ |
206 |
|
|
// Calculate N, the day of the year (1..366) |
207 |
|
|
int N; |
208 |
|
|
int F1 = (int)((275.0 * mon) / 9.0); |
209 |
|
|
int F2 = (int)((mon + 9.0) / 12.0); |
210 |
|
|
|
211 |
|
|
if (IsLeapYear(year)) |
212 |
|
|
{ |
213 |
|
|
// Leap year |
214 |
|
|
N = F1 - F2 + day - 30; |
215 |
|
|
} |
216 |
|
|
else |
217 |
|
|
{ |
218 |
|
|
// Common year |
219 |
|
|
N = F1 - (2 * F2) + day - 30; |
220 |
|
|
} |
221 |
|
|
|
222 |
|
|
double dblDay = N + (hour + (min + (sec / 60.0)) / 60.0) / 24.0; |
223 |
|
|
|
224 |
|
|
Initialize(year, dblDay); |
225 |
|
|
} |
226 |
|
|
|
227 |
|
|
////////////////////////////////////////////////////////////////////////////// |
228 |
|
|
void cJulian::Initialize(int year, double day) |
229 |
|
|
{ |
230 |
|
|
// 1582 A.D.: 10 days removed from calendar |
231 |
|
|
// 3000 A.D.: Arbitrary error checking limit |
232 |
|
|
assert((year > 1582) && (year < 3000)); |
233 |
|
|
assert((day >= 0.0) && (day <= 366.5)); |
234 |
|
|
|
235 |
|
|
// Now calculate Julian date |
236 |
|
|
|
237 |
|
|
year--; |
238 |
|
|
|
239 |
|
|
// Centuries are not leap years unless they divide by 400 |
240 |
|
|
int A = (year / 100); |
241 |
|
|
int B = 2 - A + (A / 4); |
242 |
|
|
|
243 |
|
|
double NewYears = (int)(365.25 * year) + |
244 |
|
|
(int)(30.6001 * 14) + |
245 |
|
|
1720994.5 + B; // 1720994.5 = Oct 30, year -1 |
246 |
|
|
|
247 |
|
|
m_Date = NewYears + day; |
248 |
|
|
} |
249 |
|
|
|
250 |
|
|
////////////////////////////////////////////////////////////////////////////// |
251 |
|
|
// getComponent() |
252 |
|
|
// Return requested components of date. |
253 |
|
|
// Year : Includes the century. |
254 |
|
|
// Month: 1..12 |
255 |
|
|
// Day : 1..31 including fractional part |
256 |
|
|
void cJulian::getComponent(int *pYear, |
257 |
|
|
int *pMon /* = NULL */, |
258 |
|
|
double *pDOM /* = NULL */) const |
259 |
|
|
{ |
260 |
|
|
assert(pYear != NULL); |
261 |
|
|
|
262 |
|
|
double jdAdj = getDate() + 0.5; |
263 |
|
|
int Z = (int)jdAdj; // integer part |
264 |
|
|
double F = jdAdj - Z; // fractional part |
265 |
|
|
double alpha = (int)((Z - 1867216.25) / 36524.25); |
266 |
|
|
double A = Z + 1 + alpha - (int)(alpha / 4.0); |
267 |
|
|
double B = A + 1524.0; |
268 |
|
|
int C = (int)((B - 122.1) / 365.25); |
269 |
|
|
int D = (int)(C * 365.25); |
270 |
|
|
int E = (int)((B - D) / 30.6001); |
271 |
|
|
|
272 |
|
|
double DOM = B - D - (int)(E * 30.6001) + F; |
273 |
|
|
int month = (E < 13.5) ? (E - 1) : (E - 13); |
274 |
|
|
int year = (month > 2.5) ? (C - 4716) : (C - 4715); |
275 |
|
|
|
276 |
|
|
*pYear = year; |
277 |
|
|
|
278 |
|
|
if (pMon != NULL) |
279 |
|
|
*pMon = month; |
280 |
|
|
|
281 |
|
|
if (pDOM != NULL) |
282 |
|
|
*pDOM = DOM; |
283 |
|
|
} |
284 |
|
|
|
285 |
|
|
////////////////////////////////////////////////////////////////////////////// |
286 |
|
|
// toGMST() |
287 |
|
|
// Calculate Greenwich Mean Sidereal Time for the Julian date. The return value |
288 |
|
|
// is the angle, in radians, measuring eastward from the Vernal Equinox to the |
289 |
|
|
// prime meridian. This angle is also referred to as "ThetaG" (Theta GMST). |
290 |
|
|
// |
291 |
|
|
// References: |
292 |
|
|
// The 1992 Astronomical Almanac, page B6. |
293 |
|
|
// Explanatory Supplement to the Astronomical Almanac, page 50. |
294 |
|
|
// Orbital Coordinate Systems, Part III, Dr. T.S. Kelso, Satellite Times, |
295 |
|
|
// Nov/Dec 1995 |
296 |
|
|
double cJulian::toGMST() const |
297 |
|
|
{ |
298 |
|
|
const double UT = fmod(m_Date + 0.5, 1.0); |
299 |
|
|
const double TU = (FromJan1_12h_2000() - UT) / 36525.0; |
300 |
|
|
|
301 |
|
|
double GMST = 24110.54841 + TU * |
302 |
|
|
(8640184.812866 + TU * (0.093104 - TU * 6.2e-06)); |
303 |
|
|
|
304 |
|
|
GMST = fmod(GMST + SEC_PER_DAY * OMEGA_E * UT, SEC_PER_DAY); |
305 |
|
|
|
306 |
|
|
if (GMST < 0.0) |
307 |
|
|
GMST += SEC_PER_DAY; // "wrap" negative modulo value |
308 |
|
|
|
309 |
|
|
return (TWOPI * (GMST / SEC_PER_DAY)); |
310 |
|
|
} |
311 |
|
|
|
312 |
|
|
////////////////////////////////////////////////////////////////////////////// |
313 |
|
|
// toLMST() |
314 |
|
|
// Calculate Local Mean Sidereal Time for given longitude (for this date). |
315 |
|
|
// The longitude is assumed to be in radians measured west from Greenwich. |
316 |
|
|
// The return value is the angle, in radians, measuring eastward from the |
317 |
|
|
// Vernal Equinox to the given longitude. |
318 |
|
|
double cJulian::toLMST(double lon) const |
319 |
|
|
{ |
320 |
|
|
return fmod(toGMST() + lon, TWOPI); |
321 |
|
|
} |
322 |
|
|
|
323 |
|
|
////////////////////////////////////////////////////////////////////////////// |
324 |
|
|
// toTime() |
325 |
|
|
// Convert to type time_t |
326 |
|
|
// Avoid using this function as it discards the fractional seconds of the |
327 |
|
|
// time component. |
328 |
|
|
time_t cJulian::toTime() const |
329 |
|
|
{ |
330 |
|
|
int nYear; |
331 |
|
|
int nMonth; |
332 |
|
|
double dblDay; |
333 |
|
|
|
334 |
|
|
getComponent(&nYear, &nMonth, &dblDay); |
335 |
|
|
|
336 |
|
|
// dblDay is the fractional Julian Day (i.e., 29.5577). |
337 |
|
|
// Save the whole number day in nDOM and convert dblDay to |
338 |
|
|
// the fractional portion of day. |
339 |
|
|
int nDOM = (int)dblDay; |
340 |
|
|
|
341 |
|
|
dblDay -= nDOM; |
342 |
|
|
|
343 |
|
|
const int SEC_PER_MIN = 60; |
344 |
|
|
const int SEC_PER_HR = 60 * SEC_PER_MIN; |
345 |
|
|
const int SEC_PER_DAY = 24 * SEC_PER_HR; |
346 |
|
|
|
347 |
|
|
int secs = (int)((dblDay * SEC_PER_DAY) + 0.5); |
348 |
|
|
|
349 |
|
|
// Create a "struct tm" type. |
350 |
|
|
// NOTE: |
351 |
|
|
// The "struct tm" type has a 1-second resolution. Any fractional |
352 |
|
|
// component of the "seconds" time value is discarded. |
353 |
|
|
struct tm tGMT; |
354 |
|
|
memset(&tGMT, 0, sizeof(tGMT)); |
355 |
|
|
|
356 |
|
|
tGMT.tm_year = nYear - 1900; // 2001 is 101 |
357 |
|
|
tGMT.tm_mon = nMonth - 1; // January is 0 |
358 |
|
|
tGMT.tm_mday = nDOM; // First day is 1 |
359 |
|
|
tGMT.tm_hour = secs / SEC_PER_HR; |
360 |
|
|
tGMT.tm_min = (secs % SEC_PER_HR) / SEC_PER_MIN; |
361 |
|
|
tGMT.tm_sec = (secs % SEC_PER_HR) % SEC_PER_MIN; |
362 |
|
|
tGMT.tm_isdst = 0; // No conversion desired |
363 |
|
|
|
364 |
|
|
time_t tEpoch = mktime(&tGMT); |
365 |
|
|
|
366 |
|
|
if (tEpoch != -1) |
367 |
|
|
{ |
368 |
|
|
// Valid time_t value returned from mktime(). |
369 |
|
|
// mktime() expects a local time which means that tEpoch now needs |
370 |
|
|
// to be adjusted by the difference between this time zone and GMT. |
371 |
|
|
tEpoch -= timezone; |
372 |
|
|
} |
373 |
|
|
|
374 |
|
|
return tEpoch; |
375 |
|
|
} |
376 |
|
|
// |
377 |
|
|
// cTle.cpp |
378 |
|
|
// This class encapsulates a single set of standard NORAD two line elements. |
379 |
|
|
// |
380 |
|
|
// Copyright 1996-2005 Michael F. Henry |
381 |
|
|
// |
382 |
|
|
// Note: The column offsets are ZERO based. |
383 |
|
|
|
384 |
|
|
// Name |
385 |
|
|
const int TLE_LEN_LINE_DATA = 69; const int TLE_LEN_LINE_NAME = 22; |
386 |
|
|
|
387 |
|
|
// Line 1 |
388 |
|
|
const int TLE1_COL_SATNUM = 2; const int TLE1_LEN_SATNUM = 5; |
389 |
|
|
const int TLE1_COL_INTLDESC_A = 9; const int TLE1_LEN_INTLDESC_A = 2; |
390 |
|
|
const int TLE1_COL_INTLDESC_B = 11; const int TLE1_LEN_INTLDESC_B = 3; |
391 |
|
|
const int TLE1_COL_INTLDESC_C = 14; const int TLE1_LEN_INTLDESC_C = 3; |
392 |
|
|
const int TLE1_COL_EPOCH_A = 18; const int TLE1_LEN_EPOCH_A = 2; |
393 |
|
|
const int TLE1_COL_EPOCH_B = 20; const int TLE1_LEN_EPOCH_B = 12; |
394 |
|
|
const int TLE1_COL_MEANMOTIONDT = 33; const int TLE1_LEN_MEANMOTIONDT = 10; |
395 |
|
|
const int TLE1_COL_MEANMOTIONDT2 = 44; const int TLE1_LEN_MEANMOTIONDT2 = 8; |
396 |
|
|
const int TLE1_COL_BSTAR = 53; const int TLE1_LEN_BSTAR = 8; |
397 |
|
|
const int TLE1_COL_EPHEMTYPE = 62; const int TLE1_LEN_EPHEMTYPE = 1; |
398 |
|
|
const int TLE1_COL_ELNUM = 64; const int TLE1_LEN_ELNUM = 4; |
399 |
|
|
|
400 |
|
|
// Line 2 |
401 |
|
|
const int TLE2_COL_SATNUM = 2; const int TLE2_LEN_SATNUM = 5; |
402 |
|
|
const int TLE2_COL_INCLINATION = 8; const int TLE2_LEN_INCLINATION = 8; |
403 |
|
|
const int TLE2_COL_RAASCENDNODE = 17; const int TLE2_LEN_RAASCENDNODE = 8; |
404 |
|
|
const int TLE2_COL_ECCENTRICITY = 26; const int TLE2_LEN_ECCENTRICITY = 7; |
405 |
|
|
const int TLE2_COL_ARGPERIGEE = 34; const int TLE2_LEN_ARGPERIGEE = 8; |
406 |
|
|
const int TLE2_COL_MEANANOMALY = 43; const int TLE2_LEN_MEANANOMALY = 8; |
407 |
|
|
const int TLE2_COL_MEANMOTION = 52; const int TLE2_LEN_MEANMOTION = 11; |
408 |
|
|
const int TLE2_COL_REVATEPOCH = 63; const int TLE2_LEN_REVATEPOCH = 5; |
409 |
|
|
|
410 |
|
|
///////////////////////////////////////////////////////////////////////////// |
411 |
|
|
cTle::cTle(string& strName, string& strLine1, string& strLine2) |
412 |
|
|
{ |
413 |
|
|
m_strName = strName; |
414 |
|
|
m_strLine1 = strLine1; |
415 |
|
|
m_strLine2 = strLine2; |
416 |
|
|
|
417 |
|
|
Initialize(); |
418 |
|
|
} |
419 |
|
|
|
420 |
|
|
///////////////////////////////////////////////////////////////////////////// |
421 |
|
|
cTle::cTle(const cTle &tle) |
422 |
|
|
{ |
423 |
|
|
m_strName = tle.m_strName; |
424 |
|
|
m_strLine1 = tle.m_strLine1; |
425 |
|
|
m_strLine2 = tle.m_strLine2; |
426 |
|
|
|
427 |
|
|
for (int fld = FLD_FIRST; fld < FLD_LAST; fld++) |
428 |
|
|
{ |
429 |
|
|
m_Field[fld] = tle.m_Field[fld]; |
430 |
|
|
} |
431 |
|
|
|
432 |
|
|
m_mapCache = tle.m_mapCache; |
433 |
|
|
} |
434 |
|
|
|
435 |
|
|
///////////////////////////////////////////////////////////////////////////// |
436 |
|
|
cTle::~cTle() |
437 |
|
|
{ |
438 |
|
|
} |
439 |
|
|
|
440 |
|
|
///////////////////////////////////////////////////////////////////////////// |
441 |
|
|
// getField() |
442 |
|
|
// Return requested field as a double (function return value) or as a text |
443 |
|
|
// string (*pstr) in the units requested (eUnit). Set 'bStrUnits' to true |
444 |
|
|
// to have units appended to text string. |
445 |
|
|
// |
446 |
|
|
// Note: numeric return values are cached; asking for the same field more |
447 |
|
|
// than once incurs minimal overhead. |
448 |
|
|
double cTle::getField(eField fld, |
449 |
|
|
eUnits units, /* = U_NATIVE */ |
450 |
|
|
string *pstr /* = NULL */, |
451 |
|
|
bool bStrUnits /* = false */) const |
452 |
|
|
{ |
453 |
|
|
assert((FLD_FIRST <= fld) && (fld < FLD_LAST)); |
454 |
|
|
assert((U_FIRST <= units) && (units < U_LAST)); |
455 |
|
|
|
456 |
|
|
if (pstr) |
457 |
|
|
{ |
458 |
|
|
// Return requested field in string form. |
459 |
|
|
*pstr = m_Field[fld]; |
460 |
|
|
|
461 |
|
|
if (bStrUnits) |
462 |
|
|
*pstr += getUnits(fld); |
463 |
|
|
|
464 |
|
|
return 0.0; |
465 |
|
|
} |
466 |
|
|
else |
467 |
|
|
{ |
468 |
|
|
// Return requested field in floating-point form. |
469 |
|
|
// Return cache contents if it exists, else populate cache |
470 |
|
|
FldKey key = Key(units, fld); |
471 |
|
|
|
472 |
|
|
if (m_mapCache.find(key) == m_mapCache.end()) |
473 |
|
|
{ |
474 |
|
|
// Value not in cache; add it |
475 |
|
|
double valNative = atof(m_Field[fld].c_str()); |
476 |
|
|
double valConv = ConvertUnits(valNative, fld, units); |
477 |
|
|
m_mapCache[key] = valConv; |
478 |
|
|
|
479 |
|
|
return valConv; |
480 |
|
|
} |
481 |
|
|
else |
482 |
|
|
{ |
483 |
|
|
// return cached value |
484 |
|
|
return m_mapCache[key]; |
485 |
|
|
} |
486 |
|
|
} |
487 |
|
|
} |
488 |
|
|
|
489 |
|
|
////////////////////////////////////////////////////////////////////////////// |
490 |
|
|
// Convert the given field into the requested units. It is assumed that |
491 |
|
|
// the value being converted is in the TLE format's "native" form. |
492 |
|
|
double cTle::ConvertUnits(double valNative, // value to convert |
493 |
|
|
eField fld, // what field the value is |
494 |
|
|
eUnits units) // what units to convert to |
495 |
|
|
{ |
496 |
|
|
switch (fld) |
497 |
|
|
{ |
498 |
|
|
case FLD_I: |
499 |
|
|
case FLD_RAAN: |
500 |
|
|
case FLD_ARGPER: |
501 |
|
|
case FLD_M: |
502 |
|
|
{ |
503 |
|
|
// The native TLE format is DEGREES |
504 |
|
|
if (units == U_RAD) |
505 |
|
|
return valNative * RADS_PER_DEG; |
506 |
|
|
} |
507 |
|
|
|
508 |
|
|
case FLD_NORADNUM: |
509 |
|
|
case FLD_INTLDESC: |
510 |
|
|
case FLD_SET: |
511 |
|
|
case FLD_EPOCHYEAR: |
512 |
|
|
case FLD_EPOCHDAY: |
513 |
|
|
case FLD_ORBITNUM: |
514 |
|
|
case FLD_E: |
515 |
|
|
case FLD_MMOTION: |
516 |
|
|
case FLD_MMOTIONDT: |
517 |
|
|
case FLD_MMOTIONDT2: |
518 |
|
|
case FLD_BSTAR: |
519 |
|
|
case FLD_LAST: |
520 |
|
|
{ // do nothing |
521 |
|
|
|
522 |
|
|
} |
523 |
|
|
|
524 |
|
|
} |
525 |
|
|
|
526 |
|
|
return valNative; // return value in unconverted native format |
527 |
|
|
} |
528 |
|
|
|
529 |
|
|
////////////////////////////////////////////////////////////////////////////// |
530 |
|
|
string cTle::getUnits(eField fld) const |
531 |
|
|
{ |
532 |
|
|
static const string strDegrees = " degrees"; |
533 |
|
|
static const string strRevsPerDay = " revs / day"; |
534 |
|
|
static const string strNull; |
535 |
|
|
|
536 |
|
|
switch (fld) |
537 |
|
|
{ |
538 |
|
|
case FLD_I: |
539 |
|
|
case FLD_RAAN: |
540 |
|
|
case FLD_ARGPER: |
541 |
|
|
case FLD_M: |
542 |
|
|
return strDegrees; |
543 |
|
|
|
544 |
|
|
case FLD_MMOTION: |
545 |
|
|
return strRevsPerDay; |
546 |
|
|
|
547 |
|
|
default: |
548 |
|
|
return strNull; |
549 |
|
|
} |
550 |
|
|
} |
551 |
|
|
|
552 |
|
|
///////////////////////////////////////////////////////////////////////////// |
553 |
|
|
// ExpToDecimal() |
554 |
|
|
// Converts TLE-style exponential notation of the form [ |-]00000[+|-]0 to |
555 |
|
|
// decimal notation. Assumes implied decimal point to the left of the first |
556 |
|
|
// number in the string, i.e., |
557 |
|
|
// " 12345-3" = 0.00012345 |
558 |
|
|
// "-23429-5" = -0.0000023429 |
559 |
|
|
// " 40436+1" = 4.0436 |
560 |
|
|
string cTle::ExpToDecimal(const string &str) |
561 |
|
|
{ |
562 |
|
|
const int COL_EXP_SIGN = 6; |
563 |
|
|
const int LEN_EXP = 2; |
564 |
|
|
|
565 |
|
|
const int LEN_BUFREAL = 32; // max length of buffer to hold floating point |
566 |
|
|
// representation of input string. |
567 |
|
|
int nMan; |
568 |
|
|
int nExp; |
569 |
|
|
|
570 |
|
|
// sscanf(%d) will read up to the exponent sign |
571 |
|
|
sscanf(str.c_str(), "%d", &nMan); |
572 |
|
|
|
573 |
|
|
double dblMan = nMan; |
574 |
|
|
bool bNeg = (nMan < 0); |
575 |
|
|
|
576 |
|
|
if (bNeg) |
577 |
|
|
dblMan *= -1; |
578 |
|
|
|
579 |
|
|
// Move decimal place to left of first digit |
580 |
|
|
while (dblMan >= 1.0) |
581 |
|
|
dblMan /= 10.0; |
582 |
|
|
|
583 |
|
|
if (bNeg) |
584 |
|
|
dblMan *= -1; |
585 |
|
|
|
586 |
|
|
// now read exponent |
587 |
|
|
sscanf(str.substr(COL_EXP_SIGN, LEN_EXP).c_str(), "%d", &nExp); |
588 |
|
|
|
589 |
|
|
double dblVal = dblMan * pow(10.0, nExp); |
590 |
|
|
char szVal[LEN_BUFREAL]; |
591 |
|
|
|
592 |
|
|
snprintf(szVal, sizeof(szVal), "%.9f", dblVal); |
593 |
|
|
|
594 |
|
|
string strVal = szVal; |
595 |
|
|
|
596 |
|
|
return strVal; |
597 |
|
|
|
598 |
|
|
} // ExpToDecimal() |
599 |
|
|
|
600 |
|
|
///////////////////////////////////////////////////////////////////////////// |
601 |
|
|
// Initialize() |
602 |
|
|
// Initialize the string array. |
603 |
|
|
void cTle::Initialize() |
604 |
|
|
{ |
605 |
|
|
// Have we already been initialized? |
606 |
|
|
if (m_Field[FLD_NORADNUM].size()) |
607 |
|
|
return; |
608 |
|
|
|
609 |
|
|
assert(!m_strName.empty()); |
610 |
|
|
assert(!m_strLine1.empty()); |
611 |
|
|
assert(!m_strLine2.empty()); |
612 |
|
|
|
613 |
|
|
m_Field[FLD_NORADNUM] = m_strLine1.substr(TLE1_COL_SATNUM, TLE1_LEN_SATNUM); |
614 |
|
|
m_Field[FLD_INTLDESC] = m_strLine1.substr(TLE1_COL_INTLDESC_A, |
615 |
|
|
TLE1_LEN_INTLDESC_A + |
616 |
|
|
TLE1_LEN_INTLDESC_B + |
617 |
|
|
TLE1_LEN_INTLDESC_C); |
618 |
|
|
m_Field[FLD_EPOCHYEAR] = |
619 |
|
|
m_strLine1.substr(TLE1_COL_EPOCH_A, TLE1_LEN_EPOCH_A); |
620 |
|
|
|
621 |
|
|
m_Field[FLD_EPOCHDAY] = |
622 |
|
|
m_strLine1.substr(TLE1_COL_EPOCH_B, TLE1_LEN_EPOCH_B); |
623 |
|
|
|
624 |
|
|
if (m_strLine1[TLE1_COL_MEANMOTIONDT] == '-') |
625 |
|
|
{ |
626 |
|
|
// value is negative |
627 |
|
|
m_Field[FLD_MMOTIONDT] = "-0"; |
628 |
|
|
} |
629 |
|
|
else |
630 |
|
|
m_Field[FLD_MMOTIONDT] = "0"; |
631 |
|
|
|
632 |
|
|
m_Field[FLD_MMOTIONDT] += m_strLine1.substr(TLE1_COL_MEANMOTIONDT + 1, |
633 |
|
|
TLE1_LEN_MEANMOTIONDT); |
634 |
|
|
|
635 |
|
|
// decimal point assumed; exponential notation |
636 |
|
|
m_Field[FLD_MMOTIONDT2] = ExpToDecimal( |
637 |
|
|
m_strLine1.substr(TLE1_COL_MEANMOTIONDT2, |
638 |
|
|
TLE1_LEN_MEANMOTIONDT2)); |
639 |
|
|
// decimal point assumed; exponential notation |
640 |
|
|
m_Field[FLD_BSTAR] = ExpToDecimal(m_strLine1.substr(TLE1_COL_BSTAR, |
641 |
|
|
TLE1_LEN_BSTAR)); |
642 |
|
|
//TLE1_COL_EPHEMTYPE |
643 |
|
|
//TLE1_LEN_EPHEMTYPE |
644 |
|
|
m_Field[FLD_SET] = m_strLine1.substr(TLE1_COL_ELNUM, TLE1_LEN_ELNUM); |
645 |
|
|
|
646 |
|
|
TrimLeft(m_Field[FLD_SET]); |
647 |
|
|
|
648 |
|
|
//TLE2_COL_SATNUM |
649 |
|
|
//TLE2_LEN_SATNUM |
650 |
|
|
|
651 |
|
|
m_Field[FLD_I] = m_strLine2.substr(TLE2_COL_INCLINATION, |
652 |
|
|
TLE2_LEN_INCLINATION); |
653 |
|
|
TrimLeft(m_Field[FLD_I]); |
654 |
|
|
|
655 |
|
|
m_Field[FLD_RAAN] = m_strLine2.substr(TLE2_COL_RAASCENDNODE, |
656 |
|
|
TLE2_LEN_RAASCENDNODE); |
657 |
|
|
TrimLeft(m_Field[FLD_RAAN]); |
658 |
|
|
|
659 |
|
|
// decimal point is assumed |
660 |
|
|
m_Field[FLD_E] = "0."; |
661 |
|
|
m_Field[FLD_E] += m_strLine2.substr(TLE2_COL_ECCENTRICITY, |
662 |
|
|
TLE2_LEN_ECCENTRICITY); |
663 |
|
|
|
664 |
|
|
m_Field[FLD_ARGPER] = m_strLine2.substr(TLE2_COL_ARGPERIGEE, |
665 |
|
|
TLE2_LEN_ARGPERIGEE); |
666 |
|
|
TrimLeft(m_Field[FLD_ARGPER]); |
667 |
|
|
|
668 |
|
|
m_Field[FLD_M] = m_strLine2.substr(TLE2_COL_MEANANOMALY, |
669 |
|
|
TLE2_LEN_MEANANOMALY); |
670 |
|
|
TrimLeft(m_Field[FLD_M]); |
671 |
|
|
|
672 |
|
|
m_Field[FLD_MMOTION] = m_strLine2.substr(TLE2_COL_MEANMOTION, |
673 |
|
|
TLE2_LEN_MEANMOTION); |
674 |
|
|
TrimLeft(m_Field[FLD_MMOTION]); |
675 |
|
|
|
676 |
|
|
m_Field[FLD_ORBITNUM] = m_strLine2.substr(TLE2_COL_REVATEPOCH, |
677 |
|
|
TLE2_LEN_REVATEPOCH); |
678 |
|
|
TrimLeft(m_Field[FLD_ORBITNUM]); |
679 |
|
|
|
680 |
|
|
} // InitStrVars() |
681 |
|
|
|
682 |
|
|
///////////////////////////////////////////////////////////////////////////// |
683 |
|
|
// IsTleFormat() |
684 |
|
|
// Returns true if "str" is a valid data line of a two-line element set, |
685 |
|
|
// else false. |
686 |
|
|
// |
687 |
|
|
// To be valid a line must: |
688 |
|
|
// Have as the first character the line number |
689 |
|
|
// Have as the second character a blank |
690 |
|
|
// Be TLE_LEN_LINE_DATA characters long |
691 |
|
|
// Have a valid checksum (note: no longer required as of 12/96) |
692 |
|
|
// |
693 |
|
|
bool cTle::IsValidLine(string& str, eTleLine line) |
694 |
|
|
{ |
695 |
|
|
TrimLeft(str); |
696 |
|
|
TrimRight(str); |
697 |
|
|
|
698 |
|
|
size_t nLen = str.size(); |
699 |
|
|
|
700 |
|
|
if (nLen != (uint)TLE_LEN_LINE_DATA) |
701 |
|
|
return false; |
702 |
|
|
|
703 |
|
|
// First char in string must be line number |
704 |
|
|
if ((str[0] - '0') != line) |
705 |
|
|
return false; |
706 |
|
|
|
707 |
|
|
// Second char in string must be blank |
708 |
|
|
if (str[1] != ' ') |
709 |
|
|
return false; |
710 |
|
|
|
711 |
|
|
/* |
712 |
|
|
NOTE: 12/96 |
713 |
|
|
The requirement that the last char in the line data must be a valid |
714 |
|
|
checksum is too restrictive. |
715 |
|
|
|
716 |
|
|
// Last char in string must be checksum |
717 |
|
|
int nSum = CheckSum(str); |
718 |
|
|
|
719 |
|
|
if (nSum != (str[TLE_LEN_LINE_DATA - 1] - '0')) |
720 |
|
|
return false; |
721 |
|
|
*/ |
722 |
|
|
|
723 |
|
|
return true; |
724 |
|
|
|
725 |
|
|
} // IsTleFormat() |
726 |
|
|
|
727 |
|
|
///////////////////////////////////////////////////////////////////////////// |
728 |
|
|
// CheckSum() |
729 |
|
|
// Calculate the check sum for a given line of TLE data, the last character |
730 |
|
|
// of which is the current checksum. (Although there is no check here, |
731 |
|
|
// the current checksum should match the one we calculate.) |
732 |
|
|
// The checksum algorithm: |
733 |
|
|
// Each number in the data line is summed, modulo 10. |
734 |
|
|
// Non-numeric characters are zero, except minus signs, which are 1. |
735 |
|
|
// |
736 |
|
|
int cTle::CheckSum(const string& str) |
737 |
|
|
{ |
738 |
|
|
// The length is "- 1" because we don't include the current (existing) |
739 |
|
|
// checksum character in the checksum calculation. |
740 |
|
|
size_t len = str.size() - 1; |
741 |
|
|
int xsum = 0; |
742 |
|
|
|
743 |
|
|
for (size_t i = 0; i < len; i++) |
744 |
|
|
{ |
745 |
|
|
char ch = str[i]; |
746 |
|
|
if (isdigit(ch)) |
747 |
|
|
xsum += (ch - '0'); |
748 |
|
|
else if (ch == '-') |
749 |
|
|
xsum++; |
750 |
|
|
} |
751 |
|
|
|
752 |
|
|
return (xsum % 10); |
753 |
|
|
|
754 |
|
|
} // CheckSum() |
755 |
|
|
|
756 |
|
|
///////////////////////////////////////////////////////////////////////////// |
757 |
|
|
void cTle::TrimLeft(string& s) |
758 |
|
|
{ |
759 |
|
|
while (s[0] == ' ') |
760 |
|
|
s.erase(0, 1); |
761 |
|
|
} |
762 |
|
|
|
763 |
|
|
///////////////////////////////////////////////////////////////////////////// |
764 |
|
|
void cTle::TrimRight(string& s) |
765 |
|
|
{ |
766 |
|
|
while (s[s.size() - 1] == ' ') |
767 |
|
|
s.erase(s.size() - 1); |
768 |
|
|
} |
769 |
|
|
|
770 |
|
|
// |
771 |
|
|
// cEci.cpp |
772 |
|
|
// |
773 |
|
|
// Copyright (c) 2002-2003 Michael F. Henry |
774 |
|
|
// |
775 |
|
|
////////////////////////////////////////////////////////////////////// |
776 |
|
|
// cEci Class |
777 |
|
|
////////////////////////////////////////////////////////////////////// |
778 |
|
|
cEci::cEci(const cVector &pos, |
779 |
|
|
const cVector &vel, |
780 |
|
|
const cJulian &date, |
781 |
|
|
bool IsAeUnits /* = true */) |
782 |
|
|
{ |
783 |
|
|
m_pos = pos; |
784 |
|
|
m_vel = vel; |
785 |
|
|
m_date = date; |
786 |
|
|
m_VecUnits = (IsAeUnits ? UNITS_AE : UNITS_NONE); |
787 |
|
|
} |
788 |
|
|
|
789 |
|
|
////////////////////////////////////////////////////////////////////// |
790 |
|
|
// cEci(cCoordGeo&, cJulian&) |
791 |
|
|
// Calculate the ECI coordinates of the location "geo" at time "date". |
792 |
|
|
// Assumes geo coordinates are km-based. |
793 |
|
|
// Assumes the earth is an oblate spheroid as defined in WGS '72. |
794 |
|
|
// Reference: The 1992 Astronomical Almanac, page K11 |
795 |
|
|
// Reference: www.celestrak.com (Dr. TS Kelso) |
796 |
|
|
cEci::cEci(const cCoordGeo &geo, const cJulian &date) |
797 |
|
|
{ |
798 |
|
|
m_VecUnits = UNITS_KM; |
799 |
|
|
|
800 |
|
|
double mfactor = TWOPI * (OMEGA_E / SEC_PER_DAY); |
801 |
|
|
double lat = geo.m_Lat; |
802 |
|
|
double lon = geo.m_Lon; |
803 |
|
|
double alt = geo.m_Alt; |
804 |
|
|
|
805 |
|
|
// Calculate Local Mean Sidereal Time (theta) |
806 |
|
|
double theta = date.toLMST(lon); |
807 |
|
|
double c = 1.0 / sqrt(1.0 + F * (F - 2.0) * sqr(sin(lat))); |
808 |
|
|
double s = sqr(1.0 - F) * c; |
809 |
|
|
double achcp = (XKMPER_WGS72 * c + alt) * cos(lat); |
810 |
|
|
|
811 |
|
|
m_date = date; |
812 |
|
|
|
813 |
|
|
m_pos.m_x = achcp * cos(theta); // km |
814 |
|
|
m_pos.m_y = achcp * sin(theta); // km |
815 |
|
|
m_pos.m_z = (XKMPER_WGS72 * s + alt) * sin(lat); // km |
816 |
|
|
m_pos.m_w = sqrt(sqr(m_pos.m_x) + |
817 |
|
|
sqr(m_pos.m_y) + |
818 |
|
|
sqr(m_pos.m_z)); // range, km |
819 |
|
|
|
820 |
|
|
m_vel.m_x = -mfactor * m_pos.m_y; // km / sec |
821 |
|
|
m_vel.m_y = mfactor * m_pos.m_x; |
822 |
|
|
m_vel.m_z = 0.0; |
823 |
|
|
m_vel.m_w = sqrt(sqr(m_vel.m_x) + // range rate km/sec^2 |
824 |
|
|
sqr(m_vel.m_y)); |
825 |
|
|
} |
826 |
|
|
|
827 |
|
|
////////////////////////////////////////////////////////////////////////////// |
828 |
|
|
// toGeo() |
829 |
|
|
// Return the corresponding geodetic position (based on the current ECI |
830 |
|
|
// coordinates/Julian date). |
831 |
|
|
// Assumes the earth is an oblate spheroid as defined in WGS '72. |
832 |
|
|
// Side effects: Converts the position and velocity vectors to km-based units. |
833 |
|
|
// Reference: The 1992 Astronomical Almanac, page K12. |
834 |
|
|
// Reference: www.celestrak.com (Dr. TS Kelso) |
835 |
|
|
cCoordGeo cEci::toGeo() |
836 |
|
|
{ |
837 |
|
|
ae2km(); // Vectors must be in kilometer-based units |
838 |
|
|
|
839 |
|
|
double theta = AcTan(m_pos.m_y, m_pos.m_x); |
840 |
|
|
double lon = fmod(theta - m_date.toGMST(), TWOPI); |
841 |
|
|
|
842 |
|
|
if (lon < 0.0) |
843 |
|
|
lon += TWOPI; // "wrap" negative modulo |
844 |
|
|
|
845 |
|
|
double r = sqrt(sqr(m_pos.m_x) + sqr(m_pos.m_y)); |
846 |
|
|
double e2 = F * (2.0 - F); |
847 |
|
|
double lat = AcTan(m_pos.m_z, r); |
848 |
|
|
|
849 |
|
|
const double delta = 1.0e-07; |
850 |
|
|
double phi; |
851 |
|
|
double c; |
852 |
|
|
|
853 |
|
|
do |
854 |
|
|
{ |
855 |
|
|
phi = lat; |
856 |
|
|
c = 1.0 / sqrt(1.0 - e2 * sqr(sin(phi))); |
857 |
|
|
lat = AcTan(m_pos.m_z + XKMPER_WGS72 * c * e2 * sin(phi), r); |
858 |
|
|
} |
859 |
|
|
while (fabs(lat - phi) > delta); |
860 |
|
|
|
861 |
|
|
double alt = r / cos(lat) - XKMPER_WGS72 * c; |
862 |
|
|
|
863 |
|
|
return cCoordGeo(lat, lon, alt); // radians, radians, kilometers |
864 |
|
|
} |
865 |
|
|
|
866 |
|
|
////////////////////////////////////////////////////////////////////////////// |
867 |
|
|
// ae2km() |
868 |
|
|
// Convert the position and velocity vector units from AE-based units |
869 |
|
|
// to kilometer based units. |
870 |
|
|
void cEci::ae2km() |
871 |
|
|
{ |
872 |
|
|
if (UnitsAreAe()) |
873 |
|
|
{ |
874 |
|
|
MulPos(XKMPER_WGS72 / AE); // km |
875 |
|
|
MulVel((XKMPER_WGS72 / AE) * (MIN_PER_DAY / 86400)); // km/sec |
876 |
|
|
m_VecUnits = UNITS_KM; |
877 |
|
|
} |
878 |
|
|
} |