// // stdafx.h // #ifndef sgp4_h #define sgp4_h #pragma once //#define WIN32_LEAN_AND_MEAN // Exclude rarely-used stuff from Windows headers #include //#include #include #include #include #include #include #include #include using namespace std; // // globals.h // const double PI = 3.141592653589793; const double TWOPI = 2.0 * PI; const double RADS_PER_DEG = PI / 180.0; const double GM = 398601.2; // Earth gravitational constant, km^3/sec^2 const double GEOSYNC_ALT = 42241.892; // km const double EARTH_DIA = 12800.0; // km const double DAY_SIDERAL = (23 * 3600) + (56 * 60) + 4.09; // sec const double DAY_24HR = (24 * 3600); // sec const double AE = 1.0; const double AU = 149597870.0; // Astronomical unit (km) (IAU 76) const double SR = 696000.0; // Solar radius (km) (IAU 76) const double TWOTHRD = 2.0 / 3.0; const double XKMPER_WGS72 = 6378.135; // Earth equatorial radius - km (WGS '72) const double F = 1.0 / 298.26; // Earth flattening (WGS '72) const double GE = 398600.8; // Earth gravitational constant (WGS '72) const double J2 = 1.0826158E-3; // J2 harmonic (WGS '72) const double J3 = -2.53881E-6; // J3 harmonic (WGS '72) const double J4 = -1.65597E-6; // J4 harmonic (WGS '72) const double CK2 = J2 / 2.0; const double CK4 = -3.0 * J4 / 8.0; const double XJ3 = J3; const double E6A = 1.0e-06; const double QO = AE + 120.0 / XKMPER_WGS72; const double S = AE + 78.0 / XKMPER_WGS72; const double HR_PER_DAY = 24.0; // Hours per day (solar) const double MIN_PER_DAY = 1440.0; // Minutes per day (solar) const double SEC_PER_DAY = 86400.0; // Seconds per day (solar) const double OMEGA_E = 1.00273790934; // earth rotation per sideral day const double XKE = sqrt(3600.0 * GE / //sqrt(ge) ER^3/min^2 (XKMPER_WGS72 * XKMPER_WGS72 * XKMPER_WGS72)); const double QOMS2T = pow((QO - S), 4); //(QO - S)^4 ER^4 // Utility functions double sqr (const double x); double Fmod2p(const double arg); double AcTan (const double sinx, double cosx); double rad2deg(const double); double deg2rad(const double); // // coord.h // // Copyright 2002-2003 Michael F. Henry // ////////////////////////////////////////////////////////////////////// // Geocentric coordinates. class cCoordGeo { public: cCoordGeo(); cCoordGeo(double lat, double lon, double alt) : m_Lat(lat), m_Lon(lon), m_Alt(alt) {} virtual ~cCoordGeo() {}; double m_Lat; // Latitude, radians (negative south) double m_Lon; // Longitude, radians (negative west) double m_Alt; // Altitude, km (above mean sea level) }; ////////////////////////////////////////////////////////////////////// // Topocentric-Horizon coordinates. class cCoordTopo { public: cCoordTopo(); cCoordTopo(double az, double el, double rng, double rate) : m_Az(az), m_El(el), m_Range(rng), m_RangeRate(rate) {} virtual ~cCoordTopo() {}; double m_Az; // Azimuth, radians double m_El; // Elevation, radians double m_Range; // Range, kilometers double m_RangeRate; // Range rate of change, km/sec // Negative value means "towards observer" }; // cVector.h: interface for the cVector class. // // Copyright 2003 (c) Michael F. Henry // ////////////////////////////////////////////////////////////////////// class cVector { public: cVector(double x = 0.0, double y = 0.0, double z = 0.0, double w = 0.0) : m_x(x), m_y(y), m_z(z), m_w(w) {} virtual ~cVector() {}; void Sub(const cVector&); // subtraction void Mul(double factor); // multiply each component by 'factor' double Angle(const cVector&) const; // angle between two vectors double Magnitude() const; // vector magnitude double Dot(const cVector& vec) const; // dot product // protected: double m_x; double m_y; double m_z; double m_w; }; // // cTle.h // // This class will accept a single set of two-line elements and then allow // a client to request specific fields, such as epoch, mean motion, // etc., from the set. // // Copyright 1996-2003 Michael F. Henry // ///////////////////////////////////////////////////////////////////////////// class cTle { public: cTle(string&, string&, string&); cTle(const cTle &tle); ~cTle(); enum eTleLine { LINE_ZERO, LINE_ONE, LINE_TWO }; enum eField { FLD_FIRST, FLD_NORADNUM = FLD_FIRST, FLD_INTLDESC, FLD_SET, // TLE set number FLD_EPOCHYEAR, // Epoch: Last two digits of year FLD_EPOCHDAY, // Epoch: Fractional Julian Day of year FLD_ORBITNUM, // Orbit at epoch FLD_I, // Inclination FLD_RAAN, // R.A. ascending node FLD_E, // Eccentricity FLD_ARGPER, // Argument of perigee FLD_M, // Mean anomaly FLD_MMOTION, // Mean motion FLD_MMOTIONDT, // First time derivative of mean motion FLD_MMOTIONDT2,// Second time derivative of mean motion FLD_BSTAR, // BSTAR Drag FLD_LAST // MUST be last }; enum eUnits { U_FIRST, U_RAD = U_FIRST, // radians U_DEG, // degrees U_NATIVE, // TLE format native units (no conversion) U_LAST // MUST be last }; void Initialize(); static int CheckSum(const string&); static bool IsValidLine(string&, eTleLine); static string ExpToDecimal(const string&); static void TrimLeft(string&); static void TrimRight(string&); double getField(eField fld, // which field to retrieve eUnits unit = U_NATIVE, // return units in rad, deg etc. string *pstr = NULL, // return ptr for str value bool bStrUnits = false) // 'true': append units to str val const; string getName() const { return m_strName; } string getLine1() const { return m_strLine1;} string getLine2() const { return m_strLine2;} protected: static double ConvertUnits(double val, eField fld, eUnits units); private: string getUnits(eField) const; double getFieldNumeric(eField) const; // Satellite name and two data lines string m_strName; string m_strLine1; string m_strLine2; // Converted fields, in atof()-readable form string m_Field[FLD_LAST]; // Cache of field values in "double" format typedef int FldKey; FldKey Key(eUnits u, eField f) const { return (u * 100) + f; } mutable map m_mapCache; }; /////////////////////////////////////////////////////////////////////////// // // TLE data format // // [Reference: T.S. Kelso] // // Two line element data consists of three lines in the following format: // // AAAAAAAAAAAAAAAAAAAAAA // 1 NNNNNU NNNNNAAA NNNNN.NNNNNNNN +.NNNNNNNN +NNNNN-N +NNNNN-N N NNNNN // 2 NNNNN NNN.NNNN NNN.NNNN NNNNNNN NNN.NNNN NNN.NNNN NN.NNNNNNNNNNNNNN // // Line 0 is a twenty-two-character name. // // Lines 1 and 2 are the standard Two-Line Orbital Element Set Format identical // to that used by NORAD and NASA. The format description is: // // Line 1 // Column Description // 01-01 Line Number of Element Data // 03-07 Satellite Number // 10-11 International Designator (Last two digits of launch year) // 12-14 International Designator (Launch number of the year) // 15-17 International Designator (Piece of launch) // 19-20 Epoch Year (Last two digits of year) // 21-32 Epoch (Julian Day and fractional portion of the day) // 34-43 First Time Derivative of the Mean Motion // or Ballistic Coefficient (Depending on ephemeris type) // 45-52 Second Time Derivative of Mean Motion (decimal point assumed; // blank if N/A) // 54-61 BSTAR drag term if GP4 general perturbation theory was used. // Otherwise, radiation pressure coefficient. (Decimal point assumed) // 63-63 Ephemeris type // 65-68 Element number // 69-69 Check Sum (Modulo 10) // (Letters, blanks, periods, plus signs = 0; minus signs = 1) // // Line 2 // Column Description // 01-01 Line Number of Element Data // 03-07 Satellite Number // 09-16 Inclination [Degrees] // 18-25 Right Ascension of the Ascending Node [Degrees] // 27-33 Eccentricity (decimal point assumed) // 35-42 Argument of Perigee [Degrees] // 44-51 Mean Anomaly [Degrees] // 53-63 Mean Motion [Revs per day] // 64-68 Revolution number at epoch [Revs] // 69-69 Check Sum (Modulo 10) // // All other columns are blank or fixed. // // Example: // // NOAA 6 // 1 11416U 86 50.28438588 0.00000140 67960-4 0 5293 // 2 11416 98.5105 69.3305 0012788 63.2828 296.9658 14.24899292346978 // // cJulian.h // // Copyright (c) 2003 Michael F. Henry // // // See note in cJulian.cpp for information on this class and the epoch dates // const double EPOCH_JAN1_00H_1900 = 2415019.5; // Jan 1.0 1900 = Jan 1 1900 00h UTC const double EPOCH_JAN1_12H_1900 = 2415020.0; // Jan 1.5 1900 = Jan 1 1900 12h UTC const double EPOCH_JAN1_12H_2000 = 2451545.0; // Jan 1.5 2000 = Jan 1 2000 12h UTC ////////////////////////////////////////////////////////////////////////////// class cJulian { public: cJulian() { Initialize(2000, 1); } explicit cJulian(time_t t); // Create from time_t explicit cJulian(int year, double day); // Create from year, day of year explicit cJulian(int year, // i.e., 2004 int mon, // 1..12 int day, // 1..31 int hour, // 0..23 int min, // 0..59 double sec = 0.0); // 0..(59.999999...) ~cJulian() {}; double toGMST() const; // Greenwich Mean Sidereal Time double toLMST(double lon) const; // Local Mean Sideral Time time_t toTime() const; // To time_t type - avoid using double FromJan1_00h_1900() const { return m_Date - EPOCH_JAN1_00H_1900; } double FromJan1_12h_1900() const { return m_Date - EPOCH_JAN1_12H_1900; } double FromJan1_12h_2000() const { return m_Date - EPOCH_JAN1_12H_2000; } void getComponent(int *pYear, int *pMon = NULL, double *pDOM = NULL) const; double getDate() const { return m_Date; } void addDay (double day) { m_Date += day; } void addHour(double hr ) { m_Date += (hr / HR_PER_DAY ); } void addMin (double min) { m_Date += (min / MIN_PER_DAY); } void addSec (double sec) { m_Date += (sec / SEC_PER_DAY); } double spanDay (const cJulian& b) const { return m_Date - b.m_Date; } double spanHour(const cJulian& b) const { return spanDay(b) * HR_PER_DAY; } double spanMin (const cJulian& b) const { return spanDay(b) * MIN_PER_DAY; } double spanSec (const cJulian& b) const { return spanDay(b) * SEC_PER_DAY; } static bool IsLeapYear(int y) { return (y % 4 == 0 && y % 100 != 0) || (y % 400 == 0); } protected: void Initialize(int year, double day); double m_Date; // Julian date }; // // cEci.h // // Copyright (c) 2003 Michael F. Henry // ////////////////////////////////////////////////////////////////////// // class cEci // Encapsulates an Earth-Centered Inertial position, velocity, and time. class cEci { public: cEci() { m_VecUnits = UNITS_NONE; } cEci(const cCoordGeo &geo, const cJulian &cJulian); cEci(const cVector &pos, const cVector &vel, const cJulian &date, bool IsAeUnits = true); virtual ~cEci() {}; cCoordGeo toGeo(); cVector getPos() const { return m_pos; } cVector getVel() const { return m_vel; } cJulian getDate() const { return m_date; } void setUnitsAe() { m_VecUnits = UNITS_AE; } void setUnitsKm() { m_VecUnits = UNITS_KM; } bool UnitsAreAe() const { return m_VecUnits == UNITS_AE; } bool UnitsAreKm() const { return m_VecUnits == UNITS_KM; } void ae2km(); // Convert position, velocity vector units from AE to km protected: void MulPos(double factor) { m_pos.Mul(factor); } void MulVel(double factor) { m_vel.Mul(factor); } enum VecUnits { UNITS_NONE, // not initialized UNITS_AE, UNITS_KM, }; cVector m_pos; cVector m_vel; cJulian m_date; VecUnits m_VecUnits; }; #endif