/[PAMELA software]/YodaProfiler/inc/sgp4.h
ViewVC logotype

Contents of /YodaProfiler/inc/sgp4.h

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.2 - (show annotations) (download)
Tue Oct 31 15:58:04 2006 UTC (18 years, 1 month ago) by mocchiut
Branch: MAIN
CVS Tags: v2r06, v2r05, v2r04, v2r01, v2r03, v2r02
Changes since 1.1: +1 -2 lines
File MIME type: text/plain
Force mode introduced together with other features, R2-D2 moved here, manual added

1 //
2 // stdafx.h
3 //
4 #ifndef sgp4_h
5 #define sgp4_h
6
7 //#define WIN32_LEAN_AND_MEAN // Exclude rarely-used stuff from Windows headers
8 #include <stdio.h>
9 //#include <tchar.h>
10 #include <ctype.h>
11 #include <string>
12 #include <map>
13 #include <vector>
14 #include <algorithm>
15 #include <assert.h>
16 #include <time.h>
17 #include <math.h>
18
19 using namespace std;
20 //
21 // globals.h
22 //
23
24 const double PI = 3.141592653589793;
25 const double TWOPI = 2.0 * PI;
26 const double RADS_PER_DEG = PI / 180.0;
27
28 const double GM = 398601.2; // Earth gravitational constant, km^3/sec^2
29 const double GEOSYNC_ALT = 42241.892; // km
30 const double EARTH_DIA = 12800.0; // km
31 const double DAY_SIDERAL = (23 * 3600) + (56 * 60) + 4.09; // sec
32 const double DAY_24HR = (24 * 3600); // sec
33
34 const double AE = 1.0;
35 const double AU = 149597870.0; // Astronomical unit (km) (IAU 76)
36 const double SR = 696000.0; // Solar radius (km) (IAU 76)
37 const double TWOTHRD = 2.0 / 3.0;
38 const double XKMPER_WGS72 = 6378.135; // Earth equatorial radius - km (WGS '72)
39 const double F = 1.0 / 298.26; // Earth flattening (WGS '72)
40 const double GE = 398600.8; // Earth gravitational constant (WGS '72)
41 const double J2 = 1.0826158E-3; // J2 harmonic (WGS '72)
42 const double J3 = -2.53881E-6; // J3 harmonic (WGS '72)
43 const double J4 = -1.65597E-6; // J4 harmonic (WGS '72)
44 const double CK2 = J2 / 2.0;
45 const double CK4 = -3.0 * J4 / 8.0;
46 const double XJ3 = J3;
47 const double E6A = 1.0e-06;
48 const double QO = AE + 120.0 / XKMPER_WGS72;
49 const double S = AE + 78.0 / XKMPER_WGS72;
50 const double HR_PER_DAY = 24.0; // Hours per day (solar)
51 const double MIN_PER_DAY = 1440.0; // Minutes per day (solar)
52 const double SEC_PER_DAY = 86400.0; // Seconds per day (solar)
53 const double OMEGA_E = 1.00273790934; // earth rotation per sideral day
54 const double XKE = sqrt(3600.0 * GE / //sqrt(ge) ER^3/min^2
55 (XKMPER_WGS72 * XKMPER_WGS72 * XKMPER_WGS72));
56 const double QOMS2T = pow((QO - S), 4); //(QO - S)^4 ER^4
57
58 // Utility functions
59 double sqr (const double x);
60 double Fmod2p(const double arg);
61 double AcTan (const double sinx, double cosx);
62
63 double rad2deg(const double);
64 double deg2rad(const double);
65 //
66 // coord.h
67 //
68 // Copyright 2002-2003 Michael F. Henry
69 //
70 //////////////////////////////////////////////////////////////////////
71 // Geocentric coordinates.
72 class cCoordGeo
73 {
74 public:
75 cCoordGeo();
76 cCoordGeo(double lat, double lon, double alt) :
77 m_Lat(lat), m_Lon(lon), m_Alt(alt) {}
78 virtual ~cCoordGeo() {};
79
80 double m_Lat; // Latitude, radians (negative south)
81 double m_Lon; // Longitude, radians (negative west)
82 double m_Alt; // Altitude, km (above mean sea level)
83 };
84
85 //////////////////////////////////////////////////////////////////////
86 // Topocentric-Horizon coordinates.
87 class cCoordTopo
88 {
89 public:
90 cCoordTopo();
91 cCoordTopo(double az, double el, double rng, double rate) :
92 m_Az(az), m_El(el), m_Range(rng), m_RangeRate(rate) {}
93 virtual ~cCoordTopo() {};
94
95 double m_Az; // Azimuth, radians
96 double m_El; // Elevation, radians
97 double m_Range; // Range, kilometers
98 double m_RangeRate; // Range rate of change, km/sec
99 // Negative value means "towards observer"
100 };
101
102 // cVector.h: interface for the cVector class.
103 //
104 // Copyright 2003 (c) Michael F. Henry
105 //
106 //////////////////////////////////////////////////////////////////////
107
108 class cVector
109 {
110 public:
111 cVector(double x = 0.0, double y = 0.0, double z = 0.0, double w = 0.0) :
112 m_x(x), m_y(y), m_z(z), m_w(w) {}
113 virtual ~cVector() {};
114
115 void Sub(const cVector&); // subtraction
116 void Mul(double factor); // multiply each component by 'factor'
117
118 double Angle(const cVector&) const; // angle between two vectors
119 double Magnitude() const; // vector magnitude
120 double Dot(const cVector& vec) const; // dot product
121
122 // protected:
123 double m_x;
124 double m_y;
125 double m_z;
126 double m_w;
127 };
128 //
129 // cTle.h
130 //
131 // This class will accept a single set of two-line elements and then allow
132 // a client to request specific fields, such as epoch, mean motion,
133 // etc., from the set.
134 //
135 // Copyright 1996-2003 Michael F. Henry
136 //
137 /////////////////////////////////////////////////////////////////////////////
138 class cTle
139 {
140 public:
141 cTle(string&, string&, string&);
142 cTle(const cTle &tle);
143 ~cTle();
144
145 enum eTleLine
146 {
147 LINE_ZERO,
148 LINE_ONE,
149 LINE_TWO
150 };
151
152 enum eField
153 {
154 FLD_FIRST,
155 FLD_NORADNUM = FLD_FIRST,
156 FLD_INTLDESC,
157 FLD_SET, // TLE set number
158 FLD_EPOCHYEAR, // Epoch: Last two digits of year
159 FLD_EPOCHDAY, // Epoch: Fractional Julian Day of year
160 FLD_ORBITNUM, // Orbit at epoch
161 FLD_I, // Inclination
162 FLD_RAAN, // R.A. ascending node
163 FLD_E, // Eccentricity
164 FLD_ARGPER, // Argument of perigee
165 FLD_M, // Mean anomaly
166 FLD_MMOTION, // Mean motion
167 FLD_MMOTIONDT, // First time derivative of mean motion
168 FLD_MMOTIONDT2,// Second time derivative of mean motion
169 FLD_BSTAR, // BSTAR Drag
170 FLD_LAST // MUST be last
171 };
172
173 enum eUnits
174 {
175 U_FIRST,
176 U_RAD = U_FIRST, // radians
177 U_DEG, // degrees
178 U_NATIVE, // TLE format native units (no conversion)
179 U_LAST // MUST be last
180 };
181
182 void Initialize();
183
184 static int CheckSum(const string&);
185 static bool IsValidLine(string&, eTleLine);
186 static string ExpToDecimal(const string&);
187
188 static void TrimLeft(string&);
189 static void TrimRight(string&);
190
191 double getField(eField fld, // which field to retrieve
192 eUnits unit = U_NATIVE, // return units in rad, deg etc.
193 string *pstr = NULL, // return ptr for str value
194 bool bStrUnits = false) // 'true': append units to str val
195 const;
196 string getName() const { return m_strName; }
197 string getLine1() const { return m_strLine1;}
198 string getLine2() const { return m_strLine2;}
199
200 protected:
201 static double ConvertUnits(double val, eField fld, eUnits units);
202
203 private:
204 string getUnits(eField) const;
205 double getFieldNumeric(eField) const;
206
207 // Satellite name and two data lines
208 string m_strName;
209 string m_strLine1;
210 string m_strLine2;
211
212 // Converted fields, in atof()-readable form
213 string m_Field[FLD_LAST];
214
215 // Cache of field values in "double" format
216 typedef int FldKey;
217 FldKey Key(eUnits u, eField f) const { return (u * 100) + f; }
218 mutable map<FldKey, double> m_mapCache;
219 };
220
221 ///////////////////////////////////////////////////////////////////////////
222 //
223 // TLE data format
224 //
225 // [Reference: T.S. Kelso]
226 //
227 // Two line element data consists of three lines in the following format:
228 //
229 // AAAAAAAAAAAAAAAAAAAAAA
230 // 1 NNNNNU NNNNNAAA NNNNN.NNNNNNNN +.NNNNNNNN +NNNNN-N +NNNNN-N N NNNNN
231 // 2 NNNNN NNN.NNNN NNN.NNNN NNNNNNN NNN.NNNN NNN.NNNN NN.NNNNNNNNNNNNNN
232 //
233 // Line 0 is a twenty-two-character name.
234 //
235 // Lines 1 and 2 are the standard Two-Line Orbital Element Set Format identical
236 // to that used by NORAD and NASA. The format description is:
237 //
238 // Line 1
239 // Column Description
240 // 01-01 Line Number of Element Data
241 // 03-07 Satellite Number
242 // 10-11 International Designator (Last two digits of launch year)
243 // 12-14 International Designator (Launch number of the year)
244 // 15-17 International Designator (Piece of launch)
245 // 19-20 Epoch Year (Last two digits of year)
246 // 21-32 Epoch (Julian Day and fractional portion of the day)
247 // 34-43 First Time Derivative of the Mean Motion
248 // or Ballistic Coefficient (Depending on ephemeris type)
249 // 45-52 Second Time Derivative of Mean Motion (decimal point assumed;
250 // blank if N/A)
251 // 54-61 BSTAR drag term if GP4 general perturbation theory was used.
252 // Otherwise, radiation pressure coefficient. (Decimal point assumed)
253 // 63-63 Ephemeris type
254 // 65-68 Element number
255 // 69-69 Check Sum (Modulo 10)
256 // (Letters, blanks, periods, plus signs = 0; minus signs = 1)
257 //
258 // Line 2
259 // Column Description
260 // 01-01 Line Number of Element Data
261 // 03-07 Satellite Number
262 // 09-16 Inclination [Degrees]
263 // 18-25 Right Ascension of the Ascending Node [Degrees]
264 // 27-33 Eccentricity (decimal point assumed)
265 // 35-42 Argument of Perigee [Degrees]
266 // 44-51 Mean Anomaly [Degrees]
267 // 53-63 Mean Motion [Revs per day]
268 // 64-68 Revolution number at epoch [Revs]
269 // 69-69 Check Sum (Modulo 10)
270 //
271 // All other columns are blank or fixed.
272 //
273 // Example:
274 //
275 // NOAA 6
276 // 1 11416U 86 50.28438588 0.00000140 67960-4 0 5293
277 // 2 11416 98.5105 69.3305 0012788 63.2828 296.9658 14.24899292346978
278
279 //
280 // cJulian.h
281 //
282 // Copyright (c) 2003 Michael F. Henry
283 //
284 //
285 // See note in cJulian.cpp for information on this class and the epoch dates
286 //
287 const double EPOCH_JAN1_00H_1900 = 2415019.5; // Jan 1.0 1900 = Jan 1 1900 00h UTC
288 const double EPOCH_JAN1_12H_1900 = 2415020.0; // Jan 1.5 1900 = Jan 1 1900 12h UTC
289 const double EPOCH_JAN1_12H_2000 = 2451545.0; // Jan 1.5 2000 = Jan 1 2000 12h UTC
290
291 //////////////////////////////////////////////////////////////////////////////
292 class cJulian
293 {
294 public:
295 cJulian() { Initialize(2000, 1); }
296 explicit cJulian(time_t t); // Create from time_t
297 explicit cJulian(int year, double day); // Create from year, day of year
298 explicit cJulian(int year, // i.e., 2004
299 int mon, // 1..12
300 int day, // 1..31
301 int hour, // 0..23
302 int min, // 0..59
303 double sec = 0.0); // 0..(59.999999...)
304 ~cJulian() {};
305
306 double toGMST() const; // Greenwich Mean Sidereal Time
307 double toLMST(double lon) const; // Local Mean Sideral Time
308 time_t toTime() const; // To time_t type - avoid using
309
310 double FromJan1_00h_1900() const { return m_Date - EPOCH_JAN1_00H_1900; }
311 double FromJan1_12h_1900() const { return m_Date - EPOCH_JAN1_12H_1900; }
312 double FromJan1_12h_2000() const { return m_Date - EPOCH_JAN1_12H_2000; }
313
314 void getComponent(int *pYear, int *pMon = NULL, double *pDOM = NULL) const;
315 double getDate() const { return m_Date; }
316
317 void addDay (double day) { m_Date += day; }
318 void addHour(double hr ) { m_Date += (hr / HR_PER_DAY ); }
319 void addMin (double min) { m_Date += (min / MIN_PER_DAY); }
320 void addSec (double sec) { m_Date += (sec / SEC_PER_DAY); }
321
322 double spanDay (const cJulian& b) const { return m_Date - b.m_Date; }
323 double spanHour(const cJulian& b) const { return spanDay(b) * HR_PER_DAY; }
324 double spanMin (const cJulian& b) const { return spanDay(b) * MIN_PER_DAY; }
325 double spanSec (const cJulian& b) const { return spanDay(b) * SEC_PER_DAY; }
326
327 static bool IsLeapYear(int y)
328 { return (y % 4 == 0 && y % 100 != 0) || (y % 400 == 0); }
329
330 protected:
331 void Initialize(int year, double day);
332
333 double m_Date; // Julian date
334 };
335 //
336 // cEci.h
337 //
338 // Copyright (c) 2003 Michael F. Henry
339 //
340 //////////////////////////////////////////////////////////////////////
341 // class cEci
342 // Encapsulates an Earth-Centered Inertial position, velocity, and time.
343 class cEci
344 {
345 public:
346 cEci() { m_VecUnits = UNITS_NONE; }
347 cEci(const cCoordGeo &geo, const cJulian &cJulian);
348 cEci(const cVector &pos, const cVector &vel,
349 const cJulian &date, bool IsAeUnits = true);
350 virtual ~cEci() {};
351
352 cCoordGeo toGeo();
353
354 cVector getPos() const { return m_pos; }
355 cVector getVel() const { return m_vel; }
356 cJulian getDate() const { return m_date; }
357
358 void setUnitsAe() { m_VecUnits = UNITS_AE; }
359 void setUnitsKm() { m_VecUnits = UNITS_KM; }
360 bool UnitsAreAe() const { return m_VecUnits == UNITS_AE; }
361 bool UnitsAreKm() const { return m_VecUnits == UNITS_KM; }
362 void ae2km(); // Convert position, velocity vector units from AE to km
363
364 protected:
365 void MulPos(double factor) { m_pos.Mul(factor); }
366 void MulVel(double factor) { m_vel.Mul(factor); }
367
368 enum VecUnits
369 {
370 UNITS_NONE, // not initialized
371 UNITS_AE,
372 UNITS_KM,
373 };
374
375 cVector m_pos;
376 cVector m_vel;
377 cJulian m_date;
378 VecUnits m_VecUnits;
379 };
380 #endif

  ViewVC Help
Powered by ViewVC 1.1.23