| 1 |
// |
| 2 |
// stdafx.h |
| 3 |
// |
| 4 |
#ifndef sgp4_h |
| 5 |
#define sgp4_h |
| 6 |
|
| 7 |
//#define WIN32_LEAN_AND_MEAN // Exclude rarely-used stuff from Windows headers |
| 8 |
#include <stdio.h> |
| 9 |
//#include <tchar.h> |
| 10 |
#include <ctype.h> |
| 11 |
#include <string> |
| 12 |
#include <map> |
| 13 |
#include <vector> |
| 14 |
#include <algorithm> |
| 15 |
#include <assert.h> |
| 16 |
#include <time.h> |
| 17 |
#include <math.h> |
| 18 |
|
| 19 |
using namespace std; |
| 20 |
// |
| 21 |
// globals.h |
| 22 |
// |
| 23 |
|
| 24 |
const double PI = 3.141592653589793; |
| 25 |
const double TWOPI = 2.0 * PI; |
| 26 |
const double RADS_PER_DEG = PI / 180.0; |
| 27 |
|
| 28 |
const double GM = 398601.2; // Earth gravitational constant, km^3/sec^2 |
| 29 |
const double GEOSYNC_ALT = 42241.892; // km |
| 30 |
const double EARTH_DIA = 12800.0; // km |
| 31 |
const double DAY_SIDERAL = (23 * 3600) + (56 * 60) + 4.09; // sec |
| 32 |
const double DAY_24HR = (24 * 3600); // sec |
| 33 |
|
| 34 |
const double AE = 1.0; |
| 35 |
const double AU = 149597870.0; // Astronomical unit (km) (IAU 76) |
| 36 |
const double SR = 696000.0; // Solar radius (km) (IAU 76) |
| 37 |
const double TWOTHRD = 2.0 / 3.0; |
| 38 |
const double XKMPER_WGS72 = 6378.135; // Earth equatorial radius - km (WGS '72) |
| 39 |
const double F = 1.0 / 298.26; // Earth flattening (WGS '72) |
| 40 |
const double GE = 398600.8; // Earth gravitational constant (WGS '72) |
| 41 |
const double J2 = 1.0826158E-3; // J2 harmonic (WGS '72) |
| 42 |
const double J3 = -2.53881E-6; // J3 harmonic (WGS '72) |
| 43 |
const double J4 = -1.65597E-6; // J4 harmonic (WGS '72) |
| 44 |
const double CK2 = J2 / 2.0; |
| 45 |
const double CK4 = -3.0 * J4 / 8.0; |
| 46 |
const double XJ3 = J3; |
| 47 |
const double E6A = 1.0e-06; |
| 48 |
const double QO = AE + 120.0 / XKMPER_WGS72; |
| 49 |
const double S = AE + 78.0 / XKMPER_WGS72; |
| 50 |
const double HR_PER_DAY = 24.0; // Hours per day (solar) |
| 51 |
const double MIN_PER_DAY = 1440.0; // Minutes per day (solar) |
| 52 |
const double SEC_PER_DAY = 86400.0; // Seconds per day (solar) |
| 53 |
const double OMEGA_E = 1.00273790934; // earth rotation per sideral day |
| 54 |
const double XKE = sqrt(3600.0 * GE / //sqrt(ge) ER^3/min^2 |
| 55 |
(XKMPER_WGS72 * XKMPER_WGS72 * XKMPER_WGS72)); |
| 56 |
const double QOMS2T = pow((QO - S), 4); //(QO - S)^4 ER^4 |
| 57 |
|
| 58 |
// Utility functions |
| 59 |
double sqr (const double x); |
| 60 |
double Fmod2p(const double arg); |
| 61 |
double AcTan (const double sinx, double cosx); |
| 62 |
|
| 63 |
double rad2deg(const double); |
| 64 |
double deg2rad(const double); |
| 65 |
// |
| 66 |
// coord.h |
| 67 |
// |
| 68 |
// Copyright 2002-2003 Michael F. Henry |
| 69 |
// |
| 70 |
////////////////////////////////////////////////////////////////////// |
| 71 |
// Geocentric coordinates. |
| 72 |
class cCoordGeo |
| 73 |
{ |
| 74 |
public: |
| 75 |
cCoordGeo(); |
| 76 |
cCoordGeo(double lat, double lon, double alt) : |
| 77 |
m_Lat(lat), m_Lon(lon), m_Alt(alt) {} |
| 78 |
virtual ~cCoordGeo() {}; |
| 79 |
|
| 80 |
double m_Lat; // Latitude, radians (negative south) |
| 81 |
double m_Lon; // Longitude, radians (negative west) |
| 82 |
double m_Alt; // Altitude, km (above mean sea level) |
| 83 |
}; |
| 84 |
|
| 85 |
////////////////////////////////////////////////////////////////////// |
| 86 |
// Topocentric-Horizon coordinates. |
| 87 |
class cCoordTopo |
| 88 |
{ |
| 89 |
public: |
| 90 |
cCoordTopo(); |
| 91 |
cCoordTopo(double az, double el, double rng, double rate) : |
| 92 |
m_Az(az), m_El(el), m_Range(rng), m_RangeRate(rate) {} |
| 93 |
virtual ~cCoordTopo() {}; |
| 94 |
|
| 95 |
double m_Az; // Azimuth, radians |
| 96 |
double m_El; // Elevation, radians |
| 97 |
double m_Range; // Range, kilometers |
| 98 |
double m_RangeRate; // Range rate of change, km/sec |
| 99 |
// Negative value means "towards observer" |
| 100 |
}; |
| 101 |
|
| 102 |
// cVector.h: interface for the cVector class. |
| 103 |
// |
| 104 |
// Copyright 2003 (c) Michael F. Henry |
| 105 |
// |
| 106 |
////////////////////////////////////////////////////////////////////// |
| 107 |
|
| 108 |
class cVector |
| 109 |
{ |
| 110 |
public: |
| 111 |
cVector(double x = 0.0, double y = 0.0, double z = 0.0, double w = 0.0) : |
| 112 |
m_x(x), m_y(y), m_z(z), m_w(w) {} |
| 113 |
virtual ~cVector() {}; |
| 114 |
|
| 115 |
void Sub(const cVector&); // subtraction |
| 116 |
void Mul(double factor); // multiply each component by 'factor' |
| 117 |
|
| 118 |
double Angle(const cVector&) const; // angle between two vectors |
| 119 |
double Magnitude() const; // vector magnitude |
| 120 |
double Dot(const cVector& vec) const; // dot product |
| 121 |
|
| 122 |
// protected: |
| 123 |
double m_x; |
| 124 |
double m_y; |
| 125 |
double m_z; |
| 126 |
double m_w; |
| 127 |
}; |
| 128 |
// |
| 129 |
// cTle.h |
| 130 |
// |
| 131 |
// This class will accept a single set of two-line elements and then allow |
| 132 |
// a client to request specific fields, such as epoch, mean motion, |
| 133 |
// etc., from the set. |
| 134 |
// |
| 135 |
// Copyright 1996-2003 Michael F. Henry |
| 136 |
// |
| 137 |
///////////////////////////////////////////////////////////////////////////// |
| 138 |
class cTle |
| 139 |
{ |
| 140 |
public: |
| 141 |
cTle(string&, string&, string&); |
| 142 |
cTle(const cTle &tle); |
| 143 |
~cTle(); |
| 144 |
|
| 145 |
enum eTleLine |
| 146 |
{ |
| 147 |
LINE_ZERO, |
| 148 |
LINE_ONE, |
| 149 |
LINE_TWO |
| 150 |
}; |
| 151 |
|
| 152 |
enum eField |
| 153 |
{ |
| 154 |
FLD_FIRST, |
| 155 |
FLD_NORADNUM = FLD_FIRST, |
| 156 |
FLD_INTLDESC, |
| 157 |
FLD_SET, // TLE set number |
| 158 |
FLD_EPOCHYEAR, // Epoch: Last two digits of year |
| 159 |
FLD_EPOCHDAY, // Epoch: Fractional Julian Day of year |
| 160 |
FLD_ORBITNUM, // Orbit at epoch |
| 161 |
FLD_I, // Inclination |
| 162 |
FLD_RAAN, // R.A. ascending node |
| 163 |
FLD_E, // Eccentricity |
| 164 |
FLD_ARGPER, // Argument of perigee |
| 165 |
FLD_M, // Mean anomaly |
| 166 |
FLD_MMOTION, // Mean motion |
| 167 |
FLD_MMOTIONDT, // First time derivative of mean motion |
| 168 |
FLD_MMOTIONDT2,// Second time derivative of mean motion |
| 169 |
FLD_BSTAR, // BSTAR Drag |
| 170 |
FLD_LAST // MUST be last |
| 171 |
}; |
| 172 |
|
| 173 |
enum eUnits |
| 174 |
{ |
| 175 |
U_FIRST, |
| 176 |
U_RAD = U_FIRST, // radians |
| 177 |
U_DEG, // degrees |
| 178 |
U_NATIVE, // TLE format native units (no conversion) |
| 179 |
U_LAST // MUST be last |
| 180 |
}; |
| 181 |
|
| 182 |
void Initialize(); |
| 183 |
|
| 184 |
static int CheckSum(const string&); |
| 185 |
static bool IsValidLine(string&, eTleLine); |
| 186 |
static string ExpToDecimal(const string&); |
| 187 |
|
| 188 |
static void TrimLeft(string&); |
| 189 |
static void TrimRight(string&); |
| 190 |
|
| 191 |
double getField(eField fld, // which field to retrieve |
| 192 |
eUnits unit = U_NATIVE, // return units in rad, deg etc. |
| 193 |
string *pstr = NULL, // return ptr for str value |
| 194 |
bool bStrUnits = false) // 'true': append units to str val |
| 195 |
const; |
| 196 |
string getName() const { return m_strName; } |
| 197 |
string getLine1() const { return m_strLine1;} |
| 198 |
string getLine2() const { return m_strLine2;} |
| 199 |
|
| 200 |
protected: |
| 201 |
static double ConvertUnits(double val, eField fld, eUnits units); |
| 202 |
|
| 203 |
private: |
| 204 |
string getUnits(eField) const; |
| 205 |
double getFieldNumeric(eField) const; |
| 206 |
|
| 207 |
// Satellite name and two data lines |
| 208 |
string m_strName; |
| 209 |
string m_strLine1; |
| 210 |
string m_strLine2; |
| 211 |
|
| 212 |
// Converted fields, in atof()-readable form |
| 213 |
string m_Field[FLD_LAST]; |
| 214 |
|
| 215 |
// Cache of field values in "double" format |
| 216 |
typedef int FldKey; |
| 217 |
FldKey Key(eUnits u, eField f) const { return (u * 100) + f; } |
| 218 |
mutable map<FldKey, double> m_mapCache; |
| 219 |
}; |
| 220 |
|
| 221 |
/////////////////////////////////////////////////////////////////////////// |
| 222 |
// |
| 223 |
// TLE data format |
| 224 |
// |
| 225 |
// [Reference: T.S. Kelso] |
| 226 |
// |
| 227 |
// Two line element data consists of three lines in the following format: |
| 228 |
// |
| 229 |
// AAAAAAAAAAAAAAAAAAAAAA |
| 230 |
// 1 NNNNNU NNNNNAAA NNNNN.NNNNNNNN +.NNNNNNNN +NNNNN-N +NNNNN-N N NNNNN |
| 231 |
// 2 NNNNN NNN.NNNN NNN.NNNN NNNNNNN NNN.NNNN NNN.NNNN NN.NNNNNNNNNNNNNN |
| 232 |
// |
| 233 |
// Line 0 is a twenty-two-character name. |
| 234 |
// |
| 235 |
// Lines 1 and 2 are the standard Two-Line Orbital Element Set Format identical |
| 236 |
// to that used by NORAD and NASA. The format description is: |
| 237 |
// |
| 238 |
// Line 1 |
| 239 |
// Column Description |
| 240 |
// 01-01 Line Number of Element Data |
| 241 |
// 03-07 Satellite Number |
| 242 |
// 10-11 International Designator (Last two digits of launch year) |
| 243 |
// 12-14 International Designator (Launch number of the year) |
| 244 |
// 15-17 International Designator (Piece of launch) |
| 245 |
// 19-20 Epoch Year (Last two digits of year) |
| 246 |
// 21-32 Epoch (Julian Day and fractional portion of the day) |
| 247 |
// 34-43 First Time Derivative of the Mean Motion |
| 248 |
// or Ballistic Coefficient (Depending on ephemeris type) |
| 249 |
// 45-52 Second Time Derivative of Mean Motion (decimal point assumed; |
| 250 |
// blank if N/A) |
| 251 |
// 54-61 BSTAR drag term if GP4 general perturbation theory was used. |
| 252 |
// Otherwise, radiation pressure coefficient. (Decimal point assumed) |
| 253 |
// 63-63 Ephemeris type |
| 254 |
// 65-68 Element number |
| 255 |
// 69-69 Check Sum (Modulo 10) |
| 256 |
// (Letters, blanks, periods, plus signs = 0; minus signs = 1) |
| 257 |
// |
| 258 |
// Line 2 |
| 259 |
// Column Description |
| 260 |
// 01-01 Line Number of Element Data |
| 261 |
// 03-07 Satellite Number |
| 262 |
// 09-16 Inclination [Degrees] |
| 263 |
// 18-25 Right Ascension of the Ascending Node [Degrees] |
| 264 |
// 27-33 Eccentricity (decimal point assumed) |
| 265 |
// 35-42 Argument of Perigee [Degrees] |
| 266 |
// 44-51 Mean Anomaly [Degrees] |
| 267 |
// 53-63 Mean Motion [Revs per day] |
| 268 |
// 64-68 Revolution number at epoch [Revs] |
| 269 |
// 69-69 Check Sum (Modulo 10) |
| 270 |
// |
| 271 |
// All other columns are blank or fixed. |
| 272 |
// |
| 273 |
// Example: |
| 274 |
// |
| 275 |
// NOAA 6 |
| 276 |
// 1 11416U 86 50.28438588 0.00000140 67960-4 0 5293 |
| 277 |
// 2 11416 98.5105 69.3305 0012788 63.2828 296.9658 14.24899292346978 |
| 278 |
|
| 279 |
// |
| 280 |
// cJulian.h |
| 281 |
// |
| 282 |
// Copyright (c) 2003 Michael F. Henry |
| 283 |
// |
| 284 |
// |
| 285 |
// See note in cJulian.cpp for information on this class and the epoch dates |
| 286 |
// |
| 287 |
const double EPOCH_JAN1_00H_1900 = 2415019.5; // Jan 1.0 1900 = Jan 1 1900 00h UTC |
| 288 |
const double EPOCH_JAN1_12H_1900 = 2415020.0; // Jan 1.5 1900 = Jan 1 1900 12h UTC |
| 289 |
const double EPOCH_JAN1_12H_2000 = 2451545.0; // Jan 1.5 2000 = Jan 1 2000 12h UTC |
| 290 |
|
| 291 |
////////////////////////////////////////////////////////////////////////////// |
| 292 |
class cJulian |
| 293 |
{ |
| 294 |
public: |
| 295 |
cJulian() { Initialize(2000, 1); } |
| 296 |
explicit cJulian(time_t t); // Create from time_t |
| 297 |
explicit cJulian(int year, double day); // Create from year, day of year |
| 298 |
explicit cJulian(int year, // i.e., 2004 |
| 299 |
int mon, // 1..12 |
| 300 |
int day, // 1..31 |
| 301 |
int hour, // 0..23 |
| 302 |
int min, // 0..59 |
| 303 |
double sec = 0.0); // 0..(59.999999...) |
| 304 |
~cJulian() {}; |
| 305 |
|
| 306 |
double toGMST() const; // Greenwich Mean Sidereal Time |
| 307 |
double toLMST(double lon) const; // Local Mean Sideral Time |
| 308 |
time_t toTime() const; // To time_t type - avoid using |
| 309 |
|
| 310 |
double FromJan1_00h_1900() const { return m_Date - EPOCH_JAN1_00H_1900; } |
| 311 |
double FromJan1_12h_1900() const { return m_Date - EPOCH_JAN1_12H_1900; } |
| 312 |
double FromJan1_12h_2000() const { return m_Date - EPOCH_JAN1_12H_2000; } |
| 313 |
|
| 314 |
void getComponent(int *pYear, int *pMon = NULL, double *pDOM = NULL) const; |
| 315 |
double getDate() const { return m_Date; } |
| 316 |
|
| 317 |
void addDay (double day) { m_Date += day; } |
| 318 |
void addHour(double hr ) { m_Date += (hr / HR_PER_DAY ); } |
| 319 |
void addMin (double min) { m_Date += (min / MIN_PER_DAY); } |
| 320 |
void addSec (double sec) { m_Date += (sec / SEC_PER_DAY); } |
| 321 |
|
| 322 |
double spanDay (const cJulian& b) const { return m_Date - b.m_Date; } |
| 323 |
double spanHour(const cJulian& b) const { return spanDay(b) * HR_PER_DAY; } |
| 324 |
double spanMin (const cJulian& b) const { return spanDay(b) * MIN_PER_DAY; } |
| 325 |
double spanSec (const cJulian& b) const { return spanDay(b) * SEC_PER_DAY; } |
| 326 |
|
| 327 |
static bool IsLeapYear(int y) |
| 328 |
{ return (y % 4 == 0 && y % 100 != 0) || (y % 400 == 0); } |
| 329 |
|
| 330 |
protected: |
| 331 |
void Initialize(int year, double day); |
| 332 |
|
| 333 |
double m_Date; // Julian date |
| 334 |
}; |
| 335 |
// |
| 336 |
// cEci.h |
| 337 |
// |
| 338 |
// Copyright (c) 2003 Michael F. Henry |
| 339 |
// |
| 340 |
////////////////////////////////////////////////////////////////////// |
| 341 |
// class cEci |
| 342 |
// Encapsulates an Earth-Centered Inertial position, velocity, and time. |
| 343 |
class cEci |
| 344 |
{ |
| 345 |
public: |
| 346 |
cEci() { m_VecUnits = UNITS_NONE; } |
| 347 |
cEci(const cCoordGeo &geo, const cJulian &cJulian); |
| 348 |
cEci(const cVector &pos, const cVector &vel, |
| 349 |
const cJulian &date, bool IsAeUnits = true); |
| 350 |
virtual ~cEci() {}; |
| 351 |
|
| 352 |
cCoordGeo toGeo(); |
| 353 |
|
| 354 |
cVector getPos() const { return m_pos; } |
| 355 |
cVector getVel() const { return m_vel; } |
| 356 |
cJulian getDate() const { return m_date; } |
| 357 |
|
| 358 |
void setUnitsAe() { m_VecUnits = UNITS_AE; } |
| 359 |
void setUnitsKm() { m_VecUnits = UNITS_KM; } |
| 360 |
bool UnitsAreAe() const { return m_VecUnits == UNITS_AE; } |
| 361 |
bool UnitsAreKm() const { return m_VecUnits == UNITS_KM; } |
| 362 |
void ae2km(); // Convert position, velocity vector units from AE to km |
| 363 |
|
| 364 |
protected: |
| 365 |
void MulPos(double factor) { m_pos.Mul(factor); } |
| 366 |
void MulVel(double factor) { m_vel.Mul(factor); } |
| 367 |
|
| 368 |
enum VecUnits |
| 369 |
{ |
| 370 |
UNITS_NONE, // not initialized |
| 371 |
UNITS_AE, |
| 372 |
UNITS_KM, |
| 373 |
}; |
| 374 |
|
| 375 |
cVector m_pos; |
| 376 |
cVector m_vel; |
| 377 |
cJulian m_date; |
| 378 |
VecUnits m_VecUnits; |
| 379 |
}; |
| 380 |
#endif |