/[PAMELA software]/YodaProfiler/inc/sgp4.h
ViewVC logotype

Annotation of /YodaProfiler/inc/sgp4.h

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.1 - (hide annotations) (download)
Fri Oct 20 11:39:34 2006 UTC (18 years, 1 month ago) by mocchiut
Branch: MAIN
CVS Tags: v2r00
File MIME type: text/plain
Create libsgp4.so shared lib; unified sgp4 code

1 mocchiut 1.1 //
2     // stdafx.h
3     //
4     #ifndef sgp4_h
5     #define sgp4_h
6     #pragma once
7    
8     //#define WIN32_LEAN_AND_MEAN // Exclude rarely-used stuff from Windows headers
9     #include <stdio.h>
10     //#include <tchar.h>
11    
12     #include <string>
13     #include <map>
14     #include <vector>
15     #include <algorithm>
16     #include <assert.h>
17     #include <time.h>
18     #include <math.h>
19    
20     using namespace std;
21     //
22     // globals.h
23     //
24    
25     const double PI = 3.141592653589793;
26     const double TWOPI = 2.0 * PI;
27     const double RADS_PER_DEG = PI / 180.0;
28    
29     const double GM = 398601.2; // Earth gravitational constant, km^3/sec^2
30     const double GEOSYNC_ALT = 42241.892; // km
31     const double EARTH_DIA = 12800.0; // km
32     const double DAY_SIDERAL = (23 * 3600) + (56 * 60) + 4.09; // sec
33     const double DAY_24HR = (24 * 3600); // sec
34    
35     const double AE = 1.0;
36     const double AU = 149597870.0; // Astronomical unit (km) (IAU 76)
37     const double SR = 696000.0; // Solar radius (km) (IAU 76)
38     const double TWOTHRD = 2.0 / 3.0;
39     const double XKMPER_WGS72 = 6378.135; // Earth equatorial radius - km (WGS '72)
40     const double F = 1.0 / 298.26; // Earth flattening (WGS '72)
41     const double GE = 398600.8; // Earth gravitational constant (WGS '72)
42     const double J2 = 1.0826158E-3; // J2 harmonic (WGS '72)
43     const double J3 = -2.53881E-6; // J3 harmonic (WGS '72)
44     const double J4 = -1.65597E-6; // J4 harmonic (WGS '72)
45     const double CK2 = J2 / 2.0;
46     const double CK4 = -3.0 * J4 / 8.0;
47     const double XJ3 = J3;
48     const double E6A = 1.0e-06;
49     const double QO = AE + 120.0 / XKMPER_WGS72;
50     const double S = AE + 78.0 / XKMPER_WGS72;
51     const double HR_PER_DAY = 24.0; // Hours per day (solar)
52     const double MIN_PER_DAY = 1440.0; // Minutes per day (solar)
53     const double SEC_PER_DAY = 86400.0; // Seconds per day (solar)
54     const double OMEGA_E = 1.00273790934; // earth rotation per sideral day
55     const double XKE = sqrt(3600.0 * GE / //sqrt(ge) ER^3/min^2
56     (XKMPER_WGS72 * XKMPER_WGS72 * XKMPER_WGS72));
57     const double QOMS2T = pow((QO - S), 4); //(QO - S)^4 ER^4
58    
59     // Utility functions
60     double sqr (const double x);
61     double Fmod2p(const double arg);
62     double AcTan (const double sinx, double cosx);
63    
64     double rad2deg(const double);
65     double deg2rad(const double);
66     //
67     // coord.h
68     //
69     // Copyright 2002-2003 Michael F. Henry
70     //
71     //////////////////////////////////////////////////////////////////////
72     // Geocentric coordinates.
73     class cCoordGeo
74     {
75     public:
76     cCoordGeo();
77     cCoordGeo(double lat, double lon, double alt) :
78     m_Lat(lat), m_Lon(lon), m_Alt(alt) {}
79     virtual ~cCoordGeo() {};
80    
81     double m_Lat; // Latitude, radians (negative south)
82     double m_Lon; // Longitude, radians (negative west)
83     double m_Alt; // Altitude, km (above mean sea level)
84     };
85    
86     //////////////////////////////////////////////////////////////////////
87     // Topocentric-Horizon coordinates.
88     class cCoordTopo
89     {
90     public:
91     cCoordTopo();
92     cCoordTopo(double az, double el, double rng, double rate) :
93     m_Az(az), m_El(el), m_Range(rng), m_RangeRate(rate) {}
94     virtual ~cCoordTopo() {};
95    
96     double m_Az; // Azimuth, radians
97     double m_El; // Elevation, radians
98     double m_Range; // Range, kilometers
99     double m_RangeRate; // Range rate of change, km/sec
100     // Negative value means "towards observer"
101     };
102    
103     // cVector.h: interface for the cVector class.
104     //
105     // Copyright 2003 (c) Michael F. Henry
106     //
107     //////////////////////////////////////////////////////////////////////
108    
109     class cVector
110     {
111     public:
112     cVector(double x = 0.0, double y = 0.0, double z = 0.0, double w = 0.0) :
113     m_x(x), m_y(y), m_z(z), m_w(w) {}
114     virtual ~cVector() {};
115    
116     void Sub(const cVector&); // subtraction
117     void Mul(double factor); // multiply each component by 'factor'
118    
119     double Angle(const cVector&) const; // angle between two vectors
120     double Magnitude() const; // vector magnitude
121     double Dot(const cVector& vec) const; // dot product
122    
123     // protected:
124     double m_x;
125     double m_y;
126     double m_z;
127     double m_w;
128     };
129     //
130     // cTle.h
131     //
132     // This class will accept a single set of two-line elements and then allow
133     // a client to request specific fields, such as epoch, mean motion,
134     // etc., from the set.
135     //
136     // Copyright 1996-2003 Michael F. Henry
137     //
138     /////////////////////////////////////////////////////////////////////////////
139     class cTle
140     {
141     public:
142     cTle(string&, string&, string&);
143     cTle(const cTle &tle);
144     ~cTle();
145    
146     enum eTleLine
147     {
148     LINE_ZERO,
149     LINE_ONE,
150     LINE_TWO
151     };
152    
153     enum eField
154     {
155     FLD_FIRST,
156     FLD_NORADNUM = FLD_FIRST,
157     FLD_INTLDESC,
158     FLD_SET, // TLE set number
159     FLD_EPOCHYEAR, // Epoch: Last two digits of year
160     FLD_EPOCHDAY, // Epoch: Fractional Julian Day of year
161     FLD_ORBITNUM, // Orbit at epoch
162     FLD_I, // Inclination
163     FLD_RAAN, // R.A. ascending node
164     FLD_E, // Eccentricity
165     FLD_ARGPER, // Argument of perigee
166     FLD_M, // Mean anomaly
167     FLD_MMOTION, // Mean motion
168     FLD_MMOTIONDT, // First time derivative of mean motion
169     FLD_MMOTIONDT2,// Second time derivative of mean motion
170     FLD_BSTAR, // BSTAR Drag
171     FLD_LAST // MUST be last
172     };
173    
174     enum eUnits
175     {
176     U_FIRST,
177     U_RAD = U_FIRST, // radians
178     U_DEG, // degrees
179     U_NATIVE, // TLE format native units (no conversion)
180     U_LAST // MUST be last
181     };
182    
183     void Initialize();
184    
185     static int CheckSum(const string&);
186     static bool IsValidLine(string&, eTleLine);
187     static string ExpToDecimal(const string&);
188    
189     static void TrimLeft(string&);
190     static void TrimRight(string&);
191    
192     double getField(eField fld, // which field to retrieve
193     eUnits unit = U_NATIVE, // return units in rad, deg etc.
194     string *pstr = NULL, // return ptr for str value
195     bool bStrUnits = false) // 'true': append units to str val
196     const;
197     string getName() const { return m_strName; }
198     string getLine1() const { return m_strLine1;}
199     string getLine2() const { return m_strLine2;}
200    
201     protected:
202     static double ConvertUnits(double val, eField fld, eUnits units);
203    
204     private:
205     string getUnits(eField) const;
206     double getFieldNumeric(eField) const;
207    
208     // Satellite name and two data lines
209     string m_strName;
210     string m_strLine1;
211     string m_strLine2;
212    
213     // Converted fields, in atof()-readable form
214     string m_Field[FLD_LAST];
215    
216     // Cache of field values in "double" format
217     typedef int FldKey;
218     FldKey Key(eUnits u, eField f) const { return (u * 100) + f; }
219     mutable map<FldKey, double> m_mapCache;
220     };
221    
222     ///////////////////////////////////////////////////////////////////////////
223     //
224     // TLE data format
225     //
226     // [Reference: T.S. Kelso]
227     //
228     // Two line element data consists of three lines in the following format:
229     //
230     // AAAAAAAAAAAAAAAAAAAAAA
231     // 1 NNNNNU NNNNNAAA NNNNN.NNNNNNNN +.NNNNNNNN +NNNNN-N +NNNNN-N N NNNNN
232     // 2 NNNNN NNN.NNNN NNN.NNNN NNNNNNN NNN.NNNN NNN.NNNN NN.NNNNNNNNNNNNNN
233     //
234     // Line 0 is a twenty-two-character name.
235     //
236     // Lines 1 and 2 are the standard Two-Line Orbital Element Set Format identical
237     // to that used by NORAD and NASA. The format description is:
238     //
239     // Line 1
240     // Column Description
241     // 01-01 Line Number of Element Data
242     // 03-07 Satellite Number
243     // 10-11 International Designator (Last two digits of launch year)
244     // 12-14 International Designator (Launch number of the year)
245     // 15-17 International Designator (Piece of launch)
246     // 19-20 Epoch Year (Last two digits of year)
247     // 21-32 Epoch (Julian Day and fractional portion of the day)
248     // 34-43 First Time Derivative of the Mean Motion
249     // or Ballistic Coefficient (Depending on ephemeris type)
250     // 45-52 Second Time Derivative of Mean Motion (decimal point assumed;
251     // blank if N/A)
252     // 54-61 BSTAR drag term if GP4 general perturbation theory was used.
253     // Otherwise, radiation pressure coefficient. (Decimal point assumed)
254     // 63-63 Ephemeris type
255     // 65-68 Element number
256     // 69-69 Check Sum (Modulo 10)
257     // (Letters, blanks, periods, plus signs = 0; minus signs = 1)
258     //
259     // Line 2
260     // Column Description
261     // 01-01 Line Number of Element Data
262     // 03-07 Satellite Number
263     // 09-16 Inclination [Degrees]
264     // 18-25 Right Ascension of the Ascending Node [Degrees]
265     // 27-33 Eccentricity (decimal point assumed)
266     // 35-42 Argument of Perigee [Degrees]
267     // 44-51 Mean Anomaly [Degrees]
268     // 53-63 Mean Motion [Revs per day]
269     // 64-68 Revolution number at epoch [Revs]
270     // 69-69 Check Sum (Modulo 10)
271     //
272     // All other columns are blank or fixed.
273     //
274     // Example:
275     //
276     // NOAA 6
277     // 1 11416U 86 50.28438588 0.00000140 67960-4 0 5293
278     // 2 11416 98.5105 69.3305 0012788 63.2828 296.9658 14.24899292346978
279    
280     //
281     // cJulian.h
282     //
283     // Copyright (c) 2003 Michael F. Henry
284     //
285     //
286     // See note in cJulian.cpp for information on this class and the epoch dates
287     //
288     const double EPOCH_JAN1_00H_1900 = 2415019.5; // Jan 1.0 1900 = Jan 1 1900 00h UTC
289     const double EPOCH_JAN1_12H_1900 = 2415020.0; // Jan 1.5 1900 = Jan 1 1900 12h UTC
290     const double EPOCH_JAN1_12H_2000 = 2451545.0; // Jan 1.5 2000 = Jan 1 2000 12h UTC
291    
292     //////////////////////////////////////////////////////////////////////////////
293     class cJulian
294     {
295     public:
296     cJulian() { Initialize(2000, 1); }
297     explicit cJulian(time_t t); // Create from time_t
298     explicit cJulian(int year, double day); // Create from year, day of year
299     explicit cJulian(int year, // i.e., 2004
300     int mon, // 1..12
301     int day, // 1..31
302     int hour, // 0..23
303     int min, // 0..59
304     double sec = 0.0); // 0..(59.999999...)
305     ~cJulian() {};
306    
307     double toGMST() const; // Greenwich Mean Sidereal Time
308     double toLMST(double lon) const; // Local Mean Sideral Time
309     time_t toTime() const; // To time_t type - avoid using
310    
311     double FromJan1_00h_1900() const { return m_Date - EPOCH_JAN1_00H_1900; }
312     double FromJan1_12h_1900() const { return m_Date - EPOCH_JAN1_12H_1900; }
313     double FromJan1_12h_2000() const { return m_Date - EPOCH_JAN1_12H_2000; }
314    
315     void getComponent(int *pYear, int *pMon = NULL, double *pDOM = NULL) const;
316     double getDate() const { return m_Date; }
317    
318     void addDay (double day) { m_Date += day; }
319     void addHour(double hr ) { m_Date += (hr / HR_PER_DAY ); }
320     void addMin (double min) { m_Date += (min / MIN_PER_DAY); }
321     void addSec (double sec) { m_Date += (sec / SEC_PER_DAY); }
322    
323     double spanDay (const cJulian& b) const { return m_Date - b.m_Date; }
324     double spanHour(const cJulian& b) const { return spanDay(b) * HR_PER_DAY; }
325     double spanMin (const cJulian& b) const { return spanDay(b) * MIN_PER_DAY; }
326     double spanSec (const cJulian& b) const { return spanDay(b) * SEC_PER_DAY; }
327    
328     static bool IsLeapYear(int y)
329     { return (y % 4 == 0 && y % 100 != 0) || (y % 400 == 0); }
330    
331     protected:
332     void Initialize(int year, double day);
333    
334     double m_Date; // Julian date
335     };
336     //
337     // cEci.h
338     //
339     // Copyright (c) 2003 Michael F. Henry
340     //
341     //////////////////////////////////////////////////////////////////////
342     // class cEci
343     // Encapsulates an Earth-Centered Inertial position, velocity, and time.
344     class cEci
345     {
346     public:
347     cEci() { m_VecUnits = UNITS_NONE; }
348     cEci(const cCoordGeo &geo, const cJulian &cJulian);
349     cEci(const cVector &pos, const cVector &vel,
350     const cJulian &date, bool IsAeUnits = true);
351     virtual ~cEci() {};
352    
353     cCoordGeo toGeo();
354    
355     cVector getPos() const { return m_pos; }
356     cVector getVel() const { return m_vel; }
357     cJulian getDate() const { return m_date; }
358    
359     void setUnitsAe() { m_VecUnits = UNITS_AE; }
360     void setUnitsKm() { m_VecUnits = UNITS_KM; }
361     bool UnitsAreAe() const { return m_VecUnits == UNITS_AE; }
362     bool UnitsAreKm() const { return m_VecUnits == UNITS_KM; }
363     void ae2km(); // Convert position, velocity vector units from AE to km
364    
365     protected:
366     void MulPos(double factor) { m_pos.Mul(factor); }
367     void MulVel(double factor) { m_vel.Mul(factor); }
368    
369     enum VecUnits
370     {
371     UNITS_NONE, // not initialized
372     UNITS_AE,
373     UNITS_KM,
374     };
375    
376     cVector m_pos;
377     cVector m_vel;
378     cJulian m_date;
379     VecUnits m_VecUnits;
380     };
381     #endif

  ViewVC Help
Powered by ViewVC 1.1.23