1 |
mocchiut |
1.1 |
// |
2 |
|
|
// stdafx.h |
3 |
|
|
// |
4 |
|
|
#ifndef sgp4_h |
5 |
|
|
#define sgp4_h |
6 |
|
|
#pragma once |
7 |
|
|
|
8 |
|
|
//#define WIN32_LEAN_AND_MEAN // Exclude rarely-used stuff from Windows headers |
9 |
|
|
#include <stdio.h> |
10 |
|
|
//#include <tchar.h> |
11 |
|
|
|
12 |
|
|
#include <string> |
13 |
|
|
#include <map> |
14 |
|
|
#include <vector> |
15 |
|
|
#include <algorithm> |
16 |
|
|
#include <assert.h> |
17 |
|
|
#include <time.h> |
18 |
|
|
#include <math.h> |
19 |
|
|
|
20 |
|
|
using namespace std; |
21 |
|
|
// |
22 |
|
|
// globals.h |
23 |
|
|
// |
24 |
|
|
|
25 |
|
|
const double PI = 3.141592653589793; |
26 |
|
|
const double TWOPI = 2.0 * PI; |
27 |
|
|
const double RADS_PER_DEG = PI / 180.0; |
28 |
|
|
|
29 |
|
|
const double GM = 398601.2; // Earth gravitational constant, km^3/sec^2 |
30 |
|
|
const double GEOSYNC_ALT = 42241.892; // km |
31 |
|
|
const double EARTH_DIA = 12800.0; // km |
32 |
|
|
const double DAY_SIDERAL = (23 * 3600) + (56 * 60) + 4.09; // sec |
33 |
|
|
const double DAY_24HR = (24 * 3600); // sec |
34 |
|
|
|
35 |
|
|
const double AE = 1.0; |
36 |
|
|
const double AU = 149597870.0; // Astronomical unit (km) (IAU 76) |
37 |
|
|
const double SR = 696000.0; // Solar radius (km) (IAU 76) |
38 |
|
|
const double TWOTHRD = 2.0 / 3.0; |
39 |
|
|
const double XKMPER_WGS72 = 6378.135; // Earth equatorial radius - km (WGS '72) |
40 |
|
|
const double F = 1.0 / 298.26; // Earth flattening (WGS '72) |
41 |
|
|
const double GE = 398600.8; // Earth gravitational constant (WGS '72) |
42 |
|
|
const double J2 = 1.0826158E-3; // J2 harmonic (WGS '72) |
43 |
|
|
const double J3 = -2.53881E-6; // J3 harmonic (WGS '72) |
44 |
|
|
const double J4 = -1.65597E-6; // J4 harmonic (WGS '72) |
45 |
|
|
const double CK2 = J2 / 2.0; |
46 |
|
|
const double CK4 = -3.0 * J4 / 8.0; |
47 |
|
|
const double XJ3 = J3; |
48 |
|
|
const double E6A = 1.0e-06; |
49 |
|
|
const double QO = AE + 120.0 / XKMPER_WGS72; |
50 |
|
|
const double S = AE + 78.0 / XKMPER_WGS72; |
51 |
|
|
const double HR_PER_DAY = 24.0; // Hours per day (solar) |
52 |
|
|
const double MIN_PER_DAY = 1440.0; // Minutes per day (solar) |
53 |
|
|
const double SEC_PER_DAY = 86400.0; // Seconds per day (solar) |
54 |
|
|
const double OMEGA_E = 1.00273790934; // earth rotation per sideral day |
55 |
|
|
const double XKE = sqrt(3600.0 * GE / //sqrt(ge) ER^3/min^2 |
56 |
|
|
(XKMPER_WGS72 * XKMPER_WGS72 * XKMPER_WGS72)); |
57 |
|
|
const double QOMS2T = pow((QO - S), 4); //(QO - S)^4 ER^4 |
58 |
|
|
|
59 |
|
|
// Utility functions |
60 |
|
|
double sqr (const double x); |
61 |
|
|
double Fmod2p(const double arg); |
62 |
|
|
double AcTan (const double sinx, double cosx); |
63 |
|
|
|
64 |
|
|
double rad2deg(const double); |
65 |
|
|
double deg2rad(const double); |
66 |
|
|
// |
67 |
|
|
// coord.h |
68 |
|
|
// |
69 |
|
|
// Copyright 2002-2003 Michael F. Henry |
70 |
|
|
// |
71 |
|
|
////////////////////////////////////////////////////////////////////// |
72 |
|
|
// Geocentric coordinates. |
73 |
|
|
class cCoordGeo |
74 |
|
|
{ |
75 |
|
|
public: |
76 |
|
|
cCoordGeo(); |
77 |
|
|
cCoordGeo(double lat, double lon, double alt) : |
78 |
|
|
m_Lat(lat), m_Lon(lon), m_Alt(alt) {} |
79 |
|
|
virtual ~cCoordGeo() {}; |
80 |
|
|
|
81 |
|
|
double m_Lat; // Latitude, radians (negative south) |
82 |
|
|
double m_Lon; // Longitude, radians (negative west) |
83 |
|
|
double m_Alt; // Altitude, km (above mean sea level) |
84 |
|
|
}; |
85 |
|
|
|
86 |
|
|
////////////////////////////////////////////////////////////////////// |
87 |
|
|
// Topocentric-Horizon coordinates. |
88 |
|
|
class cCoordTopo |
89 |
|
|
{ |
90 |
|
|
public: |
91 |
|
|
cCoordTopo(); |
92 |
|
|
cCoordTopo(double az, double el, double rng, double rate) : |
93 |
|
|
m_Az(az), m_El(el), m_Range(rng), m_RangeRate(rate) {} |
94 |
|
|
virtual ~cCoordTopo() {}; |
95 |
|
|
|
96 |
|
|
double m_Az; // Azimuth, radians |
97 |
|
|
double m_El; // Elevation, radians |
98 |
|
|
double m_Range; // Range, kilometers |
99 |
|
|
double m_RangeRate; // Range rate of change, km/sec |
100 |
|
|
// Negative value means "towards observer" |
101 |
|
|
}; |
102 |
|
|
|
103 |
|
|
// cVector.h: interface for the cVector class. |
104 |
|
|
// |
105 |
|
|
// Copyright 2003 (c) Michael F. Henry |
106 |
|
|
// |
107 |
|
|
////////////////////////////////////////////////////////////////////// |
108 |
|
|
|
109 |
|
|
class cVector |
110 |
|
|
{ |
111 |
|
|
public: |
112 |
|
|
cVector(double x = 0.0, double y = 0.0, double z = 0.0, double w = 0.0) : |
113 |
|
|
m_x(x), m_y(y), m_z(z), m_w(w) {} |
114 |
|
|
virtual ~cVector() {}; |
115 |
|
|
|
116 |
|
|
void Sub(const cVector&); // subtraction |
117 |
|
|
void Mul(double factor); // multiply each component by 'factor' |
118 |
|
|
|
119 |
|
|
double Angle(const cVector&) const; // angle between two vectors |
120 |
|
|
double Magnitude() const; // vector magnitude |
121 |
|
|
double Dot(const cVector& vec) const; // dot product |
122 |
|
|
|
123 |
|
|
// protected: |
124 |
|
|
double m_x; |
125 |
|
|
double m_y; |
126 |
|
|
double m_z; |
127 |
|
|
double m_w; |
128 |
|
|
}; |
129 |
|
|
// |
130 |
|
|
// cTle.h |
131 |
|
|
// |
132 |
|
|
// This class will accept a single set of two-line elements and then allow |
133 |
|
|
// a client to request specific fields, such as epoch, mean motion, |
134 |
|
|
// etc., from the set. |
135 |
|
|
// |
136 |
|
|
// Copyright 1996-2003 Michael F. Henry |
137 |
|
|
// |
138 |
|
|
///////////////////////////////////////////////////////////////////////////// |
139 |
|
|
class cTle |
140 |
|
|
{ |
141 |
|
|
public: |
142 |
|
|
cTle(string&, string&, string&); |
143 |
|
|
cTle(const cTle &tle); |
144 |
|
|
~cTle(); |
145 |
|
|
|
146 |
|
|
enum eTleLine |
147 |
|
|
{ |
148 |
|
|
LINE_ZERO, |
149 |
|
|
LINE_ONE, |
150 |
|
|
LINE_TWO |
151 |
|
|
}; |
152 |
|
|
|
153 |
|
|
enum eField |
154 |
|
|
{ |
155 |
|
|
FLD_FIRST, |
156 |
|
|
FLD_NORADNUM = FLD_FIRST, |
157 |
|
|
FLD_INTLDESC, |
158 |
|
|
FLD_SET, // TLE set number |
159 |
|
|
FLD_EPOCHYEAR, // Epoch: Last two digits of year |
160 |
|
|
FLD_EPOCHDAY, // Epoch: Fractional Julian Day of year |
161 |
|
|
FLD_ORBITNUM, // Orbit at epoch |
162 |
|
|
FLD_I, // Inclination |
163 |
|
|
FLD_RAAN, // R.A. ascending node |
164 |
|
|
FLD_E, // Eccentricity |
165 |
|
|
FLD_ARGPER, // Argument of perigee |
166 |
|
|
FLD_M, // Mean anomaly |
167 |
|
|
FLD_MMOTION, // Mean motion |
168 |
|
|
FLD_MMOTIONDT, // First time derivative of mean motion |
169 |
|
|
FLD_MMOTIONDT2,// Second time derivative of mean motion |
170 |
|
|
FLD_BSTAR, // BSTAR Drag |
171 |
|
|
FLD_LAST // MUST be last |
172 |
|
|
}; |
173 |
|
|
|
174 |
|
|
enum eUnits |
175 |
|
|
{ |
176 |
|
|
U_FIRST, |
177 |
|
|
U_RAD = U_FIRST, // radians |
178 |
|
|
U_DEG, // degrees |
179 |
|
|
U_NATIVE, // TLE format native units (no conversion) |
180 |
|
|
U_LAST // MUST be last |
181 |
|
|
}; |
182 |
|
|
|
183 |
|
|
void Initialize(); |
184 |
|
|
|
185 |
|
|
static int CheckSum(const string&); |
186 |
|
|
static bool IsValidLine(string&, eTleLine); |
187 |
|
|
static string ExpToDecimal(const string&); |
188 |
|
|
|
189 |
|
|
static void TrimLeft(string&); |
190 |
|
|
static void TrimRight(string&); |
191 |
|
|
|
192 |
|
|
double getField(eField fld, // which field to retrieve |
193 |
|
|
eUnits unit = U_NATIVE, // return units in rad, deg etc. |
194 |
|
|
string *pstr = NULL, // return ptr for str value |
195 |
|
|
bool bStrUnits = false) // 'true': append units to str val |
196 |
|
|
const; |
197 |
|
|
string getName() const { return m_strName; } |
198 |
|
|
string getLine1() const { return m_strLine1;} |
199 |
|
|
string getLine2() const { return m_strLine2;} |
200 |
|
|
|
201 |
|
|
protected: |
202 |
|
|
static double ConvertUnits(double val, eField fld, eUnits units); |
203 |
|
|
|
204 |
|
|
private: |
205 |
|
|
string getUnits(eField) const; |
206 |
|
|
double getFieldNumeric(eField) const; |
207 |
|
|
|
208 |
|
|
// Satellite name and two data lines |
209 |
|
|
string m_strName; |
210 |
|
|
string m_strLine1; |
211 |
|
|
string m_strLine2; |
212 |
|
|
|
213 |
|
|
// Converted fields, in atof()-readable form |
214 |
|
|
string m_Field[FLD_LAST]; |
215 |
|
|
|
216 |
|
|
// Cache of field values in "double" format |
217 |
|
|
typedef int FldKey; |
218 |
|
|
FldKey Key(eUnits u, eField f) const { return (u * 100) + f; } |
219 |
|
|
mutable map<FldKey, double> m_mapCache; |
220 |
|
|
}; |
221 |
|
|
|
222 |
|
|
/////////////////////////////////////////////////////////////////////////// |
223 |
|
|
// |
224 |
|
|
// TLE data format |
225 |
|
|
// |
226 |
|
|
// [Reference: T.S. Kelso] |
227 |
|
|
// |
228 |
|
|
// Two line element data consists of three lines in the following format: |
229 |
|
|
// |
230 |
|
|
// AAAAAAAAAAAAAAAAAAAAAA |
231 |
|
|
// 1 NNNNNU NNNNNAAA NNNNN.NNNNNNNN +.NNNNNNNN +NNNNN-N +NNNNN-N N NNNNN |
232 |
|
|
// 2 NNNNN NNN.NNNN NNN.NNNN NNNNNNN NNN.NNNN NNN.NNNN NN.NNNNNNNNNNNNNN |
233 |
|
|
// |
234 |
|
|
// Line 0 is a twenty-two-character name. |
235 |
|
|
// |
236 |
|
|
// Lines 1 and 2 are the standard Two-Line Orbital Element Set Format identical |
237 |
|
|
// to that used by NORAD and NASA. The format description is: |
238 |
|
|
// |
239 |
|
|
// Line 1 |
240 |
|
|
// Column Description |
241 |
|
|
// 01-01 Line Number of Element Data |
242 |
|
|
// 03-07 Satellite Number |
243 |
|
|
// 10-11 International Designator (Last two digits of launch year) |
244 |
|
|
// 12-14 International Designator (Launch number of the year) |
245 |
|
|
// 15-17 International Designator (Piece of launch) |
246 |
|
|
// 19-20 Epoch Year (Last two digits of year) |
247 |
|
|
// 21-32 Epoch (Julian Day and fractional portion of the day) |
248 |
|
|
// 34-43 First Time Derivative of the Mean Motion |
249 |
|
|
// or Ballistic Coefficient (Depending on ephemeris type) |
250 |
|
|
// 45-52 Second Time Derivative of Mean Motion (decimal point assumed; |
251 |
|
|
// blank if N/A) |
252 |
|
|
// 54-61 BSTAR drag term if GP4 general perturbation theory was used. |
253 |
|
|
// Otherwise, radiation pressure coefficient. (Decimal point assumed) |
254 |
|
|
// 63-63 Ephemeris type |
255 |
|
|
// 65-68 Element number |
256 |
|
|
// 69-69 Check Sum (Modulo 10) |
257 |
|
|
// (Letters, blanks, periods, plus signs = 0; minus signs = 1) |
258 |
|
|
// |
259 |
|
|
// Line 2 |
260 |
|
|
// Column Description |
261 |
|
|
// 01-01 Line Number of Element Data |
262 |
|
|
// 03-07 Satellite Number |
263 |
|
|
// 09-16 Inclination [Degrees] |
264 |
|
|
// 18-25 Right Ascension of the Ascending Node [Degrees] |
265 |
|
|
// 27-33 Eccentricity (decimal point assumed) |
266 |
|
|
// 35-42 Argument of Perigee [Degrees] |
267 |
|
|
// 44-51 Mean Anomaly [Degrees] |
268 |
|
|
// 53-63 Mean Motion [Revs per day] |
269 |
|
|
// 64-68 Revolution number at epoch [Revs] |
270 |
|
|
// 69-69 Check Sum (Modulo 10) |
271 |
|
|
// |
272 |
|
|
// All other columns are blank or fixed. |
273 |
|
|
// |
274 |
|
|
// Example: |
275 |
|
|
// |
276 |
|
|
// NOAA 6 |
277 |
|
|
// 1 11416U 86 50.28438588 0.00000140 67960-4 0 5293 |
278 |
|
|
// 2 11416 98.5105 69.3305 0012788 63.2828 296.9658 14.24899292346978 |
279 |
|
|
|
280 |
|
|
// |
281 |
|
|
// cJulian.h |
282 |
|
|
// |
283 |
|
|
// Copyright (c) 2003 Michael F. Henry |
284 |
|
|
// |
285 |
|
|
// |
286 |
|
|
// See note in cJulian.cpp for information on this class and the epoch dates |
287 |
|
|
// |
288 |
|
|
const double EPOCH_JAN1_00H_1900 = 2415019.5; // Jan 1.0 1900 = Jan 1 1900 00h UTC |
289 |
|
|
const double EPOCH_JAN1_12H_1900 = 2415020.0; // Jan 1.5 1900 = Jan 1 1900 12h UTC |
290 |
|
|
const double EPOCH_JAN1_12H_2000 = 2451545.0; // Jan 1.5 2000 = Jan 1 2000 12h UTC |
291 |
|
|
|
292 |
|
|
////////////////////////////////////////////////////////////////////////////// |
293 |
|
|
class cJulian |
294 |
|
|
{ |
295 |
|
|
public: |
296 |
|
|
cJulian() { Initialize(2000, 1); } |
297 |
|
|
explicit cJulian(time_t t); // Create from time_t |
298 |
|
|
explicit cJulian(int year, double day); // Create from year, day of year |
299 |
|
|
explicit cJulian(int year, // i.e., 2004 |
300 |
|
|
int mon, // 1..12 |
301 |
|
|
int day, // 1..31 |
302 |
|
|
int hour, // 0..23 |
303 |
|
|
int min, // 0..59 |
304 |
|
|
double sec = 0.0); // 0..(59.999999...) |
305 |
|
|
~cJulian() {}; |
306 |
|
|
|
307 |
|
|
double toGMST() const; // Greenwich Mean Sidereal Time |
308 |
|
|
double toLMST(double lon) const; // Local Mean Sideral Time |
309 |
|
|
time_t toTime() const; // To time_t type - avoid using |
310 |
|
|
|
311 |
|
|
double FromJan1_00h_1900() const { return m_Date - EPOCH_JAN1_00H_1900; } |
312 |
|
|
double FromJan1_12h_1900() const { return m_Date - EPOCH_JAN1_12H_1900; } |
313 |
|
|
double FromJan1_12h_2000() const { return m_Date - EPOCH_JAN1_12H_2000; } |
314 |
|
|
|
315 |
|
|
void getComponent(int *pYear, int *pMon = NULL, double *pDOM = NULL) const; |
316 |
|
|
double getDate() const { return m_Date; } |
317 |
|
|
|
318 |
|
|
void addDay (double day) { m_Date += day; } |
319 |
|
|
void addHour(double hr ) { m_Date += (hr / HR_PER_DAY ); } |
320 |
|
|
void addMin (double min) { m_Date += (min / MIN_PER_DAY); } |
321 |
|
|
void addSec (double sec) { m_Date += (sec / SEC_PER_DAY); } |
322 |
|
|
|
323 |
|
|
double spanDay (const cJulian& b) const { return m_Date - b.m_Date; } |
324 |
|
|
double spanHour(const cJulian& b) const { return spanDay(b) * HR_PER_DAY; } |
325 |
|
|
double spanMin (const cJulian& b) const { return spanDay(b) * MIN_PER_DAY; } |
326 |
|
|
double spanSec (const cJulian& b) const { return spanDay(b) * SEC_PER_DAY; } |
327 |
|
|
|
328 |
|
|
static bool IsLeapYear(int y) |
329 |
|
|
{ return (y % 4 == 0 && y % 100 != 0) || (y % 400 == 0); } |
330 |
|
|
|
331 |
|
|
protected: |
332 |
|
|
void Initialize(int year, double day); |
333 |
|
|
|
334 |
|
|
double m_Date; // Julian date |
335 |
|
|
}; |
336 |
|
|
// |
337 |
|
|
// cEci.h |
338 |
|
|
// |
339 |
|
|
// Copyright (c) 2003 Michael F. Henry |
340 |
|
|
// |
341 |
|
|
////////////////////////////////////////////////////////////////////// |
342 |
|
|
// class cEci |
343 |
|
|
// Encapsulates an Earth-Centered Inertial position, velocity, and time. |
344 |
|
|
class cEci |
345 |
|
|
{ |
346 |
|
|
public: |
347 |
|
|
cEci() { m_VecUnits = UNITS_NONE; } |
348 |
|
|
cEci(const cCoordGeo &geo, const cJulian &cJulian); |
349 |
|
|
cEci(const cVector &pos, const cVector &vel, |
350 |
|
|
const cJulian &date, bool IsAeUnits = true); |
351 |
|
|
virtual ~cEci() {}; |
352 |
|
|
|
353 |
|
|
cCoordGeo toGeo(); |
354 |
|
|
|
355 |
|
|
cVector getPos() const { return m_pos; } |
356 |
|
|
cVector getVel() const { return m_vel; } |
357 |
|
|
cJulian getDate() const { return m_date; } |
358 |
|
|
|
359 |
|
|
void setUnitsAe() { m_VecUnits = UNITS_AE; } |
360 |
|
|
void setUnitsKm() { m_VecUnits = UNITS_KM; } |
361 |
|
|
bool UnitsAreAe() const { return m_VecUnits == UNITS_AE; } |
362 |
|
|
bool UnitsAreKm() const { return m_VecUnits == UNITS_KM; } |
363 |
|
|
void ae2km(); // Convert position, velocity vector units from AE to km |
364 |
|
|
|
365 |
|
|
protected: |
366 |
|
|
void MulPos(double factor) { m_pos.Mul(factor); } |
367 |
|
|
void MulVel(double factor) { m_vel.Mul(factor); } |
368 |
|
|
|
369 |
|
|
enum VecUnits |
370 |
|
|
{ |
371 |
|
|
UNITS_NONE, // not initialized |
372 |
|
|
UNITS_AE, |
373 |
|
|
UNITS_KM, |
374 |
|
|
}; |
375 |
|
|
|
376 |
|
|
cVector m_pos; |
377 |
|
|
cVector m_vel; |
378 |
|
|
cJulian m_date; |
379 |
|
|
VecUnits m_VecUnits; |
380 |
|
|
}; |
381 |
|
|
#endif |