1 |
// ------ PAMELA Digitizer ------ |
// ------ PAMELA Digitizer ------ |
2 |
// |
// |
3 |
// Date, release and how-to: see file Pamelagp2Digits.cxx |
// Date, release and how-to: see file Pamelagp2Digits.cxx |
4 |
// |
// |
5 |
// NB: Check length physics packet [packet type (0x10 = physics data)] |
// NB: Check length physics packet [packet type (0x10 = physics data)] |
6 |
// |
// |
7 |
#include <sstream> |
#include "Digitizer.h" |
8 |
#include <fstream> |
|
9 |
#include <stdlib.h> |
extern "C"{ |
10 |
#include <stdio.h> |
short crc(short, short); |
11 |
#include <string.h> |
}; |
12 |
#include <ctype.h> |
// |
13 |
#include <time.h> |
|
14 |
#include "Riostream.h" |
Digitizer::Digitizer(TTree* tree, char* &file_raw, |
15 |
#include "TFile.h" |
int nspe1=200,int ntof1=200,int ncat1=50, |
16 |
#include "TDirectory.h" |
int ncas1=50,int ncar1=100,int ncal1=1000, |
17 |
#include "TTree.h" |
int nnd1=200,int nstr1=1000, int comprcalomod=0){ |
18 |
#include "TLeafI.h" |
|
19 |
#include "TH1.h" |
nspe=new int[1]; |
20 |
#include "TH2.h" |
ntof=new int[1]; |
21 |
#include "TMath.h" |
ncat=new int[1]; |
22 |
#include "TRandom.h" |
ncas=new int[1]; |
23 |
#include "TSQLServer.h" |
ncar=new int[1]; |
24 |
#include "TSystem.h" |
ncal=new int[1]; |
25 |
// |
nnd=new int[1]; |
26 |
#include "Digitizer.h" |
nstr=new int[1]; |
27 |
#include "CRC.h" |
|
28 |
// |
*nspe=nspe1; |
29 |
#include <PamelaRun.h> |
*ntof=ntof1; |
30 |
#include <physics/calorimeter/CalorimeterEvent.h> |
*ncat=ncat1; |
31 |
#include <CalibCalPedEvent.h> |
*ncas=ncas1; |
32 |
#include "GLTables.h" |
*ncar=ncar1; |
33 |
// |
*ncal=ncal1; |
34 |
extern "C"{ |
*nnd=nnd1; |
35 |
short crc(short, short); |
*nstr=nstr1; |
36 |
}; |
|
37 |
// |
fhBookTree = tree; |
38 |
|
fFilename = file_raw; |
39 |
Digitizer::Digitizer(TTree* tree, char* &file_raw){ |
fCounter = 0; |
40 |
fhBookTree = tree; |
fCounterPhys = 0; // SO 5/12/'07 |
41 |
fFilename = file_raw; |
fOBT = 0; |
42 |
fCounter = 0; |
fModCalo = comprcalomod ; |
43 |
fOBT = 0; |
|
44 |
|
// |
45 |
// |
// DB connections |
46 |
// DB connections |
// |
47 |
// |
TString host = "mysql://localhost/pamelaprod"; |
48 |
TString host = "mysql://localhost/pamelaprod"; |
TString user = "anonymous"; |
49 |
TString user = "anonymous"; |
TString psw = ""; |
50 |
TString psw = ""; |
// |
51 |
// |
const char *pamdbhost=gSystem->Getenv("PAM_DBHOST"); |
52 |
const char *pamdbhost=gSystem->Getenv("PAM_DBHOST"); |
const char *pamdbuser=gSystem->Getenv("PAM_DBUSER"); |
53 |
const char *pamdbuser=gSystem->Getenv("PAM_DBUSER"); |
const char *pamdbpsw=gSystem->Getenv("PAM_DBPSW"); |
54 |
const char *pamdbpsw=gSystem->Getenv("PAM_DBPSW"); |
if ( !pamdbhost ) pamdbhost = ""; |
55 |
if ( !pamdbhost ) pamdbhost = ""; |
if ( !pamdbuser ) pamdbuser = ""; |
56 |
if ( !pamdbuser ) pamdbuser = ""; |
if ( !pamdbpsw ) pamdbpsw = ""; |
57 |
if ( !pamdbpsw ) pamdbpsw = ""; |
if ( strcmp(pamdbhost,"") ) host = pamdbhost; |
58 |
if ( strcmp(pamdbhost,"") ) host = pamdbhost; |
if ( strcmp(pamdbuser,"") ) user = pamdbuser; |
59 |
if ( strcmp(pamdbuser,"") ) user = pamdbuser; |
if ( strcmp(pamdbpsw,"") ) psw = pamdbpsw; |
60 |
if ( strcmp(pamdbpsw,"") ) psw = pamdbpsw; |
fDbc = TSQLServer::Connect(host.Data(),user.Data(),psw.Data()); |
61 |
fDbc = TSQLServer::Connect(host.Data(),user.Data(),psw.Data()); |
// |
62 |
// |
GL_TABLES *glt = new GL_TABLES(host,user,psw); |
63 |
GL_TABLES *glt = new GL_TABLES(host,user,psw); |
if ( glt->IsConnected(fDbc) ) printf("\n DB INFORMATION:\n SQL: %s Version: %s Host %s Port %i \n\n",fDbc->GetDBMS(),fDbc->ServerInfo(),fDbc->GetHost(),fDbc->GetPort()); |
64 |
if ( glt->IsConnected(fDbc) ) printf("\n DB INFORMATION:\n SQL: %s Version: %s Host %s Port %i \n\n",fDbc->GetDBMS(),fDbc->ServerInfo(),fDbc->GetHost(),fDbc->GetPort()); |
// |
65 |
// |
// Use UTC in the DB and make timeout bigger |
66 |
// Use UTC in the DB and make timeout bigger |
// |
67 |
// |
stringstream myquery; |
68 |
stringstream myquery; |
myquery.str(""); |
69 |
myquery.str(""); |
myquery << "SET time_zone='+0:00'"; |
70 |
myquery << "SET time_zone='+0:00'"; |
fDbc->Query(myquery.str().c_str()); |
71 |
fDbc->Query(myquery.str().c_str()); |
myquery.str(""); |
72 |
myquery.str(""); |
myquery << "SET wait_timeout=173000;"; |
73 |
myquery << "SET wait_timeout=173000;"; |
fDbc->Query(myquery.str().c_str()); |
74 |
fDbc->Query(myquery.str().c_str()); |
// |
75 |
// |
|
76 |
|
std:: cout << "preparing tree" << endl; |
77 |
std:: cout << "preparing tree" << endl; |
|
78 |
|
Ipltof=(UChar_t*)malloc(*ntof *sizeof(UChar_t)); |
79 |
// prepare tree |
Ipaddle=(UChar_t*)malloc(*ntof *sizeof(UChar_t)); |
80 |
fhBookTree->SetBranchAddress("Irun",&Irun); |
Ipartof=(UShort_t*)malloc(*ntof *sizeof(UShort_t)); |
81 |
fhBookTree->SetBranchAddress("Ievnt",&Ievnt); |
// Ipartof=(UChar_t*)malloc(*ntof *sizeof(UChar_t));//DPMJET |
82 |
fhBookTree->SetBranchAddress("Ipa",&Ipa); |
Xintof=(Float_t*)malloc(*ntof *sizeof(Float_t)); |
83 |
fhBookTree->SetBranchAddress("X0",&X0); |
Yintof=(Float_t*)malloc(*ntof *sizeof(Float_t)); |
84 |
fhBookTree->SetBranchAddress("Y0",&Y0); |
Zintof=(Float_t*)malloc(*ntof *sizeof(Float_t)); |
85 |
fhBookTree->SetBranchAddress("Z0",&Z0); |
Xouttof=(Float_t*)malloc(*ntof *sizeof(Float_t)); |
86 |
fhBookTree->SetBranchAddress("Theta",&Theta); |
Youttof=(Float_t*)malloc(*ntof *sizeof(Float_t)); |
87 |
fhBookTree->SetBranchAddress("Phi",&Phi); |
Zouttof=(Float_t*)malloc(*ntof *sizeof(Float_t)); |
88 |
fhBookTree->SetBranchAddress("P0",&P0); |
Ereltof=(Float_t*)malloc(*ntof *sizeof(Float_t)); |
89 |
fhBookTree->SetBranchAddress("Nthtof",&Nthtof); |
Timetof=(Float_t*)malloc(*ntof *sizeof(Float_t)); |
90 |
fhBookTree->SetBranchAddress("Ipltof",Ipltof); |
Pathtof=(Float_t*)malloc(*ntof *sizeof(Float_t)); |
91 |
fhBookTree->SetBranchAddress("Ipaddle",Ipaddle); |
P0tof=(Float_t*)malloc(*ntof *sizeof(Float_t)); |
92 |
fhBookTree->SetBranchAddress("Ipartof",Ipartof); |
Iparcat=(UChar_t*)malloc(*ncat *sizeof(UChar_t)); |
93 |
fhBookTree->SetBranchAddress("Xintof",Xintof); |
Icat=(UChar_t*)malloc(*ncat *sizeof(UChar_t)); |
94 |
fhBookTree->SetBranchAddress("Yintof",Yintof); |
Xincat=(Float_t*)malloc(*ncat *sizeof(Float_t)); |
95 |
fhBookTree->SetBranchAddress("Zintof",Zintof); |
Yincat=(Float_t*)malloc(*ncat *sizeof(Float_t)); |
96 |
fhBookTree->SetBranchAddress("Xouttof",Xouttof); |
Zincat=(Float_t*)malloc(*ncat *sizeof(Float_t)); |
97 |
fhBookTree->SetBranchAddress("Youttof",Youttof); |
Xoutcat=(Float_t*)malloc(*ncat *sizeof(Float_t)); |
98 |
fhBookTree->SetBranchAddress("Zouttof",Zouttof); |
Youtcat=(Float_t*)malloc(*ncat *sizeof(Float_t)); |
99 |
fhBookTree->SetBranchAddress("Ereltof",Ereltof); |
Zoutcat=(Float_t*)malloc(*ncat *sizeof(Float_t)); |
100 |
fhBookTree->SetBranchAddress("Timetof",Timetof); |
Erelcat=(Float_t*)malloc(*ncat *sizeof(Float_t)); |
101 |
fhBookTree->SetBranchAddress("Pathtof",Pathtof); |
Timecat=(Float_t*)malloc(*ncat *sizeof(Float_t)); |
102 |
fhBookTree->SetBranchAddress("P0tof",P0tof); |
Pathcat=(Float_t*)malloc(*ncat *sizeof(Float_t)); |
103 |
fhBookTree->SetBranchAddress("Nthcat",&Nthcat); |
P0cat=(Float_t*)malloc(*ncat *sizeof(Float_t)); |
104 |
fhBookTree->SetBranchAddress("Iparcat",Iparcat); |
Iparcas=(UChar_t*)malloc(*ncas *sizeof(UChar_t)); |
105 |
fhBookTree->SetBranchAddress("Icat",Icat); |
Icas=(UChar_t*)malloc(*ncas *sizeof(UChar_t)); |
106 |
fhBookTree->SetBranchAddress("Xincat",Xincat); |
Xincas=(Float_t*)malloc(*ncas *sizeof(Float_t)); |
107 |
fhBookTree->SetBranchAddress("Yincat",Yincat); |
Yincas=(Float_t*)malloc(*ncas *sizeof(Float_t)); |
108 |
fhBookTree->SetBranchAddress("Zincat",Zincat); |
Zincas=(Float_t*)malloc(*ncas *sizeof(Float_t)); |
109 |
fhBookTree->SetBranchAddress("Xoutcat",Xoutcat); |
Xoutcas=(Float_t*)malloc(*ncas *sizeof(Float_t)); |
110 |
fhBookTree->SetBranchAddress("Youtcat",Youtcat); |
Youtcas=(Float_t*)malloc(*ncas *sizeof(Float_t)); |
111 |
fhBookTree->SetBranchAddress("Zoutcat",Zoutcat); |
Zoutcas=(Float_t*)malloc(*ncas *sizeof(Float_t)); |
112 |
fhBookTree->SetBranchAddress("Erelcat",Erelcat); |
Erelcas=(Float_t*)malloc(*ncas *sizeof(Float_t)); |
113 |
fhBookTree->SetBranchAddress("Timecat",Timecat); |
Timecas=(Float_t*)malloc(*ncas *sizeof(Float_t)); |
114 |
fhBookTree->SetBranchAddress("Pathcat",Pathcat); |
Pathcas=(Float_t*)malloc(*ncas *sizeof(Float_t)); |
115 |
fhBookTree->SetBranchAddress("P0cat",P0cat); |
P0cas=(Float_t*)malloc(*ncas *sizeof(Float_t)); |
116 |
fhBookTree->SetBranchAddress("Nthcas",&Nthcas); |
// Iparspe=(UShort_t*)malloc(*nspe *sizeof(UShort_t)); |
117 |
fhBookTree->SetBranchAddress("Iparcas",Iparcas); |
// Iparspe=(UChar_t*)malloc(*nspe *sizeof(UChar_t)); |
118 |
fhBookTree->SetBranchAddress("Icas",Icas); |
Itrpb=(UChar_t*)malloc(*nspe *sizeof(UChar_t)); |
119 |
fhBookTree->SetBranchAddress("Xincas",Xincas); |
Itrsl=(UChar_t*)malloc(*nspe *sizeof(UChar_t)); |
120 |
fhBookTree->SetBranchAddress("Yincas",Yincas); |
Itspa=(UChar_t*)malloc(*nspe *sizeof(UChar_t)); |
121 |
fhBookTree->SetBranchAddress("Zincas",Zincas); |
Xinspe=(Float_t*)malloc(*nspe *sizeof(Float_t)); |
122 |
fhBookTree->SetBranchAddress("Xoutcas",Xoutcas); |
Yinspe=(Float_t*)malloc(*nspe *sizeof(Float_t)); |
123 |
fhBookTree->SetBranchAddress("Youtcas",Youtcas); |
Zinspe=(Float_t*)malloc(*nspe *sizeof(Float_t)); |
124 |
fhBookTree->SetBranchAddress("Zoutcas",Zoutcas); |
Xoutspe=(Float_t*)malloc(*nspe *sizeof(Float_t)); |
125 |
fhBookTree->SetBranchAddress("Erelcas",Erelcas); |
Youtspe=(Float_t*)malloc(*nspe *sizeof(Float_t)); |
126 |
fhBookTree->SetBranchAddress("Timecas",Timecas); |
Zoutspe=(Float_t*)malloc(*nspe *sizeof(Float_t)); |
127 |
fhBookTree->SetBranchAddress("Pathcas",Pathcas); |
Xavspe=(Float_t*)malloc(*nspe *sizeof(Float_t)); |
128 |
fhBookTree->SetBranchAddress("P0cas",P0cas); |
Yavspe=(Float_t*)malloc(*nspe *sizeof(Float_t)); |
129 |
fhBookTree->SetBranchAddress("Nthspe",&Nthspe); |
Zavspe=(Float_t*)malloc(*nspe *sizeof(Float_t)); |
130 |
fhBookTree->SetBranchAddress("Iparspe",Iparspe); |
Erelspe=(Float_t*)malloc(*nspe *sizeof(Float_t)); |
131 |
fhBookTree->SetBranchAddress("Itrpb",Itrpb); |
Pathspe=(Float_t*)malloc(*nspe *sizeof(Float_t)); |
132 |
fhBookTree->SetBranchAddress("Itrsl",Itrsl); |
P0spe=(Float_t*)malloc(*nspe *sizeof(Float_t));; |
133 |
fhBookTree->SetBranchAddress("Itspa",Itspa); |
Nxmult=(UChar_t*)malloc(*nspe *sizeof(UChar_t)); |
134 |
fhBookTree->SetBranchAddress("Xinspe",Xinspe); |
Nymult=(UChar_t*)malloc(*nspe *sizeof(UChar_t)); |
135 |
fhBookTree->SetBranchAddress("Yinspe",Yinspe); |
Istripx=(UShort_t*)malloc(*nstr *sizeof(UShort_t)); |
136 |
fhBookTree->SetBranchAddress("Zinspe",Zinspe); |
Qstripx=(Float_t*)malloc(*nstr *sizeof(Float_t)); |
137 |
fhBookTree->SetBranchAddress("Xoutspe",Xoutspe); |
Xstripx=(Float_t*)malloc(*nstr *sizeof(Float_t)); |
138 |
fhBookTree->SetBranchAddress("Youtspe",Youtspe); |
Npstripx=(UChar_t*)malloc(*nstr *sizeof(UChar_t)); |
139 |
fhBookTree->SetBranchAddress("Zoutspe",Zoutspe); |
Ntstripx=(UChar_t*)malloc(*nstr *sizeof(UChar_t)); |
140 |
fhBookTree->SetBranchAddress("Xavspe",Xavspe); |
Npstripy=(UChar_t*)malloc(*nstr *sizeof(UChar_t)); |
141 |
fhBookTree->SetBranchAddress("Yavspe",Yavspe); |
Ntstripy=(UChar_t*)malloc(*nstr *sizeof(UChar_t)); |
142 |
fhBookTree->SetBranchAddress("Zavspe",Zavspe); |
Istripy=(UShort_t*)malloc(*nstr *sizeof(UShort_t)); |
143 |
fhBookTree->SetBranchAddress("Erelspe",Erelspe); |
Qstripy=(Float_t*)malloc(*nstr *sizeof(Float_t)); |
144 |
fhBookTree->SetBranchAddress("Pathspe",Pathspe); |
Ystripy=(Float_t*)malloc(*nstr *sizeof(Float_t)); |
145 |
fhBookTree->SetBranchAddress("P0spe",P0spe); |
Icapl=(UChar_t*)malloc(*ncal *sizeof(UChar_t)); |
146 |
fhBookTree->SetBranchAddress("Nxmult",Nxmult); |
Icasi=(UChar_t*)malloc(*ncal *sizeof(UChar_t)); |
147 |
fhBookTree->SetBranchAddress("Nymult",Nymult); |
Icast=(UChar_t*)malloc(*ncal *sizeof(UChar_t)); |
148 |
fhBookTree->SetBranchAddress("Nstrpx",&Nstrpx); |
Xincal=(Float_t*)malloc(*ncal *sizeof(Float_t)); |
149 |
fhBookTree->SetBranchAddress("Npstripx",Npstripx); |
Yincal=(Float_t*)malloc(*ncal *sizeof(Float_t)); |
150 |
fhBookTree->SetBranchAddress("Ntstripx",Ntstripx); |
Zincal=(Float_t*)malloc(*ncal *sizeof(Float_t)); |
151 |
fhBookTree->SetBranchAddress("Istripx",Istripx); |
Erelcal=(Float_t*)malloc(*ncal *sizeof(Float_t)); |
152 |
fhBookTree->SetBranchAddress("Qstripx",Qstripx); |
Itubend=(UChar_t*)malloc(*nnd *sizeof(UChar_t)); |
153 |
fhBookTree->SetBranchAddress("Xstripx",Xstripx); |
Iparnd=(UChar_t*)malloc(*nnd *sizeof(UChar_t)); |
154 |
fhBookTree->SetBranchAddress("Nstrpy",&Nstrpy); |
Xinnd=(Float_t*)malloc(*nnd *sizeof(Float_t)); |
155 |
fhBookTree->SetBranchAddress("Npstripy",Npstripy); |
Yinnd=(Float_t*)malloc(*nnd *sizeof(Float_t)); |
156 |
fhBookTree->SetBranchAddress("Ntstripy",Ntstripy); |
Zinnd=(Float_t*)malloc(*nnd *sizeof(Float_t)); |
157 |
fhBookTree->SetBranchAddress("Istripy",Istripy); |
Xoutnd=(Float_t*)malloc(*nnd *sizeof(Float_t)); |
158 |
fhBookTree->SetBranchAddress("Qstripy",Qstripy); |
Youtnd=(Float_t*)malloc(*nnd *sizeof(Float_t)); |
159 |
fhBookTree->SetBranchAddress("Ystripy",Ystripy); |
Zoutnd=(Float_t*)malloc(*nnd *sizeof(Float_t)); |
160 |
fhBookTree->SetBranchAddress("Nthcali",&Nthcali); |
Erelnd=(Float_t*)malloc(*nnd *sizeof(Float_t)); |
161 |
fhBookTree->SetBranchAddress("Icaplane",Icaplane); |
Timend=(Float_t*)malloc(*nnd *sizeof(Float_t)); |
162 |
fhBookTree->SetBranchAddress("Icastrip",Icastrip); |
Pathnd=(Float_t*)malloc(*nnd *sizeof(Float_t)); |
163 |
fhBookTree->SetBranchAddress("Icamod",Icamod); |
P0nd=(Float_t*)malloc(*nnd *sizeof(Float_t)); |
164 |
fhBookTree->SetBranchAddress("Enestrip",Enestrip); |
Iparcard=(UChar_t*)malloc(*ncar *sizeof(UChar_t)); |
165 |
fhBookTree->SetBranchAddress("Nthcal",&Nthcal); |
Icard=(UChar_t*)malloc(*ncar *sizeof(UChar_t)); |
166 |
fhBookTree->SetBranchAddress("Icapl",Icapl); |
Xincard=(Float_t*)malloc(*ncar *sizeof(Float_t)); |
167 |
fhBookTree->SetBranchAddress("Icasi",Icasi); |
Yincard=(Float_t*)malloc(*ncar *sizeof(Float_t)); |
168 |
fhBookTree->SetBranchAddress("Icast",Icast); |
Zincard=(Float_t*)malloc(*ncar *sizeof(Float_t)); |
169 |
fhBookTree->SetBranchAddress("Xincal",Xincal); |
Xoutcard=(Float_t*)malloc(*ncar *sizeof(Float_t)); |
170 |
fhBookTree->SetBranchAddress("Yincal",Yincal); |
Youtcard=(Float_t*)malloc(*ncar *sizeof(Float_t)); |
171 |
fhBookTree->SetBranchAddress("Zincal",Zincal); |
Zoutcard=(Float_t*)malloc(*ncar *sizeof(Float_t)); |
172 |
fhBookTree->SetBranchAddress("Erelcal",Erelcal); |
Erelcard=(Float_t*)malloc(*ncar *sizeof(Float_t)); |
173 |
fhBookTree->SetBranchAddress("Nthnd",&Nthnd); |
Timecard=(Float_t*)malloc(*ncar *sizeof(Float_t)); |
174 |
fhBookTree->SetBranchAddress("Itubend",Itubend); |
Pathcard=(Float_t*)malloc(*ncar *sizeof(Float_t)); |
175 |
fhBookTree->SetBranchAddress("Iparnd",Iparnd); |
P0card=(Float_t*)malloc(*ncar *sizeof(Float_t)); |
176 |
fhBookTree->SetBranchAddress("Xinnd",Xinnd); |
|
177 |
fhBookTree->SetBranchAddress("Yinnd",Yinnd); |
|
178 |
fhBookTree->SetBranchAddress("Zinnd",Zinnd); |
|
179 |
fhBookTree->SetBranchAddress("Xoutnd",Xoutnd); |
// prepare tree//modified by E.Vannuccini 03/08 |
180 |
fhBookTree->SetBranchAddress("Youtnd",Youtnd); |
if(fhBookTree->GetBranch("Irun"))fhBookTree->SetBranchAddress("Irun",&Irun); |
181 |
fhBookTree->SetBranchAddress("Zoutnd",Zoutnd); |
if(fhBookTree->GetBranch("Ievnt"))fhBookTree->SetBranchAddress("Ievnt",&Ievnt); |
182 |
fhBookTree->SetBranchAddress("Erelnd",Erelnd); |
if(fhBookTree->GetBranch("Ipa"))fhBookTree->SetBranchAddress("Ipa",&Ipa); |
183 |
fhBookTree->SetBranchAddress("Timend",Timend); |
if(fhBookTree->GetBranch("X0"))fhBookTree->SetBranchAddress("X0",&X0); |
184 |
fhBookTree->SetBranchAddress("Pathnd",Pathnd); |
if(fhBookTree->GetBranch("Y0"))fhBookTree->SetBranchAddress("Y0",&Y0); |
185 |
fhBookTree->SetBranchAddress("P0nd",P0nd); |
if(fhBookTree->GetBranch("Z0"))fhBookTree->SetBranchAddress("Z0",&Z0); |
186 |
fhBookTree->SetBranchAddress("Nthcard",&Nthcard); |
if(fhBookTree->GetBranch("Theta"))fhBookTree->SetBranchAddress("Theta",&Theta); |
187 |
fhBookTree->SetBranchAddress("Iparcard",Iparcard); |
if(fhBookTree->GetBranch("Phi"))fhBookTree->SetBranchAddress("Phi",&Phi); |
188 |
fhBookTree->SetBranchAddress("Icard",Icard); |
if(fhBookTree->GetBranch("P0"))fhBookTree->SetBranchAddress("P0",&P0); |
189 |
fhBookTree->SetBranchAddress("Xincard",Xincard); |
if(fhBookTree->GetBranch("Nthtof"))fhBookTree->SetBranchAddress("Nthtof",&Nthtof); |
190 |
fhBookTree->SetBranchAddress("Yincard",Yincard); |
if(fhBookTree->GetBranch("Ipltof"))fhBookTree->SetBranchAddress("Ipltof",Ipltof);/////////////////////////// |
191 |
fhBookTree->SetBranchAddress("Zincard",Zincard); |
if(fhBookTree->GetBranch("Ipaddle"))fhBookTree->SetBranchAddress("Ipaddle",Ipaddle); |
192 |
fhBookTree->SetBranchAddress("Xoutcard",Xoutcard); |
if(fhBookTree->GetBranch("Ipartof"))fhBookTree->SetBranchAddress("Ipartof",Ipartof); |
193 |
fhBookTree->SetBranchAddress("Youtcard",Youtcard); |
if(fhBookTree->GetBranch("Xintof"))fhBookTree->SetBranchAddress("Xintof",Xintof); |
194 |
fhBookTree->SetBranchAddress("Zoutcard",Zoutcard); |
if(fhBookTree->GetBranch("Yintof"))fhBookTree->SetBranchAddress("Yintof",Yintof); |
195 |
fhBookTree->SetBranchAddress("Erelcard",Erelcard); |
if(fhBookTree->GetBranch("Zintof"))fhBookTree->SetBranchAddress("Zintof",Zintof); |
196 |
fhBookTree->SetBranchAddress("Timecard",Timecard); |
if(fhBookTree->GetBranch("Xouttof"))fhBookTree->SetBranchAddress("Xouttof",Xouttof); |
197 |
fhBookTree->SetBranchAddress("Pathcard",Pathcard); |
if(fhBookTree->GetBranch("Youttof"))fhBookTree->SetBranchAddress("Youttof",Youttof); |
198 |
fhBookTree->SetBranchAddress("P0card",P0card); |
if(fhBookTree->GetBranch("Zouttof"))fhBookTree->SetBranchAddress("Zouttof",Zouttof); |
199 |
|
if(fhBookTree->GetBranch("Ereltof"))fhBookTree->SetBranchAddress("Ereltof",Ereltof); |
200 |
fhBookTree->SetBranchStatus("*",0); |
if(fhBookTree->GetBranch("Timetof"))fhBookTree->SetBranchAddress("Timetof",Timetof); |
201 |
|
if(fhBookTree->GetBranch("Pathtof"))fhBookTree->SetBranchAddress("Pathtof",Pathtof); |
202 |
}; |
if(fhBookTree->GetBranch("P0tof"))fhBookTree->SetBranchAddress("P0tof",P0tof); |
203 |
|
if(fhBookTree->GetBranch("Nthcat"))fhBookTree->SetBranchAddress("Nthcat",&Nthcat); |
204 |
|
if(fhBookTree->GetBranch("Iparcat"))fhBookTree->SetBranchAddress("Iparcat",Iparcat); |
205 |
|
if(fhBookTree->GetBranch("Icat"))fhBookTree->SetBranchAddress("Icat",Icat); |
206 |
void Digitizer::Close(){ |
if(fhBookTree->GetBranch("Xincat"))fhBookTree->SetBranchAddress("Xincat",Xincat); |
207 |
|
if(fhBookTree->GetBranch("Yincat"))fhBookTree->SetBranchAddress("Yincat",Yincat); |
208 |
delete fhBookTree; |
if(fhBookTree->GetBranch("Zincat"))fhBookTree->SetBranchAddress("Zincat",Zincat); |
209 |
|
if(fhBookTree->GetBranch("Xoutcat"))fhBookTree->SetBranchAddress("Xoutcat",Xoutcat); |
210 |
}; |
if(fhBookTree->GetBranch("Youtcat"))fhBookTree->SetBranchAddress("Youtcat",Youtcat); |
211 |
|
if(fhBookTree->GetBranch("Zoutcat"))fhBookTree->SetBranchAddress("Zoutcat",Zoutcat); |
212 |
|
if(fhBookTree->GetBranch("Erelcat"))fhBookTree->SetBranchAddress("Erelcat",Erelcat); |
213 |
|
if(fhBookTree->GetBranch("Timecat"))fhBookTree->SetBranchAddress("Timecat",Timecat); |
214 |
|
if(fhBookTree->GetBranch("Pathcat"))fhBookTree->SetBranchAddress("Pathcat",Pathcat); |
215 |
void Digitizer::Loop() { |
if(fhBookTree->GetBranch("P0cat"))fhBookTree->SetBranchAddress("P0cat",P0cat); |
216 |
// |
if(fhBookTree->GetBranch("Nthcas"))fhBookTree->SetBranchAddress("Nthcas",&Nthcas); |
217 |
// opens the raw output file and loops over the events |
if(fhBookTree->GetBranch("Iparcas"))fhBookTree->SetBranchAddress("Iparcas",Iparcas); |
218 |
// |
if(fhBookTree->GetBranch("Icas"))fhBookTree->SetBranchAddress("Icas",Icas);/////////////////////////////// |
219 |
fOutputfile.open(fFilename, ios::out | ios::binary); |
if(fhBookTree->GetBranch("Xincas"))fhBookTree->SetBranchAddress("Xincas",Xincas); |
220 |
//fOutputfile.open(Form("Output%s",fFilename), ios::out | ios::binary); |
if(fhBookTree->GetBranch("Yincas"))fhBookTree->SetBranchAddress("Yincas",Yincas); |
221 |
// |
if(fhBookTree->GetBranch("Zincas"))fhBookTree->SetBranchAddress("Zincas",Zincas); |
222 |
// Load in memory and save at the beginning of file the calorimeter calibration |
if(fhBookTree->GetBranch("Xoutcas"))fhBookTree->SetBranchAddress("Xoutcas",Xoutcas); |
223 |
// |
if(fhBookTree->GetBranch("Youtcas"))fhBookTree->SetBranchAddress("Youtcas",Youtcas); |
224 |
CaloLoadCalib(); |
if(fhBookTree->GetBranch("Zoutcas"))fhBookTree->SetBranchAddress("Zoutcas",Zoutcas); |
225 |
DigitizeCALOCALIB(); |
if(fhBookTree->GetBranch("Erelcas"))fhBookTree->SetBranchAddress("Erelcas",Erelcas); |
226 |
|
if(fhBookTree->GetBranch("Timecas"))fhBookTree->SetBranchAddress("Timecas",Timecas); |
227 |
// load, digitize and write tracker calibration |
if(fhBookTree->GetBranch("Pathcas"))fhBookTree->SetBranchAddress("Pathcas",Pathcas); |
228 |
LoadTrackCalib(); |
if(fhBookTree->GetBranch("P0cas"))fhBookTree->SetBranchAddress("P0cas",P0cas); |
229 |
|
if(fhBookTree->GetBranch("Nthspe"))fhBookTree->SetBranchAddress("Nthspe",&Nthspe); |
230 |
DigitizeTrackCalib(1); |
// if(fhBookTree->GetBranch("Iparspe"))fhBookTree->SetBranchAddress("Iparspe",Iparspe); |
231 |
UInt_t length=fTracklength*2; |
if(fhBookTree->GetBranch("Itrpb"))fhBookTree->SetBranchAddress("Itrpb",Itrpb); |
232 |
DigitizePSCU(length,0x12); |
if(fhBookTree->GetBranch("Itrsl"))fhBookTree->SetBranchAddress("Itrsl",Itrsl); |
233 |
AddPadding(); |
if(fhBookTree->GetBranch("Itspa"))fhBookTree->SetBranchAddress("Itspa",Itspa); |
234 |
WriteTrackCalib(); |
if(fhBookTree->GetBranch("Xinspe"))fhBookTree->SetBranchAddress("Xinspe",Xinspe); |
235 |
|
if(fhBookTree->GetBranch("Yinspe"))fhBookTree->SetBranchAddress("Yinspe",Yinspe); |
236 |
DigitizeTrackCalib(2); |
if(fhBookTree->GetBranch("Zinspe"))fhBookTree->SetBranchAddress("Zinspe",Zinspe); |
237 |
length=fTracklength*2; |
if(fhBookTree->GetBranch("Xoutspe"))fhBookTree->SetBranchAddress("Xoutspe",Xoutspe); |
238 |
DigitizePSCU(length,0x13); |
if(fhBookTree->GetBranch("Youtspe"))fhBookTree->SetBranchAddress("Youtspe",Youtspe); |
239 |
AddPadding(); |
if(fhBookTree->GetBranch("Zoutspe"))fhBookTree->SetBranchAddress("Zoutspe",Zoutspe); |
240 |
WriteTrackCalib(); |
if(fhBookTree->GetBranch("Xavspe"))fhBookTree->SetBranchAddress("Xavspe",Xavspe); |
241 |
|
if(fhBookTree->GetBranch("Yavspe"))fhBookTree->SetBranchAddress("Yavspe",Yavspe); |
242 |
LoadMipCor(); // some initialization of parameters -not used now- |
if(fhBookTree->GetBranch("Zavspe"))fhBookTree->SetBranchAddress("Zavspe",Zavspe); |
243 |
// end loading, digitizing and writing tracker calibration |
if(fhBookTree->GetBranch("Erelspe"))fhBookTree->SetBranchAddress("Erelspe",Erelspe); |
244 |
|
if(fhBookTree->GetBranch("Pathspe"))fhBookTree->SetBranchAddress("Pathspe",Pathspe); |
245 |
// |
if(fhBookTree->GetBranch("P0spe"))fhBookTree->SetBranchAddress("P0spe",P0spe); |
246 |
// loops over the events |
if(fhBookTree->GetBranch("Nxmult"))fhBookTree->SetBranchAddress("Nxmult",Nxmult); |
247 |
// |
if(fhBookTree->GetBranch("Nymult"))fhBookTree->SetBranchAddress("Nymult",Nymult); |
248 |
|
if(fhBookTree->GetBranch("Nstrpx"))fhBookTree->SetBranchAddress("Nstrpx",&Nstrpx); |
249 |
Int_t nentries = fhBookTree->GetEntriesFast(); |
if(fhBookTree->GetBranch("Npstripx"))fhBookTree->SetBranchAddress("Npstripx",Npstripx); |
250 |
Long64_t nbytes = 0; |
if(fhBookTree->GetBranch("Ntstripx"))fhBookTree->SetBranchAddress("Ntstripx",Ntstripx); |
251 |
for (Int_t i=0; i<nentries;i++) { |
if(fhBookTree->GetBranch("Istripx"))fhBookTree->SetBranchAddress("Istripx",Istripx); |
252 |
// |
if(fhBookTree->GetBranch("Qstripx"))fhBookTree->SetBranchAddress("Qstripx",Qstripx); |
253 |
nbytes += fhBookTree->GetEntry(i); |
if(fhBookTree->GetBranch("Xstripx"))fhBookTree->SetBranchAddress("Xstripx",Xstripx); |
254 |
// read detectors sequentially: |
if(fhBookTree->GetBranch("Nstrpy"))fhBookTree->SetBranchAddress("Nstrpy",&Nstrpy); |
255 |
// http://www.ts.infn.it/fileadmin/documents/physics/experiments/wizard/cpu/gen_arch/RM_Acquisition.pdf |
if(fhBookTree->GetBranch("Npstripy"))fhBookTree->SetBranchAddress("Npstripy",Npstripy); |
256 |
// on pamelatov: |
if(fhBookTree->GetBranch("Ntstripy"))fhBookTree->SetBranchAddress("Ntstripy",Ntstripy); |
257 |
// /cvs/yoda/techmodel/physics/NeutronDetectorReader.cpp |
if(fhBookTree->GetBranch("Istripy"))fhBookTree->SetBranchAddress("Istripy",Istripy); |
258 |
DigitizeTRIGGER(); |
if(fhBookTree->GetBranch("Qstripy"))fhBookTree->SetBranchAddress("Qstripy",Qstripy);/////////////////////// |
259 |
DigitizeTOF(); |
if(fhBookTree->GetBranch("Ystripy"))fhBookTree->SetBranchAddress("Ystripy",Ystripy); |
260 |
DigitizeAC(); |
if(fhBookTree->GetBranch("Nthcali"))fhBookTree->SetBranchAddress("Nthcali",&Nthcali); |
261 |
DigitizeCALO(); |
if(fhBookTree->GetBranch("Icaplane"))fhBookTree->SetBranchAddress("Icaplane",Icaplane); |
262 |
DigitizeTrack(); |
if(fhBookTree->GetBranch("Icastrip"))fhBookTree->SetBranchAddress("Icastrip",Icastrip); |
263 |
DigitizeS4(); |
if(fhBookTree->GetBranch("Icamod"))fhBookTree->SetBranchAddress("Icamod",Icamod); |
264 |
DigitizeND(); |
if(fhBookTree->GetBranch("Enestrip"))fhBookTree->SetBranchAddress("Enestrip",Enestrip); |
265 |
// |
if(fhBookTree->GetBranch("Nthcal"))fhBookTree->SetBranchAddress("Nthcal",&Nthcal); |
266 |
// Add padding to 64 bits |
if(fhBookTree->GetBranch("Icapl"))fhBookTree->SetBranchAddress("Icapl",Icapl); |
267 |
// |
if(fhBookTree->GetBranch("Icasi"))fhBookTree->SetBranchAddress("Icasi",Icasi); |
268 |
AddPadding(); |
if(fhBookTree->GetBranch("Icast"))fhBookTree->SetBranchAddress("Icast",Icast); |
269 |
// |
if(fhBookTree->GetBranch("Xincal"))fhBookTree->SetBranchAddress("Xincal",Xincal); |
270 |
// Create CPU header, we need packet type (0x10 = physics data) and packet length. |
if(fhBookTree->GetBranch("Yincal"))fhBookTree->SetBranchAddress("Yincal",Yincal); |
271 |
// |
if(fhBookTree->GetBranch("Zincal"))fhBookTree->SetBranchAddress("Zincal",Zincal); |
272 |
UInt_t length=2*(fCALOlength+fACbuffer+fTracklength+fNDbuffer+fS4buffer)+fPadding+fTOFbuffer+fTRIGGERbuffer; |
if(fhBookTree->GetBranch("Erelcal"))fhBookTree->SetBranchAddress("Erelcal",Erelcal); |
273 |
//UInt_t length=2*(fCALOlength+fACbuffer+fTracklength+fNDbuffer)+fPadding+fTOFbuffer+fTRIGGERbuffer; |
if(fhBookTree->GetBranch("Nthnd"))fhBookTree->SetBranchAddress("Nthnd",&Nthnd); |
274 |
DigitizePSCU(length,0x10); |
if(fhBookTree->GetBranch("Itubend"))fhBookTree->SetBranchAddress("Itubend",Itubend); |
275 |
if ( !i%100 ) std::cout << "writing event " << i << endl; |
if(fhBookTree->GetBranch("Iparnd"))fhBookTree->SetBranchAddress("Iparnd",Iparnd); |
276 |
WriteData(); |
if(fhBookTree->GetBranch("Xinnd"))fhBookTree->SetBranchAddress("Xinnd",Xinnd);///////////////////////// |
277 |
}; |
if(fhBookTree->GetBranch("Yinnd"))fhBookTree->SetBranchAddress("Yinnd",Yinnd); |
278 |
|
if(fhBookTree->GetBranch("Zinnd"))fhBookTree->SetBranchAddress("Zinnd",Zinnd); |
279 |
fOutputfile.close(); |
if(fhBookTree->GetBranch("Xoutnd"))fhBookTree->SetBranchAddress("Xoutnd",Xoutnd); |
280 |
std::cout << "files closed" << endl << flush; |
if(fhBookTree->GetBranch("Youtnd"))fhBookTree->SetBranchAddress("Youtnd",Youtnd); |
281 |
|
if(fhBookTree->GetBranch("Zoutnd"))fhBookTree->SetBranchAddress("Zoutnd",Zoutnd); |
282 |
}; |
if(fhBookTree->GetBranch("Erelnd"))fhBookTree->SetBranchAddress("Erelnd",Erelnd); |
283 |
|
if(fhBookTree->GetBranch("Timend"))fhBookTree->SetBranchAddress("Timend",Timend); |
284 |
void Digitizer::AddPadding(){ |
if(fhBookTree->GetBranch("Pathnd"))fhBookTree->SetBranchAddress("Pathnd",Pathnd); |
285 |
// |
if(fhBookTree->GetBranch("P0nd"))fhBookTree->SetBranchAddress("P0nd",P0nd); |
286 |
Float_t pd0 = (fLen+16)/64.; |
if(fhBookTree->GetBranch("Nthcard"))fhBookTree->SetBranchAddress("Nthcard",&Nthcard);///////////////////// |
287 |
Float_t pd1 = pd0 - (Float_t)int(pd0); |
if(fhBookTree->GetBranch("Iparcard"))fhBookTree->SetBranchAddress("Iparcard",Iparcard); |
288 |
Float_t padfrac = 64. - pd1 * 64.; |
if(fhBookTree->GetBranch("Icard"))fhBookTree->SetBranchAddress("Icard",Icard); |
289 |
// |
if(fhBookTree->GetBranch("Xincard"))fhBookTree->SetBranchAddress("Xincard",Xincard); |
290 |
UInt_t padbytes = (UInt_t)padfrac; |
if(fhBookTree->GetBranch("Yincard"))fhBookTree->SetBranchAddress("Yincard",Yincard); |
291 |
if ( padbytes > 0 && padbytes < 64 ){ |
if(fhBookTree->GetBranch("Zincard"))fhBookTree->SetBranchAddress("Zincard",Zincard); |
292 |
// |
if(fhBookTree->GetBranch("Xoutcard"))fhBookTree->SetBranchAddress("Xoutcard",Xoutcard); |
293 |
// here the padding length |
if(fhBookTree->GetBranch("Youtcard"))fhBookTree->SetBranchAddress("Youtcard",Youtcard);///////////////// |
294 |
// |
if(fhBookTree->GetBranch("Zoutcard"))fhBookTree->SetBranchAddress("Zoutcard",Zoutcard); |
295 |
fPadding = padbytes+64; |
if(fhBookTree->GetBranch("Erelcard"))fhBookTree->SetBranchAddress("Erelcard",Erelcard); |
296 |
// |
if(fhBookTree->GetBranch("Timecard"))fhBookTree->SetBranchAddress("Timecard",Timecard); |
297 |
// random padding bytes |
if(fhBookTree->GetBranch("Pathcard"))fhBookTree->SetBranchAddress("Pathcard",Pathcard); |
298 |
// |
// if(fhBookTree->GetBranch("P0card"))fhBookTree->SetBranchAddress("P0card",P0card); |
299 |
for (Int_t ur=0; ur<32; ur++){ |
// fhBookTree->SetBranchStatus("*",0); //modified by E.Vannuccini 03/08 |
300 |
fDataPadding[ur] = (UShort_t)rand(); |
} |
301 |
}; |
|
302 |
}; |
void Digitizer::Close(){ |
303 |
}; |
delete fhBookTree; |
304 |
|
} |
305 |
|
|
306 |
void Digitizer::DigitizePSCU(UInt_t length, UChar_t type) { |
void Digitizer::Loop() { |
307 |
// |
// |
308 |
UChar_t buff[16]; |
// opens the raw output file and loops over the events |
309 |
// |
// |
310 |
// CPU signature |
fOutputfile.open(fFilename, ios::out | ios::binary); |
311 |
// |
//fOutputfile.open(Form("Output%s",fFilename), ios::out | ios::binary); |
312 |
buff[0] = 0xFA; |
// |
313 |
buff[1] = 0xFE; |
// Load in memory and save at the beginning of file the calorimeter calibration |
314 |
buff[2] = 0xDE; |
// |
315 |
// |
CaloLoadCalib(); |
316 |
// packet type (twice) |
DigitizeCALOCALIB(); |
317 |
// |
|
318 |
buff[3] = type; |
// load, digitize and write tracker calibration |
319 |
buff[4] = type; |
LoadTrackCalib(); |
320 |
// |
|
321 |
// counter |
DigitizeTrackCalib(1); |
322 |
// |
UInt_t length=fTracklength*2; |
323 |
fCounter++; |
DigitizePSCU(length,0x12,fDataPSCU); |
324 |
while ( fCounter > 16777215 ){ |
AddPadding(); |
325 |
fCounter -= 16777215; |
WriteTrackCalib(); |
326 |
}; |
|
327 |
// |
DigitizeTrackCalib(2); |
328 |
buff[5] = (UChar_t)(fCounter >> 16); |
length=fTracklength*2; |
329 |
buff[6] = (UChar_t)(fCounter >> 8); |
DigitizePSCU(length,0x13,fDataPSCU); |
330 |
buff[7] = (UChar_t)fCounter; |
AddPadding(); |
331 |
// |
WriteTrackCalib(); |
332 |
// on board time |
LoadMipCor(); // some initialization of parameters -not used now- |
333 |
// |
// end loading, digitizing and writing tracker calibration |
334 |
ULong64_t obt = fOBT + 30LL; |
// TOF ------ read calibration file (get A1, A2, lambda1, lambda2) |
335 |
// |
const int np=48; |
336 |
while ( obt > 4294967295LL ){ |
float *atte1,*atte2,*lambda1,*lambda2; |
337 |
obt -= 4294967295LL; |
atte1=(float *)malloc(np *sizeof(float)); |
338 |
}; |
atte2=(float *)malloc(np *sizeof(float)); |
339 |
fOBT = (UInt_t)obt; |
lambda1=(float *)malloc(np *sizeof(float)); |
340 |
// |
lambda2=(float *)malloc(np *sizeof(float)); |
341 |
buff[8] = (UChar_t)(fOBT >> 24); |
LoadTOFCalib(np,atte1,atte2,lambda1,lambda2); |
342 |
buff[9] = (UChar_t)(fOBT >> 16); |
attenAC = new TF1("fAttAC",".825+.64*atan(9.8/x)",0.,45.); |
343 |
buff[10] = (UChar_t)(fOBT >> 8); |
//end tof calib |
344 |
buff[11] = (UChar_t)fOBT; |
// |
345 |
// |
// loops over the events |
346 |
// Packet length |
// |
347 |
// |
|
348 |
fLen = length; |
Int_t nentries = fhBookTree->GetEntriesFast(); |
349 |
// |
Long64_t nbytes = 0; |
350 |
buff[12] = (UChar_t)(fLen >> 16); |
for (Int_t i=0; i<nentries;i++) { |
351 |
buff[13] = (UChar_t)(fLen >> 8); |
nbytes += fhBookTree->GetEntry(i); |
352 |
buff[14] = (UChar_t)fLen; |
fEvent=i; // cecilia for calo compress mode |
353 |
// |
// read detectors sequentially: |
354 |
// CPU header CRC |
// http://www.ts.infn.it/fileadmin/documents/physics/experiments/wizard/cpu/gen_arch/RM_Acquisition.pdf |
355 |
// |
// on pamelatov: /cvs/yoda/techmodel/physics/NeutronDetectorReader.cpp |
356 |
buff[15] = (BYTE)CM_Compute_CRC16((UINT16)0, (BYTE*)&buff, (UINT32)15); |
DigitizeTOF(np,atte1,atte2,lambda1,lambda2); |
357 |
// |
DigitizeAC(); |
358 |
memcpy(fDataPSCU,buff,16*sizeof(UChar_t)); |
DigitizeCALO(); |
359 |
// |
DigitizeTrack(); |
360 |
}; |
DigitizeS4(); |
361 |
|
DigitizeND(); |
362 |
void Digitizer::ClearCaloCalib(Int_t s){ |
// |
363 |
// |
// Add padding to 64 bits |
364 |
fcstwerr[s] = 0; |
// |
365 |
fcperror[s] = 0.; |
AddPadding(); |
366 |
for ( Int_t d=0 ; d<11 ;d++ ){ |
// |
367 |
Int_t pre = -1; |
// Create CPU header, we need packet type (0x10 = physics data) and packet length. |
368 |
for ( Int_t j=0; j<96 ;j++){ |
// |
369 |
if ( j%16 == 0 ) pre++; |
UInt_t length=2*(fCALOlength+fACbuffer+fTracklength+fNDbuffer+fS4buffer)+fPadding+fTOFbuffer+fTRIGGERbuffer; |
370 |
fcalped[s][d][j] = 0.; |
//UInt_t length=2*(fCALOlength+fACbuffer+fTracklength+fNDbuffer)+fPadding+fTOFbuffer+fTRIGGERbuffer; |
371 |
fcstwerr[s] = 0.; |
DigitizePSCU(length,0x10,fDataPSCU); |
372 |
fcperror[s] = 0.; |
if ((i%1000)==0)cout << "writing event " << i << endl; |
373 |
fcalgood[s][d][j] = 0.; |
WriteData(); |
374 |
fcalthr[s][d][pre] = 0.; |
} |
375 |
fcalrms[s][d][j] = 0.; |
|
376 |
fcalbase[s][d][pre] = 0.; |
fOutputfile.close(); |
377 |
fcalvar[s][d][pre] = 0.; |
cout << "files closed" << endl; |
378 |
}; |
}; |
379 |
}; |
|
380 |
return; |
|
381 |
} |
void Digitizer::ReadData(){ |
382 |
|
|
383 |
Int_t Digitizer::CaloLoadCalib(Int_t s,TString fcalname, UInt_t calibno){ |
UShort_t InData[64]; |
384 |
// |
|
385 |
// |
// for debuggigng purposes only, write your own routine if you like (many |
386 |
UInt_t e = 0; |
// hardwired things. |
387 |
if ( s == 0 ) e = 0; |
|
388 |
if ( s == 1 ) e = 2; |
ifstream InputFile; |
389 |
if ( s == 2 ) e = 3; |
|
390 |
if ( s == 3 ) e = 1; |
// if (!InputFile) { |
391 |
// |
|
392 |
ifstream myfile; |
// std::cout << "ERROR" << endl; |
393 |
myfile.open(fcalname.Data()); |
// // An error occurred! |
394 |
if ( !myfile ){ |
// // myFile.gcount() returns the number of bytes read. |
395 |
return(-107); |
// // calling myFile.clear() will reset the stream state |
396 |
}; |
// // so it is usable again. |
397 |
myfile.close(); |
// }; |
398 |
// |
|
399 |
TFile *File = new TFile(fcalname.Data()); |
|
400 |
if ( !File ) return(-108); |
|
401 |
TTree *tr = (TTree*)File->Get("CalibCalPed"); |
//InputFile.seekg(0); |
402 |
if ( !tr ) return(-109); |
|
403 |
// |
InputFile.open(fFilename, ios::in | ios::binary); |
404 |
TBranch *calo = tr->GetBranch("CalibCalPed"); |
// fOutputfile.seekg(0); |
405 |
// |
if (!InputFile.is_open()) std::cout << "ERROR" << endl; |
406 |
pamela::CalibCalPedEvent *ce = 0; |
|
407 |
tr->SetBranchAddress("CalibCalPed", &ce); |
InputFile.seekg(0); |
408 |
// |
|
409 |
Long64_t ncalibs = calo->GetEntries(); |
for (Int_t k=0; k<=1000; k++){ |
410 |
// |
InputFile.read(reinterpret_cast<char*>(InData),384*sizeof(UShort_t)); |
411 |
if ( !ncalibs ) return(-110); |
|
412 |
// |
std::cout << "Read back: " << endl << endl; |
413 |
calo->GetEntry(calibno); |
|
414 |
// |
for (Int_t i=0; i<=384; i++){ |
415 |
if (ce->cstwerr[s] != 0 && ce->cperror[s] == 0 ) { |
printf("%4x ", InData[i]); |
416 |
fcstwerr[s] = ce->cstwerr[s]; |
if ((i+1)%8 ==0) cout << endl; |
417 |
fcperror[s] = ce->cperror[s]; |
} |
418 |
for ( Int_t d=0 ; d<11 ;d++ ){ |
|
419 |
Int_t pre = -1; |
} |
420 |
for ( Int_t j=0; j<96 ;j++){ |
cout << endl; |
421 |
if ( j%16 == 0 ) pre++; |
InputFile.close(); |
422 |
fcalped[s][d][j] = ce->calped[e][d][j]; |
|
423 |
fcalgood[s][d][j] = ce->calgood[e][d][j]; |
}; |
|
fcalthr[s][d][pre] = ce->calthr[e][d][pre]; |
|
|
fcalrms[s][d][j] = ce->calrms[e][d][j]; |
|
|
fcalbase[s][d][pre] = ce->calbase[e][d][pre]; |
|
|
fcalvar[s][d][pre] = ce->calvar[e][d][pre]; |
|
|
}; |
|
|
}; |
|
|
} else { |
|
|
printf(" CALORIMETER - ERROR: problems finding a good calibration in this file! \n\n "); |
|
|
File->Close(); |
|
|
return(-111); |
|
|
}; |
|
|
File->Close(); |
|
|
return(0); |
|
|
} |
|
|
|
|
|
|
|
|
void Digitizer::DigitizeCALOCALIB() { |
|
|
// |
|
|
// Header of the four sections |
|
|
// |
|
|
fSecCalo[0] = 0xAA00; // XE |
|
|
fSecCalo[1] = 0xB100; // XO |
|
|
fSecCalo[2] = 0xB600; // YE |
|
|
fSecCalo[3] = 0xAD00; // YO |
|
|
// |
|
|
// length of the data is 0x1215 |
|
|
// |
|
|
fSecCALOLength[0] = 0x1215; // XE |
|
|
fSecCALOLength[1] = 0x1215; // XO |
|
|
fSecCALOLength[2] = 0x1215; // YE |
|
|
fSecCALOLength[3] = 0x1215; // YO |
|
|
// |
|
|
Int_t chksum = 0; |
|
|
UInt_t tstrip = 0; |
|
|
UInt_t fSecPointer = 0; |
|
|
// |
|
|
for (Int_t sec=0; sec < 4; sec++){ |
|
|
// |
|
|
// sec = 0 -> XE 1 -> XO 2-> YE 3 -> YO |
|
|
// |
|
|
fCALOlength = 0; |
|
|
memset(fDataCALO,0,sizeof(UShort_t)*fCALObuffer); |
|
|
fSecPointer = fCALOlength; |
|
|
// |
|
|
// First of all we have section header and packet length |
|
|
// |
|
|
fDataCALO[fCALOlength] = fSecCalo[sec]; |
|
|
fCALOlength++; |
|
|
fDataCALO[fCALOlength] = fSecCALOLength[sec]; |
|
|
fCALOlength++; |
|
|
// |
|
|
// Section XO is read in the opposite direction respect to the others |
|
|
// |
|
|
chksum = 0; |
|
|
// |
|
|
for (Int_t plane=0; plane < 11; plane++){ |
|
|
// |
|
|
if ( sec == 1 ) tstrip = fCALOlength + 96*2; |
|
|
// |
|
|
for (Int_t strip=0; strip < 96; strip++){ |
|
|
// |
|
|
chksum += (Int_t)fcalped[sec][plane][strip]; |
|
|
// |
|
|
// save value |
|
|
// |
|
|
if ( sec == 1 ){ |
|
|
tstrip -= 2; |
|
|
fDataCALO[tstrip] = (Int_t)fcalped[sec][plane][strip]; |
|
|
fDataCALO[tstrip+1] = (Int_t)fcalgood[sec][plane][strip]; |
|
|
} else { |
|
|
fDataCALO[fCALOlength] = (Int_t)fcalped[sec][plane][strip]; |
|
|
fDataCALO[fCALOlength+1] = (Int_t)fcalgood[sec][plane][strip]; |
|
|
}; |
|
|
fCALOlength +=2; |
|
|
}; |
|
|
// |
|
|
}; |
|
|
// |
|
|
fDataCALO[fCALOlength] = (UShort_t)chksum; |
|
|
fCALOlength++; |
|
|
fDataCALO[fCALOlength] = 0; |
|
|
fCALOlength++; |
|
|
fDataCALO[fCALOlength] = (UShort_t)((Int_t)(chksum >> 16)); |
|
|
fCALOlength++; |
|
|
// |
|
|
// Section XO is read in the opposite direction respect to the others |
|
|
// |
|
|
chksum = 0; |
|
|
// |
|
|
for (Int_t plane=0; plane < 11; plane++){ |
|
|
// |
|
|
if ( sec == 1 ) tstrip = fCALOlength+6*2; |
|
|
// |
|
|
for (Int_t strip=0; strip < 6; strip++){ |
|
|
// |
|
|
chksum += (Int_t)fcalthr[sec][plane][strip]; |
|
|
// |
|
|
// save value |
|
|
// |
|
|
if ( sec == 1 ){ |
|
|
tstrip -= 2; |
|
|
fDataCALO[tstrip] = 0; |
|
|
fDataCALO[tstrip+1] = (Int_t)fcalthr[sec][plane][strip]; |
|
|
} else { |
|
|
fDataCALO[fCALOlength] = 0; |
|
|
fDataCALO[fCALOlength+1] = (Int_t)fcalthr[sec][plane][strip]; |
|
|
}; |
|
|
fCALOlength +=2; |
|
|
}; |
|
|
// |
|
|
}; |
|
|
// |
|
|
fDataCALO[fCALOlength] = 0; |
|
|
fCALOlength++; |
|
|
fDataCALO[fCALOlength] = (UShort_t)chksum; |
|
|
fCALOlength++; |
|
|
fDataCALO[fCALOlength] = 0; |
|
|
fCALOlength++; |
|
|
fDataCALO[fCALOlength] = (UShort_t)((Int_t)(chksum >> 16)); |
|
|
fCALOlength++; |
|
|
// |
|
|
// Section XO is read in the opposite direction respect to the others |
|
|
// |
|
|
for (Int_t plane=0; plane < 11; plane++){ |
|
|
// |
|
|
if ( sec == 1 ) tstrip = fCALOlength+96*2; |
|
|
// |
|
|
for (Int_t strip=0; strip < 96; strip++){ |
|
|
// |
|
|
// save value |
|
|
// |
|
|
if ( sec == 1 ){ |
|
|
tstrip -= 2; |
|
|
fDataCALO[tstrip] = 0; |
|
|
fDataCALO[tstrip+1] = (Int_t)fcalrms[sec][plane][strip]; |
|
|
} else { |
|
|
fDataCALO[fCALOlength] = 0; |
|
|
fDataCALO[fCALOlength+1] = (Int_t)fcalrms[sec][plane][strip]; |
|
|
}; |
|
|
fCALOlength += 2; |
|
|
}; |
|
|
// |
|
|
}; |
|
|
// |
|
|
// Section XO is read in the opposite direction respect to the others |
|
|
// |
|
|
for (Int_t plane=0; plane < 11; plane++){ |
|
|
// |
|
|
if ( sec == 1 ) tstrip = fCALOlength+6*4; |
|
|
// |
|
|
for (Int_t strip=0; strip < 6; strip++){ |
|
|
// |
|
|
// save value |
|
|
// |
|
|
if ( sec == 1 ){ |
|
|
tstrip -= 4; |
|
|
fDataCALO[tstrip] = 0; |
|
|
fDataCALO[tstrip+1] = (Int_t)fcalbase[sec][plane][strip]; |
|
|
fDataCALO[tstrip+2] = 0; |
|
|
fDataCALO[tstrip+3] = (Int_t)fcalvar[sec][plane][strip]; |
|
|
} else { |
|
|
fDataCALO[fCALOlength] = 0; |
|
|
fDataCALO[fCALOlength+1] = (Int_t)fcalbase[sec][plane][strip]; |
|
|
fDataCALO[fCALOlength+2] = 0; |
|
|
fDataCALO[fCALOlength+3] = (Int_t)fcalvar[sec][plane][strip]; |
|
|
}; |
|
|
fCALOlength +=4; |
|
|
}; |
|
|
// |
|
|
}; |
|
|
// |
|
|
// |
|
|
// here we calculate and save the CRC |
|
|
// |
|
|
fDataCALO[fCALOlength] = 0; |
|
|
fCALOlength++; |
|
|
Short_t CRC = 0; |
|
|
for (UInt_t i=0; i<(fCALOlength-fSecPointer); i++){ |
|
|
CRC=crc(CRC,fDataCALO[i+fSecPointer]); |
|
|
}; |
|
|
fDataCALO[fCALOlength] = (UShort_t)CRC; |
|
|
fCALOlength++; |
|
|
// |
|
|
UInt_t length=fCALOlength*2; |
|
|
DigitizePSCU(length,0x18); |
|
|
// |
|
|
// Add padding to 64 bits |
|
|
// |
|
|
AddPadding(); |
|
|
// |
|
|
fOutputfile.write(reinterpret_cast<char*>(fDataPSCU),sizeof(UShort_t)*fPSCUbuffer); |
|
|
UShort_t temp[1000000]; |
|
|
memset(temp,0,sizeof(UShort_t)*1000000); |
|
|
swab(fDataCALO,temp,sizeof(UShort_t)*fCALOlength); // WE MUST SWAP THE BYTES!!! |
|
|
fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fCALOlength); |
|
|
// |
|
|
// padding to 64 bytes |
|
|
// |
|
|
if ( fPadding ){ |
|
|
fOutputfile.write(reinterpret_cast<char*>(fDataPadding),sizeof(UChar_t)*fPadding); |
|
|
}; |
|
|
// |
|
|
// |
|
|
}; |
|
|
// |
|
|
}; |
|
|
|
|
|
void Digitizer::CaloLoadCalib() { |
|
|
// |
|
|
fGivenCaloCalib = 0; // ####@@@@ should be given as input par @@@@#### |
|
|
// |
|
|
// first of all load the MIP to ADC conversion values |
|
|
// |
|
|
stringstream calfile; |
|
|
Int_t error = 0; |
|
|
GL_PARAM *glparam = new GL_PARAM(); |
|
|
// |
|
|
// determine where I can find calorimeter ADC to MIP conversion file |
|
|
// |
|
|
error = 0; |
|
|
error = glparam->Query_GL_PARAM(3,101,fDbc); |
|
|
// |
|
|
calfile.str(""); |
|
|
calfile << glparam->PATH.Data() << "/"; |
|
|
calfile << glparam->NAME.Data(); |
|
|
// |
|
|
printf("\n Using Calorimeter ADC to MIP conversion file: \n %s \n",calfile.str().c_str()); |
|
|
FILE *f; |
|
|
f = fopen(calfile.str().c_str(),"rb"); |
|
|
// |
|
|
memset(fCalomip,0,4224*sizeof(fCalomip[0][0][0])); |
|
|
// |
|
|
for (Int_t m = 0; m < 2 ; m++ ){ |
|
|
for (Int_t k = 0; k < 22; k++ ){ |
|
|
for (Int_t l = 0; l < 96; l++ ){ |
|
|
fread(&fCalomip[m][k][l],sizeof(fCalomip[m][k][l]),1,f); |
|
|
}; |
|
|
}; |
|
|
}; |
|
|
fclose(f); |
|
|
// |
|
|
// determine which calibration has to be used and load it for each section |
|
|
// |
|
|
GL_CALO_CALIB *glcalo = new GL_CALO_CALIB(); |
|
|
GL_ROOT *glroot = new GL_ROOT(); |
|
|
TString fcalname; |
|
|
UInt_t idcalib; |
|
|
UInt_t calibno; |
|
|
UInt_t utime = 0; |
|
|
// |
|
|
for (UInt_t s=0; s<4; s++){ |
|
|
// |
|
|
// clear calo calib variables for section s |
|
|
// |
|
|
ClearCaloCalib(s); |
|
|
// |
|
|
if ( fGivenCaloCalib ){ |
|
|
// |
|
|
// a time has been given as input on the command line so retrieve the calibration that preceed that time |
|
|
// |
|
|
glcalo->Query_GL_CALO_CALIB(fGivenCaloCalib,utime,s,fDbc); |
|
|
// |
|
|
calibno = glcalo->EV_ROOT; |
|
|
idcalib = glcalo->ID_ROOT_L0; |
|
|
// |
|
|
// determine path and name and entry of the calibration file |
|
|
// |
|
|
printf("\n"); |
|
|
printf(" ** SECTION %i **\n",s); |
|
|
// |
|
|
glroot->Query_GL_ROOT(idcalib,fDbc); |
|
|
// |
|
|
stringstream name; |
|
|
name.str(""); |
|
|
name << glroot->PATH.Data() << "/"; |
|
|
name << glroot->NAME.Data(); |
|
|
// |
|
|
fcalname = (TString)name.str().c_str(); |
|
|
// |
|
|
printf("\n Section %i : using file %s calibration at entry %i: \n",s,fcalname.Data(),calibno); |
|
|
// |
|
|
} else { |
|
|
error = 0; |
|
|
error = glparam->Query_GL_PARAM(1,104,fDbc); |
|
|
// |
|
|
calfile.str(""); |
|
|
calfile << glparam->PATH.Data() << "/"; |
|
|
calfile << glparam->NAME.Data(); |
|
|
// |
|
|
printf("\n Section %i : using default calorimeter calibration: \n %s \n",s,calfile.str().c_str()); |
|
|
// |
|
|
fcalname = (TString)calfile.str().c_str(); |
|
|
calibno = s; |
|
|
// |
|
|
}; |
|
|
// |
|
|
// load calibration variables in memory |
|
|
// |
|
|
CaloLoadCalib(s,fcalname,calibno); |
|
|
// |
|
|
}; |
|
|
// |
|
|
// at this point we have in memory the calorimeter calibration and we can save it to disk in the correct format and use it to digitize the data |
|
|
// |
|
|
delete glparam; |
|
|
delete glcalo; |
|
|
delete glroot; |
|
|
}; |
|
|
|
|
|
void Digitizer::DigitizeCALO() { |
|
|
// |
|
|
fModCalo = 0; // 0 is RAW, 1 is COMPRESS, 2 is FULL ####@@@@ should be given as input par @@@@#### |
|
|
// |
|
|
// |
|
|
// |
|
|
fCALOlength = 0; // reset total dimension of calo data |
|
|
// |
|
|
// gpamela variables to be used |
|
|
// |
|
|
fhBookTree->SetBranchStatus("Nthcali",1); |
|
|
fhBookTree->SetBranchStatus("Icaplane",1); |
|
|
fhBookTree->SetBranchStatus("Icastrip",1); |
|
|
fhBookTree->SetBranchStatus("Icamod",1); |
|
|
fhBookTree->SetBranchStatus("Enestrip",1); |
|
|
// |
|
|
// call different routines depending on the acq mode you want to simulate |
|
|
// |
|
|
switch ( fModCalo ){ |
|
|
case 0: |
|
|
this->DigitizeCALORAW(); |
|
|
break; |
|
|
case 1: |
|
|
this->DigitizeCALOCOMPRESS(); |
|
|
break; |
|
|
case 2: |
|
|
this->DigitizeCALOFULL(); |
|
|
break; |
|
|
}; |
|
|
// |
|
|
}; |
|
|
|
|
|
Float_t Digitizer::GetCALOen(Int_t sec, Int_t plane, Int_t strip){ |
|
|
// |
|
|
// determine plane and strip |
|
|
// |
|
|
Int_t mplane = 0; |
|
|
// |
|
|
// wrong! |
|
|
// |
|
|
// if ( sec == 0 || sec == 3 ) mplane = (plane * 4) + sec + 1; |
|
|
// if ( sec == 1 ) mplane = (plane * 4) + 2 + 1; |
|
|
// if ( sec == 2 ) mplane = (plane * 4) + 1 + 1; |
|
|
// |
|
|
if ( sec == 0 ) mplane = plane * 4 + 1; // it must be 0, 4, 8, ... (+1) from plane = 0, 11 |
|
|
if ( sec == 1 ) mplane = plane * 4 + 2 + 1; // it must be 2, 6, 10, ... (+1) from plane = 0, 11 |
|
|
if ( sec == 2 ) mplane = plane * 4 + 3 + 1; // it must be 3, 7, 11, ... (+1) from plane = 0, 11 |
|
|
if ( sec == 3 ) mplane = plane * 4 + 1 + 1; // it must be 1, 5, 9, ... (+1) from plane = 0, 11 |
|
|
// |
|
|
Int_t mstrip = strip + 1; |
|
|
// |
|
|
// search energy release in gpamela output |
|
|
// |
|
|
for (Int_t i=0; i<Nthcali;i++){ |
|
|
if ( Icaplane[i] == mplane && Icastrip[i] == mstrip ){ |
|
|
return (Enestrip[i]); |
|
|
}; |
|
|
}; |
|
|
// |
|
|
// if not found it means no energy release so return 0. |
|
|
// |
|
|
return(0.); |
|
|
}; |
|
|
|
|
|
void Digitizer::DigitizeCALORAW() { |
|
|
// |
|
|
// some variables |
|
|
// |
|
|
Float_t ens = 0.; |
|
|
UInt_t adcsig = 0; |
|
|
UInt_t adcbase = 0; |
|
|
UInt_t adc = 0; |
|
|
Int_t pre = 0; |
|
|
UInt_t l = 0; |
|
|
UInt_t lpl = 0; |
|
|
UInt_t tstrip = 0; |
|
|
UInt_t fSecPointer = 0; |
|
|
Double_t pedenoise; |
|
|
Float_t rms = 0.; |
|
|
Float_t pedestal = 0.; |
|
|
// |
|
|
// clean the data structure |
|
|
// |
|
|
memset(fDataCALO,0,sizeof(UShort_t)*fCALObuffer); |
|
|
// |
|
|
// Header of the four sections |
|
|
// |
|
|
fSecCalo[0] = 0xEA08; // XE |
|
|
fSecCalo[1] = 0xF108; // XO |
|
|
fSecCalo[2] = 0xF608; // YE |
|
|
fSecCalo[3] = 0xED08; // YO |
|
|
// |
|
|
// length of the data is 0x0428 in RAW mode |
|
|
// |
|
|
fSecCALOLength[0] = 0x0428; // XE |
|
|
fSecCALOLength[1] = 0x0428; // XO |
|
|
fSecCALOLength[2] = 0x0428; // YE |
|
|
fSecCALOLength[3] = 0x0428; // YO |
|
|
// |
|
|
// let's start |
|
|
// |
|
|
fCALOlength = 0; |
|
|
// |
|
|
for (Int_t sec=0; sec < 4; sec++){ |
|
|
// |
|
|
// sec = 0 -> XE 1 -> XO 2-> YE 3 -> YO |
|
|
// |
|
|
l = 0; // XE and XO are Y planes |
|
|
if ( sec < 2 ) l = 1; // while YE and YO are X planes |
|
|
// |
|
|
fSecPointer = fCALOlength; |
|
|
// |
|
|
// First of all we have section header and packet length |
|
|
// |
|
|
fDataCALO[fCALOlength] = fSecCalo[sec]; |
|
|
fCALOlength++; |
|
|
fDataCALO[fCALOlength] = fSecCALOLength[sec]; |
|
|
fCALOlength++; |
|
|
// |
|
|
// selftrigger coincidences - in the future we should add here some code to simulate timing response of pre-amplifiers |
|
|
// |
|
|
for (Int_t autoplane=0; autoplane < 7; autoplane++){ |
|
|
fDataCALO[fCALOlength] = 0x0000; |
|
|
fCALOlength++; |
|
|
}; |
|
|
// |
|
|
// |
|
|
// here comes data |
|
|
// |
|
|
// |
|
|
// Section XO is read in the opposite direction respect to the others |
|
|
// |
|
|
if ( sec == 1 ){ |
|
|
tstrip = 96*11 + fCALOlength; |
|
|
} else { |
|
|
tstrip = 0; |
|
|
}; |
|
|
// |
|
|
pre = -1; |
|
|
// |
|
|
for (Int_t strip=0; strip < 96; strip++){ |
|
|
// |
|
|
// which is the pre for this strip? |
|
|
// |
|
|
if (strip%16 == 0) { |
|
|
pre++; |
|
|
}; |
|
|
// |
|
|
if ( sec == 1 ) tstrip -= 11; |
|
|
// |
|
|
for (Int_t plane=0; plane < 11; plane++){ |
|
|
// |
|
|
// here is wrong!!!! |
|
|
// |
|
|
// |
|
|
// if ( plane%2 == 0 && sec%2 != 0){ |
|
|
// lpl = plane*2; |
|
|
// } else { |
|
|
// lpl = (plane*2) + 1; |
|
|
// }; |
|
|
// |
|
|
if ( sec == 0 || sec == 3 ) lpl = plane * 2; |
|
|
if ( sec == 1 || sec == 2 ) lpl = (plane * 2) + 1; |
|
|
// |
|
|
// get the energy in GeV from the simulation for that strip |
|
|
// |
|
|
ens = this->GetCALOen(sec,plane,strip); |
|
|
// |
|
|
// convert it into ADC channels |
|
|
// |
|
|
adcsig = int(ens*fCalomip[l][lpl][strip]/fCALOGeV2MIPratio); |
|
|
// |
|
|
// sum baselines |
|
|
// |
|
|
adcbase = (UInt_t)fcalbase[sec][plane][pre]; |
|
|
// |
|
|
// add noise and pedestals |
|
|
// |
|
|
pedestal = fcalped[sec][plane][strip]; |
|
|
rms = fcalrms[sec][plane][strip]/4.; |
|
|
// |
|
|
// Add random gaussian noise of RMS rms and Centered in the pedestal |
|
|
// |
|
|
pedenoise = gRandom->Gaus((Double_t)pedestal,(Double_t)rms); |
|
|
// |
|
|
// Sum all contribution |
|
|
// |
|
|
adc = adcsig + adcbase + (Int_t)round(pedenoise); |
|
|
// |
|
|
// Signal saturation |
|
|
// |
|
|
if ( adc > 0x7FFF ) adc = 0x7FFF; |
|
|
// |
|
|
// save value |
|
|
// |
|
|
if ( sec == 1 ){ |
|
|
fDataCALO[tstrip] = adc; |
|
|
tstrip++; |
|
|
} else { |
|
|
fDataCALO[fCALOlength] = adc; |
|
|
}; |
|
|
fCALOlength++; |
|
|
// |
|
|
}; |
|
|
// |
|
|
if ( sec == 1 ) tstrip -= 11; |
|
|
// |
|
|
}; |
|
|
// |
|
|
// here we calculate and save the CRC |
|
|
// |
|
|
Short_t CRC = 0; |
|
|
for (UInt_t i=0; i<(fCALOlength-fSecPointer); i++){ |
|
|
CRC=crc(CRC,fDataCALO[i+fSecPointer]); |
|
|
}; |
|
|
fDataCALO[fCALOlength] = (UShort_t)CRC; |
|
|
fCALOlength++; |
|
|
// |
|
|
}; |
|
|
// |
|
|
// for (Int_t i=0; i<fCALOlength; i++){ |
|
|
// printf(" WORD %i DIGIT %0x \n",i,fDataCALO[i]); |
|
|
// }; |
|
|
// |
|
|
}; |
|
|
|
|
|
void Digitizer::DigitizeCALOCOMPRESS() { |
|
|
// |
|
|
printf(" COMPRESS MODE STILL NOT IMPLEMENTED! \n"); |
|
|
// |
|
|
this->DigitizeCALORAW(); |
|
|
return; |
|
|
// |
|
|
// |
|
|
// |
|
|
fSecCalo[0] = 0xEA00; |
|
|
fSecCalo[1] = 0xF100; |
|
|
fSecCalo[2] = 0xF600; |
|
|
fSecCalo[3] = 0xED00; |
|
|
// |
|
|
// length of the data in DSP mode must be calculated on fly during digitization |
|
|
// |
|
|
memset(fSecCALOLength,0x0,4*sizeof(UShort_t)); |
|
|
// |
|
|
// here comes raw data |
|
|
// |
|
|
Int_t en = 0; |
|
|
// |
|
|
for (Int_t sec=0; sec < 4; sec++){ |
|
|
fDataCALO[en] = fSecCalo[sec]; |
|
|
en++; |
|
|
fDataCALO[en] = fSecCALOLength[sec]; |
|
|
en++; |
|
|
for (Int_t plane=0; plane < 11; plane++){ |
|
|
for (Int_t strip=0; strip < 11; strip++){ |
|
|
fDataCALO[en] = 0x0; |
|
|
en++; |
|
|
}; |
|
|
}; |
|
|
}; |
|
|
// |
|
|
}; |
|
|
|
|
|
void Digitizer::DigitizeCALOFULL() { |
|
|
// |
|
|
printf(" FULL MODE STILL NOT IMPLEMENTED! \n"); |
|
|
// |
|
|
this->DigitizeCALORAW(); |
|
|
return; |
|
|
// |
|
|
fSecCalo[0] = 0xEA00; |
|
|
fSecCalo[1] = 0xF100; |
|
|
fSecCalo[2] = 0xF600; |
|
|
fSecCalo[3] = 0xED00; |
|
|
// |
|
|
// length of the data in DSP mode must be calculated on fly during digitization |
|
|
// |
|
|
memset(fSecCALOLength,0x0,4*sizeof(UShort_t)); |
|
|
// |
|
|
// here comes raw data |
|
|
// |
|
|
Int_t en = 0; |
|
|
// |
|
|
for (Int_t sec=0; sec < 4; sec++){ |
|
|
fDataCALO[en] = fSecCalo[sec]; |
|
|
en++; |
|
|
fDataCALO[en] = fSecCALOLength[sec]; |
|
|
en++; |
|
|
for (Int_t plane=0; plane < 11; plane++){ |
|
|
for (Int_t strip=0; strip < 11; strip++){ |
|
|
fDataCALO[en] = 0x0; |
|
|
en++; |
|
|
}; |
|
|
}; |
|
|
}; |
|
|
// |
|
|
}; |
|
|
|
|
|
void Digitizer::DigitizeTRIGGER() { |
|
|
//fDataTrigger: 153 bytes |
|
|
for (Int_t j=0; j < 153; j++) |
|
|
fDataTrigger[j]=0x00; |
|
|
}; |
|
|
|
|
|
Int_t Digitizer::DigitizeTOF() { |
|
|
//fDataTof: 12 x 23 bytes (=276 bytes) |
|
|
UChar_t *pTof=fDataTof; |
|
|
Bool_t DEBUG=false; |
|
|
|
|
|
// --- activate branches: |
|
|
fhBookTree->SetBranchStatus("Nthtof",1); |
|
|
fhBookTree->SetBranchStatus("Ipltof",1); |
|
|
fhBookTree->SetBranchStatus("Ipaddle",1); |
|
|
fhBookTree->SetBranchStatus("Xintof",1); |
|
|
fhBookTree->SetBranchStatus("Yintof",1); |
|
|
fhBookTree->SetBranchStatus("Xouttof",1); |
|
|
fhBookTree->SetBranchStatus("Youttof",1); |
|
|
fhBookTree->SetBranchStatus("Ereltof",1); |
|
|
fhBookTree->SetBranchStatus("Timetof",1); |
|
|
// not yet used: Zintof, Xouttof, Youttof, Zouttof |
|
|
|
|
|
// ------ evaluate energy in each pmt: ------ |
|
|
// strip geometry (lenght/width) |
|
|
Float_t dimel[6] = {33.0, 40.8 ,18.0, 15.0, 15.0, 18.0}; |
|
|
//Float_t dimes[6] = {5.1, 5.5, 7.5, 9.0, 6.0, 5.0}; |
|
|
|
|
|
// S11 8 paddles 33.0 x 5.1 cm |
|
|
// S12 6 paddles 40.8 x 5.5 cm |
|
|
// S21 2 paddles 18.0 x 7.5 cm |
|
|
// S22 2 paddles 15.0 x 9.0 cm |
|
|
// S31 3 paddles 15.0 x 6.0 cm |
|
|
// S32 3 paddles 18.0 x 5.0 cm |
|
|
|
|
|
Float_t FGeo[2]={0., 0.}; /* geometrical factor */ |
|
|
|
|
|
const Float_t Pho_keV = 10.; // photons per keV in scintillator |
|
|
const Float_t echarge = 1.6e-19; // electron charge |
|
|
Float_t Npho=0.; |
|
|
Float_t QevePmt_pC[48]; |
|
|
Float_t QhitPad_pC[2]={0., 0.}; |
|
|
Float_t QhitPmt_pC[2]={0., 0.}; |
|
|
Float_t pmGain = 3.5e6; /* PMT Gain: the same for all PMTs */ |
|
|
Float_t effi=0.21; /* Efficienza di fotocatodo */ |
|
|
|
|
|
// Float_t ADC_pC0=-58.1; // ADC/pC conversion coefficient 0 |
|
|
// Float_t ADC_pC1=1.728; // ADC/pC conversion coefficient 1 |
|
|
// Float_t ADC_pC2=-4.063e-05; // ADC/pC conversion coefficient 2 |
|
|
// Float_t ADC_pC3=-5.763e-08; // ADC/pC conversion coefficient 3 |
|
|
|
|
|
// pC < 800 |
|
|
Float_t ADC_pC0A = -4.437616e+01 ; |
|
|
Float_t ADC_pC1A = 1.573329e+00 ; |
|
|
Float_t ADC_pC2A = 2.780518e-04 ; |
|
|
Float_t ADC_pC3A = -2.302160e-07 ; |
|
|
|
|
|
// pC > 800: |
|
|
Float_t ADC_pC0B = -2.245756e+02 ; |
|
|
Float_t ADC_pC1B = 2.184156e+00 ; |
|
|
Float_t ADC_pC2B = -4.171825e-04 ; |
|
|
Float_t ADC_pC3B = 3.789715e-08 ; |
|
|
|
|
|
Float_t pCthres=40.; // threshold in charge |
|
|
Int_t ADClast=4095; // no signal --> ADC ch=4095 |
|
|
Int_t ADCsat=3100; // saturation value for the ADCs |
|
|
Int_t ADCtof[48]; |
|
|
|
|
|
|
|
|
// ---- introduce scale factors to tune simul ADC to real data 24-oct DC |
|
|
// Float_t ScaleFact[48]={0.18,0.22,0.35,0.26,0.47,0.35,0.31,0.37, |
|
|
// 0.44,0.23,0.38,0.60,0.39,0.29,0.40,0.23, |
|
|
// 0.30,0.66,0.22,1.53,0.17,0.55, |
|
|
// 0.84,0.19,0.21,1.64,0.62,0.13, |
|
|
// 0.18,0.15,0.10,0.14,0.14,0.14,0.14,0.12, |
|
|
// 0.26,0.18,0.25,0.23,0.20,0.40,0.19,0.23,0.25,0.23,0.25,0.20}; |
|
|
|
|
|
// new scale factors: WM 30-Oct-07 |
|
|
// Float_t ScaleFact[48]={0.35,0.41,0.32,0.34,0.58,0.47,0.42,0.44, |
|
|
// 0.50,0.34,0.50,0.50,0.51,0.42,0.46,0.25, |
|
|
// 0.20,0.38,0.29,0.49,0.24,0.68, |
|
|
// 0.30,0.26,0.28,0.79,0.31,0.12, |
|
|
// 0.25,0.21,0.14,0.20, |
|
|
// 0.16,0.17,0.19,0.18, |
|
|
// 0.34,0.27,0.34,0.31,0.25,0.57, |
|
|
// 0.24,0.34,0.34,0.32,0.31,0.30}; |
|
|
|
|
|
Float_t ScaleFact[48]={0.39, 0.49, 0.38, 0.40, 0.65, 0.51, 0.43, |
|
|
0.49, 0.58, 0.38, 0.53, 0.57, 0.53, 0.45, 0.49, 0.16, |
|
|
0.15, 0.44, 0.28, 0.57, 0.26, 0.72, 0.37, 0.29, 0.30, 0.89, |
|
|
0.37, 0.08, 0.27, 0.23, 0.12, 0.22, 0.15, 0.16, 0.21, |
|
|
0.19, 0.41, 0.32, 0.39, 0.38, 0.28, 0.66, 0.28, 0.40, 0.39, 0.40, 0.37, 0.35 }; |
|
|
|
|
|
for(Int_t i=0; i<48; i++){ |
|
|
QevePmt_pC[i] = 0; |
|
|
ADCtof[i]=0; |
|
|
} |
|
|
|
|
|
// ------ read calibration file (get A1, A2, lambda1, lambda2) |
|
|
ifstream fileTriggerCalib; |
|
|
TString ftrigname="TrigCalibParam.txt"; |
|
|
fileTriggerCalib.open(ftrigname.Data()); |
|
|
if ( !fileTriggerCalib ) { |
|
|
printf("debug: no trigger calib file!\n"); |
|
|
return(-117); //check output! |
|
|
}; |
|
|
Float_t atte1[48],atte2[48],lambda1[48],lambda2[48]; |
|
|
Int_t temp=0; |
|
|
// correct readout WM Oct '07 |
|
|
for(Int_t i=0; i<48; i++){ |
|
|
fileTriggerCalib >> temp; |
|
|
fileTriggerCalib >> atte1[i]; |
|
|
fileTriggerCalib >> lambda1[i]; |
|
|
fileTriggerCalib >> atte2[i]; |
|
|
fileTriggerCalib >> lambda2[i]; |
|
|
fileTriggerCalib >> temp; |
|
|
} |
|
|
fileTriggerCalib.close(); |
|
|
|
|
|
Int_t ip, ipad; |
|
|
//Int_t ipmt; |
|
|
Int_t pmtleft=0, pmtright=0; |
|
|
Int_t *pl, *pr; |
|
|
pl = &pmtleft; |
|
|
pr = &pmtright; |
|
|
|
|
|
// TDC variables: |
|
|
Int_t TDClast=4095; // no signal --> TDC ch=4095 |
|
|
Int_t TDCint[48]; |
|
|
Float_t tdc[48],tdc1[48],tdcpmt[48]; |
|
|
for(Int_t i=0; i<48; i++) { |
|
|
tdcpmt[i] = 1000.; |
|
|
tdc[i] = 0.; // 18-oct WM |
|
|
tdc1[i] = 0.; // 18-oct WM |
|
|
} |
|
|
|
|
|
Float_t thresh=10.; // to be defined better... (Wolfgang) |
|
|
|
|
|
// === TDC: simulate timing for each paddle |
|
|
//Float_t dt1 = 285.e-12 ; // single PMT resolution |
|
|
Float_t dt1 = 425.e-12 ; // single PMT resolution (WM, Nov'07) |
|
|
Float_t tdcres[50],c1_S[50],c2_S[50],c3_S[50]; |
|
|
for(Int_t j=0;j<48;j++) tdcres[j] = 50.E-12; // TDC resolution 50 picosec |
|
|
for(Int_t j=0;j<48;j++) c1_S[j] = 500.; // cable length in channels |
|
|
for(Int_t j=0;j<48;j++) c2_S[j] = 0.; |
|
|
for(Int_t j=0;j<48;j++) c3_S[j] = 1000.; |
|
|
for(Int_t j=0;j<48;j++) c1_S[j] = c1_S[j]*tdcres[j]; // cable length in sec |
|
|
for(Int_t j=0;j<48;j++) c2_S[j] = c2_S[j]*tdcres[j]; |
|
|
// ih = 0 + i1; // not used?? (Silvio) |
|
|
|
|
|
/* ********************************** start loop over hits */ |
|
|
|
|
|
for(Int_t nh=0; nh<Nthtof; nh++){ |
|
|
|
|
|
Float_t s_l_g[6] = {8.0, 8.0, 20.9, 22.0, 9.8, 8.3 }; // length of the lightguide |
|
|
Float_t t1,t2,veff,veff1,veff0 ; |
|
|
veff0 = 100.*1.0e8 ; // light velocity in the scintillator in m/sec |
|
|
veff1 = 100.*1.5e8; // light velocity in the lightguide in m/sec |
|
|
veff=veff0; // signal velocity in the paddle |
|
|
|
|
|
t1 = Timetof[nh] ; // Start |
|
|
t2 = Timetof[nh] ; |
|
|
|
|
|
// Donatella: redefinition plane and pad for vectors in C |
|
|
ip = Ipltof[nh]-1; |
|
|
ipad = Ipaddle[nh]-1; |
|
|
pmtleft=0; |
|
|
pmtright=0; |
|
|
|
|
|
// WM: S12 paddles are "reversed" (Nov'07) |
|
|
if (ip==2) |
|
|
if (ipad==0) |
|
|
ipad=1; |
|
|
else |
|
|
ipad=0; |
|
|
|
|
|
if (ip<6) { |
|
|
Paddle2Pmt(ip, ipad, &pmtleft, &pmtright); |
|
|
|
|
|
// DC: evaluates mean position and path inside the paddle |
|
|
|
|
|
Float_t tpos=0.; |
|
|
Float_t path[2] = {0., 0.}; |
|
|
//--- Strip in Y = S11,S22,S31 ------ |
|
|
if(ip==0 || ip==3 || ip==4) |
|
|
tpos = (Yintof[nh]+Youttof[nh])/2.; |
|
|
else |
|
|
if(ip==1 || ip==2 || ip==5) //--- Strip in X for S12,S21,S32 |
|
|
tpos = (Xintof[nh]+Xouttof[nh])/2.; |
|
|
else //if (ip!=6) |
|
|
printf("*** WARNING TOF: this option should never occur! (ip=%2i, nh=%2i)\n",ip,nh); |
|
|
|
|
|
path[0]= tpos + dimel[ip]/2.; // path to left PMT |
|
|
path[1]= dimel[ip]/2.- tpos; // path to right PMT |
|
|
|
|
|
// cout <<"Strip N. ="<< ipaddle <<" piano n.= "<< iplane <<" POSIZ = "<< tpos <<"\n"; |
|
|
|
|
|
if (DEBUG) { |
|
|
cout <<" plane "<<ip<<" strip # ="<< ipad <<" tpos "<< tpos <<"\n"; |
|
|
cout <<"pmtleft, pmtright "<<pmtleft<<" "<<pmtright<<endl; |
|
|
} |
|
|
|
|
|
// constant geometric factor, the rest is handled by the scaling factor |
|
|
FGeo[0] =0.5; |
|
|
FGeo[1] =0.5; |
|
|
// FGeo[1] = atan(path[1]/dimes[ip])/6.28318; // fraction of photons toward left |
|
|
// FGeo[2] = atan(path[2]/dimes[ip])/6.28318; // toward right |
|
|
|
|
|
|
|
|
// Npho = Poisson(ERELTOF[nh])*Pho_keV*1e6 Poissonian fluctuations to be inserted-DC |
|
|
Npho = Ereltof[nh]*Pho_keV*1.0e6; // Eloss in GeV |
|
|
|
|
|
Float_t knorm[2]={0., 0.}; // Donatella |
|
|
Float_t Atten[2]={0., 0.}; // Donatella |
|
|
for(Int_t j=0; j<2; j++){ |
|
|
QhitPad_pC[j]= Npho*FGeo[j]*effi*pmGain*echarge*1.E12*ScaleFact[pmtleft+j]; |
|
|
// WM |
|
|
knorm[j]=atte1[pmtleft+j]*exp(lambda1[pmtleft+j]*dimel[ip]/2.*pow(-1,j+1)) + |
|
|
atte2[pmtleft+j]*exp(lambda2[pmtleft+j]*dimel[ip]/2.*pow(-1,j+1)); |
|
|
Atten[j]=atte1[pmtleft+j]*exp(tpos*lambda1[pmtleft+j]) + |
|
|
atte2[pmtleft+j]*exp(tpos*lambda2[pmtleft+j]) ; |
|
|
QhitPmt_pC[j]= QhitPad_pC[j]*Atten[j]/knorm[j]; |
|
|
// QhitPmt_pC[j]= QhitPad_pC[j]; //no attenuation |
|
|
|
|
|
|
|
|
if (DEBUG) { |
|
|
cout<<"pmtleft "<<pmtleft<<" j "<<j<<endl; |
|
|
cout<<" atte1 "<<atte1[pmtleft+j]<<"lambda1 "<<lambda1[pmtleft+j]<<" atte2 "<<atte2[pmtleft+j]<<"lambda2 "<<lambda2[pmtleft+j] <<endl; |
|
|
cout<<j<<" tpos "<<tpos<<" knorm "<<knorm[j]<<" "<<Atten[j]<<" "<<"QhitPmt_pC "<<QhitPmt_pC[j]<<endl; |
|
|
} |
|
|
} |
|
|
|
|
|
if (DEBUG) |
|
|
cout<<"Npho "<<Npho<<" QhitPmt_pC "<<QhitPmt_pC[0]<<" "<<QhitPmt_pC[1]<<endl; |
|
|
|
|
|
QevePmt_pC[pmtleft] += QhitPmt_pC[0]; |
|
|
QevePmt_pC[pmtright] += QhitPmt_pC[1]; |
|
|
|
|
|
// TDC |
|
|
// WM right and left <-> |
|
|
// t2 = t2 + fabs(path[0]/veff) + s_l_g[ip]/veff1 ; // Signal reaches PMT |
|
|
// t1 = t1 + fabs(path[1]/veff) + s_l_g[ip]/veff1; |
|
|
|
|
|
t1 = t1 + fabs(path[0]/veff) + s_l_g[ip]/veff1; |
|
|
t2 = t2 + fabs(path[1]/veff) + s_l_g[ip]/veff1 ; // Signal reaches PMT |
|
|
|
|
|
t1 = gRandom->Gaus(t1,dt1); //apply gaussian error dt |
|
|
t2 = gRandom->Gaus(t2,dt1); //apply gaussian error dt |
|
|
|
|
|
t1 = t1 + c1_S[pmtleft] ; // Signal reaches Discriminator ,TDC starts to run |
|
|
t2 = t2 + c1_S[pmtright] ; |
|
|
|
|
|
// check if signal is above threshold |
|
|
// then check if tdcpmt is already filled by another hit... |
|
|
// only re-fill if time is smaller |
|
|
|
|
|
if (QhitPmt_pC[0] > thresh) { |
|
|
if (tdcpmt[pmtleft] == 1000.) { // fill for the first time |
|
|
tdcpmt[pmtleft] = t1; |
|
|
tdc[pmtleft] = t1 + c2_S[pmtleft] ; // Signal reaches Coincidence |
|
|
} |
|
|
if (tdcpmt[pmtleft] < 1000.) // is already filled! |
|
|
if (t1 < tdcpmt[pmtleft]) { |
|
|
tdcpmt[pmtleft] = t1; |
|
|
t1 = t1 + c2_S[pmtleft] ; // Signal reaches Coincidence |
|
|
tdc[pmtleft] = t1; |
|
|
} |
|
|
} |
|
|
if (QhitPmt_pC[1] > thresh) { |
|
|
if (tdcpmt[pmtright] == 1000.) { // fill for the first time |
|
|
tdcpmt[pmtright] = t2; |
|
|
tdc[pmtright] = t2 + c2_S[pmtright] ; // Signal reaches Coincidence |
|
|
} |
|
|
if (tdcpmt[pmtright] < 1000.) // is already filled! |
|
|
if (t2 < tdcpmt[pmtright]) { |
|
|
tdcpmt[pmtright] = t2; |
|
|
t2 = t2 + c2_S[pmtright] ; |
|
|
tdc[pmtright] = t2; |
|
|
} |
|
|
} |
|
|
|
|
|
if (DEBUG) |
|
|
cout<<nh<<" "<<Timetof[nh]<<" "<<t1<<" "<<t2<<endl; |
|
|
|
|
|
} // ip < 6 |
|
|
|
|
|
}; // **************************************** end loop over hits |
|
|
|
|
|
// ====== ADC ====== |
|
|
|
|
|
for(Int_t i=0; i<48; i++){ |
|
|
if (QevePmt_pC[i] < 800.) ADCtof[i]= (Int_t)(ADC_pC0A + ADC_pC1A*QevePmt_pC[i] + ADC_pC2A*pow(QevePmt_pC[i],2) + ADC_pC3A*pow(QevePmt_pC[i],3)); |
|
|
if (QevePmt_pC[i] > 800.) ADCtof[i]= (Int_t)(ADC_pC0B + ADC_pC1B*QevePmt_pC[i] + ADC_pC2B*pow(QevePmt_pC[i],2) + ADC_pC3B*pow(QevePmt_pC[i],3)); |
|
|
if (QevePmt_pC[i] > 2485.) ADCtof[i]= (Int_t)(1758. + 0.54*QevePmt_pC[i]); //assuming a fictional 0.54 ch/pC above ADCsat |
|
|
if (ADCtof[i]>ADCsat) ADCtof[i]=ADCsat; |
|
|
if (QevePmt_pC[i] < pCthres) ADCtof[i]= ADClast; |
|
|
if (ADCtof[i] < 0) ADCtof[i]=ADClast; |
|
|
if (ADCtof[i] > ADClast) ADCtof[i]=ADClast; |
|
|
} |
|
|
|
|
|
// for(Int_t i=0; i<48; i++){ |
|
|
// if(QevePmt_pC[i] >= pCthres){ |
|
|
// ADCtof[i]= (Int_t)(ADC_pC0 + ADC_pC1*QevePmt_pC[i] + ADC_pC2*pow(QevePmt_pC[i],2) + ADC_pC3*pow(QevePmt_pC[i],3)); |
|
|
// } else |
|
|
// ADCtof[i]= ADClast; |
|
|
// } |
|
|
|
|
|
// // ---- introduce scale factors to tune simul ADC to real data 24-oct DC |
|
|
|
|
|
// for(Int_t i=0; i<48; i++){ |
|
|
// if(ADCtof[i] != ADClast){ |
|
|
// // printf("%3d, %4d, %4.2f\n",i, ADCtof[i],ScaleFact[i]); |
|
|
// ADCtof[i]= Int_t (ADCtof[i]*ScaleFact[i]); |
|
|
// // printf("%3d, %4d,\n",i, ADCtof[i]); |
|
|
// } |
|
|
// } |
|
|
|
|
|
// for(Int_t i=0; i<48; i++){ |
|
|
// if(ADCtof[i] != ADClast){ |
|
|
// if(ADCtof[i]> ADCsat) ADCtof[i]=ADCsat; |
|
|
// else if(ADCtof[i]< 0) ADCtof[i]=ADClast; |
|
|
// } |
|
|
// } |
|
|
|
|
|
|
|
|
// ====== build TDC coincidence ====== |
|
|
|
|
|
Float_t t_coinc = 0; |
|
|
Int_t ilast = 100; |
|
|
for (Int_t ii=0; ii<48;ii++) |
|
|
if (tdc[ii] > t_coinc) { |
|
|
t_coinc = tdc[ii]; |
|
|
ilast = ii; |
|
|
} |
|
|
|
|
|
// cout<<ilast<<" "<<t_coinc<<endl; |
|
|
// At t_coinc trigger condition is fulfilled |
|
|
|
|
|
for (Int_t ii=0; ii<48;ii++){ |
|
|
// if (tdc[ii] != 0) tdc1[ii] = t_coinc - tdc[ii]; // test 1 |
|
|
if (tdc[ii] != 0) tdc1[ii] = t_coinc - tdcpmt[ii]; // test 2 |
|
|
tdc1[ii] = tdc1[ii]/tdcres[ii]; // divide by TDC resolution |
|
|
if (tdc[ii] != 0) tdc1[ii] = tdc1[ii] + c3_S[ii]; // add cable length c3 |
|
|
} // missing parenthesis inserted! (Silvio) |
|
|
|
|
|
for(Int_t i=0; i<48; i++){ |
|
|
if(tdc1[i] != 0.){ |
|
|
TDCint[i]=(Int_t)tdc1[i]; |
|
|
if (TDCint[i]>4093) TDCint[i]=TDClast; // 18-oct WM |
|
|
if (DEBUG) |
|
|
cout<<i<<" "<<TDCint[i]<<endl; |
|
|
//ADC[i]= ADC_pC * QevePmt_pC[i] + ADCoffset; |
|
|
//if(ADC[i]> ADClast) ADC[i]=ADClast; |
|
|
} else |
|
|
TDCint[i]= TDClast; |
|
|
} |
|
|
|
|
|
if (DEBUG) |
|
|
cout<<"-----------"<<endl; |
|
|
|
|
|
|
|
|
//------ use channelmap 18-oct WM |
|
|
|
|
|
Int_t channelmap[] = {3,21,11,29,19,45,27,37,36,28,44,20,5,12,13,4, |
|
|
6,47,14,39,22,31,30,23,38,15,46,7,0,33,16,24, |
|
|
8,41,32,40,25,17,34,9,42,1,2,10,18,26,35,43}; |
|
|
|
|
|
Int_t ADChelp[48]; |
|
|
Int_t TDChelp[48]; |
|
|
|
|
|
for(Int_t i=0; i<48; i++){ |
|
|
Int_t ii=channelmap[i]; |
|
|
ADChelp[ii]= ADCtof[i]; |
|
|
TDChelp[ii]= TDCint[i]; |
|
|
} |
|
|
|
|
|
for(Int_t i=0; i<48; i++){ |
|
|
ADCtof[i]= ADChelp[i]; |
|
|
TDCint[i]= TDChelp[i]; |
|
|
} |
|
|
|
|
|
|
|
|
// ====== write fDataTof ======= |
|
|
|
|
|
|
|
|
// UChar_t tdcadd[8]={1,0,3,2,5,4,7,6}; (coded in 3 bit) |
|
|
UChar_t Ctrl3bit[8]={32,0,96,64,160,128,224,192}; // DC (msb in 8 bit word ) |
|
|
|
|
|
UChar_t tofBin; |
|
|
for (Int_t j=0; j < 12; j++){ // loop on TDC #12 |
|
|
Int_t j12=j*23; // for each TDC 23 bytes (8 bits) |
|
|
fDataTof[j12+0]=0x00; // TDC_ID |
|
|
fDataTof[j12+1]=0x00; // EV_COUNT |
|
|
fDataTof[j12+2]=0x00; // TDC_MASK (1) |
|
|
fDataTof[j12+3]=0x00; // TDC_MASK (2) |
|
|
for (Int_t k=0; k < 4; k++){ // for each TDC 4 channels (ADC+TDC) |
|
|
|
|
|
Int_t jk12=j12+4*k; // ADC,TDC channel (0-47) |
|
|
|
|
|
tofBin =(UChar_t)(ADCtof[k+4*j]/256); // ADC# (msb) |
|
|
fDataTof[jk12+4] = Bin2GrayTof(tofBin,fDataTof[jk12+4]); |
|
|
/* control bits inserted here, after the bin to gray conv - DC*/ |
|
|
fDataTof[jk12+4] = Ctrl3bit[2*k] | fDataTof[jk12+4]; |
|
|
tofBin=(UChar_t)(ADCtof[k+4*j]%256); // ADC# (lsb) |
|
|
fDataTof[jk12+5] = Bin2GrayTof(tofBin,fDataTof[jk12+5]); |
|
|
tofBin=(UChar_t)(TDCint[k+4*j]/256); // TDC# (msb) |
|
|
fDataTof[jk12+6]=Bin2GrayTof(tofBin,fDataTof[jk12+6]); |
|
|
/* control bits inserted here, after the bin to gray conv - DC*/ |
|
|
fDataTof[jk12+6] = Ctrl3bit[2*k+1] | fDataTof[jk12+6]; |
|
|
tofBin=(UChar_t)(TDCint[k+4*j]%256); // TDC# (lsb) |
|
|
fDataTof[jk12+7]=Bin2GrayTof(tofBin,fDataTof[jk12+7]); |
|
|
}; |
|
|
fDataTof[j12+20]=0x00; // TEMP1 |
|
|
fDataTof[j12+21]=0x00; // TEMP2 |
|
|
fDataTof[j12+22]= EvaluateCrcTof(pTof); // CRC |
|
|
pTof+=23; |
|
|
}; |
|
|
return(0); |
|
|
}; |
|
|
|
|
|
|
|
|
UChar_t Digitizer::Bin2GrayTof(UChar_t binaTOF,UChar_t grayTOF){ |
|
|
union graytof_data { |
|
|
UChar_t word; |
|
|
struct bit_field { |
|
|
unsigned b0:1; |
|
|
unsigned b1:1; |
|
|
unsigned b2:1; |
|
|
unsigned b3:1; |
|
|
unsigned b4:1; |
|
|
unsigned b5:1; |
|
|
unsigned b6:1; |
|
|
unsigned b7:1; |
|
|
} bit; |
|
|
} bi,gr; |
|
|
// |
|
|
bi.word = binaTOF; |
|
|
gr.word = grayTOF; |
|
|
// |
|
|
gr.bit.b0 = bi.bit.b1 ^ bi.bit.b0; |
|
|
gr.bit.b1 = bi.bit.b2 ^ bi.bit.b1; |
|
|
gr.bit.b2 = bi.bit.b3 ^ bi.bit.b2; |
|
|
gr.bit.b3 = bi.bit.b3; |
|
|
// |
|
|
/* bin to gray conversion 4 bit per time*/ |
|
|
// |
|
|
gr.bit.b4 = bi.bit.b5 ^ bi.bit.b4; |
|
|
gr.bit.b5 = bi.bit.b6 ^ bi.bit.b5; |
|
|
gr.bit.b6 = bi.bit.b7 ^ bi.bit.b6; |
|
|
gr.bit.b7 = bi.bit.b7; |
|
|
// |
|
|
return(gr.word); |
|
|
} |
|
|
|
|
|
UChar_t Digitizer::EvaluateCrcTof(UChar_t *pTof) { |
|
|
Bool_t DEBUG=false; |
|
|
if (DEBUG) |
|
|
return(0x00); |
|
|
|
|
|
UChar_t crcTof=0x00; |
|
|
UChar_t *pc=&crcTof, *pc2; |
|
|
pc2=pTof; |
|
|
for (Int_t jp=0; jp < 23; jp++){ |
|
|
//crcTof = crc8(...) |
|
|
Crc8Tof(pc2++,pc); |
|
|
// printf("%2i --- %x\n",jp,crcTof); |
|
|
} |
|
|
return(crcTof); |
|
|
} |
|
|
|
|
|
void Digitizer::Crc8Tof(UChar_t *oldCRC, UChar_t *crcTof){ |
|
|
union crctof_data { |
|
|
UChar_t word; |
|
|
struct bit_field { |
|
|
unsigned b0:1; |
|
|
unsigned b1:1; |
|
|
unsigned b2:1; |
|
|
unsigned b3:1; |
|
|
unsigned b4:1; |
|
|
unsigned b5:1; |
|
|
unsigned b6:1; |
|
|
unsigned b7:1; |
|
|
} bit; |
|
|
} c,d,r; |
|
|
|
|
|
c.word = *oldCRC; |
|
|
//d.word = *newCRC; |
|
|
d.word = *crcTof; |
|
|
r.word = 0; |
|
|
|
|
|
r.bit.b0 = c.bit.b7 ^ c.bit.b6 ^ c.bit.b0 ^ |
|
|
d.bit.b0 ^ d.bit.b6 ^ d.bit.b7; |
|
|
|
|
|
r.bit.b1 = c.bit.b6 ^ c.bit.b1 ^ c.bit.b0 ^ |
|
|
d.bit.b0 ^ d.bit.b1 ^ d.bit.b6; |
|
|
|
|
|
r.bit.b2 = c.bit.b6 ^ c.bit.b2 ^ c.bit.b1 ^ c.bit.b0 ^ |
|
|
d.bit.b0 ^ d.bit.b1 ^ d.bit.b2 ^ d.bit.b6; |
|
|
|
|
|
r.bit.b3 = c.bit.b7 ^ c.bit.b3 ^ c.bit.b2 ^ c.bit.b1 ^ |
|
|
d.bit.b1 ^ d.bit.b2 ^ d.bit.b3 ^ d.bit.b7; |
|
|
|
|
|
r.bit.b4 = c.bit.b4 ^ c.bit.b3 ^ c.bit.b2 ^ |
|
|
d.bit.b2 ^ d.bit.b3 ^ d.bit.b4; |
|
|
|
|
|
r.bit.b5 = c.bit.b5 ^ c.bit.b4 ^ c.bit.b3 ^ |
|
|
d.bit.b3 ^ d.bit.b4 ^ d.bit.b5; |
|
|
|
|
|
r.bit.b6 = c.bit.b6 ^ c.bit.b5 ^ c.bit.b4 ^ |
|
|
d.bit.b4 ^ d.bit.b5 ^ d.bit.b6; |
|
|
|
|
|
r.bit.b7 = c.bit.b7 ^ c.bit.b6 ^ c.bit.b5 ^ |
|
|
d.bit.b5 ^ d.bit.b6 ^ d.bit.b7 ; |
|
|
|
|
|
*crcTof=r.word; |
|
|
//return r.word; |
|
|
}; |
|
|
|
|
|
//void Digitizer::Paddle2Pmt(Int_t plane, Int_t paddle, Int_t* &pmtleft, Int_t* &pmtright){ |
|
|
void Digitizer::Paddle2Pmt(Int_t plane, Int_t paddle, Int_t *pl, Int_t *pr){ |
|
|
//* @param plane (0 - 5) |
|
|
//* @param paddle (plane=0, paddle = 0,...5) |
|
|
//* @param padid (0 - 23) |
|
|
// |
|
|
Int_t padid=-1; |
|
|
Int_t pads[6]={8,6,2,2,3,3}; |
|
|
// |
|
|
Int_t somma=0; |
|
|
Int_t np=plane; |
|
|
for(Int_t j=0; j<np; j++) |
|
|
somma+=pads[j]; |
|
|
padid=paddle+somma; |
|
|
*pl = padid*2; |
|
|
// *pr = *pr + 1; |
|
|
*pr = *pl + 1; // WM |
|
|
}; |
|
|
|
|
|
void Digitizer::DigitizeAC() { |
|
|
// created: J. Conrad, KTH |
|
|
// modified: S. Orsi, INFN Roma2 |
|
|
// fDataAC[0-63]: main AC board |
|
|
// fDataAC[64-127]: extra AC board |
|
|
|
|
|
fDataAC[0] = 0xACAC; |
|
|
fDataAC[64]= 0xACAC; |
|
|
fDataAC[1] = 0xAC11; |
|
|
fDataAC[65] = 0xAC22; |
|
|
|
|
|
// the third word is a status word (dummy: "no errors are present in the AC boards") |
|
|
fDataAC[2] = 0xFFFF; //FFEF? |
|
|
fDataAC[66] = 0xFFFF; |
|
|
|
|
|
const UInt_t nReg = 6; |
|
|
|
|
|
// FPGA Registers (dummy) |
|
|
for (UInt_t i=0; i<=nReg; i++){ |
|
|
fDataAC[i+4] = 0xFFFF; |
|
|
fDataAC[i+68] = 0xFFFF; |
|
|
} |
|
|
|
|
|
// the last word is a CRC |
|
|
// Dummy for the time being, but it might need to be calculated in the end |
|
|
fDataAC[63] = 0xABCD; |
|
|
fDataAC[127] = 0xABCD; |
|
|
|
|
|
// shift registers (moved to the end of the routine) |
|
|
|
|
|
Int_t evntLSB=Ievnt%65536; |
|
|
Int_t evntMSB=(Int_t)(Ievnt/65536); |
|
|
|
|
|
// singles counters are dummy |
|
|
for (UInt_t i=0; i<=15; i++){ //SO Oct '07: // for (UInt_t i=0; i<=16; i++){ |
|
|
// fDataAC[i+26] = 0x0000; |
|
|
// fDataAC[i+90] = 0x0000; |
|
|
fDataAC[i+26] = evntLSB; |
|
|
fDataAC[i+90] = evntLSB; |
|
|
}; |
|
|
|
|
|
// coincidences are dummy (increment by 1 at each event) |
|
|
// for (UInt_t i=0; i<=7; i++){ |
|
|
// fDataAC[i+42] = 0x0000; |
|
|
// fDataAC[i+106] = 0x0000; |
|
|
// } |
|
|
for (UInt_t i=0; i<=7; i++){ |
|
|
fDataAC[i+42] = evntLSB; |
|
|
fDataAC[i+106] = evntLSB; |
|
|
}; |
|
|
|
|
|
// increments for every trigger might be needed at some point. |
|
|
// dummy for now |
|
|
fDataAC[50] = 0x0000; |
|
|
fDataAC[114] = 0x0000; |
|
|
|
|
|
// dummy FPGA clock (increment by 1 at each event) |
|
|
/* |
|
|
fDataAC[51] = 0x006C; |
|
|
fDataAC[52] = 0x6C6C; |
|
|
fDataAC[115] = 0x006C; |
|
|
fDataAC[116] = 0x6C6C; |
|
|
*/ |
|
|
if (Ievnt<=0xFFFF) { |
|
|
fDataAC[51] = 0x0000; |
|
|
fDataAC[52] = Ievnt; |
|
|
fDataAC[115] = 0x0000; |
|
|
fDataAC[116] = Ievnt; |
|
|
} else { |
|
|
fDataAC[51] = evntMSB; |
|
|
fDataAC[52] = evntLSB; |
|
|
fDataAC[115] = fDataAC[51]; |
|
|
fDataAC[116] = fDataAC[52]; |
|
|
} |
|
|
|
|
|
// dummy temperatures |
|
|
fDataAC[53] = 0x0000; |
|
|
fDataAC[54] = 0x0000; |
|
|
fDataAC[117] = 0x0000; |
|
|
fDataAC[118] = 0x0000; |
|
|
|
|
|
|
|
|
// dummy DAC thresholds |
|
|
for (UInt_t i=0; i<=7; i++){ |
|
|
fDataAC[i+55] = 0x1A13; |
|
|
fDataAC[i+119] = 0x1A13; |
|
|
} |
|
|
|
|
|
// We activate all branches. Once the digitization algorithm is determined |
|
|
// only the branches that involve needed information will be activated |
|
|
|
|
|
fhBookTree->SetBranchAddress("Ievnt",&Ievnt); |
|
|
fhBookTree->SetBranchStatus("Nthcat",1); |
|
|
fhBookTree->SetBranchStatus("Iparcat",1); |
|
|
fhBookTree->SetBranchStatus("Icat",1); |
|
|
fhBookTree->SetBranchStatus("Xincat",1); |
|
|
fhBookTree->SetBranchStatus("Yincat",1); |
|
|
fhBookTree->SetBranchStatus("Zincat",1); |
|
|
fhBookTree->SetBranchStatus("Xoutcat",1); |
|
|
fhBookTree->SetBranchStatus("Youtcat",1); |
|
|
fhBookTree->SetBranchStatus("Zoutcat",1); |
|
|
fhBookTree->SetBranchStatus("Erelcat",1); |
|
|
fhBookTree->SetBranchStatus("Timecat",1); |
|
|
fhBookTree->SetBranchStatus("Pathcat",1); |
|
|
fhBookTree->SetBranchStatus("P0cat",1); |
|
|
fhBookTree->SetBranchStatus("Nthcas",1); |
|
|
fhBookTree->SetBranchStatus("Iparcas",1); |
|
|
fhBookTree->SetBranchStatus("Icas",1); |
|
|
fhBookTree->SetBranchStatus("Xincas",1); |
|
|
fhBookTree->SetBranchStatus("Yincas",1); |
|
|
fhBookTree->SetBranchStatus("Zincas",1); |
|
|
fhBookTree->SetBranchStatus("Xoutcas",1); |
|
|
fhBookTree->SetBranchStatus("Youtcas",1); |
|
|
fhBookTree->SetBranchStatus("Zoutcas",1); |
|
|
fhBookTree->SetBranchStatus("Erelcas",1); |
|
|
fhBookTree->SetBranchStatus("Timecas",1); |
|
|
fhBookTree->SetBranchStatus("Pathcas",1); |
|
|
fhBookTree->SetBranchStatus("P0cas",1); |
|
|
fhBookTree->SetBranchStatus("Nthcard",1); |
|
|
fhBookTree->SetBranchStatus("Iparcard",1); |
|
|
fhBookTree->SetBranchStatus("Icard",1); |
|
|
fhBookTree->SetBranchStatus("Xincard",1); |
|
|
fhBookTree->SetBranchStatus("Yincard",1); |
|
|
fhBookTree->SetBranchStatus("Zincard",1); |
|
|
fhBookTree->SetBranchStatus("Xoutcard",1); |
|
|
fhBookTree->SetBranchStatus("Youtcard",1); |
|
|
fhBookTree->SetBranchStatus("Zoutcard",1); |
|
|
fhBookTree->SetBranchStatus("Erelcard",1); |
|
|
fhBookTree->SetBranchStatus("Timecard",1); |
|
|
fhBookTree->SetBranchStatus("Pathcard",1); |
|
|
fhBookTree->SetBranchStatus("P0card",1); |
|
|
|
|
|
// In this simpliefied approach we will assume that once |
|
|
// a particle releases > 0.5 mip in one of the 12 AC detectors it |
|
|
// will fire. We will furthermore assume that both cards read out |
|
|
// identical data. |
|
|
|
|
|
// If you develop your digitization algorithm, you should start by |
|
|
// identifying the information present in level2 (post-darth-vader) |
|
|
// data. |
|
|
|
|
|
Float_t SumEcat[5]; |
|
|
Float_t SumEcas[5]; |
|
|
Float_t SumEcard[5]; |
|
|
for (Int_t k= 0;k<5;k++){ |
|
|
SumEcat[k]=0.; |
|
|
SumEcas[k]=0.; |
|
|
SumEcard[k]=0.; |
|
|
}; |
|
|
|
|
|
if (Nthcat>50 || Nthcas>50 || Nthcard>50) |
|
|
printf("*** ERROR AC! NthAC out of range!\n\n"); |
|
|
|
|
|
// energy dependence on position (see file AcFitOutputDistancePmt.C by S.Orsi) |
|
|
// based on J.Lundquist's calculations (PhD thesis, page 94) |
|
|
// function: [0]+[1]*atan([2]/(x+1)), where the 3 parameters are: |
|
|
// 8.25470e-01 +- 1.79489e-02 |
|
|
// 6.41609e-01 +- 2.65846e-02 |
|
|
// 9.81177e+00 +- 1.21284e+00 |
|
|
// hp: 1 minimum ionising particle at 35cm from the PMT releases 1mip |
|
|
// |
|
|
// NB: the PMT positions are needed! |
|
|
|
|
|
// look in CAT |
|
|
// for (UInt_t k= 0;k<50;k++){ |
|
|
for (Int_t k= 0;k<Nthcat;k++){ |
|
|
if (Erelcat[k] > 0) |
|
|
SumEcat[Icat[k]] += Erelcat[k]; |
|
|
}; |
|
|
|
|
|
// look in CAS |
|
|
for (Int_t k= 0;k<Nthcas;k++){ |
|
|
if (Erelcas[k] >0) |
|
|
SumEcas[Icas[k]] += Erelcas[k]; |
|
|
}; |
|
|
|
|
|
// look in CARD |
|
|
for (Int_t k= 0;k<Nthcard;k++){ |
|
|
if (Erelcard[k] >0) |
|
|
SumEcard[Icard[k]] += Erelcard[k]; |
|
|
}; |
|
|
|
|
|
// channel mapping Hit Map |
|
|
// 1 CARD4 0 LSB |
|
|
// 2 CAT2 0 |
|
|
// 3 CAS1 0 |
|
|
// 4 NC 0 |
|
|
// 5 CARD2 0 |
|
|
// 6 CAT4 1 |
|
|
// 7 CAS4 0 |
|
|
// 8 NC 0 |
|
|
// 9 CARD3 0 |
|
|
// 10 CAT3 0 |
|
|
// 11 CAS3 0 |
|
|
// 12 NC 0 |
|
|
// 13 CARD1 0 |
|
|
// 14 CAT1 0 |
|
|
// 15 CAS2 0 |
|
|
// 16 NC 0 MSB |
|
|
|
|
|
// In the first version only the hit-map is filled, not the SR. |
|
|
|
|
|
// Threshold: 0.8 MeV. |
|
|
|
|
|
Float_t thr = 8e-4; |
|
|
|
|
|
fDataAC[3] = 0x0000; |
|
|
|
|
|
if (SumEcas[0] > thr) fDataAC[3] = 0x0004; |
|
|
if (SumEcas[1] > thr) fDataAC[3] += 0x4000; |
|
|
if (SumEcas[2] > thr) fDataAC[3] += 0x0400; |
|
|
if (SumEcas[3] > thr) fDataAC[3] += 0x0040; |
|
|
|
|
|
if (SumEcat[0] > thr) fDataAC[3] += 0x2000; |
|
|
if (SumEcat[1] > thr) fDataAC[3] += 0x0002; |
|
|
if (SumEcat[2] > thr) fDataAC[3] += 0x0200; |
|
|
if (SumEcat[3] > thr) fDataAC[3] += 0x0020; |
|
|
|
|
|
if (SumEcard[0] > thr) fDataAC[3] += 0x1000; |
|
|
if (SumEcard[1] > thr) fDataAC[3] += 0x0010; |
|
|
if (SumEcard[2] > thr) fDataAC[3] += 0x0100; |
|
|
if (SumEcard[3] > thr) fDataAC[3] += 0x0001; |
|
|
|
|
|
fDataAC[67] = fDataAC[3]; |
|
|
|
|
|
// shift registers |
|
|
// the central bin is equal to the hitmap, all other bins in the shift register are 0 |
|
|
for (UInt_t i=0; i<=15; i++){ |
|
|
fDataAC[i+11] = 0x0000; |
|
|
fDataAC[i+75] = 0x0000; |
|
|
} |
|
|
fDataAC[18] = fDataAC[3]; |
|
|
fDataAC[82] = fDataAC[3]; |
|
|
|
|
|
// for (Int_t i=0; i<fACbuffer; i++){ |
|
|
// printf("%0x ",fDataAC[i]); |
|
|
// if ((i+1)%8 ==0) cout << endl; |
|
|
// } |
|
|
}; |
|
|
|
|
|
|
|
|
void Digitizer::DigitizeS4(){ |
|
|
Int_t DEBUG=0; |
|
|
// creato: S. Borisov, INFN Roma2 e MEPHI, Sett 2007 |
|
|
TString ciao,modo="ns"; |
|
|
Int_t i,j,t,NdF,pmt,NdFT,S4,S4v=0,S4p=32; |
|
|
Float_t E0,E1=1e-6,Ert,X,Y,Z,x,y,z,V[3],Xs[2],Ys[2],Zs[2],Yp[6],q,w,p=0.1,l,l0=500; |
|
|
Xs[0]=-24.1; |
|
|
Xs[1]=24.1; |
|
|
Ys[0]=-24.1; |
|
|
Ys[1]=24.1; |
|
|
Zs[0]=-0.5; |
|
|
Zs[1]=0.5; |
|
|
Yp[0]=-20.; |
|
|
Yp[2]=-1.; |
|
|
Yp[4]=17.; |
|
|
for(i=0;i<3;i++) |
|
|
Yp[2*i+1]=Yp[2*i]+3; |
|
|
srand(time(NULL)); |
|
|
// --- activate branches: |
|
|
fhBookTree->SetBranchStatus("Nthtof",1); |
|
|
fhBookTree->SetBranchStatus("Ipltof",1); |
|
|
fhBookTree->SetBranchStatus("Ipaddle",1); |
|
|
|
|
|
fhBookTree->SetBranchStatus("Xintof",1); |
|
|
fhBookTree->SetBranchStatus("Yintof",1); |
|
|
fhBookTree->SetBranchStatus("Xouttof",1); |
|
|
fhBookTree->SetBranchStatus("Youttof",1); |
|
|
|
|
|
fhBookTree->SetBranchStatus("Ereltof",1); |
|
|
fhBookTree->SetBranchStatus("Timetof",1); |
|
|
NdFT=0; |
|
|
Ert=0; |
|
|
for(i=0;i<Nthtof;i++){ |
|
|
if(Ipltof[i]!=6) continue; |
|
|
Ert+=Ereltof[i]; |
|
|
|
|
|
if(modo=="ns") continue; |
|
|
NdF=Int_t(Ereltof[i]/E1); |
|
|
NdFT=0; |
|
|
X=Xintof[i]; |
|
|
Y=Yintof[i]; |
|
|
Z=(Float_t)(random())/(Float_t)(0x7fffffff)-0.5; |
|
|
//cout<<"XYZ "<<X<<" "<<Y<<" "<<Z<<endl; |
|
|
for(j=0;j<NdF;j++){ |
|
|
q=(Float_t)random()/(Float_t)0x7fffffff; |
|
|
w=(Float_t)random()/(Float_t)0x7fffffff; |
|
|
// cout<<"qw "<<q<<" "<<w<<endl; |
|
|
V[0]=p*cos(6.28318*q); |
|
|
V[1]=p*sin(6.28318*q); |
|
|
V[2]=p*(2.*w-1.); |
|
|
pmt=0; |
|
|
x=X; |
|
|
y=Y; |
|
|
z=Z; |
|
|
while(pmt==0 && (x>Xs[0] && x<Xs[1])&&(y>Ys[0] && y<Ys[1])&&(z>Zs[0] && z<Zs[1])){ |
|
|
l=0; |
|
|
while(pmt==0 && (x>Xs[0] && x<Xs[1])&&(y>Ys[0] && y<Ys[1])&&(z>Zs[0] && z<Zs[1])){ |
|
|
x+=V[0]; |
|
|
y+=V[1]; |
|
|
z+=V[2]; |
|
|
l+=p; |
|
|
//cout<<x<<" "<<y<<" "<<z<<" "<<l<<endl; |
|
|
//cin>>ciao; |
|
|
} |
|
|
if((x<Xs[0]+p || x>Xs[1]-p)&&(y>Ys[0]+p && y<Ys[1]-p)&&(z>Zs[0]+p && z<Zs[1]-p)){ |
|
|
for(t=0;t<3;t++){ |
|
|
if(y>=Yp[2*t] && y<Yp[2*t+1]){ |
|
|
if(pmt==0)NdFT++; |
|
|
pmt=1; |
|
|
//cout<<NdFT<<endl; |
|
|
break; |
|
|
} |
|
|
} |
|
|
if(pmt==1)break; |
|
|
V[0]=-V[0]; |
|
|
} |
|
|
q=(Float_t)random()/(Float_t)0x7fffffff; |
|
|
w=1-exp(-l/l0); |
|
|
if(q<w)break; |
|
|
q=(Float_t)random()/(Float_t)0x7fffffff; |
|
|
w=0.5; |
|
|
if(q<w)break; |
|
|
if((x>Xs[0]+p && x<Xs[1]-p)&&(y<Ys[0]+p || y>Ys[1]-p)&&(z>Zs[0]+p && z<Zs[1]-p))V[1]=-V[1]; |
|
|
if((x>Xs[0]+p && x<Xs[1]-p)&&(y>Ys[0]+p && y<Ys[1]-p)&&(z<Zs[0]+p || z>Zs[1]-p))V[2]=-V[2]; |
|
|
x+=V[0]; |
|
|
y+=V[1]; |
|
|
z+=V[2]; |
|
|
l=0; |
|
|
//cout<<x<<" "<<y<<" "<<z<<" "<<l<<endl; |
|
|
//cin>>ciao; |
|
|
} |
|
|
} |
|
|
} |
|
|
Ert=Ert/0.002; |
|
|
q=(Float_t)(random())/(Float_t)0x7fffffff; |
|
|
w=0.7; |
|
|
//E0=(Float_t)(4064./7.); |
|
|
E0=4064./7.; |
|
|
if(Ert<1) S4=0; |
|
|
else S4=(Int_t)(4064.*(1.-exp(-(Ert-1.)/E0))); |
|
|
i=S4/4; |
|
|
if(S4%4==0) |
|
|
S4v=S4+S4p; |
|
|
else if(S4%4==1){ |
|
|
if(q<w) S4v=S4-1+S4p; |
|
|
else S4v=S4+1+S4p; |
|
|
} else if(S4%4==2) S4v=S4+S4p; |
|
|
else if(S4%4==3){ |
|
|
if(q<w) S4v=S4+1+S4p; |
|
|
else S4v=S4-1+S4p; |
|
|
} |
|
|
if (DEBUG) |
|
|
cout<<"Ert_S4 = " << Ert << " --- S4v = " << S4v << endl; |
|
|
fDataS4[0]=S4v;//0xf028; |
|
|
fDataS4[1]=0xd800; |
|
|
fDataS4[2]=0x0300; |
|
|
//cout<<" PMT "<<NdFT<<" "<<NdF<<endl; |
|
|
//cin>>ciao; |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
void Digitizer::DigitizeND(){ |
|
|
// creato: S. Borisov, INFN Roma2 e MEPHI, Sett 2007 |
|
|
Int_t i=0; |
|
|
UShort_t NdN=0; |
|
|
fhBookTree->SetBranchStatus("Nthnd",1); |
|
|
fhBookTree->SetBranchStatus("Itubend",1); |
|
|
fhBookTree->SetBranchStatus("Iparnd",1); |
|
|
fhBookTree->SetBranchStatus("Xinnd",1); |
|
|
fhBookTree->SetBranchStatus("Yinnd",1); |
|
|
fhBookTree->SetBranchStatus("Zinnd",1); |
|
|
fhBookTree->SetBranchStatus("Xoutnd",1); |
|
|
fhBookTree->SetBranchStatus("Youtnd",1); |
|
|
fhBookTree->SetBranchStatus("Zoutnd",1); |
|
|
fhBookTree->SetBranchStatus("Erelnd",1); |
|
|
fhBookTree->SetBranchStatus("Timend",1); |
|
|
fhBookTree->SetBranchStatus("Pathnd",1); |
|
|
fhBookTree->SetBranchStatus("P0nd",1); |
|
|
//cout<<"n="<<Nthnd<<" "<<NdN<<"\n"; |
|
|
for(i=0;i<Nthnd;i++){ |
|
|
if(Iparnd[i]==13){ |
|
|
NdN++; |
|
|
} |
|
|
} |
|
|
//NdN=100; //only for debug |
|
|
|
|
|
for(i=0;i<3;i++){ |
|
|
fDataND[2*i]=0x0000; |
|
|
fDataND[2*i+1]=0x010F; |
|
|
} |
|
|
fDataND[0]=0xFF00 & (256*NdN); |
|
|
} |
|
|
|
|
|
|
|
|
void Digitizer::DigitizeDummy() { |
|
|
|
|
|
fhBookTree->SetBranchStatus("Enestrip",1); |
|
|
|
|
|
// dumy header |
|
|
fDataDummy[0] = 0xCAAA; |
|
|
|
|
|
for (Int_t i=1; i<fDummybuffer; i++){ |
|
|
fDataDummy[i] = 0xFFFF; |
|
|
// printf("%0x ",fDataDummy[i]); |
|
|
//if ((i+1)%8 ==0) cout << endl; |
|
|
} |
|
|
}; |
|
|
|
|
|
|
|
|
void Digitizer::WriteData(){ |
|
|
|
|
|
// Routine that writes the data to a binary file |
|
|
// PSCU data are already swapped |
|
|
fOutputfile.write(reinterpret_cast<char*>(fDataPSCU),sizeof(UShort_t)*fPSCUbuffer); |
|
|
// TRG |
|
|
fOutputfile.write(reinterpret_cast<char*>(fDataTrigger),sizeof(UChar_t)*153); |
|
|
// TOF |
|
|
fOutputfile.write(reinterpret_cast<char*>(fDataTof),sizeof(UChar_t)*276); |
|
|
// AC |
|
|
UShort_t temp[1000000]; |
|
|
memset(temp,0,sizeof(UShort_t)*1000000); |
|
|
swab(fDataAC,temp,sizeof(UShort_t)*fACbuffer); // WE MUST SWAP THE BYTES!!! |
|
|
fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fACbuffer); |
|
|
// CALO |
|
|
memset(temp,0,sizeof(UShort_t)*1000000); |
|
|
swab(fDataCALO,temp,sizeof(UShort_t)*fCALOlength); // WE MUST SWAP THE BYTES!!! |
|
|
fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fCALOlength); |
|
|
// TRK |
|
|
memset(temp,0,sizeof(UShort_t)*1000000); |
|
|
swab(fDataTrack,temp,sizeof(UShort_t)*fTracklength); // WE MUST SWAP THE BYTES!!! |
|
|
fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fTracklength); |
|
|
fTracklength=0; |
|
|
// padding to 64 bytes |
|
|
// |
|
|
if ( fPadding ){ |
|
|
fOutputfile.write(reinterpret_cast<char*>(fDataPadding),sizeof(UChar_t)*fPadding); |
|
|
}; |
|
|
// S4 |
|
|
memset(temp,0,sizeof(UShort_t)*1000000); |
|
|
swab(fDataS4,temp,sizeof(UShort_t)*fS4buffer); // WE MUST SWAP THE BYTES!!! |
|
|
fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fS4buffer); |
|
|
// ND |
|
|
memset(temp,0,sizeof(UShort_t)*1000000); |
|
|
swab(fDataND,temp,sizeof(UShort_t)*fNDbuffer); // WE MUST SWAP THE BYTES!!! |
|
|
fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fNDbuffer); |
|
|
}; |
|
|
|
|
|
|
|
|
void Digitizer::ReadData(){ |
|
|
|
|
|
UShort_t InData[64]; |
|
|
|
|
|
// for debuggigng purposes only, write your own routine if you like (many |
|
|
// hardwired things. |
|
|
|
|
|
ifstream InputFile; |
|
|
|
|
|
// if (!InputFile) { |
|
|
|
|
|
// std::cout << "ERROR" << endl; |
|
|
// // An error occurred! |
|
|
// // myFile.gcount() returns the number of bytes read. |
|
|
// // calling myFile.clear() will reset the stream state |
|
|
// // so it is usable again. |
|
|
// }; |
|
|
|
|
|
|
|
|
|
|
|
//InputFile.seekg(0); |
|
|
|
|
|
InputFile.open(fFilename, ios::in | ios::binary); |
|
|
// fOutputfile.seekg(0); |
|
|
if (!InputFile.is_open()) std::cout << "ERROR" << endl; |
|
|
|
|
|
InputFile.seekg(0); |
|
|
|
|
|
for (Int_t k=0; k<=1000; k++){ |
|
|
InputFile.read(reinterpret_cast<char*>(InData),384*sizeof(UShort_t)); |
|
|
|
|
|
std::cout << "Read back: " << endl << endl; |
|
|
|
|
|
for (Int_t i=0; i<=384; i++){ |
|
|
printf("%4x ", InData[i]); |
|
|
if ((i+1)%8 ==0) cout << endl; |
|
|
} |
|
|
|
|
|
} |
|
|
cout << endl; |
|
|
InputFile.close(); |
|
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
void Digitizer::DigitizeTrack() { |
|
|
//std:: cout << "Entering DigitizeTrack " << endl; |
|
|
Float_t AdcTrack[fNviews][fNstrips_view]; // Vector of strips to be compressed |
|
|
|
|
|
Int_t Iview; |
|
|
Int_t Nstrip; |
|
|
|
|
|
for (Int_t j=0; j<fNviews;j++) { |
|
|
|
|
|
for (Int_t i=0; i<fNladder;i++) { |
|
|
|
|
|
Float_t commonN1=gRandom->Gaus(0.,fSigmaCommon); |
|
|
Float_t commonN2=gRandom->Gaus(0.,fSigmaCommon); |
|
|
for (Int_t k=0; k<fNstrips_ladder;k++) { |
|
|
Nstrip=i*fNstrips_ladder+k; |
|
|
AdcTrack[j][Nstrip]=gRandom->Gaus(fPedeTrack[j][Nstrip],fSigmaTrack[j][Nstrip]); |
|
|
if(k<4*128) {AdcTrack[j][Nstrip] += commonN1;} // full correlation of 4 VA1 Com. Noise |
|
|
else {AdcTrack[j][Nstrip] += commonN2;} // full correlation of 4 VA1 Com. Noise |
|
|
|
|
|
}; |
|
|
|
|
|
|
|
|
}; |
|
|
|
|
|
|
|
|
}; |
|
|
|
|
|
|
|
|
fhBookTree->SetBranchStatus("Nstrpx",1); |
|
|
fhBookTree->SetBranchStatus("Npstripx",1); |
|
|
fhBookTree->SetBranchStatus("Ntstripx",1); |
|
|
fhBookTree->SetBranchStatus("Istripx",1); |
|
|
fhBookTree->SetBranchStatus("Qstripx",1); |
|
|
fhBookTree->SetBranchStatus("Xstripx",1); |
|
|
fhBookTree->SetBranchStatus("Nstrpy",1); |
|
|
fhBookTree->SetBranchStatus("Npstripy",1); |
|
|
fhBookTree->SetBranchStatus("Ntstripy",1); |
|
|
fhBookTree->SetBranchStatus("Istripy",1); |
|
|
fhBookTree->SetBranchStatus("Qstripy",1); |
|
|
fhBookTree->SetBranchStatus("Ystripy",1); |
|
|
|
|
|
|
|
|
|
|
|
Float_t ADCfull; |
|
|
Int_t iladd=0; |
|
|
for (Int_t ix=0; ix<Nstrpx;ix++) { |
|
|
Iview=Npstripx[ix]*2-1; |
|
|
Nstrip=(Int_t)Istripx[ix]-1; |
|
|
if(Nstrip<fNstrips_ladder) iladd=0; |
|
|
if((Nstrip>=fNstrips_ladder)&&(Nstrip<2*fNstrips_ladder)) iladd=1; |
|
|
if((Nstrip>=2*fNstrips_ladder)&&(Nstrip<3*fNstrips_ladder)) iladd=2; |
|
|
ADCfull=AdcTrack[Iview][Nstrip] += Qstripx[ix]*fMipCor[iladd][Iview]; |
|
|
AdcTrack[Iview][Nstrip] *= SaturationTrack(ADCfull); |
|
|
|
|
|
}; |
|
|
|
|
|
|
|
|
for (Int_t iy=0; iy<Nstrpy;iy++) { |
|
|
Iview=Npstripy[iy]*2-2; |
|
|
Nstrip=(Int_t)Istripy[iy]-1; |
|
|
if(Nstrip<fNstrips_ladder) iladd=0; |
|
|
if((Nstrip>=fNstrips_ladder)&&(Nstrip<2*fNstrips_ladder)) iladd=1; |
|
|
if((Nstrip>=2*fNstrips_ladder)&&(Nstrip<3*fNstrips_ladder)) iladd=2; |
|
|
ADCfull=AdcTrack[Iview][Nstrip] -= Qstripy[iy]*fMipCor[iladd][Iview]; |
|
|
AdcTrack[Iview][Nstrip] *= SaturationTrack(ADCfull); |
|
|
|
|
|
}; |
|
|
|
|
|
CompressTrackData(AdcTrack); // Compress and Digitize data of one Ladder in turn for all ladders |
|
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
void Digitizer::DigitizeTrackCalib(Int_t ii) { |
|
|
|
|
|
std:: cout << "Entering DigitizeTrackCalib " << ii << endl; |
|
|
if( (ii!=1)&&(ii!=2) ) { |
|
|
std:: cout << "error wrong DigitizeTrackCalib argument" << endl; |
|
|
return; |
|
|
}; |
|
|
|
|
|
memset(fDataTrack,0,sizeof(UShort_t)*fTRACKbuffer); |
|
|
fTracklength=0; |
|
|
|
|
|
UShort_t Dato; |
|
|
|
|
|
Float_t dato1; |
|
|
Float_t dato2; |
|
|
Float_t dato3; |
|
|
Float_t dato4; |
|
|
|
|
|
UShort_t DatoDec; |
|
|
UShort_t DatoDec1; |
|
|
UShort_t DatoDec2; |
|
|
UShort_t DatoDec3; |
|
|
UShort_t DatoDec4; |
|
|
|
|
|
UShort_t EVENT_CAL; |
|
|
UShort_t PED_L1; |
|
|
UShort_t ReLength; |
|
|
UShort_t OveCheckCode; |
|
|
//UShort_t PED_L2; |
|
|
//UShort_t PED_L3HI; |
|
|
//UShort_t PED_L3LO; |
|
|
//UShort_t SIG_L1HI; |
|
|
//UShort_t SIG_L1LO; |
|
|
//UShort_t SIG_L2HI; |
|
|
//UShort_t SIG_L2LO; |
|
|
//UShort_t SIG_L3; |
|
|
//UShort_t BAD_L1; |
|
|
//UShort_t BAD_L2LO; |
|
|
//UShort_t BAD_L3HI; |
|
|
//UShort_t BAD_L3LO; |
|
|
//UShort_t FLAG; |
|
|
|
|
|
|
|
|
Int_t DSPpos; |
|
|
for (Int_t j=ii-1; j<fNviews;j+=2) { |
|
|
UShort_t CkSum=0; |
|
|
// here skip the dsp header and his trailer , to be written later |
|
|
DSPpos=fTracklength; |
|
|
fTracklength=fTracklength+13+3; |
|
|
|
|
|
|
|
|
for (Int_t i=0; i<fNladder;i++) { |
|
|
for (Int_t k=0; k<fNstrips_ladder;k++) { |
|
|
// write in buffer the current LADDER |
|
|
Dato=(UShort_t)fPedeTrack[j][i*fNstrips_ladder+k]; |
|
|
dato1=fPedeTrack[j][i*fNstrips_ladder+k]-Dato; |
|
|
|
|
|
DatoDec1=(UShort_t)(dato1*2); |
|
|
dato2=dato1*2-DatoDec1; |
|
|
|
|
|
DatoDec2=(UShort_t)(dato2*2); |
|
|
dato3=dato2*2-DatoDec2; |
|
|
|
|
|
DatoDec3=(UShort_t)(dato3*2); |
|
|
dato4=dato3*2-DatoDec3; |
|
|
|
|
|
DatoDec4=(UShort_t)(dato4*2); |
|
|
|
|
|
DatoDec=DatoDec1*0x0008+DatoDec2*0x0004+DatoDec3*0x0002+DatoDec4*0x0001; |
|
|
fDataTrack[fTracklength]=( (Dato << 4) | (DatoDec & 0x000F) ); |
|
|
CkSum=CkSum^fDataTrack[fTracklength]; |
|
|
fTracklength++; |
|
|
}; |
|
|
|
|
|
for (Int_t k=0; k<fNstrips_ladder;k++) { |
|
|
// write in buffer the current LADDER |
|
|
Dato=(UShort_t)fSigmaTrack[j][i*fNstrips_ladder+k]; |
|
|
dato1=fSigmaTrack[j][i*fNstrips_ladder+k]-Dato; |
|
|
|
|
|
DatoDec1=(UShort_t)(dato1*2); |
|
|
dato2=dato1*2-DatoDec1; |
|
|
|
|
|
DatoDec2=(UShort_t)(dato2*2); |
|
|
dato3=dato2*2-DatoDec2; |
|
|
|
|
|
DatoDec3=(UShort_t)(dato3*2); |
|
|
dato4=dato3*2-DatoDec3; |
|
|
|
|
|
DatoDec4=(UShort_t)(dato4*2); |
|
|
|
|
|
DatoDec=DatoDec1*0x0008+DatoDec2*0x0004+DatoDec3*0x0002+DatoDec4*0x0001; |
|
|
|
|
|
fDataTrack[fTracklength]=( (Dato << 4) | (DatoDec & 0x000F) ); |
|
|
CkSum=CkSum^fDataTrack[fTracklength]; |
|
|
fTracklength++; |
|
|
}; |
|
|
|
|
|
for (Int_t k=0; k<64;k++) { |
|
|
fDataTrack[fTracklength]=0x0000; |
|
|
CkSum=CkSum^fDataTrack[fTracklength]; |
|
|
fTracklength++; |
|
|
|
|
|
}; |
|
|
// end ladder |
|
|
|
|
|
// write in buffer the end ladder word |
|
|
if(i==0) fDataTrack[fTracklength]=0x1807; |
|
|
if(i==1) fDataTrack[fTracklength]=0x1808; |
|
|
if(i==2) fDataTrack[fTracklength]=0x1809; |
|
|
CkSum=CkSum^fDataTrack[fTracklength]; |
|
|
fTracklength++; |
|
|
|
|
|
// write in buffer the TRAILER |
|
|
ReLength=(UShort_t)((fNstrips_ladder*2+64+1)*2+3); |
|
|
OveCheckCode=0x0000; |
|
|
|
|
|
fDataTrack[fTracklength]=0x0000; |
|
|
fTracklength++; |
|
|
|
|
|
fDataTrack[fTracklength]=(ReLength >> 8); |
|
|
fTracklength++; |
|
|
|
|
|
fDataTrack[fTracklength]=( (ReLength << 8) | (OveCheckCode & 0x00FF) ); |
|
|
fTracklength++; |
|
|
|
|
|
// end TRAILER |
|
|
}; |
|
|
|
|
|
// write in buffer the DSP header |
|
|
|
|
|
fDataTrack[DSPpos]=(0xE800 | ( ((j+1) << 3) | 0x0005) ); |
|
|
|
|
|
fDataTrack[DSPpos+1]=0x01A9; |
|
|
|
|
|
fDataTrack[DSPpos+2]=0x8740; |
|
|
|
|
|
EVENT_CAL=0; |
|
|
fDataTrack[DSPpos+3]=(0x1A00 | ( (0x03FF & EVENT_CAL)>> 1) ); |
|
|
|
|
|
PED_L1=0; |
|
|
fDataTrack[DSPpos+4]=( ((EVENT_CAL << 15) | 0x5002 ) | ((0x03FF & PED_L1) << 2) ); |
|
|
|
|
|
// FROM HERE WE WRITE AS ALL VARIABLE apart CkSum are =0 |
|
|
|
|
|
fDataTrack[DSPpos+5]=0x8014; |
|
|
|
|
|
fDataTrack[DSPpos+6]=0x00A0; |
|
|
|
|
|
fDataTrack[DSPpos+7]=0x0500; |
|
|
|
|
|
fDataTrack[DSPpos+8]=0x2801; |
|
|
|
|
|
fDataTrack[DSPpos+9]=0x400A; |
|
|
|
|
|
fDataTrack[DSPpos+10]=0x0050; |
|
|
|
|
|
CkSum=(CkSum >> 8)^(CkSum&0x00FF); |
|
|
fDataTrack[DSPpos+11]=(0x0280 | (CkSum >> 3)); |
|
|
|
|
|
fDataTrack[DSPpos+12]=(0x1FFF | (CkSum << 13) ); |
|
|
|
|
|
// end dsp header |
|
|
|
|
|
// write in buffer the TRAILER |
|
|
|
|
|
ReLength=(UShort_t)((13*2)+3); |
|
|
OveCheckCode=0x0000; |
|
|
fDataTrack[DSPpos+13]=0x0000; |
|
|
|
|
|
fDataTrack[DSPpos+14]=(ReLength >> 8); |
|
|
|
|
|
fDataTrack[DSPpos+15]=( (ReLength << 8) | (OveCheckCode & 0x00FF) ); |
|
|
|
|
|
// end TRAILER |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// end DSP |
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
}; |
|
|
|
|
|
void Digitizer::WriteTrackCalib() { |
|
|
|
|
|
|
|
|
std:: cout << " Entering WriteTrackCalib " << endl; |
|
|
|
|
|
fOutputfile.write(reinterpret_cast<char*>(fDataPSCU),sizeof(UShort_t)*fPSCUbuffer); |
|
|
|
|
|
UShort_t temp[1000000]; |
|
|
memset(temp,0,sizeof(UShort_t)*1000000); |
|
|
swab(fDataTrack,temp,sizeof(UShort_t)*fTracklength); // WE MUST SWAP THE BYTES!!! |
|
|
fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fTracklength); |
|
|
fTracklength=0; |
|
|
if ( fPadding ){ |
|
|
fOutputfile.write(reinterpret_cast<char*>(fDataPadding),sizeof(UChar_t)*fPadding); |
|
|
}; |
|
|
|
|
|
}; |
|
|
|
|
|
|
|
|
void Digitizer::ClearTrackCalib() { |
|
|
|
|
|
std:: cout << "Entering ClearTrackCalib " << endl; |
|
|
|
|
|
|
|
|
}; |
|
|
|
|
|
|
|
|
void Digitizer::LoadTrackCalib() { |
|
|
std:: cout << "Entering LoadTrackCalib " << endl; |
|
|
|
|
|
// Generate the pedestals and sigmas according to parametrization |
|
|
for (Int_t j=0; j<fNviews;j++) { |
|
|
for (Int_t i=0; i<fNstrips_view;i++) { |
|
|
|
|
|
if((j+1)%2==0) { |
|
|
fPedeTrack[j][i]=gRandom->Gaus(fAvePedex,fSigmaPedex); |
|
|
fSigmaTrack[j][i]=gRandom->Gaus(fAveSigmax,fSigmaSigmax); |
|
|
}; |
|
|
if((j+1)%2==1) { |
|
|
fPedeTrack[j][i]=gRandom->Gaus(fAvePedey,fSigmaPedey); |
|
|
fSigmaTrack[j][i]=gRandom->Gaus(fAveSigmay,fSigmaSigmay); |
|
|
}; |
|
|
|
|
|
}; |
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
}; |
|
|
|
|
|
void Digitizer::LoadMipCor() { |
|
|
std:: cout << "Entering LoadMipCor" << endl; |
|
|
Float_t xfactor=1./151.6*1.04; |
|
|
Float_t yfactor=1./152.1; |
|
|
|
|
|
fMipCor[0][0]=140.02*yfactor; |
|
|
fMipCor[0][1]=140.99*xfactor; |
|
|
fMipCor[0][2]=134.48*yfactor; |
|
|
fMipCor[0][3]=144.41*xfactor; |
|
|
fMipCor[0][4]=140.74*yfactor; |
|
|
fMipCor[0][5]=142.28*xfactor; |
|
|
fMipCor[0][6]=134.53*yfactor; |
|
|
fMipCor[0][7]=140.63*xfactor; |
|
|
fMipCor[0][8]=135.55*yfactor; |
|
|
fMipCor[0][9]=138.00*xfactor; |
|
|
fMipCor[0][10]=154.95*yfactor; |
|
|
fMipCor[0][11]=158.44*xfactor; |
|
|
|
|
|
|
|
|
fMipCor[1][0]=136.07*yfactor; |
|
|
fMipCor[1][1]=135.59*xfactor; |
|
|
fMipCor[1][2]=142.69*yfactor; |
|
|
fMipCor[1][3]=138.19*xfactor; |
|
|
fMipCor[1][4]=137.35*yfactor; |
|
|
fMipCor[1][5]=140.23*xfactor; |
|
|
fMipCor[1][6]=153.15*yfactor; |
|
|
fMipCor[1][7]=151.42*xfactor; |
|
|
fMipCor[1][8]=129.76*yfactor; |
|
|
fMipCor[1][9]=140.63*xfactor; |
|
|
fMipCor[1][10]=157.87*yfactor; |
|
|
fMipCor[1][11]=153.64*xfactor; |
|
|
|
|
|
fMipCor[2][0]=134.98*yfactor; |
|
|
fMipCor[2][1]=143.95*xfactor; |
|
|
fMipCor[2][2]=140.23*yfactor; |
|
|
fMipCor[2][3]=138.88*xfactor; |
|
|
fMipCor[2][4]=137.95*yfactor; |
|
|
fMipCor[2][5]=134.87*xfactor; |
|
|
fMipCor[2][6]=157.56*yfactor; |
|
|
fMipCor[2][7]=157.31*xfactor; |
|
|
fMipCor[2][8]=141.37*yfactor; |
|
|
fMipCor[2][9]=143.39*xfactor; |
|
|
fMipCor[2][10]=156.15*yfactor; |
|
|
fMipCor[2][11]=158.79*xfactor; |
|
|
|
|
|
/* |
|
|
for (Int_t j=0; j<fNviews;j++) { |
|
|
for (Int_t i=0; i<fNstrips_view;i++) { |
|
|
fMipCor[j][i]=1.; |
|
|
}; |
|
|
}; |
|
|
|
|
|
|
|
|
*/ |
|
|
}; |
|
|
|
|
|
void Digitizer::CompressTrackData(Float_t AdcTrack[fNviews][fNstrips_view]) { |
|
|
// copy of the corresponding compression fortran routine + new digitization |
|
|
// std:: cout << "Entering CompressTrackData " << endl; |
|
|
Int_t oldval=0; |
|
|
Int_t newval=0; |
|
|
Int_t trasmesso=0; |
|
|
Int_t ntrastot=0; |
|
|
Float_t real; |
|
|
Float_t inte; |
|
|
Int_t cercacluster=0; |
|
|
Int_t kt=0; |
|
|
static const int DSPbufferSize = 4000; // 13 bit buffer to be rearranged in 16 bit Track buffer |
|
|
UShort_t DataDSP[DSPbufferSize]; // 13 bit buffer to be rearranged in 16 bit Track buffer |
|
|
UShort_t DSPlength; // 13 bit buffer to be rearranged in 16 bit Track buffer |
|
|
|
|
|
memset(fDataTrack,0,sizeof(UShort_t)*fTRACKbuffer); // probably not necessary becouse already done ? |
|
|
fTracklength=0; |
|
|
|
|
|
for (Int_t iv=0; iv<fNviews;iv++) { |
|
|
memset(DataDSP,0,sizeof(UShort_t)*DSPbufferSize); |
|
|
DSPlength=16; // skip the header, to be written later |
|
|
UShort_t CheckSum=0; |
|
|
// write dsp header on buffer |
|
|
|
|
|
// fDataTrack[fTracklength]=0xE805; |
|
|
// fTracklength++; |
|
|
|
|
|
// fDataTrack[fTracklength]=0x01A9; |
|
|
// fTracklength++; |
|
|
|
|
|
// end dsp header |
|
|
|
|
|
// |
|
|
// INIZIO VISTA IV - TAKE PROPER ACTION |
|
|
// |
|
|
|
|
|
|
|
|
|
|
|
for (Int_t ladder=0; ladder<fNladder;ladder++) { |
|
|
Int_t k=0; |
|
|
while (k<fNstrips_ladder) { |
|
|
// compress write in buffer the current LADDER |
|
|
if ( k == 0) { |
|
|
real=modff(AdcTrack[iv][ladder*fNstrips_ladder+k],&inte); |
|
|
if (real > 0.5) inte=inte+1; |
|
|
newval=(Int_t)inte -(Int_t)fPedeTrack[iv][ladder*fNstrips_ladder+k]; |
|
|
// first strip of ladder is transmitted |
|
|
// DC_TOT first " << AdcTrack[iv][ladder*fNstrips_ladder+k] << endl; |
|
|
DataDSP[DSPlength]=( ((UShort_t)inte) & 0x0FFF); |
|
|
DSPlength++; |
|
|
ntrastot++; |
|
|
trasmesso=1; |
|
|
oldval=newval; |
|
|
kt=k; |
|
|
k++; |
|
|
continue; |
|
|
}; |
|
|
real=modff(AdcTrack[iv][ladder*fNstrips_ladder+k],&inte); |
|
|
if (real > 0.5) inte=inte+1; |
|
|
newval=(Int_t)inte -(Int_t)(fPedeTrack[iv][ladder*fNstrips_ladder+k]); |
|
|
cercacluster=1; // ????????? |
|
|
if (cercacluster==1) { |
|
|
|
|
|
// controlla l'ordine di tutti queste strip ladder e DSP !!!!!!! |
|
|
Int_t diff=0; |
|
|
|
|
|
|
|
|
switch ((iv+1)%2) { |
|
|
case 0: diff=newval-oldval; |
|
|
break; |
|
|
case 1: diff=oldval-newval; |
|
|
break; |
|
|
}; |
|
|
|
|
|
if (diff>fCutclu*(Int_t)fSigmaTrack[iv][ladder*fNstrips_ladder+k]) { |
|
|
Int_t clval=newval; |
|
|
Int_t klp=k; // go on to search for maximum |
|
|
klp++; |
|
|
|
|
|
while(klp<fNstrips_ladder) { |
|
|
real=modff(AdcTrack[iv][ladder*fNstrips_ladder+klp],&inte); |
|
|
if (real > 0.5) inte=inte+1; |
|
|
Int_t clvalp=(Int_t)inte -(Int_t)fPedeTrack[iv][ladder*fNstrips_ladder+klp]; |
|
|
if((iv+1)%2==0) { |
|
|
|
|
|
if(clvalp>clval) { |
|
|
clval=clvalp; |
|
|
k=klp;} |
|
|
else break; // max of cluster found |
|
|
|
|
|
} else { |
|
|
|
|
|
if(clvalp<clval) { |
|
|
clval=clvalp; |
|
|
k=klp;} |
|
|
else break; // max of cluster found |
|
|
|
|
|
}; |
|
|
|
|
|
klp++; |
|
|
}; |
|
|
|
|
|
Int_t kl1=k-fNclst; // max of cluster (or end of ladder ?) |
|
|
trasmesso=0; |
|
|
if(kl1<0) kl1=0; |
|
|
|
|
|
if(kt>=kl1) kl1=kt+1; |
|
|
if( (kt+1)==kl1 ) trasmesso=1; |
|
|
|
|
|
|
|
|
|
|
|
Int_t kl2=k+fNclst; |
|
|
if(kl2>=fNstrips_ladder) kl2=fNstrips_ladder-1; |
|
|
|
|
|
for(Int_t klt=kl1 ; klt<=kl2 ; klt++) { |
|
|
if(trasmesso==0) { |
|
|
// std:: cout << "STRIP " << klt << endl; |
|
|
// std:: cout << "ADC_TOT " <<AdcTrack[iv][ladder*fNstrips_ladder+klt] << endl; |
|
|
|
|
|
DataDSP[DSPlength]=( ((UShort_t)klt) | 0x1000); |
|
|
DSPlength++; |
|
|
ntrastot++; |
|
|
|
|
|
|
|
|
real=modff(AdcTrack[iv][ladder*fNstrips_ladder+klt],&inte); |
|
|
if (real > 0.5) inte=inte+1; |
|
|
DataDSP[DSPlength]=( ((UShort_t)inte) & 0x0FFF); |
|
|
DSPlength++; |
|
|
ntrastot++; |
|
|
|
|
|
} |
|
|
else { |
|
|
// std:: cout << "ADC_TOT " <<AdcTrack[iv][ladder*fNstrips_ladder+klt] << endl; |
|
|
real=modff(AdcTrack[iv][ladder*fNstrips_ladder+klt],&inte); |
|
|
if (real > 0.5) inte=inte+1; |
|
|
DataDSP[DSPlength]=( ((UShort_t)inte) & 0x0FFF); |
|
|
DSPlength++; |
|
|
ntrastot++; |
|
|
}; |
|
|
trasmesso=1; |
|
|
}; // end trasmission |
|
|
kt=kl2; |
|
|
k=kl2; |
|
|
real=modff(AdcTrack[iv][ladder*fNstrips_ladder+kt],&inte); |
|
|
if (real > 0.5) inte=inte+1; |
|
|
oldval=(Int_t)inte -(Int_t)fPedeTrack[iv][ladder*fNstrips_ladder+kt]; |
|
|
k++; |
|
|
continue; |
|
|
|
|
|
|
|
|
}; // end cercacluster |
|
|
}; // end cercacluster |
|
|
|
|
|
// start ZOP check for strips no |
|
|
|
|
|
if(abs(newval-oldval)>=fCutzop*(Int_t)fSigmaTrack[iv][ladder*fNstrips_ladder+k]) { |
|
|
|
|
|
if(trasmesso==0) { |
|
|
// std:: cout << "STRIP " << k << endl; |
|
|
// std:: cout << "ADC_TOT " << AdcTrack[iv][ladder*fNstrips_ladder+k] << endl; |
|
|
|
|
|
DataDSP[DSPlength]=( ((UShort_t)k) | 0x1000); |
|
|
DSPlength++; |
|
|
ntrastot++; |
|
|
|
|
|
|
|
|
real=modff(AdcTrack[iv][ladder*fNstrips_ladder+k],&inte); |
|
|
if (real > 0.5) inte=inte+1; |
|
|
DataDSP[DSPlength]=( ((UShort_t)inte) & 0x0FFF); |
|
|
DSPlength++; |
|
|
ntrastot++; |
|
|
|
|
|
} |
|
|
else { |
|
|
// std:: cout << "ADC_TOT " << AdcTrack[iv][ladder*fNstrips_ladder+k] << endl; |
|
|
real=modff(AdcTrack[iv][ladder*fNstrips_ladder+k],&inte); |
|
|
if (real > 0.5) inte=inte+1; |
|
|
DataDSP[DSPlength]=( ((UShort_t)inte) & 0x0FFF); |
|
|
DSPlength++; |
|
|
ntrastot++; |
|
|
}; |
|
|
trasmesso=1; |
|
|
oldval=newval; |
|
|
kt=k; |
|
|
|
|
|
} |
|
|
else trasmesso=0; |
|
|
// end zop |
|
|
|
|
|
k++; |
|
|
}; // end cycle inside ladder |
|
|
// write here the end ladder bytes |
|
|
// std:: cout << "FINE LADDER " << ladder+1 << endl; |
|
|
|
|
|
DataDSP[DSPlength]=( ((UShort_t)(ladder+1)) | 0x1800); |
|
|
DSPlength++; |
|
|
ntrastot++; |
|
|
trasmesso=0; |
|
|
|
|
|
}; //end cycle inside dsp |
|
|
// std:: cout << "FINE DSP " << iv+1 << endl; |
|
|
// here put DSP header |
|
|
DataDSP[0]=(0x1CA0 | ((UShort_t)(iv+1)) ); |
|
|
UShort_t Nword=(DSPlength*13)/16; |
|
|
if( ((DSPlength*13)%16)!=0) Nword++; |
|
|
DataDSP[1]=(0x1400 | ( Nword >> 10)); |
|
|
DataDSP[2]=(0x1400 | ( Nword & 0x03FF) ); |
|
|
DataDSP[3]=(0x1400 | (( (UShort_t)(fCounter >> 10) ) & 0x03FF) ); |
|
|
DataDSP[4]=(0x1400 | (( (UShort_t)(fCounter) ) & 0x03FF) ); |
|
|
DataDSP[5]=(0x1400 | ( (UShort_t)(fNclst << 7) ) | ( (UShort_t)(fCutzop << 4) ) |
|
|
| ( (UShort_t)fCutzop ) ); |
|
|
DataDSP[6]=0x1400; |
|
|
DataDSP[7]=0x1400; |
|
|
DataDSP[8]=0x1400; |
|
|
DataDSP[9]=0x1400; |
|
|
DataDSP[10]=0x1400; |
|
|
DataDSP[11]=0x1400; |
|
|
DataDSP[12]=0x1400; |
|
|
DataDSP[13]=0x1400; |
|
|
DataDSP[14]=(0x1400 | (CheckSum & 0x00FF) ); |
|
|
DataDSP[15]=0x1C00; |
|
|
// end DSP header |
|
|
|
|
|
|
|
|
// write 13 bit DataDSP bufer inside 16 bit fDataTrack buffer |
|
|
Int_t Bit16free=16; |
|
|
UShort_t Dato; |
|
|
for (Int_t NDSP=0; NDSP<DSPlength;NDSP++) { |
|
|
Int_t Bit13ToWrite=13; |
|
|
while(Bit13ToWrite>0) { |
|
|
if(Bit13ToWrite<=Bit16free) { |
|
|
Dato=((DataDSP[NDSP]&(0xFFFF >> (16-Bit13ToWrite)))<<(Bit16free-Bit13ToWrite)); |
|
|
fDataTrack[fTracklength]=fDataTrack[fTracklength] | Dato ; |
|
|
Bit16free=Bit16free-Bit13ToWrite; |
|
|
Bit13ToWrite=0; |
|
|
if(Bit16free==0) { |
|
|
if(NDSP>15) CheckSum=CheckSum^fDataTrack[fTracklength]; |
|
|
fTracklength++; |
|
|
Bit16free=16; |
|
|
}; |
|
|
} |
|
|
else if(Bit13ToWrite>Bit16free) { |
|
|
Dato=( (DataDSP[NDSP]&(0xFFFF >> (16-Bit13ToWrite) ) ) >> (Bit13ToWrite-Bit16free) ); |
|
|
fDataTrack[fTracklength]=fDataTrack[fTracklength] | Dato ; |
|
|
if(NDSP>15) CheckSum=CheckSum^fDataTrack[fTracklength]; |
|
|
fTracklength++; |
|
|
Bit13ToWrite=Bit13ToWrite-Bit16free; |
|
|
Bit16free=16; |
|
|
}; |
|
|
|
|
|
}; // end cycle while(Bit13ToWrite>0) |
|
|
|
|
|
}; // end cycle DataDSP |
|
|
if(Bit16free!=16) { fTracklength++; CheckSum=CheckSum^fDataTrack[fTracklength]; }; |
|
|
CheckSum=(CheckSum >> 8)^(CheckSum&0x00FF); |
|
|
fDataTrack[fTracklength-Nword+11]=(0x0280 | (CheckSum >> 3)); |
|
|
fDataTrack[fTracklength-Nword+12]=(0x1C00 | (CheckSum << 13) ); |
|
|
|
|
|
// end write 13 bit DataDSP bufer inside 16 bit fDataTrack buffer |
|
|
|
|
|
//write trailer on buffer |
|
|
UShort_t ReLength=(UShort_t)((Nword+13)*2+3); |
|
|
UShort_t OveCheckCode=0x0000; |
|
|
|
|
|
fDataTrack[fTracklength]=0x0000; |
|
|
fTracklength++; |
|
|
|
|
|
fDataTrack[fTracklength]=(ReLength >> 8); |
|
|
fTracklength++; |
|
|
|
|
|
fDataTrack[fTracklength]=( (ReLength << 8) | (OveCheckCode & 0x00FF) ); |
|
|
fTracklength++; |
|
|
// end trailer |
|
|
// std:: cout << "DSPlength " <<DSPlength << endl; |
|
|
// std:: cout << "Nword " << Nword << endl; |
|
|
// std:: cout << "ReLength " << ReLength << endl; |
|
|
}; |
|
|
// std:: cout << "ntrastot " << ntrastot << endl; |
|
|
|
|
|
}; |
|
|
|
|
|
|
|
|
Float_t Digitizer::SaturationTrack(Float_t ADC) { |
|
|
Float_t SatFact=1.; |
|
|
if(ADC<70.) { SatFact=80./ADC; }; |
|
|
if(ADC>3000.) { SatFact=3000./ADC; }; |
|
|
return SatFact; |
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|