1 |
// |
// ------ PAMELA Digitizer ------ |
2 |
#include <sstream> |
// |
3 |
#include <fstream> |
// Date, release and how-to: see file Pamelagp2Digits.cxx |
4 |
#include <stdlib.h> |
// |
5 |
#include <string.h> |
// NB: Check length physics packet [packet type (0x10 = physics data)] |
6 |
#include <ctype.h> |
// |
7 |
#include "Riostream.h" |
#include <sstream> |
8 |
#include "TFile.h" |
#include <fstream> |
9 |
#include "TDirectory.h" |
#include <stdlib.h> |
10 |
#include "TTree.h" |
#include <stdio.h> |
11 |
#include "TLeafI.h" |
#include <string.h> |
12 |
#include "TH1.h" |
#include <ctype.h> |
13 |
#include "TH2.h" |
#include <time.h> |
14 |
#include "TMath.h" |
#include "Riostream.h" |
15 |
#include "TRandom.h" |
#include "TFile.h" |
16 |
#include "TSQLServer.h" |
#include "TDirectory.h" |
17 |
#include "TSystem.h" |
#include "TTree.h" |
18 |
// |
#include "TLeafI.h" |
19 |
#include "Digitizer.h" |
#include "TH1.h" |
20 |
#include "CRC.h" |
#include "TH2.h" |
21 |
// |
#include "TF1.h" |
22 |
#include <PamelaRun.h> |
#include "TMath.h" |
23 |
#include <physics/calorimeter/CalorimeterEvent.h> |
#include "TRandom.h" |
24 |
#include <CalibCalPedEvent.h> |
#include "TSQLServer.h" |
25 |
#include "GLTables.h" |
#include "TSystem.h" |
26 |
// |
// |
27 |
extern "C"{ |
#include "Digitizer.h" |
28 |
short crc(short, short); |
#include "CRC.h" |
29 |
}; |
// |
30 |
// |
#include <PamelaRun.h> |
31 |
|
#include <physics/calorimeter/CalorimeterEvent.h> |
32 |
Digitizer::Digitizer(TTree* tree, char* &file_raw){ |
#include <CalibCalPedEvent.h> |
33 |
fhBookTree = tree; |
#include "GLTables.h" |
34 |
fFilename = file_raw; |
// |
35 |
fCounter = 0; |
extern "C"{ |
36 |
fOBT = 0; |
short crc(short, short); |
37 |
|
}; |
38 |
// |
// |
39 |
// DB connections |
|
40 |
// |
Digitizer::Digitizer(TTree* tree, char* &file_raw){ |
41 |
TString host = "mysql://localhost/pamelaprod"; |
fhBookTree = tree; |
42 |
TString user = "anonymous"; |
fFilename = file_raw; |
43 |
TString psw = ""; |
fCounter = 0; |
44 |
// |
fCounterPhys = 0; // SO 5/12/'07 |
45 |
const char *pamdbhost=gSystem->Getenv("PAM_DBHOST"); |
fOBT = 0; |
46 |
const char *pamdbuser=gSystem->Getenv("PAM_DBUSER"); |
|
47 |
const char *pamdbpsw=gSystem->Getenv("PAM_DBPSW"); |
// |
48 |
if ( !pamdbhost ) pamdbhost = ""; |
// DB connections |
49 |
if ( !pamdbuser ) pamdbuser = ""; |
// |
50 |
if ( !pamdbpsw ) pamdbpsw = ""; |
TString host = "mysql://localhost/pamelaprod"; |
51 |
if ( strcmp(pamdbhost,"") ) host = pamdbhost; |
TString user = "anonymous"; |
52 |
if ( strcmp(pamdbuser,"") ) user = pamdbuser; |
TString psw = ""; |
53 |
if ( strcmp(pamdbpsw,"") ) psw = pamdbpsw; |
// |
54 |
fDbc = TSQLServer::Connect(host.Data(),user.Data(),psw.Data()); |
const char *pamdbhost=gSystem->Getenv("PAM_DBHOST"); |
55 |
// |
const char *pamdbuser=gSystem->Getenv("PAM_DBUSER"); |
56 |
GL_TABLES *glt = new GL_TABLES(host,user,psw); |
const char *pamdbpsw=gSystem->Getenv("PAM_DBPSW"); |
57 |
if ( glt->IsConnected(fDbc) ) printf("\n DB INFORMATION:\n SQL: %s Version: %s Host %s Port %i \n\n",fDbc->GetDBMS(),fDbc->ServerInfo(),fDbc->GetHost(),fDbc->GetPort()); |
if ( !pamdbhost ) pamdbhost = ""; |
58 |
// |
if ( !pamdbuser ) pamdbuser = ""; |
59 |
// Use UTC in the DB and make timeout bigger |
if ( !pamdbpsw ) pamdbpsw = ""; |
60 |
// |
if ( strcmp(pamdbhost,"") ) host = pamdbhost; |
61 |
stringstream myquery; |
if ( strcmp(pamdbuser,"") ) user = pamdbuser; |
62 |
myquery.str(""); |
if ( strcmp(pamdbpsw,"") ) psw = pamdbpsw; |
63 |
myquery << "SET time_zone='+0:00'"; |
fDbc = TSQLServer::Connect(host.Data(),user.Data(),psw.Data()); |
64 |
fDbc->Query(myquery.str().c_str()); |
// |
65 |
myquery.str(""); |
GL_TABLES *glt = new GL_TABLES(host,user,psw); |
66 |
myquery << "SET wait_timeout=173000;"; |
if ( glt->IsConnected(fDbc) ) printf("\n DB INFORMATION:\n SQL: %s Version: %s Host %s Port %i \n\n",fDbc->GetDBMS(),fDbc->ServerInfo(),fDbc->GetHost(),fDbc->GetPort()); |
67 |
fDbc->Query(myquery.str().c_str()); |
// |
68 |
// |
// Use UTC in the DB and make timeout bigger |
69 |
|
// |
70 |
std:: cout << "preparing tree" << endl; |
stringstream myquery; |
71 |
|
myquery.str(""); |
72 |
// prepare tree |
myquery << "SET time_zone='+0:00'"; |
73 |
fhBookTree->SetBranchAddress("Irun",&Irun); |
fDbc->Query(myquery.str().c_str()); |
74 |
fhBookTree->SetBranchAddress("Ievnt",&Ievnt); |
myquery.str(""); |
75 |
fhBookTree->SetBranchAddress("Ipa",&Ipa); |
myquery << "SET wait_timeout=173000;"; |
76 |
fhBookTree->SetBranchAddress("X0",&X0); |
fDbc->Query(myquery.str().c_str()); |
77 |
fhBookTree->SetBranchAddress("Y0",&Y0); |
// |
78 |
fhBookTree->SetBranchAddress("Z0",&Z0); |
|
79 |
fhBookTree->SetBranchAddress("Theta",&Theta); |
std:: cout << "preparing tree" << endl; |
80 |
fhBookTree->SetBranchAddress("Phi",&Phi); |
|
81 |
fhBookTree->SetBranchAddress("P0",&P0); |
// prepare tree |
82 |
fhBookTree->SetBranchAddress("Nthtof",&Nthtof); |
fhBookTree->SetBranchAddress("Irun",&Irun); |
83 |
fhBookTree->SetBranchAddress("Ipltof",Ipltof); |
fhBookTree->SetBranchAddress("Ievnt",&Ievnt); |
84 |
fhBookTree->SetBranchAddress("Ipaddle",Ipaddle); |
fhBookTree->SetBranchAddress("Ipa",&Ipa); |
85 |
fhBookTree->SetBranchAddress("Ipartof",Ipartof); |
fhBookTree->SetBranchAddress("X0",&X0); |
86 |
fhBookTree->SetBranchAddress("Xintof",Xintof); |
fhBookTree->SetBranchAddress("Y0",&Y0); |
87 |
fhBookTree->SetBranchAddress("Yintof",Yintof); |
fhBookTree->SetBranchAddress("Z0",&Z0); |
88 |
fhBookTree->SetBranchAddress("Zintof",Zintof); |
fhBookTree->SetBranchAddress("Theta",&Theta); |
89 |
fhBookTree->SetBranchAddress("Xouttof",Xouttof); |
fhBookTree->SetBranchAddress("Phi",&Phi); |
90 |
fhBookTree->SetBranchAddress("Youttof",Youttof); |
fhBookTree->SetBranchAddress("P0",&P0); |
91 |
fhBookTree->SetBranchAddress("Zouttof",Zouttof); |
fhBookTree->SetBranchAddress("Nthtof",&Nthtof); |
92 |
fhBookTree->SetBranchAddress("Ereltof",Ereltof); |
fhBookTree->SetBranchAddress("Ipltof",Ipltof); |
93 |
fhBookTree->SetBranchAddress("Timetof",Timetof); |
fhBookTree->SetBranchAddress("Ipaddle",Ipaddle); |
94 |
fhBookTree->SetBranchAddress("Pathtof",Pathtof); |
fhBookTree->SetBranchAddress("Ipartof",Ipartof); |
95 |
fhBookTree->SetBranchAddress("P0tof",P0tof); |
fhBookTree->SetBranchAddress("Xintof",Xintof); |
96 |
fhBookTree->SetBranchAddress("Nthcat",&Nthcat); |
fhBookTree->SetBranchAddress("Yintof",Yintof); |
97 |
fhBookTree->SetBranchAddress("Iparcat",Iparcat); |
fhBookTree->SetBranchAddress("Zintof",Zintof); |
98 |
fhBookTree->SetBranchAddress("Icat",Icat); |
fhBookTree->SetBranchAddress("Xouttof",Xouttof); |
99 |
fhBookTree->SetBranchAddress("Xincat",Xincat); |
fhBookTree->SetBranchAddress("Youttof",Youttof); |
100 |
fhBookTree->SetBranchAddress("Yincat",Yincat); |
fhBookTree->SetBranchAddress("Zouttof",Zouttof); |
101 |
fhBookTree->SetBranchAddress("Zincat",Zincat); |
fhBookTree->SetBranchAddress("Ereltof",Ereltof); |
102 |
fhBookTree->SetBranchAddress("Xoutcat",Xoutcat); |
fhBookTree->SetBranchAddress("Timetof",Timetof); |
103 |
fhBookTree->SetBranchAddress("Youtcat",Youtcat); |
fhBookTree->SetBranchAddress("Pathtof",Pathtof); |
104 |
fhBookTree->SetBranchAddress("Zoutcat",Zoutcat); |
fhBookTree->SetBranchAddress("P0tof",P0tof); |
105 |
fhBookTree->SetBranchAddress("Erelcat",Erelcat); |
fhBookTree->SetBranchAddress("Nthcat",&Nthcat); |
106 |
fhBookTree->SetBranchAddress("Timecat",Timecat); |
fhBookTree->SetBranchAddress("Iparcat",Iparcat); |
107 |
fhBookTree->SetBranchAddress("Pathcat",Pathcat); |
fhBookTree->SetBranchAddress("Icat",Icat); |
108 |
fhBookTree->SetBranchAddress("P0cat",P0cat); |
fhBookTree->SetBranchAddress("Xincat",Xincat); |
109 |
fhBookTree->SetBranchAddress("Nthcas",&Nthcas); |
fhBookTree->SetBranchAddress("Yincat",Yincat); |
110 |
fhBookTree->SetBranchAddress("Iparcas",Iparcas); |
fhBookTree->SetBranchAddress("Zincat",Zincat); |
111 |
fhBookTree->SetBranchAddress("Icas",Icas); |
fhBookTree->SetBranchAddress("Xoutcat",Xoutcat); |
112 |
fhBookTree->SetBranchAddress("Xincas",Xincas); |
fhBookTree->SetBranchAddress("Youtcat",Youtcat); |
113 |
fhBookTree->SetBranchAddress("Yincas",Yincas); |
fhBookTree->SetBranchAddress("Zoutcat",Zoutcat); |
114 |
fhBookTree->SetBranchAddress("Zincas",Zincas); |
fhBookTree->SetBranchAddress("Erelcat",Erelcat); |
115 |
fhBookTree->SetBranchAddress("Xoutcas",Xoutcas); |
fhBookTree->SetBranchAddress("Timecat",Timecat); |
116 |
fhBookTree->SetBranchAddress("Youtcas",Youtcas); |
fhBookTree->SetBranchAddress("Pathcat",Pathcat); |
117 |
fhBookTree->SetBranchAddress("Zoutcas",Zoutcas); |
fhBookTree->SetBranchAddress("P0cat",P0cat); |
118 |
fhBookTree->SetBranchAddress("Erelcas",Erelcas); |
fhBookTree->SetBranchAddress("Nthcas",&Nthcas); |
119 |
fhBookTree->SetBranchAddress("Timecas",Timecas); |
fhBookTree->SetBranchAddress("Iparcas",Iparcas); |
120 |
fhBookTree->SetBranchAddress("Pathcas",Pathcas); |
fhBookTree->SetBranchAddress("Icas",Icas); |
121 |
fhBookTree->SetBranchAddress("P0cas",P0cas); |
fhBookTree->SetBranchAddress("Xincas",Xincas); |
122 |
fhBookTree->SetBranchAddress("Nthspe",&Nthspe); |
fhBookTree->SetBranchAddress("Yincas",Yincas); |
123 |
fhBookTree->SetBranchAddress("Iparspe",Iparspe); |
fhBookTree->SetBranchAddress("Zincas",Zincas); |
124 |
fhBookTree->SetBranchAddress("Itrpb",Itrpb); |
fhBookTree->SetBranchAddress("Xoutcas",Xoutcas); |
125 |
fhBookTree->SetBranchAddress("Itrsl",Itrsl); |
fhBookTree->SetBranchAddress("Youtcas",Youtcas); |
126 |
fhBookTree->SetBranchAddress("Itspa",Itspa); |
fhBookTree->SetBranchAddress("Zoutcas",Zoutcas); |
127 |
fhBookTree->SetBranchAddress("Xinspe",Xinspe); |
fhBookTree->SetBranchAddress("Erelcas",Erelcas); |
128 |
fhBookTree->SetBranchAddress("Yinspe",Yinspe); |
fhBookTree->SetBranchAddress("Timecas",Timecas); |
129 |
fhBookTree->SetBranchAddress("Zinspe",Zinspe); |
fhBookTree->SetBranchAddress("Pathcas",Pathcas); |
130 |
fhBookTree->SetBranchAddress("Xoutspe",Xoutspe); |
fhBookTree->SetBranchAddress("P0cas",P0cas); |
131 |
fhBookTree->SetBranchAddress("Youtspe",Youtspe); |
fhBookTree->SetBranchAddress("Nthspe",&Nthspe); |
132 |
fhBookTree->SetBranchAddress("Zoutspe",Zoutspe); |
fhBookTree->SetBranchAddress("Iparspe",Iparspe); |
133 |
fhBookTree->SetBranchAddress("Xavspe",Xavspe); |
fhBookTree->SetBranchAddress("Itrpb",Itrpb); |
134 |
fhBookTree->SetBranchAddress("Yavspe",Yavspe); |
fhBookTree->SetBranchAddress("Itrsl",Itrsl); |
135 |
fhBookTree->SetBranchAddress("Zavspe",Zavspe); |
fhBookTree->SetBranchAddress("Itspa",Itspa); |
136 |
fhBookTree->SetBranchAddress("Erelspe",Erelspe); |
fhBookTree->SetBranchAddress("Xinspe",Xinspe); |
137 |
fhBookTree->SetBranchAddress("Pathspe",Pathspe); |
fhBookTree->SetBranchAddress("Yinspe",Yinspe); |
138 |
fhBookTree->SetBranchAddress("P0spe",P0spe); |
fhBookTree->SetBranchAddress("Zinspe",Zinspe); |
139 |
fhBookTree->SetBranchAddress("Nxmult",Nxmult); |
fhBookTree->SetBranchAddress("Xoutspe",Xoutspe); |
140 |
fhBookTree->SetBranchAddress("Nymult",Nymult); |
fhBookTree->SetBranchAddress("Youtspe",Youtspe); |
141 |
fhBookTree->SetBranchAddress("Nstrpx",&Nstrpx); |
fhBookTree->SetBranchAddress("Zoutspe",Zoutspe); |
142 |
fhBookTree->SetBranchAddress("Npstripx",Npstripx); |
fhBookTree->SetBranchAddress("Xavspe",Xavspe); |
143 |
fhBookTree->SetBranchAddress("Ntstripx",Ntstripx); |
fhBookTree->SetBranchAddress("Yavspe",Yavspe); |
144 |
fhBookTree->SetBranchAddress("Istripx",Istripx); |
fhBookTree->SetBranchAddress("Zavspe",Zavspe); |
145 |
fhBookTree->SetBranchAddress("Qstripx",Qstripx); |
fhBookTree->SetBranchAddress("Erelspe",Erelspe); |
146 |
fhBookTree->SetBranchAddress("Xstripx",Xstripx); |
fhBookTree->SetBranchAddress("Pathspe",Pathspe); |
147 |
fhBookTree->SetBranchAddress("Nstrpy",&Nstrpy); |
fhBookTree->SetBranchAddress("P0spe",P0spe); |
148 |
fhBookTree->SetBranchAddress("Npstripy",Npstripy); |
fhBookTree->SetBranchAddress("Nxmult",Nxmult); |
149 |
fhBookTree->SetBranchAddress("Ntstripy",Ntstripy); |
fhBookTree->SetBranchAddress("Nymult",Nymult); |
150 |
fhBookTree->SetBranchAddress("Istripy",Istripy); |
fhBookTree->SetBranchAddress("Nstrpx",&Nstrpx); |
151 |
fhBookTree->SetBranchAddress("Qstripy",Qstripy); |
fhBookTree->SetBranchAddress("Npstripx",Npstripx); |
152 |
fhBookTree->SetBranchAddress("Ystripy",Ystripy); |
fhBookTree->SetBranchAddress("Ntstripx",Ntstripx); |
153 |
fhBookTree->SetBranchAddress("Nthcali",&Nthcali); |
fhBookTree->SetBranchAddress("Istripx",Istripx); |
154 |
fhBookTree->SetBranchAddress("Icaplane",Icaplane); |
fhBookTree->SetBranchAddress("Qstripx",Qstripx); |
155 |
fhBookTree->SetBranchAddress("Icastrip",Icastrip); |
fhBookTree->SetBranchAddress("Xstripx",Xstripx); |
156 |
fhBookTree->SetBranchAddress("Icamod",Icamod); |
fhBookTree->SetBranchAddress("Nstrpy",&Nstrpy); |
157 |
fhBookTree->SetBranchAddress("Enestrip",Enestrip); |
fhBookTree->SetBranchAddress("Npstripy",Npstripy); |
158 |
fhBookTree->SetBranchAddress("Nthcal",&Nthcal); |
fhBookTree->SetBranchAddress("Ntstripy",Ntstripy); |
159 |
fhBookTree->SetBranchAddress("Icapl",Icapl); |
fhBookTree->SetBranchAddress("Istripy",Istripy); |
160 |
fhBookTree->SetBranchAddress("Icasi",Icasi); |
fhBookTree->SetBranchAddress("Qstripy",Qstripy); |
161 |
fhBookTree->SetBranchAddress("Icast",Icast); |
fhBookTree->SetBranchAddress("Ystripy",Ystripy); |
162 |
fhBookTree->SetBranchAddress("Xincal",Xincal); |
fhBookTree->SetBranchAddress("Nthcali",&Nthcali); |
163 |
fhBookTree->SetBranchAddress("Yincal",Yincal); |
fhBookTree->SetBranchAddress("Icaplane",Icaplane); |
164 |
fhBookTree->SetBranchAddress("Zincal",Zincal); |
fhBookTree->SetBranchAddress("Icastrip",Icastrip); |
165 |
fhBookTree->SetBranchAddress("Erelcal",Erelcal); |
fhBookTree->SetBranchAddress("Icamod",Icamod); |
166 |
fhBookTree->SetBranchAddress("Nthnd",&Nthnd); |
fhBookTree->SetBranchAddress("Enestrip",Enestrip); |
167 |
fhBookTree->SetBranchAddress("Itubend",Itubend); |
fhBookTree->SetBranchAddress("Nthcal",&Nthcal); |
168 |
fhBookTree->SetBranchAddress("Iparnd",Iparnd); |
fhBookTree->SetBranchAddress("Icapl",Icapl); |
169 |
fhBookTree->SetBranchAddress("Xinnd",Xinnd); |
fhBookTree->SetBranchAddress("Icasi",Icasi); |
170 |
fhBookTree->SetBranchAddress("Yinnd",Yinnd); |
fhBookTree->SetBranchAddress("Icast",Icast); |
171 |
fhBookTree->SetBranchAddress("Zinnd",Zinnd); |
fhBookTree->SetBranchAddress("Xincal",Xincal); |
172 |
fhBookTree->SetBranchAddress("Xoutnd",Xoutnd); |
fhBookTree->SetBranchAddress("Yincal",Yincal); |
173 |
fhBookTree->SetBranchAddress("Youtnd",Youtnd); |
fhBookTree->SetBranchAddress("Zincal",Zincal); |
174 |
fhBookTree->SetBranchAddress("Zoutnd",Zoutnd); |
fhBookTree->SetBranchAddress("Erelcal",Erelcal); |
175 |
fhBookTree->SetBranchAddress("Erelnd",Erelnd); |
fhBookTree->SetBranchAddress("Nthnd",&Nthnd); |
176 |
fhBookTree->SetBranchAddress("Timend",Timend); |
fhBookTree->SetBranchAddress("Itubend",Itubend); |
177 |
fhBookTree->SetBranchAddress("Pathnd",Pathnd); |
fhBookTree->SetBranchAddress("Iparnd",Iparnd); |
178 |
fhBookTree->SetBranchAddress("P0nd",P0nd); |
fhBookTree->SetBranchAddress("Xinnd",Xinnd); |
179 |
fhBookTree->SetBranchAddress("Nthcard",&Nthcard); |
fhBookTree->SetBranchAddress("Yinnd",Yinnd); |
180 |
fhBookTree->SetBranchAddress("Iparcard",Iparcard); |
fhBookTree->SetBranchAddress("Zinnd",Zinnd); |
181 |
fhBookTree->SetBranchAddress("Icard",Icard); |
fhBookTree->SetBranchAddress("Xoutnd",Xoutnd); |
182 |
fhBookTree->SetBranchAddress("Xincard",Xincard); |
fhBookTree->SetBranchAddress("Youtnd",Youtnd); |
183 |
fhBookTree->SetBranchAddress("Yincard",Yincard); |
fhBookTree->SetBranchAddress("Zoutnd",Zoutnd); |
184 |
fhBookTree->SetBranchAddress("Zincard",Zincard); |
fhBookTree->SetBranchAddress("Erelnd",Erelnd); |
185 |
fhBookTree->SetBranchAddress("Xoutcard",Xoutcard); |
fhBookTree->SetBranchAddress("Timend",Timend); |
186 |
fhBookTree->SetBranchAddress("Youtcard",Youtcard); |
fhBookTree->SetBranchAddress("Pathnd",Pathnd); |
187 |
fhBookTree->SetBranchAddress("Zoutcard",Zoutcard); |
fhBookTree->SetBranchAddress("P0nd",P0nd); |
188 |
fhBookTree->SetBranchAddress("Erelcard",Erelcard); |
fhBookTree->SetBranchAddress("Nthcard",&Nthcard); |
189 |
fhBookTree->SetBranchAddress("Timecard",Timecard); |
fhBookTree->SetBranchAddress("Iparcard",Iparcard); |
190 |
fhBookTree->SetBranchAddress("Pathcard",Pathcard); |
fhBookTree->SetBranchAddress("Icard",Icard); |
191 |
fhBookTree->SetBranchAddress("P0card",P0card); |
fhBookTree->SetBranchAddress("Xincard",Xincard); |
192 |
|
fhBookTree->SetBranchAddress("Yincard",Yincard); |
193 |
fhBookTree->SetBranchStatus("*",0); |
fhBookTree->SetBranchAddress("Zincard",Zincard); |
194 |
|
fhBookTree->SetBranchAddress("Xoutcard",Xoutcard); |
195 |
}; |
fhBookTree->SetBranchAddress("Youtcard",Youtcard); |
196 |
|
fhBookTree->SetBranchAddress("Zoutcard",Zoutcard); |
197 |
|
fhBookTree->SetBranchAddress("Erelcard",Erelcard); |
198 |
|
fhBookTree->SetBranchAddress("Timecard",Timecard); |
199 |
void Digitizer::Close(){ |
fhBookTree->SetBranchAddress("Pathcard",Pathcard); |
200 |
|
fhBookTree->SetBranchAddress("P0card",P0card); |
201 |
delete fhBookTree; |
|
202 |
|
fhBookTree->SetBranchStatus("*",0); |
203 |
}; |
|
204 |
|
}; |
205 |
|
|
206 |
|
|
207 |
|
|
208 |
void Digitizer::Loop() { |
void Digitizer::Close(){ |
209 |
// |
|
210 |
// opens the raw output file and loops over the events |
delete fhBookTree; |
211 |
// |
|
212 |
fOutputfile.open(fFilename, ios::out | ios::binary); |
}; |
213 |
//fOutputfile.open(Form("Output%s",fFilename), ios::out | ios::binary); |
|
214 |
// |
|
215 |
// Load in memory and save at the beginning of file the calorimeter calibration |
|
216 |
// |
|
217 |
CaloLoadCalib(); |
void Digitizer::Loop() { |
218 |
DigitizeCALOCALIB(); |
// |
219 |
|
// opens the raw output file and loops over the events |
220 |
// load, digitize and write tracker calibration |
// |
221 |
LoadTrackCalib(); |
fOutputfile.open(fFilename, ios::out | ios::binary); |
222 |
|
//fOutputfile.open(Form("Output%s",fFilename), ios::out | ios::binary); |
223 |
DigitizeTrackCalib(1); |
// |
224 |
UInt_t length=fTracklength*2; |
// Load in memory and save at the beginning of file the calorimeter calibration |
225 |
DigitizePSCU(length,0x12); |
// |
226 |
AddPadding(); |
CaloLoadCalib(); |
227 |
WriteTrackCalib(); |
DigitizeCALOCALIB(); |
228 |
|
|
229 |
DigitizeTrackCalib(2); |
// load, digitize and write tracker calibration |
230 |
length=fTracklength*2; |
LoadTrackCalib(); |
231 |
DigitizePSCU(length,0x13); |
|
232 |
AddPadding(); |
DigitizeTrackCalib(1); |
233 |
WriteTrackCalib(); |
UInt_t length=fTracklength*2; |
234 |
|
DigitizePSCU(length,0x12,fDataPSCU); |
235 |
LoadMipCor(); // some initialization of parameters -not used now- |
AddPadding(); |
236 |
// end loading, digitizing and writing tracker calibration |
WriteTrackCalib(); |
237 |
|
|
238 |
// |
DigitizeTrackCalib(2); |
239 |
// loops over the events |
length=fTracklength*2; |
240 |
// |
DigitizePSCU(length,0x13,fDataPSCU); |
241 |
|
AddPadding(); |
242 |
Int_t nentries = fhBookTree->GetEntriesFast(); |
WriteTrackCalib(); |
243 |
Long64_t nbytes = 0; |
|
244 |
for (Int_t i=0; i<nentries;i++) { |
DigitizeRunHeader(); |
245 |
// |
WriteRunHeader(); |
246 |
nbytes += fhBookTree->GetEntry(i); |
|
247 |
// read detectors sequentially: |
LoadMipCor(); // some initialization of parameters -not used now- |
248 |
// http://www.ts.infn.it/fileadmin/documents/physics/experiments/wizard/cpu/gen_arch/RM_Acquisition.pdf |
// end loading, digitizing and writing tracker calibration |
249 |
// on pamelatov: |
|
250 |
// /cvs/yoda/techmodel/physics/NeutronDetectorReader.cpp |
// |
251 |
DigitizeTRIGGER(); |
// loops over the events |
252 |
DigitizeTOF(); |
// |
253 |
DigitizeAC(); |
|
254 |
DigitizeCALO(); |
Int_t nentries = fhBookTree->GetEntriesFast(); |
255 |
DigitizeTrack(); |
Long64_t nbytes = 0; |
256 |
//DigitizeS4(); |
for (Int_t i=0; i<nentries;i++) { |
257 |
DigitizeND(); |
// |
258 |
// |
nbytes += fhBookTree->GetEntry(i); |
259 |
// Create CPU header, we need packet type (0x10 = physics data) and packet length. |
// read detectors sequentially: |
260 |
// |
// http://www.ts.infn.it/fileadmin/documents/physics/experiments/wizard/cpu/gen_arch/RM_Acquisition.pdf |
261 |
UInt_t length = (fCALOlength + fACbuffer + fTracklength)*2; |
// on pamelatov: /cvs/yoda/techmodel/physics/NeutronDetectorReader.cpp |
262 |
DigitizePSCU(length,0x10); |
//DigitizeTRIGGER(); |
263 |
// |
DigitizeTOF(); |
264 |
// Add padding to 64 bits |
DigitizeAC(); |
265 |
// |
DigitizeCALO(); |
266 |
AddPadding(); |
DigitizeTrack(); |
267 |
// |
DigitizeS4(); |
268 |
if ( !i%100 ) std::cout << "writing event " << i << endl; |
DigitizeND(); |
269 |
WriteData(); |
// |
270 |
}; |
// Add padding to 64 bits |
271 |
|
// |
272 |
fOutputfile.close(); |
AddPadding(); |
273 |
std::cout << "files closed" << endl << flush; |
// |
274 |
|
// Create CPU header, we need packet type (0x10 = physics data) and packet length. |
275 |
}; |
// |
276 |
|
UInt_t length=2*(fCALOlength+fACbuffer+fTracklength+fNDbuffer+fS4buffer)+fPadding+fTOFbuffer+fTRIGGERbuffer; |
277 |
void Digitizer::AddPadding(){ |
//UInt_t length=2*(fCALOlength+fACbuffer+fTracklength+fNDbuffer)+fPadding+fTOFbuffer+fTRIGGERbuffer; |
278 |
// |
DigitizePSCU(length,0x10,fDataPSCU); |
279 |
Float_t pd0 = (fLen+16)/64.; |
if ( !i%100 ) std::cout << "writing event " << i << endl; |
280 |
Float_t pd1 = pd0 - (Float_t)int(pd0); |
WriteData(); |
281 |
Float_t padfrac = 64. - pd1 * 64.; |
}; |
282 |
// |
|
283 |
UInt_t padbytes = (UInt_t)padfrac; |
DigitizeRunTrailer(); |
284 |
if ( padbytes > 0 && padbytes < 64 ){ |
WriteRunTrailer(); |
285 |
// |
|
286 |
// here the padding length |
fOutputfile.close(); |
287 |
// |
std::cout << "files closed" << endl << flush; |
288 |
fPadding = padbytes+64; |
|
289 |
// |
}; |
290 |
// random padding bytes |
|
291 |
// |
void Digitizer::DigitizeRunHeader(){ |
292 |
for (Int_t ur=0; ur<32; ur++){ |
const Int_t lenRH = fRunHeaderbuffer*2; |
293 |
fDataPadding[ur] = (UShort_t)rand(); |
UChar_t buffRH[lenRH]; |
294 |
}; |
UShort_t buffPSCU[8]; |
295 |
}; |
UChar_t *p; |
296 |
}; |
p=buffRH; |
297 |
|
|
298 |
|
// header: 16 bytes |
299 |
void Digitizer::DigitizePSCU(UInt_t length, UChar_t type) { |
DigitizePSCU(fRunHeaderbuffer*2,0x20,buffPSCU); |
300 |
// |
memcpy(p,buffPSCU,16*sizeof(UChar_t)); |
301 |
UChar_t buff[16]; |
p+=16; |
302 |
// |
|
303 |
// CPU signature |
// time stamp (uint32): 0x82569c97 |
304 |
// |
*(p++) = 0x82; |
305 |
buff[0] = 0xFA; |
*(p++) = 0x56; |
306 |
buff[1] = 0xFE; |
*(p++) = 0x9C; |
307 |
buff[2] = 0xDE; |
*(p++) = 0x97; |
308 |
// |
|
309 |
// packet type (twice) |
// acq_setting_mode (uint8) |
310 |
// |
*(p++) = 2; |
311 |
buff[3] = type; |
|
312 |
buff[4] = type; |
// obt (uint32) |
313 |
// |
ULong64_t obt = fOBT + 30LL; |
314 |
// counter |
while ( obt > 4294967295LL ) |
315 |
// |
obt -= 4294967295LL; |
316 |
fCounter++; |
fOBT = (UInt_t)obt; |
317 |
while ( fCounter > 16777215 ){ |
// |
318 |
fCounter -= 16777215; |
*(p++) = (UChar_t)(fOBT >> 24); |
319 |
}; |
*(p++) = (UChar_t)(fOBT >> 16); |
320 |
// |
*(p++) = (UChar_t)(fOBT >> 8); |
321 |
buff[5] = (UChar_t)(fCounter >> 16); |
*(p++) = (UChar_t)fOBT; |
322 |
buff[6] = (UChar_t)(fCounter >> 8); |
|
323 |
buff[7] = (UChar_t)fCounter; |
// last time_sync_info (uint32) (from file 000_001_00110) |
324 |
// |
*(p++) = 0x00; |
325 |
// on board time |
*(p++) = 0x08; |
326 |
// |
*(p++) = 0x68; |
327 |
ULong64_t obt = fOBT + 30LL; |
*(p++) = 0xEF; |
328 |
// |
|
329 |
while ( obt > 4294967295LL ){ |
// fav. working schedule (uint8) |
330 |
obt -= 4294967295LL; |
*(p++) = 0; |
331 |
}; |
|
332 |
fOBT = (UInt_t)obt; |
// eff. working schedule (uint8) |
333 |
// |
*(p++) = 0; |
334 |
buff[8] = (UChar_t)(fOBT >> 24); |
|
335 |
buff[9] = (UChar_t)(fOBT >> 16); |
// trigger_mode_A (uint32) |
336 |
buff[10] = (UChar_t)(fOBT >> 8); |
*(p++) = 0; |
337 |
buff[11] = (UChar_t)fOBT; |
*(p++) = 0; |
338 |
// |
*(p++) = 0; |
339 |
// Packet length |
*(p++) = 0x01; |
340 |
// |
|
341 |
fLen = length; |
// trigger_mode_B (uint32) |
342 |
// |
*(p++) = 0; |
343 |
buff[12] = (UChar_t)(fLen >> 16); |
*(p++) = 0; |
344 |
buff[13] = (UChar_t)(fLen >> 8); |
*(p++) = 0; |
345 |
buff[14] = (UChar_t)fLen; |
*(p++) = 0x03; |
346 |
// |
|
347 |
// CPU header CRC |
// acq_after_calib (0,1) (uint8) |
348 |
// |
*(p++) = 0; |
349 |
buff[15] = (BYTE)CM_Compute_CRC16((UINT16)0, (BYTE*)&buff, (UINT32)15); |
|
350 |
// |
// trk_calib_used (uint32) |
351 |
memcpy(fDataPSCU,buff,16*sizeof(UChar_t)); |
*(p++) = 0; |
352 |
// |
*(p++) = 0; |
353 |
}; |
*(p++) = 0; |
354 |
|
*(p++) = 0x68; |
355 |
void Digitizer::ClearCaloCalib(Int_t s){ |
|
356 |
// |
// acq_build_info (4 zero bits + 28 1's) (uint32) |
357 |
fcstwerr[s] = 0; |
*(p++) = 0x3F; |
358 |
fcperror[s] = 0.; |
*(p++) = 0xFF; |
359 |
for ( Int_t d=0 ; d<11 ;d++ ){ |
*(p++) = 0xFF; |
360 |
Int_t pre = -1; |
*(p++) = 0xFF; |
361 |
for ( Int_t j=0; j<96 ;j++){ |
|
362 |
if ( j%16 == 0 ) pre++; |
// acq_var_info (11 bits) (uint16) |
363 |
fcalped[s][d][j] = 0.; |
*(p++) = 0x23; |
364 |
fcstwerr[s] = 0.; |
*(p++) = 0x7F; |
365 |
fcperror[s] = 0.; |
|
366 |
fcalgood[s][d][j] = 0.; |
// cal_dsp_mask (uint8) |
367 |
fcalthr[s][d][pre] = 0.; |
*(p++) = 0; |
368 |
fcalrms[s][d][j] = 0.; |
|
369 |
fcalbase[s][d][pre] = 0.; |
// crc (uint16) |
370 |
fcalvar[s][d][pre] = 0.; |
UShort_t crcRH = (UShort_t)CM_Compute_CRC16((UINT16)0, (BYTE*)&buffRH, (UINT32)(fRunHeaderbuffer*2-2)); |
371 |
}; |
*(p++) = (UChar_t)(crcRH << 8); |
372 |
}; |
*p = (UChar_t)crcRH; |
373 |
return; |
|
374 |
} |
memcpy(fDataRunHeader,buffRH,fRunHeaderbuffer*sizeof(UShort_t)); |
375 |
|
}; |
376 |
Int_t Digitizer::CaloLoadCalib(Int_t s,TString fcalname, UInt_t calibno){ |
|
377 |
// |
void Digitizer::DigitizeRunTrailer(){ |
378 |
// |
UChar_t buffRT[fRunTrailerbuffer*2]; |
379 |
UInt_t e = 0; |
UShort_t buffPSCU[8]; |
380 |
if ( s == 0 ) e = 0; |
UChar_t *p; |
381 |
if ( s == 1 ) e = 2; |
p=buffRT; |
382 |
if ( s == 2 ) e = 3; |
|
383 |
if ( s == 3 ) e = 1; |
// header: 16 bytes |
384 |
// |
DigitizePSCU(fRunHeaderbuffer*2,0x21,buffPSCU); |
385 |
ifstream myfile; |
memcpy(p,buffPSCU,16*sizeof(UChar_t)); |
386 |
myfile.open(fcalname.Data()); |
p+=16; |
387 |
if ( !myfile ){ |
|
388 |
return(-107); |
// pkt_counter (uint32) |
389 |
}; |
fCounterPhys++; |
390 |
myfile.close(); |
fCounter++; |
391 |
// |
while ( fCounterPhys > 16777215 ) |
392 |
TFile *File = new TFile(fcalname.Data()); |
fCounterPhys -= 16777215; |
393 |
if ( !File ) return(-108); |
// |
394 |
TTree *tr = (TTree*)File->Get("CalibCalPed"); |
*(p++) = (UChar_t)(fCounterPhys >> 24); |
395 |
if ( !tr ) return(-109); |
*(p++) = (UChar_t)(fCounterPhys >> 16); |
396 |
// |
*(p++) = (UChar_t)(fCounterPhys >> 8); |
397 |
TBranch *calo = tr->GetBranch("CalibCalPed"); |
*(p++) = (UChar_t)fCounterPhys; |
398 |
// |
|
399 |
pamela::CalibCalPedEvent *ce = 0; |
// pkt_readyCounter: valid packets in the run (uint32) |
400 |
tr->SetBranchAddress("CalibCalPed", &ce); |
*(p++) = 0; |
401 |
// |
*(p++) = 0; |
402 |
Long64_t ncalibs = calo->GetEntries(); |
*(p++) = 0; |
403 |
// |
*(p++) = 0; |
404 |
if ( !ncalibs ) return(-110); |
|
405 |
// |
// obt (uint32) |
406 |
calo->GetEntry(calibno); |
ULong64_t obt = fOBT + 30LL; |
407 |
// |
while ( obt > 4294967295LL ) |
408 |
if (ce->cstwerr[s] != 0 && ce->cperror[s] == 0 ) { |
obt -= 4294967295LL; |
409 |
fcstwerr[s] = ce->cstwerr[s]; |
fOBT = (UInt_t)obt; |
410 |
fcperror[s] = ce->cperror[s]; |
// |
411 |
for ( Int_t d=0 ; d<11 ;d++ ){ |
*(p++) = (UChar_t)(fOBT >> 24); |
412 |
Int_t pre = -1; |
*(p++) = (UChar_t)(fOBT >> 16); |
413 |
for ( Int_t j=0; j<96 ;j++){ |
*(p++) = (UChar_t)(fOBT >> 8); |
414 |
if ( j%16 == 0 ) pre++; |
*(p++) = (UChar_t)fOBT; |
415 |
fcalped[s][d][j] = ce->calped[e][d][j]; |
|
416 |
fcalgood[s][d][j] = ce->calgood[e][d][j]; |
// last time_sync_info (uint32) |
417 |
fcalthr[s][d][pre] = ce->calthr[e][d][pre]; |
*(p++) = 0; |
418 |
fcalrms[s][d][j] = ce->calrms[e][d][j]; |
*(p++) = 0; |
419 |
fcalbase[s][d][pre] = ce->calbase[e][d][pre]; |
*(p++) = 0; |
420 |
fcalvar[s][d][pre] = ce->calvar[e][d][pre]; |
*(p++) = 0; |
421 |
}; |
|
422 |
}; |
// crc (uint16) |
423 |
} else { |
UShort_t crcRT = (UShort_t)CM_Compute_CRC16((UINT16)0, (BYTE*)(buffRT), (UINT32)(fRunTrailerbuffer*2-2)); |
424 |
printf(" CALORIMETER - ERROR: problems finding a good calibration in this file! \n\n "); |
*(p++) = (UChar_t)(crcRT << 8); |
425 |
File->Close(); |
*p = (UChar_t)crcRT; |
426 |
return(-111); |
|
427 |
}; |
memcpy(fDataRunTrailer,buffRT,fRunTrailerbuffer*sizeof(UShort_t)); |
428 |
File->Close(); |
}; |
429 |
return(0); |
|
430 |
} |
void Digitizer::AddPadding(){ |
431 |
|
// |
432 |
|
Float_t pd0 = (fLen+16)/64.; |
433 |
void Digitizer::DigitizeCALOCALIB() { |
Float_t pd1 = pd0 - (Float_t)int(pd0); |
434 |
// |
Float_t padfrac = 64. - pd1 * 64.; |
435 |
// Header of the four sections |
// |
436 |
// |
UInt_t padbytes = (UInt_t)padfrac; |
437 |
fSecCalo[0] = 0xAA00; // XE |
if ( padbytes > 0 && padbytes < 64 ){ |
438 |
fSecCalo[1] = 0xB100; // XO |
// |
439 |
fSecCalo[2] = 0xB600; // YE |
// here the padding length |
440 |
fSecCalo[3] = 0xAD00; // YO |
// |
441 |
// |
fPadding = padbytes+64; |
442 |
// length of the data is 0x1215 |
// |
443 |
// |
// random padding bytes |
444 |
fSecCALOLength[0] = 0x1215; // XE |
// |
445 |
fSecCALOLength[1] = 0x1215; // XO |
for (Int_t ur=0; ur<32; ur++){ |
446 |
fSecCALOLength[2] = 0x1215; // YE |
fDataPadding[ur] = (UShort_t)rand(); |
447 |
fSecCALOLength[3] = 0x1215; // YO |
}; |
448 |
// |
}; |
449 |
Int_t chksum = 0; |
}; |
450 |
UInt_t tstrip = 0; |
|
451 |
UInt_t fSecPointer = 0; |
|
452 |
// |
void Digitizer::DigitizePSCU(UInt_t length, UChar_t type, UShort_t *pPSCU) { |
453 |
for (Int_t sec=0; sec < 4; sec++){ |
// |
454 |
// |
UChar_t buff[16]; |
455 |
// sec = 0 -> XE 1 -> XO 2-> YE 3 -> YO |
// |
456 |
// |
// CPU signature |
457 |
fCALOlength = 0; |
// |
458 |
memset(fDataCALO,0,sizeof(UShort_t)*fCALObuffer); |
buff[0] = 0xFA; |
459 |
fSecPointer = fCALOlength; |
buff[1] = 0xFE; |
460 |
// |
buff[2] = 0xDE; |
461 |
// First of all we have section header and packet length |
// |
462 |
// |
// packet type (twice) |
463 |
fDataCALO[fCALOlength] = fSecCalo[sec]; |
// |
464 |
fCALOlength++; |
buff[3] = type; |
465 |
fDataCALO[fCALOlength] = fSecCALOLength[sec]; |
buff[4] = type; |
466 |
fCALOlength++; |
// |
467 |
// |
// counter |
468 |
// Section XO is read in the opposite direction respect to the others |
// |
469 |
// |
fCounter++; |
470 |
chksum = 0; |
while ( fCounter > 16777215 ){ |
471 |
// |
fCounter -= 16777215; |
472 |
for (Int_t plane=0; plane < 11; plane++){ |
}; |
473 |
// |
// |
474 |
if ( sec == 1 ) tstrip = fCALOlength + 96*2; |
buff[5] = (UChar_t)(fCounter >> 16); |
475 |
// |
buff[6] = (UChar_t)(fCounter >> 8); |
476 |
for (Int_t strip=0; strip < 96; strip++){ |
buff[7] = (UChar_t)fCounter; |
477 |
// |
// |
478 |
chksum += (Int_t)fcalped[sec][plane][strip]; |
// on board time |
479 |
// |
// |
480 |
// save value |
ULong64_t obt = fOBT + 30LL; |
481 |
// |
// |
482 |
if ( sec == 1 ){ |
while ( obt > 4294967295LL ){ |
483 |
tstrip -= 2; |
obt -= 4294967295LL; |
484 |
fDataCALO[tstrip] = (Int_t)fcalped[sec][plane][strip]; |
}; |
485 |
fDataCALO[tstrip+1] = (Int_t)fcalgood[sec][plane][strip]; |
fOBT = (UInt_t)obt; |
486 |
} else { |
// |
487 |
fDataCALO[fCALOlength] = (Int_t)fcalped[sec][plane][strip]; |
buff[8] = (UChar_t)(fOBT >> 24); |
488 |
fDataCALO[fCALOlength+1] = (Int_t)fcalgood[sec][plane][strip]; |
buff[9] = (UChar_t)(fOBT >> 16); |
489 |
}; |
buff[10] = (UChar_t)(fOBT >> 8); |
490 |
fCALOlength +=2; |
buff[11] = (UChar_t)fOBT; |
491 |
}; |
// |
492 |
// |
// Packet length |
493 |
}; |
// |
494 |
// |
fLen = length; |
495 |
fDataCALO[fCALOlength] = (UShort_t)chksum; |
// |
496 |
fCALOlength++; |
buff[12] = (UChar_t)(fLen >> 16); |
497 |
fDataCALO[fCALOlength] = 0; |
buff[13] = (UChar_t)(fLen >> 8); |
498 |
fCALOlength++; |
buff[14] = (UChar_t)fLen; |
499 |
fDataCALO[fCALOlength] = (UShort_t)((Int_t)(chksum >> 16)); |
// |
500 |
fCALOlength++; |
// CPU header CRC |
501 |
// |
// |
502 |
// Section XO is read in the opposite direction respect to the others |
buff[15] = (BYTE)CM_Compute_CRC16((UINT16)0, (BYTE*)&buff, (UINT32)15); |
503 |
// |
// |
504 |
chksum = 0; |
//memcpy(fDataPSCU,buff,16*sizeof(UChar_t)); |
505 |
// |
memcpy(pPSCU,buff,16*sizeof(UChar_t)); |
506 |
for (Int_t plane=0; plane < 11; plane++){ |
// |
507 |
// |
}; |
508 |
if ( sec == 1 ) tstrip = fCALOlength+6*2; |
|
509 |
// |
void Digitizer::ClearCaloCalib(Int_t s){ |
510 |
for (Int_t strip=0; strip < 6; strip++){ |
// |
511 |
// |
fcstwerr[s] = 0; |
512 |
chksum += (Int_t)fcalthr[sec][plane][strip]; |
fcperror[s] = 0.; |
513 |
// |
for ( Int_t d=0 ; d<11 ;d++ ){ |
514 |
// save value |
Int_t pre = -1; |
515 |
// |
for ( Int_t j=0; j<96 ;j++){ |
516 |
if ( sec == 1 ){ |
if ( j%16 == 0 ) pre++; |
517 |
tstrip -= 2; |
fcalped[s][d][j] = 0.; |
518 |
fDataCALO[tstrip] = 0; |
fcstwerr[s] = 0.; |
519 |
fDataCALO[tstrip+1] = (Int_t)fcalthr[sec][plane][strip]; |
fcperror[s] = 0.; |
520 |
} else { |
fcalgood[s][d][j] = 0.; |
521 |
fDataCALO[fCALOlength] = 0; |
fcalthr[s][d][pre] = 0.; |
522 |
fDataCALO[fCALOlength+1] = (Int_t)fcalthr[sec][plane][strip]; |
fcalrms[s][d][j] = 0.; |
523 |
}; |
fcalbase[s][d][pre] = 0.; |
524 |
fCALOlength +=2; |
fcalvar[s][d][pre] = 0.; |
525 |
}; |
}; |
526 |
// |
}; |
527 |
}; |
return; |
528 |
// |
} |
529 |
fDataCALO[fCALOlength] = 0; |
|
530 |
fCALOlength++; |
Int_t Digitizer::CaloLoadCalib(Int_t s,TString fcalname, UInt_t calibno){ |
531 |
fDataCALO[fCALOlength] = (UShort_t)chksum; |
// |
532 |
fCALOlength++; |
// |
533 |
fDataCALO[fCALOlength] = 0; |
UInt_t e = 0; |
534 |
fCALOlength++; |
if ( s == 0 ) e = 0; |
535 |
fDataCALO[fCALOlength] = (UShort_t)((Int_t)(chksum >> 16)); |
if ( s == 1 ) e = 2; |
536 |
fCALOlength++; |
if ( s == 2 ) e = 3; |
537 |
// |
if ( s == 3 ) e = 1; |
538 |
// Section XO is read in the opposite direction respect to the others |
// |
539 |
// |
ifstream myfile; |
540 |
for (Int_t plane=0; plane < 11; plane++){ |
myfile.open(fcalname.Data()); |
541 |
// |
if ( !myfile ){ |
542 |
if ( sec == 1 ) tstrip = fCALOlength+96*2; |
return(-107); |
543 |
// |
}; |
544 |
for (Int_t strip=0; strip < 96; strip++){ |
myfile.close(); |
545 |
// |
// |
546 |
// save value |
TFile *File = new TFile(fcalname.Data()); |
547 |
// |
if ( !File ) return(-108); |
548 |
if ( sec == 1 ){ |
TTree *tr = (TTree*)File->Get("CalibCalPed"); |
549 |
tstrip -= 2; |
if ( !tr ) return(-109); |
550 |
fDataCALO[tstrip] = 0; |
// |
551 |
fDataCALO[tstrip+1] = (Int_t)fcalrms[sec][plane][strip]; |
TBranch *calo = tr->GetBranch("CalibCalPed"); |
552 |
} else { |
// |
553 |
fDataCALO[fCALOlength] = 0; |
pamela::CalibCalPedEvent *ce = 0; |
554 |
fDataCALO[fCALOlength+1] = (Int_t)fcalrms[sec][plane][strip]; |
tr->SetBranchAddress("CalibCalPed", &ce); |
555 |
}; |
// |
556 |
fCALOlength += 2; |
Long64_t ncalibs = calo->GetEntries(); |
557 |
}; |
// |
558 |
// |
if ( !ncalibs ) return(-110); |
559 |
}; |
// |
560 |
// |
calo->GetEntry(calibno); |
561 |
// Section XO is read in the opposite direction respect to the others |
// |
562 |
// |
if (ce->cstwerr[s] != 0 && ce->cperror[s] == 0 ) { |
563 |
for (Int_t plane=0; plane < 11; plane++){ |
fcstwerr[s] = ce->cstwerr[s]; |
564 |
// |
fcperror[s] = ce->cperror[s]; |
565 |
if ( sec == 1 ) tstrip = fCALOlength+6*4; |
for ( Int_t d=0 ; d<11 ;d++ ){ |
566 |
// |
Int_t pre = -1; |
567 |
for (Int_t strip=0; strip < 6; strip++){ |
for ( Int_t j=0; j<96 ;j++){ |
568 |
// |
if ( j%16 == 0 ) pre++; |
569 |
// save value |
fcalped[s][d][j] = ce->calped[e][d][j]; |
570 |
// |
fcalgood[s][d][j] = ce->calgood[e][d][j]; |
571 |
if ( sec == 1 ){ |
fcalthr[s][d][pre] = ce->calthr[e][d][pre]; |
572 |
tstrip -= 4; |
fcalrms[s][d][j] = ce->calrms[e][d][j]; |
573 |
fDataCALO[tstrip] = 0; |
fcalbase[s][d][pre] = ce->calbase[e][d][pre]; |
574 |
fDataCALO[tstrip+1] = (Int_t)fcalbase[sec][plane][strip]; |
fcalvar[s][d][pre] = ce->calvar[e][d][pre]; |
575 |
fDataCALO[tstrip+2] = 0; |
}; |
576 |
fDataCALO[tstrip+3] = (Int_t)fcalvar[sec][plane][strip]; |
}; |
577 |
} else { |
} else { |
578 |
fDataCALO[fCALOlength] = 0; |
printf(" CALORIMETER - ERROR: problems finding a good calibration in this file! \n\n "); |
579 |
fDataCALO[fCALOlength+1] = (Int_t)fcalbase[sec][plane][strip]; |
File->Close(); |
580 |
fDataCALO[fCALOlength+2] = 0; |
return(-111); |
581 |
fDataCALO[fCALOlength+3] = (Int_t)fcalvar[sec][plane][strip]; |
}; |
582 |
}; |
File->Close(); |
583 |
fCALOlength +=4; |
return(0); |
584 |
}; |
} |
585 |
// |
|
586 |
}; |
|
587 |
// |
void Digitizer::DigitizeCALOCALIB() { |
588 |
// |
// |
589 |
// here we calculate and save the CRC |
// Header of the four sections |
590 |
// |
// |
591 |
fDataCALO[fCALOlength] = 0; |
fSecCalo[0] = 0xAA00; // XE |
592 |
fCALOlength++; |
fSecCalo[1] = 0xB100; // XO |
593 |
Short_t CRC = 0; |
fSecCalo[2] = 0xB600; // YE |
594 |
for (UInt_t i=0; i<(fCALOlength-fSecPointer); i++){ |
fSecCalo[3] = 0xAD00; // YO |
595 |
CRC=crc(CRC,fDataCALO[i+fSecPointer]); |
// |
596 |
}; |
// length of the data is 0x1215 |
597 |
fDataCALO[fCALOlength] = (UShort_t)CRC; |
// |
598 |
fCALOlength++; |
fSecCALOLength[0] = 0x1215; // XE |
599 |
// |
fSecCALOLength[1] = 0x1215; // XO |
600 |
UInt_t length=fCALOlength*2; |
fSecCALOLength[2] = 0x1215; // YE |
601 |
DigitizePSCU(length,0x18); |
fSecCALOLength[3] = 0x1215; // YO |
602 |
// |
// |
603 |
// Add padding to 64 bits |
Int_t chksum = 0; |
604 |
// |
UInt_t tstrip = 0; |
605 |
AddPadding(); |
UInt_t fSecPointer = 0; |
606 |
// |
// |
607 |
fOutputfile.write(reinterpret_cast<char*>(fDataPSCU),sizeof(UShort_t)*fPSCUbuffer); |
for (Int_t sec=0; sec < 4; sec++){ |
608 |
UShort_t temp[1000000]; |
// |
609 |
memset(temp,0,sizeof(UShort_t)*1000000); |
// sec = 0 -> XE 1 -> XO 2-> YE 3 -> YO |
610 |
swab(fDataCALO,temp,sizeof(UShort_t)*fCALOlength); // WE MUST SWAP THE BYTES!!! |
// |
611 |
fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fCALOlength); |
fCALOlength = 0; |
612 |
// |
memset(fDataCALO,0,sizeof(UShort_t)*fCALObuffer); |
613 |
// padding to 64 bytes |
fSecPointer = fCALOlength; |
614 |
// |
// |
615 |
if ( fPadding ){ |
// First of all we have section header and packet length |
616 |
fOutputfile.write(reinterpret_cast<char*>(fDataPadding),sizeof(UChar_t)*fPadding); |
// |
617 |
}; |
fDataCALO[fCALOlength] = fSecCalo[sec]; |
618 |
// |
fCALOlength++; |
619 |
// |
fDataCALO[fCALOlength] = fSecCALOLength[sec]; |
620 |
}; |
fCALOlength++; |
621 |
// |
// |
622 |
}; |
// Section XO is read in the opposite direction respect to the others |
623 |
|
// |
624 |
void Digitizer::CaloLoadCalib() { |
chksum = 0; |
625 |
// |
// |
626 |
fGivenCaloCalib = 0; // ####@@@@ should be given as input par @@@@#### |
for (Int_t plane=0; plane < 11; plane++){ |
627 |
// |
// |
628 |
// first of all load the MIP to ADC conversion values |
if ( sec == 1 ) tstrip = fCALOlength + 96*2; |
629 |
// |
// |
630 |
stringstream calfile; |
for (Int_t strip=0; strip < 96; strip++){ |
631 |
Int_t error = 0; |
// |
632 |
GL_PARAM *glparam = new GL_PARAM(); |
chksum += (Int_t)fcalped[sec][plane][strip]; |
633 |
// |
// |
634 |
// determine where I can find calorimeter ADC to MIP conversion file |
// save value |
635 |
// |
// |
636 |
error = 0; |
if ( sec == 1 ){ |
637 |
error = glparam->Query_GL_PARAM(3,101,fDbc); |
tstrip -= 2; |
638 |
// |
fDataCALO[tstrip] = (Int_t)fcalped[sec][plane][strip]; |
639 |
calfile.str(""); |
fDataCALO[tstrip+1] = (Int_t)fcalgood[sec][plane][strip]; |
640 |
calfile << glparam->PATH.Data() << "/"; |
} else { |
641 |
calfile << glparam->NAME.Data(); |
fDataCALO[fCALOlength] = (Int_t)fcalped[sec][plane][strip]; |
642 |
// |
fDataCALO[fCALOlength+1] = (Int_t)fcalgood[sec][plane][strip]; |
643 |
printf("\n Using Calorimeter ADC to MIP conversion file: \n %s \n",calfile.str().c_str()); |
}; |
644 |
FILE *f; |
fCALOlength +=2; |
645 |
f = fopen(calfile.str().c_str(),"rb"); |
}; |
646 |
// |
// |
647 |
memset(fCalomip,0,4224*sizeof(fCalomip[0][0][0])); |
}; |
648 |
// |
// |
649 |
for (Int_t m = 0; m < 2 ; m++ ){ |
fDataCALO[fCALOlength] = (UShort_t)chksum; |
650 |
for (Int_t k = 0; k < 22; k++ ){ |
fCALOlength++; |
651 |
for (Int_t l = 0; l < 96; l++ ){ |
fDataCALO[fCALOlength] = 0; |
652 |
fread(&fCalomip[m][k][l],sizeof(fCalomip[m][k][l]),1,f); |
fCALOlength++; |
653 |
}; |
fDataCALO[fCALOlength] = (UShort_t)((Int_t)(chksum >> 16)); |
654 |
}; |
fCALOlength++; |
655 |
}; |
// |
656 |
fclose(f); |
// Section XO is read in the opposite direction respect to the others |
657 |
// |
// |
658 |
// determine which calibration has to be used and load it for each section |
chksum = 0; |
659 |
// |
// |
660 |
GL_CALO_CALIB *glcalo = new GL_CALO_CALIB(); |
for (Int_t plane=0; plane < 11; plane++){ |
661 |
GL_ROOT *glroot = new GL_ROOT(); |
// |
662 |
TString fcalname; |
if ( sec == 1 ) tstrip = fCALOlength+6*2; |
663 |
UInt_t idcalib; |
// |
664 |
UInt_t calibno; |
for (Int_t strip=0; strip < 6; strip++){ |
665 |
UInt_t utime = 0; |
// |
666 |
// |
chksum += (Int_t)fcalthr[sec][plane][strip]; |
667 |
for (UInt_t s=0; s<4; s++){ |
// |
668 |
// |
// save value |
669 |
// clear calo calib variables for section s |
// |
670 |
// |
if ( sec == 1 ){ |
671 |
ClearCaloCalib(s); |
tstrip -= 2; |
672 |
// |
fDataCALO[tstrip] = 0; |
673 |
if ( fGivenCaloCalib ){ |
fDataCALO[tstrip+1] = (Int_t)fcalthr[sec][plane][strip]; |
674 |
// |
} else { |
675 |
// a time has been given as input on the command line so retrieve the calibration that preceed that time |
fDataCALO[fCALOlength] = 0; |
676 |
// |
fDataCALO[fCALOlength+1] = (Int_t)fcalthr[sec][plane][strip]; |
677 |
glcalo->Query_GL_CALO_CALIB(fGivenCaloCalib,utime,s,fDbc); |
}; |
678 |
// |
fCALOlength +=2; |
679 |
calibno = glcalo->EV_ROOT; |
}; |
680 |
idcalib = glcalo->ID_ROOT_L0; |
// |
681 |
// |
}; |
682 |
// determine path and name and entry of the calibration file |
// |
683 |
// |
fDataCALO[fCALOlength] = 0; |
684 |
printf("\n"); |
fCALOlength++; |
685 |
printf(" ** SECTION %i **\n",s); |
fDataCALO[fCALOlength] = (UShort_t)chksum; |
686 |
// |
fCALOlength++; |
687 |
glroot->Query_GL_ROOT(idcalib,fDbc); |
fDataCALO[fCALOlength] = 0; |
688 |
// |
fCALOlength++; |
689 |
stringstream name; |
fDataCALO[fCALOlength] = (UShort_t)((Int_t)(chksum >> 16)); |
690 |
name.str(""); |
fCALOlength++; |
691 |
name << glroot->PATH.Data() << "/"; |
// |
692 |
name << glroot->NAME.Data(); |
// Section XO is read in the opposite direction respect to the others |
693 |
// |
// |
694 |
fcalname = (TString)name.str().c_str(); |
for (Int_t plane=0; plane < 11; plane++){ |
695 |
// |
// |
696 |
printf("\n Section %i : using file %s calibration at entry %i: \n",s,fcalname.Data(),calibno); |
if ( sec == 1 ) tstrip = fCALOlength+96*2; |
697 |
// |
// |
698 |
} else { |
for (Int_t strip=0; strip < 96; strip++){ |
699 |
error = 0; |
// |
700 |
error = glparam->Query_GL_PARAM(1,104,fDbc); |
// save value |
701 |
// |
// |
702 |
calfile.str(""); |
if ( sec == 1 ){ |
703 |
calfile << glparam->PATH.Data() << "/"; |
tstrip -= 2; |
704 |
calfile << glparam->NAME.Data(); |
fDataCALO[tstrip] = 0; |
705 |
// |
fDataCALO[tstrip+1] = (Int_t)fcalrms[sec][plane][strip]; |
706 |
printf("\n Section %i : using default calorimeter calibration: \n %s \n",s,calfile.str().c_str()); |
} else { |
707 |
// |
fDataCALO[fCALOlength] = 0; |
708 |
fcalname = (TString)calfile.str().c_str(); |
fDataCALO[fCALOlength+1] = (Int_t)fcalrms[sec][plane][strip]; |
709 |
calibno = s; |
}; |
710 |
// |
fCALOlength += 2; |
711 |
}; |
}; |
712 |
// |
// |
713 |
// load calibration variables in memory |
}; |
714 |
// |
// |
715 |
CaloLoadCalib(s,fcalname,calibno); |
// Section XO is read in the opposite direction respect to the others |
716 |
// |
// |
717 |
}; |
for (Int_t plane=0; plane < 11; plane++){ |
718 |
// |
// |
719 |
// at this point we have in memory the calorimeter calibration and we can save it to disk in the correct format and use it to digitize the data |
if ( sec == 1 ) tstrip = fCALOlength+6*4; |
720 |
// |
// |
721 |
delete glparam; |
for (Int_t strip=0; strip < 6; strip++){ |
722 |
delete glcalo; |
// |
723 |
delete glroot; |
// save value |
724 |
}; |
// |
725 |
|
if ( sec == 1 ){ |
726 |
void Digitizer::DigitizeCALO() { |
tstrip -= 4; |
727 |
// |
fDataCALO[tstrip] = 0; |
728 |
fModCalo = 0; // 0 is RAW, 1 is COMPRESS, 2 is FULL ####@@@@ should be given as input par @@@@#### |
fDataCALO[tstrip+1] = (Int_t)fcalbase[sec][plane][strip]; |
729 |
// |
fDataCALO[tstrip+2] = 0; |
730 |
// |
fDataCALO[tstrip+3] = (Int_t)fcalvar[sec][plane][strip]; |
731 |
// |
} else { |
732 |
fCALOlength = 0; // reset total dimension of calo data |
fDataCALO[fCALOlength] = 0; |
733 |
// |
fDataCALO[fCALOlength+1] = (Int_t)fcalbase[sec][plane][strip]; |
734 |
// gpamela variables to be used |
fDataCALO[fCALOlength+2] = 0; |
735 |
// |
fDataCALO[fCALOlength+3] = (Int_t)fcalvar[sec][plane][strip]; |
736 |
fhBookTree->SetBranchStatus("Nthcali",1); |
}; |
737 |
fhBookTree->SetBranchStatus("Icaplane",1); |
fCALOlength +=4; |
738 |
fhBookTree->SetBranchStatus("Icastrip",1); |
}; |
739 |
fhBookTree->SetBranchStatus("Icamod",1); |
// |
740 |
fhBookTree->SetBranchStatus("Enestrip",1); |
}; |
741 |
// |
// |
742 |
// call different routines depending on the acq mode you want to simulate |
// |
743 |
// |
// here we calculate and save the CRC |
744 |
switch ( fModCalo ){ |
// |
745 |
case 0: |
fDataCALO[fCALOlength] = 0; |
746 |
this->DigitizeCALORAW(); |
fCALOlength++; |
747 |
break; |
Short_t CRC = 0; |
748 |
case 1: |
for (UInt_t i=0; i<(fCALOlength-fSecPointer); i++){ |
749 |
this->DigitizeCALOCOMPRESS(); |
CRC=crc(CRC,fDataCALO[i+fSecPointer]); |
750 |
break; |
}; |
751 |
case 2: |
fDataCALO[fCALOlength] = (UShort_t)CRC; |
752 |
this->DigitizeCALOFULL(); |
fCALOlength++; |
753 |
break; |
// |
754 |
}; |
UInt_t length=fCALOlength*2; |
755 |
// |
DigitizePSCU(length,0x18,fDataPSCU); |
756 |
}; |
// |
757 |
|
// Add padding to 64 bits |
758 |
Float_t Digitizer::GetCALOen(Int_t sec, Int_t plane, Int_t strip){ |
// |
759 |
// |
AddPadding(); |
760 |
// determine plane and strip |
// |
761 |
// |
fOutputfile.write(reinterpret_cast<char*>(fDataPSCU),sizeof(UShort_t)*fPSCUbuffer); |
762 |
Int_t mplane = 0; |
UShort_t temp[1000000]; |
763 |
// |
memset(temp,0,sizeof(UShort_t)*1000000); |
764 |
// wrong! |
swab(fDataCALO,temp,sizeof(UShort_t)*fCALOlength); // WE MUST SWAP THE BYTES!!! |
765 |
// |
fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fCALOlength); |
766 |
// if ( sec == 0 || sec == 3 ) mplane = (plane * 4) + sec + 1; |
// |
767 |
// if ( sec == 1 ) mplane = (plane * 4) + 2 + 1; |
// padding to 64 bytes |
768 |
// if ( sec == 2 ) mplane = (plane * 4) + 1 + 1; |
// |
769 |
// |
if ( fPadding ){ |
770 |
if ( sec == 0 ) mplane = plane * 4 + 1; // it must be 0, 4, 8, ... (+1) from plane = 0, 11 |
fOutputfile.write(reinterpret_cast<char*>(fDataPadding),sizeof(UChar_t)*fPadding); |
771 |
if ( sec == 1 ) mplane = plane * 4 + 2 + 1; // it must be 2, 6, 10, ... (+1) from plane = 0, 11 |
}; |
772 |
if ( sec == 2 ) mplane = plane * 4 + 3 + 1; // it must be 3, 7, 11, ... (+1) from plane = 0, 11 |
// |
773 |
if ( sec == 3 ) mplane = plane * 4 + 1 + 1; // it must be 1, 5, 9, ... (+1) from plane = 0, 11 |
// |
774 |
// |
}; |
775 |
Int_t mstrip = strip + 1; |
// |
776 |
// |
}; |
777 |
// search energy release in gpamela output |
|
778 |
// |
void Digitizer::CaloLoadCalib() { |
779 |
for (Int_t i=0; i<Nthcali;i++){ |
// |
780 |
if ( Icaplane[i] == mplane && Icastrip[i] == mstrip ){ |
fGivenCaloCalib = 0; // ####@@@@ should be given as input par @@@@#### |
781 |
return (Enestrip[i]); |
// |
782 |
}; |
// first of all load the MIP to ADC conversion values |
783 |
}; |
// |
784 |
// |
stringstream calfile; |
785 |
// if not found it means no energy release so return 0. |
Int_t error = 0; |
786 |
// |
GL_PARAM *glparam = new GL_PARAM(); |
787 |
return(0.); |
// |
788 |
}; |
// determine where I can find calorimeter ADC to MIP conversion file |
789 |
|
// |
790 |
void Digitizer::DigitizeCALORAW() { |
error = 0; |
791 |
// |
error = glparam->Query_GL_PARAM(3,101,fDbc); |
792 |
// some variables |
// |
793 |
// |
calfile.str(""); |
794 |
Float_t ens = 0.; |
calfile << glparam->PATH.Data() << "/"; |
795 |
UInt_t adcsig = 0; |
calfile << glparam->NAME.Data(); |
796 |
UInt_t adcbase = 0; |
// |
797 |
UInt_t adc = 0; |
printf("\n Using Calorimeter ADC to MIP conversion file: \n %s \n",calfile.str().c_str()); |
798 |
Int_t pre = 0; |
FILE *f; |
799 |
UInt_t l = 0; |
f = fopen(calfile.str().c_str(),"rb"); |
800 |
UInt_t lpl = 0; |
// |
801 |
UInt_t tstrip = 0; |
memset(fCalomip,0,4224*sizeof(fCalomip[0][0][0])); |
802 |
UInt_t fSecPointer = 0; |
// |
803 |
Double_t pedenoise; |
for (Int_t m = 0; m < 2 ; m++ ){ |
804 |
Float_t rms = 0.; |
for (Int_t k = 0; k < 22; k++ ){ |
805 |
Float_t pedestal = 0.; |
for (Int_t l = 0; l < 96; l++ ){ |
806 |
// |
fread(&fCalomip[m][k][l],sizeof(fCalomip[m][k][l]),1,f); |
807 |
// clean the data structure |
}; |
808 |
// |
}; |
809 |
memset(fDataCALO,0,sizeof(UShort_t)*fCALObuffer); |
}; |
810 |
// |
fclose(f); |
811 |
// Header of the four sections |
// |
812 |
// |
// determine which calibration has to be used and load it for each section |
813 |
fSecCalo[0] = 0xEA08; // XE |
// |
814 |
fSecCalo[1] = 0xF108; // XO |
GL_CALO_CALIB *glcalo = new GL_CALO_CALIB(); |
815 |
fSecCalo[2] = 0xF608; // YE |
GL_ROOT *glroot = new GL_ROOT(); |
816 |
fSecCalo[3] = 0xED08; // YO |
TString fcalname; |
817 |
// |
UInt_t idcalib; |
818 |
// length of the data is 0x0428 in RAW mode |
UInt_t calibno; |
819 |
// |
UInt_t utime = 0; |
820 |
fSecCALOLength[0] = 0x0428; // XE |
// |
821 |
fSecCALOLength[1] = 0x0428; // XO |
for (UInt_t s=0; s<4; s++){ |
822 |
fSecCALOLength[2] = 0x0428; // YE |
// |
823 |
fSecCALOLength[3] = 0x0428; // YO |
// clear calo calib variables for section s |
824 |
// |
// |
825 |
// let's start |
ClearCaloCalib(s); |
826 |
// |
// |
827 |
fCALOlength = 0; |
if ( fGivenCaloCalib ){ |
828 |
// |
// |
829 |
for (Int_t sec=0; sec < 4; sec++){ |
// a time has been given as input on the command line so retrieve the calibration that preceed that time |
830 |
// |
// |
831 |
// sec = 0 -> XE 1 -> XO 2-> YE 3 -> YO |
glcalo->Query_GL_CALO_CALIB(fGivenCaloCalib,utime,s,fDbc); |
832 |
// |
// |
833 |
l = 0; // XE and XO are Y planes |
calibno = glcalo->EV_ROOT; |
834 |
if ( sec < 2 ) l = 1; // while YE and YO are X planes |
idcalib = glcalo->ID_ROOT_L0; |
835 |
// |
// |
836 |
fSecPointer = fCALOlength; |
// determine path and name and entry of the calibration file |
837 |
// |
// |
838 |
// First of all we have section header and packet length |
printf("\n"); |
839 |
// |
printf(" ** SECTION %i **\n",s); |
840 |
fDataCALO[fCALOlength] = fSecCalo[sec]; |
// |
841 |
fCALOlength++; |
glroot->Query_GL_ROOT(idcalib,fDbc); |
842 |
fDataCALO[fCALOlength] = fSecCALOLength[sec]; |
// |
843 |
fCALOlength++; |
stringstream name; |
844 |
// |
name.str(""); |
845 |
// selftrigger coincidences - in the future we should add here some code to simulate timing response of pre-amplifiers |
name << glroot->PATH.Data() << "/"; |
846 |
// |
name << glroot->NAME.Data(); |
847 |
for (Int_t autoplane=0; autoplane < 7; autoplane++){ |
// |
848 |
fDataCALO[fCALOlength] = 0x0000; |
fcalname = (TString)name.str().c_str(); |
849 |
fCALOlength++; |
// |
850 |
}; |
printf("\n Section %i : using file %s calibration at entry %i: \n",s,fcalname.Data(),calibno); |
851 |
// |
// |
852 |
// |
} else { |
853 |
// here comes data |
error = 0; |
854 |
// |
error = glparam->Query_GL_PARAM(1,104,fDbc); |
855 |
// |
// |
856 |
// Section XO is read in the opposite direction respect to the others |
calfile.str(""); |
857 |
// |
calfile << glparam->PATH.Data() << "/"; |
858 |
if ( sec == 1 ){ |
calfile << glparam->NAME.Data(); |
859 |
tstrip = 96*11 + fCALOlength; |
// |
860 |
} else { |
printf("\n Section %i : using default calorimeter calibration: \n %s \n",s,calfile.str().c_str()); |
861 |
tstrip = 0; |
// |
862 |
}; |
fcalname = (TString)calfile.str().c_str(); |
863 |
// |
calibno = s; |
864 |
pre = -1; |
// |
865 |
// |
}; |
866 |
for (Int_t strip=0; strip < 96; strip++){ |
// |
867 |
// |
// load calibration variables in memory |
868 |
// which is the pre for this strip? |
// |
869 |
// |
CaloLoadCalib(s,fcalname,calibno); |
870 |
if (strip%16 == 0) { |
// |
871 |
pre++; |
}; |
872 |
}; |
// |
873 |
// |
// at this point we have in memory the calorimeter calibration and we can save it to disk in the correct format and use it to digitize the data |
874 |
if ( sec == 1 ) tstrip -= 11; |
// |
875 |
// |
delete glparam; |
876 |
for (Int_t plane=0; plane < 11; plane++){ |
delete glcalo; |
877 |
// |
delete glroot; |
878 |
// here is wrong!!!! |
}; |
879 |
// |
|
880 |
// |
void Digitizer::DigitizeCALO() { |
881 |
// if ( plane%2 == 0 && sec%2 != 0){ |
// |
882 |
// lpl = plane*2; |
fModCalo = 0; // 0 is RAW, 1 is COMPRESS, 2 is FULL ####@@@@ should be given as input par @@@@#### |
883 |
// } else { |
// |
884 |
// lpl = (plane*2) + 1; |
// |
885 |
// }; |
// |
886 |
// |
fCALOlength = 0; // reset total dimension of calo data |
887 |
if ( sec == 0 || sec == 3 ) lpl = plane * 2; |
// |
888 |
if ( sec == 1 || sec == 2 ) lpl = (plane * 2) + 1; |
// gpamela variables to be used |
889 |
// |
// |
890 |
// get the energy in GeV from the simulation for that strip |
fhBookTree->SetBranchStatus("Nthcali",1); |
891 |
// |
fhBookTree->SetBranchStatus("Icaplane",1); |
892 |
ens = this->GetCALOen(sec,plane,strip); |
fhBookTree->SetBranchStatus("Icastrip",1); |
893 |
// |
fhBookTree->SetBranchStatus("Icamod",1); |
894 |
// convert it into ADC channels |
fhBookTree->SetBranchStatus("Enestrip",1); |
895 |
// |
// |
896 |
adcsig = int(ens*fCalomip[l][lpl][strip]/fCALOGeV2MIPratio); |
// call different routines depending on the acq mode you want to simulate |
897 |
// |
// |
898 |
// sum baselines |
switch ( fModCalo ){ |
899 |
// |
case 0: |
900 |
adcbase = (UInt_t)fcalbase[sec][plane][pre]; |
this->DigitizeCALORAW(); |
901 |
// |
break; |
902 |
// add noise and pedestals |
case 1: |
903 |
// |
this->DigitizeCALOCOMPRESS(); |
904 |
pedestal = fcalped[sec][plane][strip]; |
break; |
905 |
rms = fcalrms[sec][plane][strip]/4.; |
case 2: |
906 |
// |
this->DigitizeCALOFULL(); |
907 |
// Add random gaussian noise of RMS rms and Centered in the pedestal |
break; |
908 |
// |
}; |
909 |
pedenoise = gRandom->Gaus((Double_t)pedestal,(Double_t)rms); |
// |
910 |
// |
}; |
911 |
// Sum all contribution |
|
912 |
// |
Float_t Digitizer::GetCALOen(Int_t sec, Int_t plane, Int_t strip){ |
913 |
adc = adcsig + adcbase + (Int_t)round(pedenoise); |
// |
914 |
// |
// determine plane and strip |
915 |
// Signal saturation |
// |
916 |
// |
Int_t mplane = 0; |
917 |
if ( adc > 0x7FFF ) adc = 0x7FFF; |
// |
918 |
// |
// wrong! |
919 |
// save value |
// |
920 |
// |
// if ( sec == 0 || sec == 3 ) mplane = (plane * 4) + sec + 1; |
921 |
if ( sec == 1 ){ |
// if ( sec == 1 ) mplane = (plane * 4) + 2 + 1; |
922 |
fDataCALO[tstrip] = adc; |
// if ( sec == 2 ) mplane = (plane * 4) + 1 + 1; |
923 |
tstrip++; |
// |
924 |
} else { |
if ( sec == 0 ) mplane = plane * 4 + 1; // it must be 0, 4, 8, ... (+1) from plane = 0, 11 |
925 |
fDataCALO[fCALOlength] = adc; |
if ( sec == 1 ) mplane = plane * 4 + 2 + 1; // it must be 2, 6, 10, ... (+1) from plane = 0, 11 |
926 |
}; |
if ( sec == 2 ) mplane = plane * 4 + 3 + 1; // it must be 3, 7, 11, ... (+1) from plane = 0, 11 |
927 |
fCALOlength++; |
if ( sec == 3 ) mplane = plane * 4 + 1 + 1; // it must be 1, 5, 9, ... (+1) from plane = 0, 11 |
928 |
// |
// |
929 |
}; |
Int_t mstrip = strip + 1; |
930 |
// |
// |
931 |
if ( sec == 1 ) tstrip -= 11; |
// search energy release in gpamela output |
932 |
// |
// |
933 |
}; |
for (Int_t i=0; i<Nthcali;i++){ |
934 |
// |
if ( Icaplane[i] == mplane && Icastrip[i] == mstrip ){ |
935 |
// here we calculate and save the CRC |
return (Enestrip[i]); |
936 |
// |
}; |
937 |
Short_t CRC = 0; |
}; |
938 |
for (UInt_t i=0; i<(fCALOlength-fSecPointer); i++){ |
// |
939 |
CRC=crc(CRC,fDataCALO[i+fSecPointer]); |
// if not found it means no energy release so return 0. |
940 |
}; |
// |
941 |
fDataCALO[fCALOlength] = (UShort_t)CRC; |
return(0.); |
942 |
fCALOlength++; |
}; |
943 |
// |
|
944 |
}; |
void Digitizer::DigitizeCALORAW() { |
945 |
// |
// |
946 |
// for (Int_t i=0; i<fCALOlength; i++){ |
// some variables |
947 |
// printf(" WORD %i DIGIT %0x \n",i,fDataCALO[i]); |
// |
948 |
// }; |
Float_t ens = 0.; |
949 |
// |
UInt_t adcsig = 0; |
950 |
}; |
UInt_t adcbase = 0; |
951 |
|
UInt_t adc = 0; |
952 |
void Digitizer::DigitizeCALOCOMPRESS() { |
Int_t pre = 0; |
953 |
// |
UInt_t l = 0; |
954 |
printf(" COMPRESS MODE STILL NOT IMPLEMENTED! \n"); |
UInt_t lpl = 0; |
955 |
// |
UInt_t tstrip = 0; |
956 |
this->DigitizeCALORAW(); |
UInt_t fSecPointer = 0; |
957 |
return; |
Double_t pedenoise; |
958 |
// |
Float_t rms = 0.; |
959 |
// |
Float_t pedestal = 0.; |
960 |
// |
// |
961 |
fSecCalo[0] = 0xEA00; |
// clean the data structure |
962 |
fSecCalo[1] = 0xF100; |
// |
963 |
fSecCalo[2] = 0xF600; |
memset(fDataCALO,0,sizeof(UShort_t)*fCALObuffer); |
964 |
fSecCalo[3] = 0xED00; |
// |
965 |
// |
// Header of the four sections |
966 |
// length of the data in DSP mode must be calculated on fly during digitization |
// |
967 |
// |
fSecCalo[0] = 0xEA08; // XE |
968 |
memset(fSecCALOLength,0x0,4*sizeof(UShort_t)); |
fSecCalo[1] = 0xF108; // XO |
969 |
// |
fSecCalo[2] = 0xF608; // YE |
970 |
// here comes raw data |
fSecCalo[3] = 0xED08; // YO |
971 |
// |
// |
972 |
Int_t en = 0; |
// length of the data is 0x0428 in RAW mode |
973 |
// |
// |
974 |
for (Int_t sec=0; sec < 4; sec++){ |
fSecCALOLength[0] = 0x0428; // XE |
975 |
fDataCALO[en] = fSecCalo[sec]; |
fSecCALOLength[1] = 0x0428; // XO |
976 |
en++; |
fSecCALOLength[2] = 0x0428; // YE |
977 |
fDataCALO[en] = fSecCALOLength[sec]; |
fSecCALOLength[3] = 0x0428; // YO |
978 |
en++; |
// |
979 |
for (Int_t plane=0; plane < 11; plane++){ |
// let's start |
980 |
for (Int_t strip=0; strip < 11; strip++){ |
// |
981 |
fDataCALO[en] = 0x0; |
fCALOlength = 0; |
982 |
en++; |
// |
983 |
}; |
for (Int_t sec=0; sec < 4; sec++){ |
984 |
}; |
// |
985 |
}; |
// sec = 0 -> XE 1 -> XO 2-> YE 3 -> YO |
986 |
// |
// |
987 |
}; |
l = 0; // XE and XO are Y planes |
988 |
|
if ( sec < 2 ) l = 1; // while YE and YO are X planes |
989 |
void Digitizer::DigitizeCALOFULL() { |
// |
990 |
// |
fSecPointer = fCALOlength; |
991 |
printf(" FULL MODE STILL NOT IMPLEMENTED! \n"); |
// |
992 |
// |
// First of all we have section header and packet length |
993 |
this->DigitizeCALORAW(); |
// |
994 |
return; |
fDataCALO[fCALOlength] = fSecCalo[sec]; |
995 |
// |
fCALOlength++; |
996 |
fSecCalo[0] = 0xEA00; |
fDataCALO[fCALOlength] = fSecCALOLength[sec]; |
997 |
fSecCalo[1] = 0xF100; |
fCALOlength++; |
998 |
fSecCalo[2] = 0xF600; |
// |
999 |
fSecCalo[3] = 0xED00; |
// selftrigger coincidences - in the future we should add here some code to simulate timing response of pre-amplifiers |
1000 |
// |
// |
1001 |
// length of the data in DSP mode must be calculated on fly during digitization |
for (Int_t autoplane=0; autoplane < 7; autoplane++){ |
1002 |
// |
fDataCALO[fCALOlength] = 0x0000; |
1003 |
memset(fSecCALOLength,0x0,4*sizeof(UShort_t)); |
fCALOlength++; |
1004 |
// |
}; |
1005 |
// here comes raw data |
// |
1006 |
// |
// |
1007 |
Int_t en = 0; |
// here comes data |
1008 |
// |
// |
1009 |
for (Int_t sec=0; sec < 4; sec++){ |
// |
1010 |
fDataCALO[en] = fSecCalo[sec]; |
// Section XO is read in the opposite direction respect to the others |
1011 |
en++; |
// |
1012 |
fDataCALO[en] = fSecCALOLength[sec]; |
if ( sec == 1 ){ |
1013 |
en++; |
tstrip = 96*11 + fCALOlength; |
1014 |
for (Int_t plane=0; plane < 11; plane++){ |
} else { |
1015 |
for (Int_t strip=0; strip < 11; strip++){ |
tstrip = 0; |
1016 |
fDataCALO[en] = 0x0; |
}; |
1017 |
en++; |
// |
1018 |
}; |
pre = -1; |
1019 |
}; |
// |
1020 |
}; |
for (Int_t strip=0; strip < 96; strip++){ |
1021 |
// |
// |
1022 |
}; |
// which is the pre for this strip? |
1023 |
|
// |
1024 |
void Digitizer::DigitizeTRIGGER() { |
if (strip%16 == 0) { |
1025 |
//fDataTrigger: 153 bytes |
pre++; |
1026 |
for (Int_t j=0; j < 153; j++) |
}; |
1027 |
fDataTrigger[0]=0x00; |
// |
1028 |
}; |
if ( sec == 1 ) tstrip -= 11; |
1029 |
|
// |
1030 |
Int_t Digitizer::DigitizeTOF() { |
for (Int_t plane=0; plane < 11; plane++){ |
1031 |
//fDataTof: 12 x 23 bytes (=276 bytes) |
// |
1032 |
UChar_t *pTof=fDataTof; |
// here is wrong!!!! |
1033 |
|
// |
1034 |
// --- activate branches: |
// |
1035 |
fhBookTree->SetBranchStatus("Nthtof",1); |
// if ( plane%2 == 0 && sec%2 != 0){ |
1036 |
fhBookTree->SetBranchStatus("Ipltof",1); |
// lpl = plane*2; |
1037 |
fhBookTree->SetBranchStatus("Ipaddle",1); |
// } else { |
1038 |
fhBookTree->SetBranchStatus("Xintof",1); |
// lpl = (plane*2) + 1; |
1039 |
fhBookTree->SetBranchStatus("Yintof",1); |
// }; |
1040 |
fhBookTree->SetBranchStatus("Xouttof",1); |
// |
1041 |
fhBookTree->SetBranchStatus("Youttof",1); |
if ( sec == 0 || sec == 3 ) lpl = plane * 2; |
1042 |
fhBookTree->SetBranchStatus("Ereltof",1); |
if ( sec == 1 || sec == 2 ) lpl = (plane * 2) + 1; |
1043 |
fhBookTree->SetBranchStatus("Timetof",1); |
// |
1044 |
// not yet used: Zintof, Xouttof, Youttof, Zouttof |
// get the energy in GeV from the simulation for that strip |
1045 |
|
// |
1046 |
// ------ evaluate energy in each pmt: ------ |
ens = this->GetCALOen(sec,plane,strip); |
1047 |
// strip geometry (lenght/width) |
// |
1048 |
Float_t dimel[6] = {33.0, 40.8 ,18.0, 15.0, 15.0, 18.0}; |
// convert it into ADC channels |
1049 |
Float_t dimes[6] = {5.1, 5.5, 7.5, 9.0, 6.0, 5.0}; |
// |
1050 |
|
adcsig = int(ens*fCalomip[l][lpl][strip]/fCALOGeV2MIPratio); |
1051 |
// S11 8 paddles 33.0 x 5.1 cm |
// |
1052 |
// S12 6 paddles 40.8 x 5.5 cm |
// sum baselines |
1053 |
// S21 2 paddles 18.0 x 7.5 cm |
// |
1054 |
// S22 2 paddles 15.0 x 9.0 cm |
adcbase = (UInt_t)fcalbase[sec][plane][pre]; |
1055 |
// S31 3 paddles 15.0 x 6.0 cm |
// |
1056 |
// S32 3 paddles 18.0 x 5.0 cm |
// add noise and pedestals |
1057 |
|
// |
1058 |
// distance from the interaction point to the pmts (right,left) |
pedestal = fcalped[sec][plane][strip]; |
1059 |
Float_t xpath[2]={0., 0.}; /*path(cm) in X per S12,S21,S32 verso il pmt DX o SX*/ |
rms = fcalrms[sec][plane][strip]/4.; |
1060 |
Float_t ypath[2]={0., 0.}; /*path(cm) in Y per S11,S22,S31 verso il pmt DX o SX*/ |
// |
1061 |
Float_t FGeo[2]={0., 0.}; /* fattore geometrico */ |
// Add random gaussian noise of RMS rms and Centered in the pedestal |
1062 |
|
// |
1063 |
const Float_t Pho_keV = 10.; // photons per keV in scintillator |
pedenoise = gRandom->Gaus((Double_t)pedestal,(Double_t)rms); |
1064 |
const Float_t echarge = 1.6e-19; // carica dell'elettrone |
// |
1065 |
Float_t Npho=0.; |
// Sum all contribution |
1066 |
Float_t QevePmt_pC[48]; |
// |
1067 |
Float_t QhitPad_pC[2]={0., 0.}; |
adc = adcsig + adcbase + (Int_t)round(pedenoise); |
1068 |
Float_t QhitPmt_pC[2]={0., 0.}; |
// |
1069 |
Float_t pmGain = 3.5e6; /* Gain: per il momento uguale per tutti */ |
// Signal saturation |
1070 |
Float_t effi=0.21; /* Efficienza di fotocatodo */ |
// |
1071 |
Float_t ADC_pC=1.666667; // ADC_ch/pC conversion = 0.6 pC/channel (+30 di offset) |
if ( adc > 0x7FFF ) adc = 0x7FFF; |
1072 |
Float_t ADCoffset=30.; |
// |
1073 |
Int_t ADClast=4095; // no signal --> ADC ch=4095 |
// save value |
1074 |
Int_t ADCtof[48]; |
// |
1075 |
//Float_t ADCsat=3100; ci pensiamo in futuro ! |
if ( sec == 1 ){ |
1076 |
//Float_t pCsat=2500; |
fDataCALO[tstrip] = adc; |
1077 |
for(Int_t i=0; i<48; i++){ |
tstrip++; |
1078 |
QevePmt_pC[i] = 0; |
} else { |
1079 |
ADCtof[i]=0; |
fDataCALO[fCALOlength] = adc; |
1080 |
} |
}; |
1081 |
|
fCALOlength++; |
1082 |
// ------ read calibration file (get A1, A2, lambda1, lambda2) |
// |
1083 |
ifstream fileTriggerCalib; |
}; |
1084 |
TString ftrigname="TrigCalibParam.txt"; |
// |
1085 |
fileTriggerCalib.open(ftrigname.Data()); |
if ( sec == 1 ) tstrip -= 11; |
1086 |
if ( !fileTriggerCalib ) { |
// |
1087 |
printf("debug: no trigger calib file!\n"); |
}; |
1088 |
return(-117); //check output! |
// |
1089 |
}; |
// here we calculate and save the CRC |
1090 |
Float_t atte1[48],atte2[48],lambda1[48],lambda2[48]; |
// |
1091 |
Int_t temp=0; |
Short_t CRC = 0; |
1092 |
for(Int_t i=0; i<48; i++){ |
for (UInt_t i=0; i<(fCALOlength-fSecPointer); i++){ |
1093 |
fileTriggerCalib >> temp; |
CRC=crc(CRC,fDataCALO[i+fSecPointer]); |
1094 |
fileTriggerCalib >> atte1[i]; |
}; |
1095 |
fileTriggerCalib >> atte2[i]; |
fDataCALO[fCALOlength] = (UShort_t)CRC; |
1096 |
fileTriggerCalib >> lambda1[i]; |
fCALOlength++; |
1097 |
fileTriggerCalib >> lambda2[i]; |
// |
1098 |
fileTriggerCalib >> temp; |
}; |
1099 |
} |
// |
1100 |
fileTriggerCalib.close(); |
// for (Int_t i=0; i<fCALOlength; i++){ |
1101 |
|
// printf(" WORD %i DIGIT %0x \n",i,fDataCALO[i]); |
1102 |
// Read from file the 48*4 values of the attenuation fit function |
// }; |
1103 |
// NB: lambda<0; x,y defined in gpamela (=0 in the centre of the cavity) |
// |
1104 |
// Qhitpmt_pC = atte1 * exp(x/lambda1) + atte2 * exp(x/lambda2) |
}; |
1105 |
|
|
1106 |
// fine lettura dal file */ |
void Digitizer::DigitizeCALOCOMPRESS() { |
1107 |
|
// |
1108 |
//const Int_t nmax=??; = Nthtof |
printf(" COMPRESS MODE STILL NOT IMPLEMENTED! \n"); |
1109 |
Int_t nh, ip, ipad, ipmt; |
// |
1110 |
Int_t pmtleft=0, pmtright=0; |
this->DigitizeCALORAW(); |
1111 |
Int_t *pl, *pr; |
return; |
1112 |
pl = &pmtleft; |
// |
1113 |
pr = &pmtright; |
// |
1114 |
|
// |
1115 |
/* ********************************** inizio loop sugli hit */ |
fSecCalo[0] = 0xEA00; |
1116 |
|
fSecCalo[1] = 0xF100; |
1117 |
for(Int_t nh=0; nh<Nthtof; nh++){ |
fSecCalo[2] = 0xF600; |
1118 |
|
fSecCalo[3] = 0xED00; |
1119 |
for(Int_t j=0; j<2; j++) { // already done!! remove??? |
// |
1120 |
xpath[j]=0.; |
// length of the data in DSP mode must be calculated on fly during digitization |
1121 |
ypath[j]=0.; |
// |
1122 |
FGeo[j]=0.; |
memset(fSecCALOLength,0x0,4*sizeof(UShort_t)); |
1123 |
} |
// |
1124 |
|
// here comes raw data |
1125 |
// ridefiniz. piano e pad per i vettori in C |
// |
1126 |
ip = Ipltof[nh]-1; |
Int_t en = 0; |
1127 |
ipad = Ipaddle[nh]-1; |
// |
1128 |
pmtleft=0; |
for (Int_t sec=0; sec < 4; sec++){ |
1129 |
pmtright=0; |
fDataCALO[en] = fSecCalo[sec]; |
1130 |
|
en++; |
1131 |
//Paddle2Pmt((Int_t)ip, (Int_t) ipad, (Int_t*) &pmtleft, (Int_t*) &pmtright); |
fDataCALO[en] = fSecCALOLength[sec]; |
1132 |
Paddle2Pmt(ip, ipad, &pmtleft, &pmtright); |
en++; |
1133 |
//Paddle2Pmt(ip, ipad, pl, pr); |
for (Int_t plane=0; plane < 11; plane++){ |
1134 |
|
for (Int_t strip=0; strip < 11; strip++){ |
1135 |
// per avere anche la corrispondenza pmt --> half board e canale |
fDataCALO[en] = 0x0; |
1136 |
// metodo GetPMTIndex(Int_t ipmt, Int_t &hb, Int_t &ch) // non lo usiamo x ora |
en++; |
1137 |
|
}; |
1138 |
/*calcola la pos media e il path all'interno della paddle */ |
}; |
1139 |
|
}; |
1140 |
Float_t tpos=0.; |
// |
1141 |
Float_t path[2] = {0., 0.}; |
}; |
1142 |
//--- Strip in Y = S11,S22,S31 ------ |
|
1143 |
if(ip==0 || ip==3 || ip==4) |
void Digitizer::DigitizeCALOFULL() { |
1144 |
tpos = (Yintof[nh]+Youttof[nh])/2.; |
// |
1145 |
else |
printf(" FULL MODE STILL NOT IMPLEMENTED! \n"); |
1146 |
if(ip==1 || ip==2 || ip==5) //--- Strip in X per S12,S21,S32 |
// |
1147 |
tpos = (Xintof[nh]+Xouttof[nh])/2.; |
this->DigitizeCALORAW(); |
1148 |
else if (ip!=6) |
return; |
1149 |
printf("*** Warning: this option should never occur! (ip=%2i, nh=%2i)\n",ip,nh); |
// |
1150 |
path[0]= tpos + dimel[ip]/2.; |
fSecCalo[0] = 0xEA00; |
1151 |
path[1]= dimel[ip]/2.- tpos; |
fSecCalo[1] = 0xF100; |
1152 |
|
fSecCalo[2] = 0xF600; |
1153 |
// cout <<"Strip N. ="<< ipaddle <<" piano n.= "<< iplane <<" POSIZ = "<< tpos <<"\n"; |
fSecCalo[3] = 0xED00; |
1154 |
|
// |
1155 |
/* per il momento metto un fattore geometrico costante*/ |
// length of the data in DSP mode must be calculated on fly during digitization |
1156 |
FGeo[0] =0.5; |
// |
1157 |
FGeo[1] =0.5; |
memset(fSecCALOLength,0x0,4*sizeof(UShort_t)); |
1158 |
// FGeo[1] = atan(path[1]/dimes[ip])/6.28318; // frazione fotoni verso SX |
// |
1159 |
// FGeo[2] = atan(path[2]/dimes[ip])/6.28318; // e verso DX |
// here comes raw data |
1160 |
|
// |
1161 |
/* rimando la fluttuazione poissoniana sui fotoni prodotti |
Int_t en = 0; |
1162 |
sto studiando come funziona la funzione: |
// |
1163 |
long int i = sto.Poisson(double x); */ |
for (Int_t sec=0; sec < 4; sec++){ |
1164 |
// Npho = Poisson(ERELTOF[nh])*Pho_keV*1e6 Eloss in GeV ? |
fDataCALO[en] = fSecCalo[sec]; |
1165 |
Npho = Ereltof[nh]*Pho_keV*10.0e6; // Eloss in GeV ? |
en++; |
1166 |
|
fDataCALO[en] = fSecCALOLength[sec]; |
1167 |
Float_t knorm[2]={0., 0.}; // Donatella |
en++; |
1168 |
Float_t Atten[2]={0., 0.}; // Donatella |
for (Int_t plane=0; plane < 11; plane++){ |
1169 |
for(Int_t j=0; j<2; j++){ |
for (Int_t strip=0; strip < 11; strip++){ |
1170 |
QhitPad_pC[j]= Npho*FGeo[j]*effi*pmGain*echarge; |
fDataCALO[en] = 0x0; |
1171 |
knorm[j]=QhitPad_pC[j]/(atte1[pmtleft+j]*exp((dimel[ip]/2.*pow(-1,j+1))/lambda1[pmtleft+j]) + |
en++; |
1172 |
atte2[pmtleft+j]*exp((dimel[ip]/2.*pow(-1,j+1))/lambda2[pmtleft+j])); |
}; |
1173 |
|
}; |
1174 |
Atten[j]=knorm[j]*(atte1[pmtleft+j]*exp(tpos/lambda1[pmtleft+j]) + |
}; |
1175 |
atte2[pmtleft+j]*exp(tpos/lambda2[pmtleft+j])); |
// |
1176 |
|
}; |
1177 |
QhitPmt_pC[j]= QhitPad_pC[j]*Atten[j]; |
|
1178 |
} |
//void Digitizer::DigitizeTRIGGER() { |
1179 |
|
//fDataTrigger: 152 bytes |
1180 |
QevePmt_pC[pmtleft] += QhitPmt_pC[0]; |
// corrected 30/11/'07 SO (was 153) |
1181 |
QevePmt_pC[pmtright] += QhitPmt_pC[1]; |
//for (Int_t j=0; j < 152; j++) |
1182 |
|
// fDataTrigger[j]=0x00; |
1183 |
} // **************************************** fine loop sugli hit |
//}; |
1184 |
|
|
1185 |
for(Int_t i=0; i<48; i++){ |
Int_t Digitizer::DigitizeTOF() { |
1186 |
if(QevePmt_pC[i] != 0.){ |
//fDataTof: 12 x 23 bytes (=276 bytes) |
1187 |
ADCtof[i]= (Int_t)(ADC_pC*QevePmt_pC[i] + ADCoffset); |
UChar_t *pTof=fDataTof; |
1188 |
if(ADCtof[i]> ADClast) ADCtof[i]=ADClast; |
Bool_t DEBUG=false; |
1189 |
} else |
|
1190 |
ADCtof[i]= ADClast; |
// --- activate branches: |
1191 |
}; |
fhBookTree->SetBranchStatus("Nthtof",1); |
1192 |
|
fhBookTree->SetBranchStatus("Ipltof",1); |
1193 |
UChar_t tofBin; |
fhBookTree->SetBranchStatus("Ipaddle",1); |
1194 |
// --- write fDataTof: |
fhBookTree->SetBranchStatus("Xintof",1); |
1195 |
for (Int_t j=0; j < 12; j++){ |
fhBookTree->SetBranchStatus("Yintof",1); |
1196 |
Int_t j12=j*12; |
fhBookTree->SetBranchStatus("Xouttof",1); |
1197 |
fDataTof[j12+0]=0x00; // TDC_ID |
fhBookTree->SetBranchStatus("Youttof",1); |
1198 |
fDataTof[j12+1]=0x00; // EV_COUNT |
fhBookTree->SetBranchStatus("Ereltof",1); |
1199 |
fDataTof[j12+2]=0x00; // TDC_MASK (1) |
fhBookTree->SetBranchStatus("Timetof",1); |
1200 |
fDataTof[j12+3]=0x00; // TDC_MASK (2) |
// not yet used: Zintof, Xouttof, Youttof, Zouttof |
1201 |
for (Int_t k=0; k < 4; k++){ |
|
1202 |
Int_t jk12=j12+k; |
// ------ evaluate energy in each pmt: ------ |
1203 |
tofBin=(UChar_t)(ADCtof[k+4*j]/256); // ADC# (msb) (#=1+k+4*j) |
// strip geometry (lenght/width) |
1204 |
fDataTof[jk12+4] = Bin2GrayTof(tofBin,fDataTof[jk12+4]); |
Float_t dimel[6] = {33.0, 40.8 ,18.0, 15.0, 15.0, 18.0}; |
1205 |
tofBin=(UChar_t)(ADCtof[k+4*j]%256); // ADC# (lsb) |
//Float_t dimes[6] = {5.1, 5.5, 7.5, 9.0, 6.0, 5.0}; |
1206 |
fDataTof[jk12+5] = Bin2GrayTof(tofBin,fDataTof[jk12+5]); |
|
1207 |
fDataTof[jk12+6]=0x00; // TDC# (msb) -- Wolfgang |
// S11 8 paddles 33.0 x 5.1 cm |
1208 |
fDataTof[jk12+7]=0x00; // TDC# (lsb) -- Wolfgang |
// S12 6 paddles 40.8 x 5.5 cm |
1209 |
}; |
// S21 2 paddles 18.0 x 7.5 cm |
1210 |
fDataTof[j12+20]=0x00; // TEMP1 |
// S22 2 paddles 15.0 x 9.0 cm |
1211 |
fDataTof[j12+21]=0x00; // TEMP2 |
// S31 3 paddles 15.0 x 6.0 cm |
1212 |
fDataTof[j12+22]= EvaluateCrcTof(pTof); // CRC |
// S32 3 paddles 18.0 x 5.0 cm |
1213 |
pTof+=23; |
|
1214 |
}; |
Float_t FGeo[2]={0., 0.}; /* geometrical factor */ |
1215 |
return(0); |
|
1216 |
}; |
const Float_t Pho_keV = 10.; // photons per keV in scintillator |
1217 |
|
const Float_t echarge = 1.6e-19; // electron charge |
1218 |
UChar_t Digitizer::Bin2GrayTof(UChar_t binaTOF,UChar_t grayTOF){ |
Float_t Npho=0.; |
1219 |
union graytof_data { |
Float_t QevePmt_pC[48]; |
1220 |
UChar_t word; |
Float_t QhitPad_pC[2]={0., 0.}; |
1221 |
struct bit_field { |
Float_t QhitPmt_pC[2]={0., 0.}; |
1222 |
unsigned b0:1; |
Float_t pmGain = 3.5e6; /* PMT Gain: the same for all PMTs */ |
1223 |
unsigned b1:1; |
Float_t effi=0.21; /* Efficienza di fotocatodo */ |
1224 |
unsigned b2:1; |
|
1225 |
unsigned b3:1; |
// Float_t ADC_pC0=-58.1; // ADC/pC conversion coefficient 0 |
1226 |
unsigned b4:1; |
// Float_t ADC_pC1=1.728; // ADC/pC conversion coefficient 1 |
1227 |
unsigned b5:1; |
// Float_t ADC_pC2=-4.063e-05; // ADC/pC conversion coefficient 2 |
1228 |
unsigned b6:1; |
// Float_t ADC_pC3=-5.763e-08; // ADC/pC conversion coefficient 3 |
1229 |
unsigned b7:1; |
|
1230 |
} bit; |
// pC < 800 |
1231 |
} bi,gr; |
Float_t ADC_pC0A = -4.437616e+01 ; |
1232 |
// |
Float_t ADC_pC1A = 1.573329e+00 ; |
1233 |
bi.word = binaTOF; |
Float_t ADC_pC2A = 2.780518e-04 ; |
1234 |
gr.word = grayTOF; |
Float_t ADC_pC3A = -2.302160e-07 ; |
1235 |
// |
|
1236 |
gr.bit.b0 = bi.bit.b1 ^ bi.bit.b0; |
// pC > 800: |
1237 |
gr.bit.b1 = bi.bit.b2 ^ bi.bit.b1; |
Float_t ADC_pC0B = -2.245756e+02 ; |
1238 |
gr.bit.b2 = bi.bit.b3 ^ bi.bit.b2; |
Float_t ADC_pC1B = 2.184156e+00 ; |
1239 |
gr.bit.b3 = bi.bit.b3; |
Float_t ADC_pC2B = -4.171825e-04 ; |
1240 |
// |
Float_t ADC_pC3B = 3.789715e-08 ; |
1241 |
/* bin to gray conversion 4 bit per time*/ |
|
1242 |
// |
Float_t pCthres=40.; // threshold in charge |
1243 |
gr.bit.b4 = bi.bit.b5 ^ bi.bit.b4; |
Int_t ADClast=4095; // no signal --> ADC ch=4095 |
1244 |
gr.bit.b5 = bi.bit.b6 ^ bi.bit.b5; |
Int_t ADCsat=3100; // saturation value for the ADCs |
1245 |
gr.bit.b6 = bi.bit.b7 ^ bi.bit.b6; |
Int_t ADCtof[48]; |
1246 |
gr.bit.b7 = bi.bit.b7; |
|
1247 |
// |
|
1248 |
return(gr.word); |
// ---- introduce scale factors to tune simul ADC to real data 24-oct DC |
1249 |
} |
// Float_t ScaleFact[48]={0.18,0.22,0.35,0.26,0.47,0.35,0.31,0.37, |
1250 |
|
// 0.44,0.23,0.38,0.60,0.39,0.29,0.40,0.23, |
1251 |
UChar_t Digitizer::EvaluateCrcTof(UChar_t *pTof) { |
// 0.30,0.66,0.22,1.53,0.17,0.55, |
1252 |
// UChar_t crcTof=0x00; |
// 0.84,0.19,0.21,1.64,0.62,0.13, |
1253 |
// for (Int_t jp=0; jp < 23; jp++){ |
// 0.18,0.15,0.10,0.14,0.14,0.14,0.14,0.12, |
1254 |
// crcTof = crc8(...) |
// 0.26,0.18,0.25,0.23,0.20,0.40,0.19,0.23,0.25,0.23,0.25,0.20}; |
1255 |
// } |
|
1256 |
return(0x00); |
// new scale factors: WM 30-Oct-07 |
1257 |
}; |
// Float_t ScaleFact[48]={0.35,0.41,0.32,0.34,0.58,0.47,0.42,0.44, |
1258 |
|
// 0.50,0.34,0.50,0.50,0.51,0.42,0.46,0.25, |
1259 |
//void Digitizer::Paddle2Pmt(Int_t plane, Int_t paddle, Int_t* &pmtleft, Int_t* &pmtright){ |
// 0.20,0.38,0.29,0.49,0.24,0.68, |
1260 |
void Digitizer::Paddle2Pmt(Int_t plane, Int_t paddle, Int_t *pl, Int_t *pr){ |
// 0.30,0.26,0.28,0.79,0.31,0.12, |
1261 |
//* @param plane (0 - 5) |
// 0.25,0.21,0.14,0.20, |
1262 |
//* @param paddle (plane=0, paddle = 0,...5) |
// 0.16,0.17,0.19,0.18, |
1263 |
//* @param padid (0 - 23) |
// 0.34,0.27,0.34,0.31,0.25,0.57, |
1264 |
// |
// 0.24,0.34,0.34,0.32,0.31,0.30}; |
1265 |
Int_t padid=-1; |
|
1266 |
Int_t pads[6]={8,6,2,2,3,3}; |
Float_t ScaleFact[48]={0.39, 0.49, 0.38, 0.40, 0.65, 0.51, 0.43, |
1267 |
// |
0.49, 0.58, 0.38, 0.53, 0.57, 0.53, 0.45, 0.49, 0.16, |
1268 |
Int_t somma=0; |
0.15, 0.44, 0.28, 0.57, 0.26, 0.72, 0.37, 0.29, 0.30, 0.89, |
1269 |
Int_t np=plane; |
0.37, 0.08, 0.27, 0.23, 0.12, 0.22, 0.15, 0.16, 0.21, |
1270 |
for(Int_t j=0; j<np; j++) |
0.19, 0.41, 0.32, 0.39, 0.38, 0.28, 0.66, 0.28, 0.40, 0.39, 0.40, 0.37, 0.35 }; |
1271 |
somma+=pads[j]; |
|
1272 |
padid=paddle+somma; |
for(Int_t i=0; i<48; i++){ |
1273 |
*pl = padid*2; |
QevePmt_pC[i] = 0; |
1274 |
*pr = *pr + 1; |
ADCtof[i]=0; |
1275 |
}; |
} |
1276 |
|
|
1277 |
void Digitizer::DigitizeAC() { |
// ------ read calibration file (get A1, A2, lambda1, lambda2) |
1278 |
// created: J. Conrad, KTH |
ifstream fileTriggerCalib; |
1279 |
// modified: S. Orsi, INFN Roma2 |
TString ftrigname="TrigCalibParam.txt"; |
1280 |
|
fileTriggerCalib.open(ftrigname.Data()); |
1281 |
fDataAC[0] = 0xACAC; |
if ( !fileTriggerCalib ) { |
1282 |
fDataAC[64]= 0xACAC; |
printf("debug: no trigger calib file!\n"); |
1283 |
fDataAC[1] = 0xAC11; // main card |
return(-117); //check output! |
1284 |
fDataAC[65] = 0xAC22; // extra card |
}; |
1285 |
|
Float_t atte1[48],atte2[48],lambda1[48],lambda2[48]; |
1286 |
// the third word is a status word (dummy) |
Int_t temp=0; |
1287 |
fDataAC[2] = 0xFFFF; //FFEF? |
// correct readout WM Oct '07 |
1288 |
fDataAC[66] = 0xFFFF; |
for(Int_t i=0; i<48; i++){ |
1289 |
|
fileTriggerCalib >> temp; |
1290 |
const UInt_t nReg = 6; |
fileTriggerCalib >> atte1[i]; |
1291 |
|
fileTriggerCalib >> lambda1[i]; |
1292 |
// Registers (dummy) |
fileTriggerCalib >> atte2[i]; |
1293 |
for (UInt_t i=0; i<=nReg; i++){ |
fileTriggerCalib >> lambda2[i]; |
1294 |
fDataAC[i+4] = 0xFFFF; |
fileTriggerCalib >> temp; |
1295 |
fDataAC[i+68] = 0xFFFF; |
} |
1296 |
} |
fileTriggerCalib.close(); |
1297 |
|
|
1298 |
// the last word is a CRC |
Int_t ip, ipad; |
1299 |
// Dummy for the time being, but it might need to be calculated in the end |
//Int_t ipmt; |
1300 |
fDataAC[63] = 0xABCD; |
Int_t pmtleft=0, pmtright=0; |
1301 |
fDataAC[127] = 0xABCD; |
Int_t *pl, *pr; |
1302 |
|
pl = &pmtleft; |
1303 |
// shift registers, which one is with respect to PMT, where in |
pr = &pmtright; |
1304 |
// shift registers is a question of time relative trigger |
|
1305 |
// In level2: hitmap, hitmap-status (synchronised with a trigger), |
// TDC variables: |
1306 |
// status |
Int_t TDClast=4095; // no signal --> TDC ch=4095 |
1307 |
|
Int_t TDCint[48]; |
1308 |
for (UInt_t i=0; i<=15; i++){ |
Float_t tdc[48],tdc1[48],tdcpmt[48]; |
1309 |
fDataAC[i+11] = 0x0000; |
for(Int_t i=0; i<48; i++) { |
1310 |
fDataAC[i+75] = 0x0000; |
tdcpmt[i] = 1000.; |
1311 |
} |
tdc[i] = 0.; // 18-oct WM |
1312 |
|
tdc1[i] = 0.; // 18-oct WM |
1313 |
// singles counters are dummy |
} |
1314 |
|
|
1315 |
for (UInt_t i=0; i<=16; i++){ |
Float_t thresh=10.; // to be defined better... (Wolfgang) |
1316 |
fDataAC[i+26] = 0x0000; |
|
1317 |
fDataAC[i+90] = 0x0000; |
// === TDC: simulate timing for each paddle |
1318 |
} |
//Float_t dt1 = 285.e-12 ; // single PMT resolution |
1319 |
|
Float_t dt1 = 425.e-12 ; // single PMT resolution (WM, Nov'07) |
1320 |
// coincidences are dummy |
Float_t tdcres[50],c1_S[50],c2_S[50],c3_S[50]; |
1321 |
|
for(Int_t j=0;j<48;j++) tdcres[j] = 50.E-12; // TDC resolution 50 picosec |
1322 |
for (UInt_t i=0; i<=7; i++){ |
for(Int_t j=0;j<48;j++) c1_S[j] = 500.; // cable length in channels |
1323 |
fDataAC[i+42] = 0x0000; |
for(Int_t j=0;j<48;j++) c2_S[j] = 0.; |
1324 |
fDataAC[i+106] = 0x0000; |
for(Int_t j=0;j<48;j++) c3_S[j] = 1000.; |
1325 |
} |
for(Int_t j=0;j<48;j++) c1_S[j] = c1_S[j]*tdcres[j]; // cable length in sec |
1326 |
|
for(Int_t j=0;j<48;j++) c2_S[j] = c2_S[j]*tdcres[j]; |
1327 |
// increments for every trigger might be needed at some point. |
// ih = 0 + i1; // not used?? (Silvio) |
1328 |
// dummy for now |
|
1329 |
fDataAC[50] = 0x0000; |
/* ********************************** start loop over hits */ |
1330 |
fDataAC[114] = 0x0000; |
|
1331 |
|
for(Int_t nh=0; nh<Nthtof; nh++){ |
1332 |
// dummy FPGA clock |
|
1333 |
|
Float_t s_l_g[6] = {8.0, 8.0, 20.9, 22.0, 9.8, 8.3 }; // length of the lightguide |
1334 |
fDataAC[51] = 0x006C; |
Float_t t1,t2,veff,veff1,veff0 ; |
1335 |
fDataAC[52] = 0x6C6C; |
veff0 = 100.*1.0e8 ; // light velocity in the scintillator in m/sec |
1336 |
fDataAC[115] = 0x006C; |
veff1 = 100.*1.5e8; // light velocity in the lightguide in m/sec |
1337 |
fDataAC[116] = 0x6C6C; |
veff=veff0; // signal velocity in the paddle |
1338 |
|
|
1339 |
|
t1 = Timetof[nh] ; // Start |
1340 |
// dummy temperatures |
t2 = Timetof[nh] ; |
1341 |
fDataAC[53] = 0x0000; |
|
1342 |
fDataAC[54] = 0x0000; |
// Donatella: redefinition plane and pad for vectors in C |
1343 |
fDataAC[117] = 0x0000; |
ip = Ipltof[nh]-1; |
1344 |
fDataAC[118] = 0x0000; |
ipad = Ipaddle[nh]-1; |
1345 |
|
pmtleft=0; |
1346 |
|
pmtright=0; |
1347 |
// dummy DAC thresholds |
|
1348 |
for (UInt_t i=0; i<=7; i++){ |
// WM: S12 paddles are "reversed" (Nov'07) |
1349 |
fDataAC[i+55] = 0x1A13; |
if (ip==2) |
1350 |
fDataAC[i+119] = 0x1A13; |
if (ipad==0) |
1351 |
} |
ipad=1; |
1352 |
|
else |
1353 |
// We activate all branches. Once the digitization algorithm |
ipad=0; |
1354 |
// is determined only the branches need to activated which involve needed |
|
1355 |
// information |
if (ip<6) { |
1356 |
|
Paddle2Pmt(ip, ipad, &pmtleft, &pmtright); |
1357 |
fhBookTree->SetBranchStatus("Nthcat",1); |
|
1358 |
fhBookTree->SetBranchStatus("Iparcat",1); |
// DC: evaluates mean position and path inside the paddle |
1359 |
fhBookTree->SetBranchStatus("Icat",1); |
|
1360 |
fhBookTree->SetBranchStatus("Xincat",1); |
Float_t tpos=0.; |
1361 |
fhBookTree->SetBranchStatus("Yincat",1); |
Float_t path[2] = {0., 0.}; |
1362 |
fhBookTree->SetBranchStatus("Zincat",1); |
//--- Strip in Y = S11,S22,S31 ------ |
1363 |
fhBookTree->SetBranchStatus("Xoutcat",1); |
if(ip==0 || ip==3 || ip==4) |
1364 |
fhBookTree->SetBranchStatus("Youtcat",1); |
tpos = (Yintof[nh]+Youttof[nh])/2.; |
1365 |
fhBookTree->SetBranchStatus("Zoutcat",1); |
else |
1366 |
fhBookTree->SetBranchStatus("Erelcat",1); |
if(ip==1 || ip==2 || ip==5) //--- Strip in X for S12,S21,S32 |
1367 |
fhBookTree->SetBranchStatus("Timecat",1); |
tpos = (Xintof[nh]+Xouttof[nh])/2.; |
1368 |
fhBookTree->SetBranchStatus("Pathcat",1); |
else //if (ip!=6) |
1369 |
fhBookTree->SetBranchStatus("P0cat",1); |
printf("*** WARNING TOF: this option should never occur! (ip=%2i, nh=%2i)\n",ip,nh); |
1370 |
fhBookTree->SetBranchStatus("Nthcas",1); |
|
1371 |
fhBookTree->SetBranchStatus("Iparcas",1); |
path[0]= tpos + dimel[ip]/2.; // path to left PMT |
1372 |
fhBookTree->SetBranchStatus("Icas",1); |
path[1]= dimel[ip]/2.- tpos; // path to right PMT |
1373 |
fhBookTree->SetBranchStatus("Xincas",1); |
|
1374 |
fhBookTree->SetBranchStatus("Yincas",1); |
// cout <<"Strip N. ="<< ipaddle <<" piano n.= "<< iplane <<" POSIZ = "<< tpos <<"\n"; |
1375 |
fhBookTree->SetBranchStatus("Zincas",1); |
|
1376 |
fhBookTree->SetBranchStatus("Xoutcas",1); |
if (DEBUG) { |
1377 |
fhBookTree->SetBranchStatus("Youtcas",1); |
cout <<" plane "<<ip<<" strip # ="<< ipad <<" tpos "<< tpos <<"\n"; |
1378 |
fhBookTree->SetBranchStatus("Zoutcas",1); |
cout <<"pmtleft, pmtright "<<pmtleft<<" "<<pmtright<<endl; |
1379 |
fhBookTree->SetBranchStatus("Erelcas",1); |
} |
1380 |
fhBookTree->SetBranchStatus("Timecas",1); |
|
1381 |
fhBookTree->SetBranchStatus("Pathcas",1); |
// constant geometric factor, the rest is handled by the scaling factor |
1382 |
fhBookTree->SetBranchStatus("P0cas",1); |
FGeo[0] =0.5; |
1383 |
fhBookTree->SetBranchStatus("Nthcard",1); |
FGeo[1] =0.5; |
1384 |
fhBookTree->SetBranchStatus("Iparcard",1); |
// FGeo[1] = atan(path[1]/dimes[ip])/6.28318; // fraction of photons toward left |
1385 |
fhBookTree->SetBranchStatus("Icard",1); |
// FGeo[2] = atan(path[2]/dimes[ip])/6.28318; // toward right |
1386 |
fhBookTree->SetBranchStatus("Xincard",1); |
|
1387 |
fhBookTree->SetBranchStatus("Yincard",1); |
|
1388 |
fhBookTree->SetBranchStatus("Zincard",1); |
// Npho = Poisson(ERELTOF[nh])*Pho_keV*1e6 Poissonian fluctuations to be inserted-DC |
1389 |
fhBookTree->SetBranchStatus("Xoutcard",1); |
Npho = Ereltof[nh]*Pho_keV*1.0e6; // Eloss in GeV |
1390 |
fhBookTree->SetBranchStatus("Youtcard",1); |
|
1391 |
fhBookTree->SetBranchStatus("Zoutcard",1); |
Float_t knorm[2]={0., 0.}; // Donatella |
1392 |
fhBookTree->SetBranchStatus("Erelcard",1); |
Float_t Atten[2]={0., 0.}; // Donatella |
1393 |
fhBookTree->SetBranchStatus("Timecard",1); |
for(Int_t j=0; j<2; j++){ |
1394 |
fhBookTree->SetBranchStatus("Pathcard",1); |
QhitPad_pC[j]= Npho*FGeo[j]*effi*pmGain*echarge*1.E12*ScaleFact[pmtleft+j]; |
1395 |
fhBookTree->SetBranchStatus("P0card",1); |
// WM |
1396 |
|
knorm[j]=atte1[pmtleft+j]*exp(lambda1[pmtleft+j]*dimel[ip]/2.*pow(-1,j+1)) + |
1397 |
// In this simpliefied approach we will assume that once |
atte2[pmtleft+j]*exp(lambda2[pmtleft+j]*dimel[ip]/2.*pow(-1,j+1)); |
1398 |
// a particle releases > 0.5 mip in one of the 12 AC detectors it |
Atten[j]=atte1[pmtleft+j]*exp(tpos*lambda1[pmtleft+j]) + |
1399 |
// will fire. We will furthermore assume that both cards read out |
atte2[pmtleft+j]*exp(tpos*lambda2[pmtleft+j]) ; |
1400 |
// identical data. |
QhitPmt_pC[j]= QhitPad_pC[j]*Atten[j]/knorm[j]; |
1401 |
|
// QhitPmt_pC[j]= QhitPad_pC[j]; //no attenuation |
1402 |
// If you develop you digitization algorithm, you should start by |
|
1403 |
// identifying the information present in level2 (post-darth-vader) |
|
1404 |
// data. |
if (DEBUG) { |
1405 |
|
cout<<"pmtleft "<<pmtleft<<" j "<<j<<endl; |
1406 |
Float_t SumEcat[5]; |
cout<<" atte1 "<<atte1[pmtleft+j]<<"lambda1 "<<lambda1[pmtleft+j]<<" atte2 "<<atte2[pmtleft+j]<<"lambda2 "<<lambda2[pmtleft+j] <<endl; |
1407 |
Float_t SumEcas[5]; |
cout<<j<<" tpos "<<tpos<<" knorm "<<knorm[j]<<" "<<Atten[j]<<" "<<"QhitPmt_pC "<<QhitPmt_pC[j]<<endl; |
1408 |
Float_t SumEcard[5]; |
} |
1409 |
for (Int_t k= 0;k<5;k++){ |
} |
1410 |
SumEcat[k]=0.; |
|
1411 |
SumEcas[k]=0.; |
if (DEBUG) |
1412 |
SumEcard[k]=0.; |
cout<<"Npho "<<Npho<<" QhitPmt_pC "<<QhitPmt_pC[0]<<" "<<QhitPmt_pC[1]<<endl; |
1413 |
}; |
|
1414 |
|
QevePmt_pC[pmtleft] += QhitPmt_pC[0]; |
1415 |
if (Nthcat>50 || Nthcas>50 || Nthcard>50) |
QevePmt_pC[pmtright] += QhitPmt_pC[1]; |
1416 |
printf("Error! NthAC out of range!\n\n"); |
|
1417 |
|
// TDC |
1418 |
// look in CAT |
// WM right and left <-> |
1419 |
// for (UInt_t k= 0;k<50;k++){ |
// t2 = t2 + fabs(path[0]/veff) + s_l_g[ip]/veff1 ; // Signal reaches PMT |
1420 |
for (Int_t k= 0;k<Nthcat;k++){ |
// t1 = t1 + fabs(path[1]/veff) + s_l_g[ip]/veff1; |
1421 |
if (Erelcat[k] > 0) |
|
1422 |
SumEcat[Icat[k]] += Erelcat[k]; |
t1 = t1 + fabs(path[0]/veff) + s_l_g[ip]/veff1; |
1423 |
}; |
t2 = t2 + fabs(path[1]/veff) + s_l_g[ip]/veff1 ; // Signal reaches PMT |
1424 |
|
|
1425 |
// look in CAS |
t1 = gRandom->Gaus(t1,dt1); //apply gaussian error dt |
1426 |
for (Int_t k= 0;k<Nthcas;k++){ |
t2 = gRandom->Gaus(t2,dt1); //apply gaussian error dt |
1427 |
if (Erelcas[k] >0) |
|
1428 |
SumEcas[Icas[k]] += Erelcas[k]; |
t1 = t1 + c1_S[pmtleft] ; // Signal reaches Discriminator ,TDC starts to run |
1429 |
}; |
t2 = t2 + c1_S[pmtright] ; |
1430 |
|
|
1431 |
// look in CARD |
// check if signal is above threshold |
1432 |
for (Int_t k= 0;k<Nthcard;k++){ |
// then check if tdcpmt is already filled by another hit... |
1433 |
if (Erelcard[k] >0) |
// only re-fill if time is smaller |
1434 |
SumEcard[Icard[k]] += Erelcard[k]; |
|
1435 |
}; |
if (QhitPmt_pC[0] > thresh) { |
1436 |
|
if (tdcpmt[pmtleft] == 1000.) { // fill for the first time |
1437 |
// channel mapping Hit Map |
tdcpmt[pmtleft] = t1; |
1438 |
// 1 CARD4 0 LSB |
tdc[pmtleft] = t1 + c2_S[pmtleft] ; // Signal reaches Coincidence |
1439 |
// 2 CAT2 0 |
} |
1440 |
// 3 CAS1 0 |
if (tdcpmt[pmtleft] < 1000.) // is already filled! |
1441 |
// 4 NC 0 |
if (t1 < tdcpmt[pmtleft]) { |
1442 |
// 5 CARD2 0 |
tdcpmt[pmtleft] = t1; |
1443 |
// 6 CAT4 1 |
t1 = t1 + c2_S[pmtleft] ; // Signal reaches Coincidence |
1444 |
// 7 CAS4 0 |
tdc[pmtleft] = t1; |
1445 |
// 8 NC 0 |
} |
1446 |
// 9 CARD3 0 |
} |
1447 |
// 10 CAT3 0 |
if (QhitPmt_pC[1] > thresh) { |
1448 |
// 11 CAS3 0 |
if (tdcpmt[pmtright] == 1000.) { // fill for the first time |
1449 |
// 12 NC 0 |
tdcpmt[pmtright] = t2; |
1450 |
// 13 CARD1 0 |
tdc[pmtright] = t2 + c2_S[pmtright] ; // Signal reaches Coincidence |
1451 |
// 14 CAT1 0 |
} |
1452 |
// 15 CAS2 0 |
if (tdcpmt[pmtright] < 1000.) // is already filled! |
1453 |
// 16 NC 0 MSB |
if (t2 < tdcpmt[pmtright]) { |
1454 |
|
tdcpmt[pmtright] = t2; |
1455 |
// In the first version only the hit-map is filled, not the SR. |
t2 = t2 + c2_S[pmtright] ; |
1456 |
|
tdc[pmtright] = t2; |
1457 |
// Threshold: 0.8 MeV. |
} |
1458 |
|
} |
1459 |
Float_t thr = 8e-4; |
|
1460 |
|
if (DEBUG) |
1461 |
fDataAC[3] = 0x0000; |
cout<<nh<<" "<<Timetof[nh]<<" "<<t1<<" "<<t2<<endl; |
1462 |
|
|
1463 |
if (SumEcas[0] > thr) fDataAC[3] = 0x0004; |
} // ip < 6 |
1464 |
if (SumEcas[1] > thr) fDataAC[3] += 0x4000; |
|
1465 |
if (SumEcas[2] > thr) fDataAC[3] += 0x0400; |
}; // **************************************** end loop over hits |
1466 |
if (SumEcas[3] > thr) fDataAC[3] += 0x0040; |
|
1467 |
|
// ====== ADC ====== |
1468 |
if (SumEcat[0] > thr) fDataAC[3] += 0x2000; |
|
1469 |
if (SumEcat[1] > thr) fDataAC[3] += 0x0002; |
for(Int_t i=0; i<48; i++){ |
1470 |
if (SumEcat[2] > thr) fDataAC[3] += 0x0200; |
if (QevePmt_pC[i] < 800.) ADCtof[i]= (Int_t)(ADC_pC0A + ADC_pC1A*QevePmt_pC[i] + ADC_pC2A*pow(QevePmt_pC[i],2) + ADC_pC3A*pow(QevePmt_pC[i],3)); |
1471 |
if (SumEcat[3] > thr) fDataAC[3] += 0x0020; |
if (QevePmt_pC[i] > 800.) ADCtof[i]= (Int_t)(ADC_pC0B + ADC_pC1B*QevePmt_pC[i] + ADC_pC2B*pow(QevePmt_pC[i],2) + ADC_pC3B*pow(QevePmt_pC[i],3)); |
1472 |
|
if (QevePmt_pC[i] > 2485.) ADCtof[i]= (Int_t)(1758. + 0.54*QevePmt_pC[i]); //assuming a fictional 0.54 ch/pC above ADCsat |
1473 |
if (SumEcard[0] > thr) fDataAC[3] += 0x1000; |
if (ADCtof[i]>ADCsat) ADCtof[i]=ADCsat; |
1474 |
if (SumEcard[1] > thr) fDataAC[3] += 0x0010; |
if (QevePmt_pC[i] < pCthres) ADCtof[i]= ADClast; |
1475 |
if (SumEcard[2] > thr) fDataAC[3] += 0x0100; |
if (ADCtof[i] < 0) ADCtof[i]=ADClast; |
1476 |
if (SumEcard[3] > thr) fDataAC[3] += 0x0001; |
if (ADCtof[i] > ADClast) ADCtof[i]=ADClast; |
1477 |
|
} |
1478 |
fDataAC[67] = fDataAC[3]; |
|
1479 |
|
// for(Int_t i=0; i<48; i++){ |
1480 |
// for (Int_t i=0; i<fACbuffer; i++){ |
// if(QevePmt_pC[i] >= pCthres){ |
1481 |
// printf("%0x ",fDataAC[i]); |
// ADCtof[i]= (Int_t)(ADC_pC0 + ADC_pC1*QevePmt_pC[i] + ADC_pC2*pow(QevePmt_pC[i],2) + ADC_pC3*pow(QevePmt_pC[i],3)); |
1482 |
// if ((i+1)%8 ==0) cout << endl; |
// } else |
1483 |
// } |
// ADCtof[i]= ADClast; |
1484 |
}; |
// } |
1485 |
|
|
1486 |
|
// // ---- introduce scale factors to tune simul ADC to real data 24-oct DC |
1487 |
void Digitizer::DigitizeND(){ |
|
1488 |
// creato: S. Borisov, INFN Roma2 e MEPHI, Sept 2007 |
// for(Int_t i=0; i<48; i++){ |
1489 |
// 4 bytes: 16bit header, 8bit trigPhysics, 16bit up&low background |
// if(ADCtof[i] != ADClast){ |
1490 |
|
// // printf("%3d, %4d, %4.2f\n",i, ADCtof[i],ScaleFact[i]); |
1491 |
// ND header |
// ADCtof[i]= Int_t (ADCtof[i]*ScaleFact[i]); |
1492 |
fDataND[0] = 0x0000; |
// // printf("%3d, %4d,\n",i, ADCtof[i]); |
1493 |
fDataND[1] = 0x000F; |
// } |
1494 |
|
// } |
1495 |
fhBookTree->SetBranchStatus("Nthnd",1); |
|
1496 |
fhBookTree->SetBranchStatus("Itubend",1); |
// for(Int_t i=0; i<48; i++){ |
1497 |
fhBookTree->SetBranchStatus("Iparnd",1); |
// if(ADCtof[i] != ADClast){ |
1498 |
fhBookTree->SetBranchStatus("Xinnd",1); |
// if(ADCtof[i]> ADCsat) ADCtof[i]=ADCsat; |
1499 |
fhBookTree->SetBranchStatus("Yinnd",1); |
// else if(ADCtof[i]< 0) ADCtof[i]=ADClast; |
1500 |
fhBookTree->SetBranchStatus("Zinnd",1); |
// } |
1501 |
fhBookTree->SetBranchStatus("Xoutnd",1); |
// } |
1502 |
fhBookTree->SetBranchStatus("Youtnd",1); |
|
1503 |
fhBookTree->SetBranchStatus("Zoutnd",1); |
|
1504 |
fhBookTree->SetBranchStatus("Erelnd",1); |
// ====== build TDC coincidence ====== |
1505 |
fhBookTree->SetBranchStatus("Timend",1); |
|
1506 |
fhBookTree->SetBranchStatus("Pathnd",1); |
Float_t t_coinc = 0; |
1507 |
fhBookTree->SetBranchStatus("P0nd",1); |
Int_t ilast = 100; |
1508 |
|
for (Int_t ii=0; ii<48;ii++) |
1509 |
UShort_t NdN=0; |
if (tdc[ii] > t_coinc) { |
1510 |
for(Int_t i=0;i<Nthnd;i++) |
t_coinc = tdc[ii]; |
1511 |
if(Iparnd[i]==13) |
ilast = ii; |
1512 |
NdN++; |
} |
1513 |
|
|
1514 |
NdN=10; // test! |
// cout<<ilast<<" "<<t_coinc<<endl; |
1515 |
fDataND[2]=0x0F00 & (NdN*256); |
// At t_coinc trigger condition is fulfilled |
1516 |
//fDataND[2]=0xFFFF; //test |
|
1517 |
fDataND[2]=0x0000; //background neutrons |
for (Int_t ii=0; ii<48;ii++){ |
1518 |
} |
// if (tdc[ii] != 0) tdc1[ii] = t_coinc - tdc[ii]; // test 1 |
1519 |
|
if (tdc[ii] != 0) tdc1[ii] = t_coinc - tdcpmt[ii]; // test 2 |
1520 |
|
tdc1[ii] = tdc1[ii]/tdcres[ii]; // divide by TDC resolution |
1521 |
void Digitizer::DigitizeDummy() { |
if (tdc[ii] != 0) tdc1[ii] = tdc1[ii] + c3_S[ii]; // add cable length c3 |
1522 |
|
} // missing parenthesis inserted! (Silvio) |
1523 |
fhBookTree->SetBranchStatus("Enestrip",1); |
|
1524 |
|
for(Int_t i=0; i<48; i++){ |
1525 |
// dumy header |
if(tdc1[i] != 0.){ |
1526 |
fDataDummy[0] = 0xCAAA; |
TDCint[i]=(Int_t)tdc1[i]; |
1527 |
|
if (TDCint[i]>4093) TDCint[i]=TDClast; // 18-oct WM |
1528 |
for (Int_t i=1; i<fDummybuffer; i++){ |
if (DEBUG) |
1529 |
fDataDummy[i] = 0xFFFF; |
cout<<i<<" "<<TDCint[i]<<endl; |
1530 |
// printf("%0x ",fDataDummy[i]); |
//ADC[i]= ADC_pC * QevePmt_pC[i] + ADCoffset; |
1531 |
//if ((i+1)%8 ==0) cout << endl; |
//if(ADC[i]> ADClast) ADC[i]=ADClast; |
1532 |
} |
} else |
1533 |
|
TDCint[i]= TDClast; |
1534 |
|
} |
1535 |
|
|
1536 |
}; |
if (DEBUG) |
1537 |
|
cout<<"-----------"<<endl; |
1538 |
|
|
1539 |
void Digitizer::WriteData(){ |
|
1540 |
|
//------ use channelmap for ToF: 18-oct WM |
1541 |
// Routine that writes the data to a binary file |
|
1542 |
// PSCU data are already swapped |
Int_t channelmap[] = {3,21,11,29,19,45,27,37,36,28,44,20,5,12,13,4, |
1543 |
fOutputfile.write(reinterpret_cast<char*>(fDataPSCU),sizeof(UShort_t)*fPSCUbuffer); |
6,47,14,39,22,31,30,23,38,15,46,7,0,33,16,24, |
1544 |
// TRG |
8,41,32,40,25,17,34,9,42,1,2,10,18,26,35,43}; |
1545 |
fOutputfile.write(reinterpret_cast<char*>(fDataTrigger),sizeof(UChar_t)*153); |
|
1546 |
// TOF |
Int_t ADChelp[48]; |
1547 |
fOutputfile.write(reinterpret_cast<char*>(fDataTof),sizeof(UChar_t)*276); |
Int_t TDChelp[48]; |
1548 |
// AC |
|
1549 |
UShort_t temp[1000000]; |
for(Int_t i=0; i<48; i++){ |
1550 |
memset(temp,0,sizeof(UShort_t)*1000000); |
Int_t ii=channelmap[i]; |
1551 |
swab(fDataAC,temp,sizeof(UShort_t)*fACbuffer); // WE MUST SWAP THE BYTES!!! |
ADChelp[ii]= ADCtof[i]; |
1552 |
fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fACbuffer); |
TDChelp[ii]= TDCint[i]; |
1553 |
// CALO |
} |
1554 |
memset(temp,0,sizeof(UShort_t)*1000000); |
|
1555 |
swab(fDataCALO,temp,sizeof(UShort_t)*fCALOlength); // WE MUST SWAP THE BYTES!!! |
for(Int_t i=0; i<48; i++){ |
1556 |
fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fCALOlength); |
ADCtof[i]= ADChelp[i]; |
1557 |
// TRK |
TDCint[i]= TDChelp[i]; |
1558 |
memset(temp,0,sizeof(UShort_t)*1000000); |
} |
1559 |
swab(fDataTrack,temp,sizeof(UShort_t)*fTracklength); // WE MUST SWAP THE BYTES!!! |
|
1560 |
fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fTracklength); |
|
1561 |
fTracklength=0; |
// ====== write fDataTof ======= |
1562 |
// S4 |
|
1563 |
// ...to be done... |
|
1564 |
// ND |
// UChar_t tdcadd[8]={1,0,3,2,5,4,7,6}; (coded in 3 bit) |
1565 |
memset(temp,0,sizeof(UShort_t)*1000000); |
UChar_t Ctrl3bit[8]={32,0,96,64,160,128,224,192}; // DC (msb in 8 bit word ) |
1566 |
swab(fDataND,temp,sizeof(UShort_t)*4); // WE MUST SWAP THE BYTES!!! |
|
1567 |
fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*4); |
UChar_t tofBin; |
1568 |
|
for (Int_t j=0; j < 12; j++){ // loop on TDC #12 |
1569 |
// |
Int_t j12=j*23; // for each TDC 23 bytes (8 bits) |
1570 |
// fOutputfile.write(reinterpret_cast<char*>(fDataDummy),sizeof(UShort_t)*fDummybuffer); |
fDataTof[j12+0]=0x00; // TDC_ID |
1571 |
// |
fDataTof[j12+1]=0x00; // EV_COUNT |
1572 |
// padding to 64 bytes |
fDataTof[j12+2]=0x00; // TDC_MASK (1) |
1573 |
// |
fDataTof[j12+3]=0x00; // TDC_MASK (2) |
1574 |
if ( fPadding ){ |
for (Int_t k=0; k < 4; k++){ // for each TDC 4 channels (ADC+TDC) |
1575 |
fOutputfile.write(reinterpret_cast<char*>(fDataPadding),sizeof(UChar_t)*fPadding); |
|
1576 |
}; |
Int_t jk12=j12+4*k; // ADC,TDC channel (0-47) |
1577 |
// |
|
1578 |
}; |
tofBin =(UChar_t)(ADCtof[k+4*j]/256); // ADC# (msb) |
1579 |
|
fDataTof[jk12+4] = Bin2GrayTof(tofBin,fDataTof[jk12+4]); |
1580 |
|
/* control bits inserted here, after the bin to gray conv - DC*/ |
1581 |
void Digitizer::ReadData(){ |
fDataTof[jk12+4] = Ctrl3bit[2*k] | fDataTof[jk12+4]; |
1582 |
|
tofBin=(UChar_t)(ADCtof[k+4*j]%256); // ADC# (lsb) |
1583 |
UShort_t InData[64]; |
fDataTof[jk12+5] = Bin2GrayTof(tofBin,fDataTof[jk12+5]); |
1584 |
|
tofBin=(UChar_t)(TDCint[k+4*j]/256); // TDC# (msb) |
1585 |
// for debuggigng purposes only, write your own routine if you like (many |
fDataTof[jk12+6]=Bin2GrayTof(tofBin,fDataTof[jk12+6]); |
1586 |
// hardwired things. |
/* control bits inserted here, after the bin to gray conv - DC*/ |
1587 |
|
fDataTof[jk12+6] = Ctrl3bit[2*k+1] | fDataTof[jk12+6]; |
1588 |
ifstream InputFile; |
tofBin=(UChar_t)(TDCint[k+4*j]%256); // TDC# (lsb) |
1589 |
|
fDataTof[jk12+7]=Bin2GrayTof(tofBin,fDataTof[jk12+7]); |
1590 |
// if (!InputFile) { |
}; |
1591 |
|
fDataTof[j12+20]=0x00; // TEMP1 |
1592 |
// std::cout << "ERROR" << endl; |
fDataTof[j12+21]=0x00; // TEMP2 |
1593 |
// // An error occurred! |
fDataTof[j12+22]= EvaluateCrcTof(pTof); // CRC |
1594 |
// // myFile.gcount() returns the number of bytes read. |
pTof+=23; |
1595 |
// // calling myFile.clear() will reset the stream state |
}; |
1596 |
// // so it is usable again. |
|
1597 |
// }; |
// ====== evaluate trigger variables ======= |
1598 |
|
|
1599 |
|
//fDataTrigger: 152 bytes (corrected 30/11/'07 SO - it was 153) |
1600 |
|
|
1601 |
//InputFile.seekg(0); |
// initialization: |
1602 |
|
for (Int_t j=0; j < 152; j++) |
1603 |
InputFile.open(fFilename, ios::in | ios::binary); |
fDataTrigger[j]=0x00; |
1604 |
// fOutputfile.seekg(0); |
UChar_t *pTrg=fDataTrigger; |
1605 |
if (!InputFile.is_open()) std::cout << "ERROR" << endl; |
|
1606 |
|
// Only the variables with a (*) are modified; the others are set to 0 |
1607 |
InputFile.seekg(0); |
// info given in #bites data + #bites crc |
1608 |
|
// TB_READ_PMT_PLANE : 6 + 1 |
1609 |
for (Int_t k=0; k<=1000; k++){ |
// TB_READ_EVENT_COUNT : 3 + 1 (*) |
1610 |
InputFile.read(reinterpret_cast<char*>(InData),384*sizeof(UShort_t)); |
// TB_READ_TRIGGER_RATE : 12 + 1 |
1611 |
|
// TB_READ_D_L_TIME : 4 + 1 |
1612 |
std::cout << "Read back: " << endl << endl; |
// TB_READ_S4_CAL_COUNT : 4 + 1 |
1613 |
|
// TB_READ_PMT_COUNT1 : 48 + 1 |
1614 |
for (Int_t i=0; i<=384; i++){ |
// TB_READ_PMT_COUNT2 : 48 + 1 |
1615 |
printf("%4x ", InData[i]); |
// TB_READ_PATTERN_BUSY : 8 + 1 |
1616 |
if ((i+1)%8 ==0) cout << endl; |
// TB_READ_PATTERN_TRIGGER: 7 + 1 (*) |
1617 |
} |
// TB_READ_TRIGGER_CONF : 2 + 1 (*) |
1618 |
|
|
1619 |
} |
// TB_READ_EVENT_COUNT |
1620 |
cout << endl; |
fhBookTree->SetBranchStatus("Ievnt",&Ievnt); |
1621 |
InputFile.close(); |
UInt_t cTrg = (UInt_t)Ievnt; //counter |
1622 |
|
UInt_t cTrg2 = 0; //counter with bits inverted, according to document |
1623 |
}; |
//"formato dati provenienti dalla trigger board" |
1624 |
|
for (Int_t i=0; i < 24; i++){ // Use the first 24 bits |
1625 |
|
if (cTrg & (0x1 << i) ) |
1626 |
|
cTrg2 = cTrg2 | (0x1 << (24-i)); |
1627 |
void Digitizer::DigitizeTrack() { |
}; |
1628 |
//std:: cout << "Entering DigitizeTrack " << endl; |
fDataTrigger[7] = (UChar_t)(cTrg2 >> 16); // 8 MSbits (out of 24) |
1629 |
Float_t AdcTrack[fNviews][fNstrips_view]; // Vector of strips to be compressed |
fDataTrigger[8] = (UChar_t)(cTrg2 >> 8); // 8 "middle" bits |
1630 |
|
fDataTrigger[9] = (UChar_t)(cTrg2); // 8 LSbits |
1631 |
Int_t Iview; |
pTrg=fDataTrigger+7; |
1632 |
Int_t Nstrip; |
fDataTrigger[10]=EvaluateCrcTrigger(pTrg, 3); |
1633 |
|
|
1634 |
for (Int_t j=0; j<fNviews;j++) { |
// TB_READ_PATTERN_TRIGGER: bytes 141-148: |
1635 |
|
// PatternTrigMap[i] corresponds to bit i in TB_READ_PATTERN_TRIGGER: |
1636 |
for (Int_t i=0; i<fNladder;i++) { |
// mapping according to documents: |
1637 |
|
// 1. "formato dati provenienti dalla trigger board" |
1638 |
Float_t commonN1=gRandom->Gaus(0.,fSigmaCommon); |
// 2. "The ToF quicklook software", Appendix A (Campana, Nagni) |
1639 |
Float_t commonN2=gRandom->Gaus(0.,fSigmaCommon); |
Int_t PatternTrigMap[]={29,42,43,1,16,7,17,28,33,41,46,2,15,8,18,27, |
1640 |
for (Int_t k=0; k<fNstrips_ladder;k++) { |
30,40,44,3,14,9,19,26,32,37,47,4,13,10,20,25, |
1641 |
Nstrip=i*fNstrips_ladder+k; |
34,31,38,45,5,12,21,24,36,35,39,48,6,11,22,23}; |
1642 |
AdcTrack[j][Nstrip]=gRandom->Gaus(fPedeTrack[j][Nstrip],fSigmaTrack[j][Nstrip]); |
|
1643 |
if(k<4*128) {AdcTrack[j][Nstrip] += commonN1;} // full correlation of 4 VA1 Com. Noise |
for (Int_t i=0; i < 48; i++) |
1644 |
else {AdcTrack[j][Nstrip] += commonN2;} // full correlation of 4 VA1 Com. Noise |
//if (ADCtof[i]>thrTrg) |
1645 |
|
if (tdc1[channelmap[i]]!=0) |
1646 |
}; |
fDataTrigger[147-(Int_t)((PatternTrigMap[i]+1)/8)]=fDataTrigger[147-(Int_t)((PatternTrigMap[i]+1)/8)] | (0x1 << (PatternTrigMap[i]%8)); |
1647 |
|
pTrg=fDataTrigger+141; |
1648 |
|
fDataTrigger[148]=EvaluateCrcTrigger(pTrg, 7); |
1649 |
}; |
|
1650 |
|
// TB_READ_TRIGGER_CONF : set always acq.mode TOF4 |
1651 |
|
// |
1652 |
}; |
// TOF1: S1-S2-S3 (&,|) |
1653 |
|
// TOF4: S2-S3 (&,&) |
1654 |
|
fDataTrigger[149]=0x02; |
1655 |
fhBookTree->SetBranchStatus("Nstrpx",1); |
fDataTrigger[150]=0x0; |
1656 |
fhBookTree->SetBranchStatus("Npstripx",1); |
pTrg=fDataTrigger+149; |
1657 |
fhBookTree->SetBranchStatus("Ntstripx",1); |
fDataTrigger[151]=EvaluateCrcTrigger(pTrg, 2); |
1658 |
fhBookTree->SetBranchStatus("Istripx",1); |
|
1659 |
fhBookTree->SetBranchStatus("Qstripx",1); |
return(0); |
1660 |
fhBookTree->SetBranchStatus("Xstripx",1); |
}; |
1661 |
fhBookTree->SetBranchStatus("Nstrpy",1); |
|
1662 |
fhBookTree->SetBranchStatus("Npstripy",1); |
|
1663 |
fhBookTree->SetBranchStatus("Ntstripy",1); |
UChar_t Digitizer::Bin2GrayTof(UChar_t binaTOF,UChar_t grayTOF){ |
1664 |
fhBookTree->SetBranchStatus("Istripy",1); |
union graytof_data { |
1665 |
fhBookTree->SetBranchStatus("Qstripy",1); |
UChar_t word; |
1666 |
fhBookTree->SetBranchStatus("Ystripy",1); |
struct bit_field { |
1667 |
|
unsigned b0:1; |
1668 |
|
unsigned b1:1; |
1669 |
|
unsigned b2:1; |
1670 |
|
unsigned b3:1; |
1671 |
Float_t ADCfull; |
unsigned b4:1; |
1672 |
for (Int_t ix=0; ix<Nstrpx;ix++) { |
unsigned b5:1; |
1673 |
Iview=Npstripx[ix]*2-1; |
unsigned b6:1; |
1674 |
Nstrip=(Int_t)Istripx[ix]-1; |
unsigned b7:1; |
1675 |
ADCfull=AdcTrack[Iview][Nstrip] += Qstripx[ix]*fMipCor; |
} bit; |
1676 |
AdcTrack[Iview][Nstrip] *= SaturationTrack(ADCfull); |
} bi,gr; |
1677 |
|
// |
1678 |
}; |
bi.word = binaTOF; |
1679 |
|
gr.word = grayTOF; |
1680 |
|
// |
1681 |
for (Int_t iy=0; iy<Nstrpy;iy++) { |
gr.bit.b0 = bi.bit.b1 ^ bi.bit.b0; |
1682 |
Iview=Npstripy[iy]*2-2; |
gr.bit.b1 = bi.bit.b2 ^ bi.bit.b1; |
1683 |
Nstrip=(Int_t)Istripy[iy]-1; |
gr.bit.b2 = bi.bit.b3 ^ bi.bit.b2; |
1684 |
ADCfull=AdcTrack[Iview][Nstrip] -= Qstripy[iy]*fMipCor; |
gr.bit.b3 = bi.bit.b3; |
1685 |
AdcTrack[Iview][Nstrip] *= SaturationTrack(ADCfull); |
// |
1686 |
|
/* bin to gray conversion 4 bit per time*/ |
1687 |
}; |
// |
1688 |
|
gr.bit.b4 = bi.bit.b5 ^ bi.bit.b4; |
1689 |
CompressTrackData(AdcTrack); // Compress and Digitize data of one Ladder in turn for all ladders |
gr.bit.b5 = bi.bit.b6 ^ bi.bit.b5; |
1690 |
|
gr.bit.b6 = bi.bit.b7 ^ bi.bit.b6; |
1691 |
}; |
gr.bit.b7 = bi.bit.b7; |
1692 |
|
// |
1693 |
|
return(gr.word); |
1694 |
|
} |
1695 |
void Digitizer::DigitizeTrackCalib(Int_t ii) { |
|
1696 |
|
UChar_t Digitizer::EvaluateCrcTof(UChar_t *pTof) { |
1697 |
std:: cout << "Entering DigitizeTrackCalib " << ii << endl; |
Bool_t DEBUG=false; |
1698 |
if( (ii!=1)&&(ii!=2) ) { |
if (DEBUG) |
1699 |
std:: cout << "error wrong DigitizeTrackCalib argument" << endl; |
return(0x00); |
1700 |
return; |
|
1701 |
}; |
UChar_t crcTof=0x00; |
1702 |
|
UChar_t *pc=&crcTof, *pc2; |
1703 |
memset(fDataTrack,0,sizeof(UShort_t)*fTRACKbuffer); |
pc2=pTof; |
1704 |
fTracklength=0; |
for (Int_t jp=0; jp < 23; jp++){ |
1705 |
|
//crcTof = crc8(...) |
1706 |
UShort_t Dato; |
Crc8Tof(pc2++,pc); |
1707 |
|
// printf("%2i --- %x\n",jp,crcTof); |
1708 |
Float_t dato1; |
} |
1709 |
Float_t dato2; |
return(crcTof); |
1710 |
Float_t dato3; |
} |
1711 |
Float_t dato4; |
|
1712 |
|
UChar_t Digitizer::EvaluateCrcTrigger(UChar_t *pTrg, Int_t nb) { |
1713 |
UShort_t DatoDec; |
Bool_t DEBUG=false; |
1714 |
UShort_t DatoDec1; |
if (DEBUG) |
1715 |
UShort_t DatoDec2; |
return(0x00); |
1716 |
UShort_t DatoDec3; |
|
1717 |
UShort_t DatoDec4; |
UChar_t crcTrg=0x00; |
1718 |
|
UChar_t *pc=&crcTrg, *pc2; |
1719 |
UShort_t EVENT_CAL; |
pc2=pTrg; |
1720 |
UShort_t PED_L1; |
for (Int_t jp=0; jp < nb; jp++) |
1721 |
UShort_t ReLength; |
Crc8Tof(pc2++,pc); |
1722 |
UShort_t OveCheckCode; |
return(crcTrg); |
1723 |
//UShort_t PED_L2; |
} |
1724 |
//UShort_t PED_L3HI; |
|
1725 |
//UShort_t PED_L3LO; |
void Digitizer::Crc8Tof(UChar_t *oldCRC, UChar_t *crcTof){ |
1726 |
//UShort_t SIG_L1HI; |
union crctof_data { |
1727 |
//UShort_t SIG_L1LO; |
UChar_t word; |
1728 |
//UShort_t SIG_L2HI; |
struct bit_field { |
1729 |
//UShort_t SIG_L2LO; |
unsigned b0:1; |
1730 |
//UShort_t SIG_L3; |
unsigned b1:1; |
1731 |
//UShort_t BAD_L1; |
unsigned b2:1; |
1732 |
//UShort_t BAD_L2LO; |
unsigned b3:1; |
1733 |
//UShort_t BAD_L3HI; |
unsigned b4:1; |
1734 |
//UShort_t BAD_L3LO; |
unsigned b5:1; |
1735 |
//UShort_t FLAG; |
unsigned b6:1; |
1736 |
|
unsigned b7:1; |
1737 |
|
} bit; |
1738 |
Int_t DSPpos; |
} c,d,r; |
1739 |
for (Int_t j=ii-1; j<fNviews;j+=2) { |
|
1740 |
UShort_t CkSum=0; |
c.word = *oldCRC; |
1741 |
// here skip the dsp header and his trailer , to be written later |
//d.word = *newCRC; |
1742 |
DSPpos=fTracklength; |
d.word = *crcTof; |
1743 |
fTracklength=fTracklength+13+3; |
r.word = 0; |
1744 |
|
|
1745 |
|
r.bit.b0 = c.bit.b7 ^ c.bit.b6 ^ c.bit.b0 ^ |
1746 |
for (Int_t i=0; i<fNladder;i++) { |
d.bit.b0 ^ d.bit.b6 ^ d.bit.b7; |
1747 |
for (Int_t k=0; k<fNstrips_ladder;k++) { |
|
1748 |
// write in buffer the current LADDER |
r.bit.b1 = c.bit.b6 ^ c.bit.b1 ^ c.bit.b0 ^ |
1749 |
Dato=(UShort_t)fPedeTrack[j][i*fNstrips_ladder+k]; |
d.bit.b0 ^ d.bit.b1 ^ d.bit.b6; |
1750 |
dato1=fPedeTrack[j][i*fNstrips_ladder+k]-Dato; |
|
1751 |
|
r.bit.b2 = c.bit.b6 ^ c.bit.b2 ^ c.bit.b1 ^ c.bit.b0 ^ |
1752 |
DatoDec1=(UShort_t)(dato1*2); |
d.bit.b0 ^ d.bit.b1 ^ d.bit.b2 ^ d.bit.b6; |
1753 |
dato2=dato1*2-DatoDec1; |
|
1754 |
|
r.bit.b3 = c.bit.b7 ^ c.bit.b3 ^ c.bit.b2 ^ c.bit.b1 ^ |
1755 |
DatoDec2=(UShort_t)(dato2*2); |
d.bit.b1 ^ d.bit.b2 ^ d.bit.b3 ^ d.bit.b7; |
1756 |
dato3=dato2*2-DatoDec2; |
|
1757 |
|
r.bit.b4 = c.bit.b4 ^ c.bit.b3 ^ c.bit.b2 ^ |
1758 |
DatoDec3=(UShort_t)(dato3*2); |
d.bit.b2 ^ d.bit.b3 ^ d.bit.b4; |
1759 |
dato4=dato3*2-DatoDec3; |
|
1760 |
|
r.bit.b5 = c.bit.b5 ^ c.bit.b4 ^ c.bit.b3 ^ |
1761 |
DatoDec4=(UShort_t)(dato4*2); |
d.bit.b3 ^ d.bit.b4 ^ d.bit.b5; |
1762 |
|
|
1763 |
DatoDec=DatoDec1*0x0008+DatoDec2*0x0004+DatoDec3*0x0002+DatoDec4*0x0001; |
r.bit.b6 = c.bit.b6 ^ c.bit.b5 ^ c.bit.b4 ^ |
1764 |
fDataTrack[fTracklength]=( (Dato << 4) | (DatoDec & 0x000F) ); |
d.bit.b4 ^ d.bit.b5 ^ d.bit.b6; |
1765 |
CkSum=CkSum^fDataTrack[fTracklength]; |
|
1766 |
fTracklength++; |
r.bit.b7 = c.bit.b7 ^ c.bit.b6 ^ c.bit.b5 ^ |
1767 |
}; |
d.bit.b5 ^ d.bit.b6 ^ d.bit.b7 ; |
1768 |
|
|
1769 |
for (Int_t k=0; k<fNstrips_ladder;k++) { |
*crcTof=r.word; |
1770 |
// write in buffer the current LADDER |
//return r.word; |
1771 |
Dato=(UShort_t)fSigmaTrack[j][i*fNstrips_ladder+k]; |
}; |
1772 |
dato1=fSigmaTrack[j][i*fNstrips_ladder+k]-Dato; |
|
1773 |
|
//void Digitizer::Paddle2Pmt(Int_t plane, Int_t paddle, Int_t* &pmtleft, Int_t* &pmtright){ |
1774 |
DatoDec1=(UShort_t)(dato1*2); |
void Digitizer::Paddle2Pmt(Int_t plane, Int_t paddle, Int_t *pl, Int_t *pr){ |
1775 |
dato2=dato1*2-DatoDec1; |
//* @param plane (0 - 5) |
1776 |
|
//* @param paddle (plane=0, paddle = 0,...5) |
1777 |
DatoDec2=(UShort_t)(dato2*2); |
//* @param padid (0 - 23) |
1778 |
dato3=dato2*2-DatoDec2; |
// |
1779 |
|
Int_t padid=-1; |
1780 |
DatoDec3=(UShort_t)(dato3*2); |
Int_t pads[6]={8,6,2,2,3,3}; |
1781 |
dato4=dato3*2-DatoDec3; |
// |
1782 |
|
Int_t somma=0; |
1783 |
DatoDec4=(UShort_t)(dato4*2); |
Int_t np=plane; |
1784 |
|
for(Int_t j=0; j<np; j++) |
1785 |
DatoDec=DatoDec1*0x0008+DatoDec2*0x0004+DatoDec3*0x0002+DatoDec4*0x0001; |
somma+=pads[j]; |
1786 |
|
padid=paddle+somma; |
1787 |
fDataTrack[fTracklength]=( (Dato << 4) | (DatoDec & 0x000F) ); |
*pl = padid*2; |
1788 |
CkSum=CkSum^fDataTrack[fTracklength]; |
// *pr = *pr + 1; |
1789 |
fTracklength++; |
*pr = *pl + 1; // WM |
1790 |
}; |
}; |
1791 |
|
|
1792 |
for (Int_t k=0; k<64;k++) { |
void Digitizer::DigitizeAC() { |
1793 |
fDataTrack[fTracklength]=0x0000; |
// created: J. Conrad, KTH |
1794 |
CkSum=CkSum^fDataTrack[fTracklength]; |
// modified: S. Orsi, INFN Roma2 |
1795 |
fTracklength++; |
// fDataAC[0-63]: main AC board |
1796 |
|
// fDataAC[64-127]: extra AC board (identical to main board, for now) |
1797 |
}; |
|
1798 |
// end ladder |
// We activate all branches. Once the digitization algorithm is determined |
1799 |
|
// only the branches that involve needed information will be activated |
1800 |
// write in buffer the end ladder word |
|
1801 |
if(i==0) fDataTrack[fTracklength]=0x1807; |
fhBookTree->SetBranchStatus("Ievnt",&Ievnt); |
1802 |
if(i==1) fDataTrack[fTracklength]=0x1808; |
fhBookTree->SetBranchStatus("Nthcat",1); |
1803 |
if(i==2) fDataTrack[fTracklength]=0x1809; |
fhBookTree->SetBranchStatus("Iparcat",1); |
1804 |
CkSum=CkSum^fDataTrack[fTracklength]; |
fhBookTree->SetBranchStatus("Icat",1); |
1805 |
fTracklength++; |
fhBookTree->SetBranchStatus("Xincat",1); |
1806 |
|
fhBookTree->SetBranchStatus("Yincat",1); |
1807 |
// write in buffer the TRAILER |
fhBookTree->SetBranchStatus("Zincat",1); |
1808 |
ReLength=(UShort_t)((fNstrips_ladder*2+64+1)*2+3); |
fhBookTree->SetBranchStatus("Xoutcat",1); |
1809 |
OveCheckCode=0x0000; |
fhBookTree->SetBranchStatus("Youtcat",1); |
1810 |
|
fhBookTree->SetBranchStatus("Zoutcat",1); |
1811 |
fDataTrack[fTracklength]=0x0000; |
fhBookTree->SetBranchStatus("Erelcat",1); |
1812 |
fTracklength++; |
fhBookTree->SetBranchStatus("Timecat",1); |
1813 |
|
fhBookTree->SetBranchStatus("Pathcat",1); |
1814 |
fDataTrack[fTracklength]=(ReLength >> 8); |
fhBookTree->SetBranchStatus("P0cat",1); |
1815 |
fTracklength++; |
fhBookTree->SetBranchStatus("Nthcas",1); |
1816 |
|
fhBookTree->SetBranchStatus("Iparcas",1); |
1817 |
fDataTrack[fTracklength]=( (ReLength << 8) | (OveCheckCode & 0x00FF) ); |
fhBookTree->SetBranchStatus("Icas",1); |
1818 |
fTracklength++; |
fhBookTree->SetBranchStatus("Xincas",1); |
1819 |
|
fhBookTree->SetBranchStatus("Yincas",1); |
1820 |
// end TRAILER |
fhBookTree->SetBranchStatus("Zincas",1); |
1821 |
}; |
fhBookTree->SetBranchStatus("Xoutcas",1); |
1822 |
|
fhBookTree->SetBranchStatus("Youtcas",1); |
1823 |
// write in buffer the DSP header |
fhBookTree->SetBranchStatus("Zoutcas",1); |
1824 |
|
fhBookTree->SetBranchStatus("Erelcas",1); |
1825 |
fDataTrack[DSPpos]=(0xE800 | ( ((j+1) << 3) | 0x0005) ); |
fhBookTree->SetBranchStatus("Timecas",1); |
1826 |
|
fhBookTree->SetBranchStatus("Pathcas",1); |
1827 |
fDataTrack[DSPpos+1]=0x01A9; |
fhBookTree->SetBranchStatus("P0cas",1); |
1828 |
|
fhBookTree->SetBranchStatus("Nthcard",1); |
1829 |
fDataTrack[DSPpos+2]=0x8740; |
fhBookTree->SetBranchStatus("Iparcard",1); |
1830 |
|
fhBookTree->SetBranchStatus("Icard",1); |
1831 |
EVENT_CAL=0; |
fhBookTree->SetBranchStatus("Xincard",1); |
1832 |
fDataTrack[DSPpos+3]=(0x1A00 | ( (0x03FF & EVENT_CAL)>> 1) ); |
fhBookTree->SetBranchStatus("Yincard",1); |
1833 |
|
fhBookTree->SetBranchStatus("Zincard",1); |
1834 |
PED_L1=0; |
fhBookTree->SetBranchStatus("Xoutcard",1); |
1835 |
fDataTrack[DSPpos+4]=( ((EVENT_CAL << 15) | 0x5002 ) | ((0x03FF & PED_L1) << 2) ); |
fhBookTree->SetBranchStatus("Youtcard",1); |
1836 |
|
fhBookTree->SetBranchStatus("Zoutcard",1); |
1837 |
// FROM HERE WE WRITE AS ALL VARIABLE apart CkSum are =0 |
fhBookTree->SetBranchStatus("Erelcard",1); |
1838 |
|
fhBookTree->SetBranchStatus("Timecard",1); |
1839 |
fDataTrack[DSPpos+5]=0x8014; |
fhBookTree->SetBranchStatus("Pathcard",1); |
1840 |
|
fhBookTree->SetBranchStatus("P0card",1); |
1841 |
fDataTrack[DSPpos+6]=0x00A0; |
|
1842 |
|
fDataAC[0] = 0xACAC; |
1843 |
fDataTrack[DSPpos+7]=0x0500; |
fDataAC[64]= 0xACAC; |
1844 |
|
fDataAC[1] = 0xAC11; |
1845 |
fDataTrack[DSPpos+8]=0x2801; |
fDataAC[65] = 0xAC22; |
1846 |
|
|
1847 |
fDataTrack[DSPpos+9]=0x400A; |
// the third word is a status word (dummy: "no errors are present in the AC boards") |
1848 |
|
fDataAC[2] = 0xFFFF; //FFEF? |
1849 |
fDataTrack[DSPpos+10]=0x0050; |
fDataAC[66] = 0xFFFF; |
1850 |
|
|
1851 |
CkSum=(CkSum >> 8)^(CkSum&0x00FF); |
const UInt_t nReg = 6; |
1852 |
fDataTrack[DSPpos+11]=(0x0280 | (CkSum >> 3)); |
|
1853 |
|
// FPGA Registers (dummy) |
1854 |
fDataTrack[DSPpos+12]=(0x1FFF | (CkSum << 13) ); |
for (UInt_t i=0; i<=nReg; i++){ |
1855 |
|
fDataAC[i+4] = 0xFFFF; |
1856 |
// end dsp header |
fDataAC[i+68] = 0xFFFF; |
1857 |
|
} |
1858 |
// write in buffer the TRAILER |
|
1859 |
|
// the last word is a CRC |
1860 |
ReLength=(UShort_t)((13*2)+3); |
// Dummy for the time being, but it might need to be calculated in the end |
1861 |
OveCheckCode=0x0000; |
fDataAC[63] = 0xABCD; |
1862 |
fDataTrack[DSPpos+13]=0x0000; |
fDataAC[127] = 0xABCD; |
1863 |
|
|
1864 |
fDataTrack[DSPpos+14]=(ReLength >> 8); |
// shift registers (moved to the end of the routine) |
1865 |
|
|
1866 |
fDataTrack[DSPpos+15]=( (ReLength << 8) | (OveCheckCode & 0x00FF) ); |
//Int_t evntLSB=Ievnt%65536; |
1867 |
|
//Int_t evntMSB=(Int_t)(Ievnt/65536); |
1868 |
// end TRAILER |
Int_t evntLSB=(UShort_t)Ievnt; |
1869 |
|
Int_t evntMSB=Ievnt >> 16; |
1870 |
|
|
1871 |
|
// singles counters are dummy |
1872 |
|
for (UInt_t i=0; i<=15; i++){ //SO Oct '07: // for (UInt_t i=0; i<=16; i++){ |
1873 |
// end DSP |
// fDataAC[i+26] = 0x0000; |
1874 |
}; |
// fDataAC[i+90] = 0x0000; |
1875 |
|
fDataAC[i+26] = evntLSB; |
1876 |
|
fDataAC[i+90] = evntLSB; |
1877 |
|
}; |
1878 |
}; |
|
1879 |
|
// coincidences are dummy (increment by 1 at each event) |
1880 |
void Digitizer::WriteTrackCalib() { |
// for (UInt_t i=0; i<=7; i++){ |
1881 |
|
// fDataAC[i+42] = 0x0000; |
1882 |
|
// fDataAC[i+106] = 0x0000; |
1883 |
std:: cout << " Entering WriteTrackCalib " << endl; |
// } |
1884 |
|
for (UInt_t i=0; i<=7; i++){ |
1885 |
fOutputfile.write(reinterpret_cast<char*>(fDataPSCU),sizeof(UShort_t)*fPSCUbuffer); |
fDataAC[i+42] = evntLSB; |
1886 |
|
fDataAC[i+106] = evntLSB; |
1887 |
UShort_t temp[1000000]; |
}; |
1888 |
memset(temp,0,sizeof(UShort_t)*1000000); |
|
1889 |
swab(fDataTrack,temp,sizeof(UShort_t)*fTracklength); // WE MUST SWAP THE BYTES!!! |
// increments for every trigger might be needed at some point. |
1890 |
fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fTracklength); |
// dummy for now |
1891 |
fTracklength=0; |
fDataAC[50] = 0x0000; |
1892 |
if ( fPadding ){ |
fDataAC[114] = 0x0000; |
1893 |
fOutputfile.write(reinterpret_cast<char*>(fDataPadding),sizeof(UChar_t)*fPadding); |
|
1894 |
}; |
// dummy FPGA clock (increment by 1 at each event) |
1895 |
|
/* |
1896 |
}; |
fDataAC[51] = 0x006C; |
1897 |
|
fDataAC[52] = 0x6C6C; |
1898 |
|
fDataAC[115] = 0x006C; |
1899 |
void Digitizer::ClearTrackCalib() { |
fDataAC[116] = 0x6C6C; |
1900 |
|
*/ |
1901 |
std:: cout << "Entering ClearTrackCalib " << endl; |
if (Ievnt<=0xFFFF) { |
1902 |
|
fDataAC[51] = 0x0000; |
1903 |
|
fDataAC[52] = Ievnt; |
1904 |
}; |
fDataAC[115] = 0x0000; |
1905 |
|
fDataAC[116] = Ievnt; |
1906 |
|
} else { |
1907 |
void Digitizer::LoadTrackCalib() { |
fDataAC[51] = evntMSB; |
1908 |
std:: cout << "Entering LoadTrackCalib " << endl; |
fDataAC[52] = evntLSB; |
1909 |
|
fDataAC[115] = fDataAC[51]; |
1910 |
// Generate the pedestals and sigmas according to parametrization |
fDataAC[116] = fDataAC[52]; |
1911 |
for (Int_t j=0; j<fNviews;j++) { |
} |
1912 |
for (Int_t i=0; i<fNstrips_view;i++) { |
|
1913 |
|
// dummy temperatures |
1914 |
if((j+1)%2==0) { |
fDataAC[53] = 0x0000; |
1915 |
fPedeTrack[j][i]=gRandom->Gaus(fAvePedex,fSigmaPedex); |
fDataAC[54] = 0x0000; |
1916 |
fSigmaTrack[j][i]=gRandom->Gaus(fAveSigmax,fSigmaSigmax); |
fDataAC[117] = 0x0000; |
1917 |
}; |
fDataAC[118] = 0x0000; |
1918 |
if((j+1)%2==1) { |
|
1919 |
fPedeTrack[j][i]=gRandom->Gaus(fAvePedey,fSigmaPedey); |
|
1920 |
fSigmaTrack[j][i]=gRandom->Gaus(fAveSigmay,fSigmaSigmay); |
// dummy DAC thresholds |
1921 |
}; |
for (UInt_t i=0; i<=7; i++){ |
1922 |
|
fDataAC[i+55] = 0x1A13; |
1923 |
}; |
fDataAC[i+119] = 0x1A13; |
1924 |
}; |
} |
1925 |
|
|
1926 |
|
// In this simpliefied approach we will assume that once |
1927 |
|
// a particle releases > 0.5 mip in one of the 12 AC detectors it |
1928 |
}; |
// will fire. We will furthermore assume that both cards read out |
1929 |
|
// identical data. |
1930 |
void Digitizer::LoadMipCor() { |
|
1931 |
std:: cout << "Entering LoadMipCor" << endl; |
// If you develop your digitization algorithm, you should start by |
1932 |
/* |
// identifying the information present in level2 (post-darth-vader) |
1933 |
for (Int_t j=0; j<fNviews;j++) { |
// data. |
1934 |
for (Int_t i=0; i<fNstrips_view;i++) { |
|
1935 |
fMipCor[j][i]=1.; |
Float_t SumEcat[5]; |
1936 |
}; |
Float_t SumEcas[5]; |
1937 |
}; |
Float_t SumEcard[5]; |
1938 |
|
for (Int_t k= 0;k<5;k++){ |
1939 |
|
SumEcat[k]=0.; |
1940 |
*/ |
SumEcas[k]=0.; |
1941 |
}; |
SumEcard[k]=0.; |
1942 |
|
}; |
1943 |
void Digitizer::CompressTrackData(Float_t AdcTrack[fNviews][fNstrips_view]) { |
|
1944 |
// copy of the corresponding compression fortran routine + new digitization |
if (Nthcat>50 || Nthcas>50 || Nthcard>50) |
1945 |
// std:: cout << "Entering CompressTrackData " << endl; |
printf("*** ERROR AC! NthAC out of range!\n\n"); |
1946 |
Int_t oldval=0; |
|
1947 |
Int_t newval=0; |
// energy dependence on position (see file AcFitOutputDistancePmt.C by S.Orsi) |
1948 |
Int_t trasmesso=0; |
// based on J.Lundquist's calculations (PhD thesis, page 94) |
1949 |
Int_t ntrastot=0; |
// function: [0]+[1]*atan([2]/(x+1)), where the 3 parameters are: |
1950 |
Float_t real; |
// 8.25470e-01 +- 1.79489e-02 |
1951 |
Float_t inte; |
// 6.41609e-01 +- 2.65846e-02 |
1952 |
Int_t cercacluster=0; |
// 9.81177e+00 +- 1.21284e+00 |
1953 |
Int_t kt=0; |
// hp: 1 minimum ionising particle at 35cm from the PMT releases 1mip |
1954 |
static const int DSPbufferSize = 4000; // 13 bit buffer to be rearranged in 16 bit Track buffer |
|
1955 |
UShort_t DataDSP[DSPbufferSize]; // 13 bit buffer to be rearranged in 16 bit Track buffer |
TF1 *attenAC = new TF1("fAttAC",".825+.64*atan(9.8/x)",0.,45.); |
1956 |
UShort_t DSPlength; // 13 bit buffer to be rearranged in 16 bit Track buffer |
|
1957 |
|
// PMT positions: x,y,z: (average position of the 2 PMTs) |
1958 |
memset(fDataTrack,0,sizeof(UShort_t)*fTRACKbuffer); // probably not necessary becouse already done ? |
Float_t posCasPmt[4][3]={{28.308, -17.168, 63.644}, // 1 - CAS CPU: x,y,z |
1959 |
fTracklength=0; |
{18.893, 24.913, 63.644}, // 2 - CAS DCDC |
1960 |
|
{-24.307, 17.162, 63.644}, // 3 - CAS VME |
1961 |
for (Int_t iv=0; iv<fNviews;iv++) { |
{-17.765, -28.300, 63.644}}; // 4 - CAS IPM |
1962 |
memset(DataDSP,0,sizeof(UShort_t)*DSPbufferSize); |
|
1963 |
DSPlength=16; // skip the header, to be written later |
Float_t dAC=0.; // distance from PMT |
1964 |
UShort_t CheckSum=0; |
|
1965 |
// write dsp header on buffer |
// look in CAT |
1966 |
|
// for (UInt_t k= 0;k<50;k++){ |
1967 |
// fDataTrack[fTracklength]=0xE805; |
for (Int_t k= 0;k<Nthcat;k++){ |
1968 |
// fTracklength++; |
if (Erelcat[k] > 0) |
1969 |
|
SumEcat[Icat[k]] += Erelcat[k]; |
1970 |
// fDataTrack[fTracklength]=0x01A9; |
}; |
1971 |
// fTracklength++; |
|
1972 |
|
// look in CAS |
1973 |
// end dsp header |
for (Int_t k= 0;k<Nthcas;k++){ |
1974 |
|
if (Erelcas[k] >0) { |
1975 |
// |
dAC=sqrt(pow((Xincas[k]+Xoutcas[k])/2 - posCasPmt[Icas[k]-1][0],2) + pow((Yincas[k]+Youtcas[k])/2 - posCasPmt[Icas[k]-1][1],2) + pow((Zincas[k]+Zoutcas[k])/2 - posCasPmt[Icas[k]-1][2],2)); |
1976 |
// INIZIO VISTA IV - TAKE PROPER ACTION |
SumEcas[Icas[k]] += Erelcas[k]*attenAC->Eval(dAC); |
1977 |
// |
} |
1978 |
|
}; |
1979 |
|
|
1980 |
|
// look in CARD |
1981 |
for (Int_t ladder=0; ladder<fNladder;ladder++) { |
for (Int_t k= 0;k<Nthcard;k++){ |
1982 |
Int_t k=0; |
if (Erelcard[k] >0) |
1983 |
while (k<fNstrips_ladder) { |
SumEcard[Icard[k]] += Erelcard[k]; |
1984 |
// compress write in buffer the current LADDER |
}; |
1985 |
if ( k == 0) { |
|
1986 |
real=modff(AdcTrack[iv][ladder*fNstrips_ladder+k],&inte); |
// channel mapping Hit Map |
1987 |
if (real > 0.5) inte=inte+1; |
// 1 CARD4 0 LSB |
1988 |
newval=(Int_t)inte -(Int_t)fPedeTrack[iv][ladder*fNstrips_ladder+k]; |
// 2 CAT2 0 |
1989 |
// first strip of ladder is transmitted |
// 3 CAS1 0 |
1990 |
// DC_TOT first " << AdcTrack[iv][ladder*fNstrips_ladder+k] << endl; |
// 4 NC 0 |
1991 |
DataDSP[DSPlength]=( ((UShort_t)inte) & 0x0FFF); |
// 5 CARD2 0 |
1992 |
DSPlength++; |
// 6 CAT4 1 |
1993 |
ntrastot++; |
// 7 CAS4 0 |
1994 |
trasmesso=1; |
// 8 NC 0 |
1995 |
oldval=newval; |
// 9 CARD3 0 |
1996 |
kt=k; |
// 10 CAT3 0 |
1997 |
k++; |
// 11 CAS3 0 |
1998 |
continue; |
// 12 NC 0 |
1999 |
}; |
// 13 CARD1 0 |
2000 |
real=modff(AdcTrack[iv][ladder*fNstrips_ladder+k],&inte); |
// 14 CAT1 0 |
2001 |
if (real > 0.5) inte=inte+1; |
// 15 CAS2 0 |
2002 |
newval=(Int_t)inte -(Int_t)(fPedeTrack[iv][ladder*fNstrips_ladder+k]); |
// 16 NC 0 MSB |
2003 |
cercacluster=1; // ????????? |
|
2004 |
if (cercacluster==1) { |
// In the first version only the hit-map is filled, not the SR. |
2005 |
|
|
2006 |
// controlla l'ordine di tutti queste strip ladder e DSP !!!!!!! |
// Threshold: 0.8 MeV. |
2007 |
Int_t diff=0; |
|
2008 |
|
Float_t thr = 8e-4; |
2009 |
|
|
2010 |
switch ((iv+1)%2) { |
fDataAC[3] = 0x0000; |
2011 |
case 0: diff=newval-oldval; |
|
2012 |
break; |
if (SumEcas[0] > thr) fDataAC[3] = 0x0004; |
2013 |
case 1: diff=oldval-newval; |
if (SumEcas[1] > thr) fDataAC[3] += 0x4000; |
2014 |
break; |
if (SumEcas[2] > thr) fDataAC[3] += 0x0400; |
2015 |
}; |
if (SumEcas[3] > thr) fDataAC[3] += 0x0040; |
2016 |
|
|
2017 |
if (diff>fCutclu*(Int_t)fSigmaTrack[iv][ladder*fNstrips_ladder+k]) { |
if (SumEcat[0] > thr) fDataAC[3] += 0x2000; |
2018 |
Int_t clval=newval; |
if (SumEcat[1] > thr) fDataAC[3] += 0x0002; |
2019 |
Int_t klp=k; // go on to search for maximum |
if (SumEcat[2] > thr) fDataAC[3] += 0x0200; |
2020 |
klp++; |
if (SumEcat[3] > thr) fDataAC[3] += 0x0020; |
2021 |
|
|
2022 |
while(klp<fNstrips_ladder) { |
if (SumEcard[0] > thr) fDataAC[3] += 0x1000; |
2023 |
real=modff(AdcTrack[iv][ladder*fNstrips_ladder+klp],&inte); |
if (SumEcard[1] > thr) fDataAC[3] += 0x0010; |
2024 |
if (real > 0.5) inte=inte+1; |
if (SumEcard[2] > thr) fDataAC[3] += 0x0100; |
2025 |
Int_t clvalp=(Int_t)inte -(Int_t)fPedeTrack[iv][ladder*fNstrips_ladder+klp]; |
if (SumEcard[3] > thr) fDataAC[3] += 0x0001; |
2026 |
if((iv+1)%2==0) { |
|
2027 |
|
fDataAC[67] = fDataAC[3]; |
2028 |
if(clvalp>clval) { |
|
2029 |
clval=clvalp; |
// shift registers |
2030 |
k=klp;} |
// the central bin is equal to the hitmap, all other bins in the shift register are 0 |
2031 |
else break; // max of cluster found |
for (UInt_t i=0; i<=15; i++){ |
2032 |
|
fDataAC[i+11] = 0x0000; |
2033 |
} else { |
fDataAC[i+75] = 0x0000; |
2034 |
|
} |
2035 |
if(clvalp<clval) { |
fDataAC[18] = fDataAC[3]; |
2036 |
clval=clvalp; |
fDataAC[82] = fDataAC[3]; |
2037 |
k=klp;} |
|
2038 |
else break; // max of cluster found |
// for (Int_t i=0; i<fACbuffer; i++){ |
2039 |
|
// printf("%0x ",fDataAC[i]); |
2040 |
}; |
// if ((i+1)%8 ==0) cout << endl; |
2041 |
|
// } |
2042 |
klp++; |
}; |
2043 |
}; |
|
2044 |
|
|
2045 |
Int_t kl1=k-fNclst; // max of cluster (or end of ladder ?) |
void Digitizer::DigitizeS4(){ |
2046 |
trasmesso=0; |
Int_t DEBUG=0; |
2047 |
if(kl1<0) kl1=0; |
// creato: S. Borisov, INFN Roma2 e MEPHI, Sett 2007 |
2048 |
|
TString ciao,modo="ns"; |
2049 |
if(kt>=kl1) kl1=kt+1; |
Int_t i,j,t,NdF,pmt,NdFT,S4,S4v=0,S4p=32; |
2050 |
if( (kt+1)==kl1 ) trasmesso=1; |
Float_t E0,E1=1e-6,Ert,X,Y,Z,x,y,z,V[3],Xs[2],Ys[2],Zs[2],Yp[6],q,w,p=0.1,l,l0=500; |
2051 |
|
Xs[0]=-24.1; |
2052 |
|
Xs[1]=24.1; |
2053 |
|
Ys[0]=-24.1; |
2054 |
Int_t kl2=k+fNclst; |
Ys[1]=24.1; |
2055 |
if(kl2>=fNstrips_ladder) kl2=fNstrips_ladder-1; |
Zs[0]=-0.5; |
2056 |
|
Zs[1]=0.5; |
2057 |
for(Int_t klt=kl1 ; klt<=kl2 ; klt++) { |
Yp[0]=-20.; |
2058 |
if(trasmesso==0) { |
Yp[2]=-1.; |
2059 |
// std:: cout << "STRIP " << klt << endl; |
Yp[4]=17.; |
2060 |
// std:: cout << "ADC_TOT " <<AdcTrack[iv][ladder*fNstrips_ladder+klt] << endl; |
for(i=0;i<3;i++) |
2061 |
|
Yp[2*i+1]=Yp[2*i]+3; |
2062 |
DataDSP[DSPlength]=( ((UShort_t)klt) | 0x1000); |
srand(time(NULL)); |
2063 |
DSPlength++; |
// --- activate branches: |
2064 |
ntrastot++; |
fhBookTree->SetBranchStatus("Nthtof",1); |
2065 |
|
fhBookTree->SetBranchStatus("Ipltof",1); |
2066 |
|
fhBookTree->SetBranchStatus("Ipaddle",1); |
2067 |
real=modff(AdcTrack[iv][ladder*fNstrips_ladder+klt],&inte); |
|
2068 |
if (real > 0.5) inte=inte+1; |
fhBookTree->SetBranchStatus("Xintof",1); |
2069 |
DataDSP[DSPlength]=( ((UShort_t)inte) & 0x0FFF); |
fhBookTree->SetBranchStatus("Yintof",1); |
2070 |
DSPlength++; |
fhBookTree->SetBranchStatus("Xouttof",1); |
2071 |
ntrastot++; |
fhBookTree->SetBranchStatus("Youttof",1); |
2072 |
|
|
2073 |
} |
fhBookTree->SetBranchStatus("Ereltof",1); |
2074 |
else { |
fhBookTree->SetBranchStatus("Timetof",1); |
2075 |
// std:: cout << "ADC_TOT " <<AdcTrack[iv][ladder*fNstrips_ladder+klt] << endl; |
NdFT=0; |
2076 |
real=modff(AdcTrack[iv][ladder*fNstrips_ladder+klt],&inte); |
Ert=0; |
2077 |
if (real > 0.5) inte=inte+1; |
for(i=0;i<Nthtof;i++){ |
2078 |
DataDSP[DSPlength]=( ((UShort_t)inte) & 0x0FFF); |
if(Ipltof[i]!=6) continue; |
2079 |
DSPlength++; |
Ert+=Ereltof[i]; |
2080 |
ntrastot++; |
|
2081 |
}; |
if(modo=="ns") continue; |
2082 |
trasmesso=1; |
NdF=Int_t(Ereltof[i]/E1); |
2083 |
}; // end trasmission |
NdFT=0; |
2084 |
kt=kl2; |
X=Xintof[i]; |
2085 |
k=kl2; |
Y=Yintof[i]; |
2086 |
real=modff(AdcTrack[iv][ladder*fNstrips_ladder+kt],&inte); |
Z=(Float_t)(random())/(Float_t)(0x7fffffff)-0.5; |
2087 |
if (real > 0.5) inte=inte+1; |
//cout<<"XYZ "<<X<<" "<<Y<<" "<<Z<<endl; |
2088 |
oldval=(Int_t)inte -(Int_t)fPedeTrack[iv][ladder*fNstrips_ladder+kt]; |
for(j=0;j<NdF;j++){ |
2089 |
k++; |
q=(Float_t)random()/(Float_t)0x7fffffff; |
2090 |
continue; |
w=(Float_t)random()/(Float_t)0x7fffffff; |
2091 |
|
// cout<<"qw "<<q<<" "<<w<<endl; |
2092 |
|
V[0]=p*cos(6.28318*q); |
2093 |
}; // end cercacluster |
V[1]=p*sin(6.28318*q); |
2094 |
}; // end cercacluster |
V[2]=p*(2.*w-1.); |
2095 |
|
pmt=0; |
2096 |
// start ZOP check for strips no |
x=X; |
2097 |
|
y=Y; |
2098 |
if(abs(newval-oldval)>=fCutzop*(Int_t)fSigmaTrack[iv][ladder*fNstrips_ladder+k]) { |
z=Z; |
2099 |
|
while(pmt==0 && (x>Xs[0] && x<Xs[1])&&(y>Ys[0] && y<Ys[1])&&(z>Zs[0] && z<Zs[1])){ |
2100 |
if(trasmesso==0) { |
l=0; |
2101 |
// std:: cout << "STRIP " << k << endl; |
while(pmt==0 && (x>Xs[0] && x<Xs[1])&&(y>Ys[0] && y<Ys[1])&&(z>Zs[0] && z<Zs[1])){ |
2102 |
// std:: cout << "ADC_TOT " << AdcTrack[iv][ladder*fNstrips_ladder+k] << endl; |
x+=V[0]; |
2103 |
|
y+=V[1]; |
2104 |
DataDSP[DSPlength]=( ((UShort_t)k) | 0x1000); |
z+=V[2]; |
2105 |
DSPlength++; |
l+=p; |
2106 |
ntrastot++; |
//cout<<x<<" "<<y<<" "<<z<<" "<<l<<endl; |
2107 |
|
//cin>>ciao; |
2108 |
|
} |
2109 |
real=modff(AdcTrack[iv][ladder*fNstrips_ladder+k],&inte); |
if((x<Xs[0]+p || x>Xs[1]-p)&&(y>Ys[0]+p && y<Ys[1]-p)&&(z>Zs[0]+p && z<Zs[1]-p)){ |
2110 |
if (real > 0.5) inte=inte+1; |
for(t=0;t<3;t++){ |
2111 |
DataDSP[DSPlength]=( ((UShort_t)inte) & 0x0FFF); |
if(y>=Yp[2*t] && y<Yp[2*t+1]){ |
2112 |
DSPlength++; |
if(pmt==0)NdFT++; |
2113 |
ntrastot++; |
pmt=1; |
2114 |
|
//cout<<NdFT<<endl; |
2115 |
} |
break; |
2116 |
else { |
} |
2117 |
// std:: cout << "ADC_TOT " << AdcTrack[iv][ladder*fNstrips_ladder+k] << endl; |
} |
2118 |
real=modff(AdcTrack[iv][ladder*fNstrips_ladder+k],&inte); |
if(pmt==1)break; |
2119 |
if (real > 0.5) inte=inte+1; |
V[0]=-V[0]; |
2120 |
DataDSP[DSPlength]=( ((UShort_t)inte) & 0x0FFF); |
} |
2121 |
DSPlength++; |
q=(Float_t)random()/(Float_t)0x7fffffff; |
2122 |
ntrastot++; |
w=1-exp(-l/l0); |
2123 |
}; |
if(q<w)break; |
2124 |
trasmesso=1; |
q=(Float_t)random()/(Float_t)0x7fffffff; |
2125 |
oldval=newval; |
w=0.5; |
2126 |
kt=k; |
if(q<w)break; |
2127 |
|
if((x>Xs[0]+p && x<Xs[1]-p)&&(y<Ys[0]+p || y>Ys[1]-p)&&(z>Zs[0]+p && z<Zs[1]-p))V[1]=-V[1]; |
2128 |
} |
if((x>Xs[0]+p && x<Xs[1]-p)&&(y>Ys[0]+p && y<Ys[1]-p)&&(z<Zs[0]+p || z>Zs[1]-p))V[2]=-V[2]; |
2129 |
else trasmesso=0; |
x+=V[0]; |
2130 |
// end zop |
y+=V[1]; |
2131 |
|
z+=V[2]; |
2132 |
k++; |
l=0; |
2133 |
}; // end cycle inside ladder |
//cout<<x<<" "<<y<<" "<<z<<" "<<l<<endl; |
2134 |
// write here the end ladder bytes |
//cin>>ciao; |
2135 |
// std:: cout << "FINE LADDER " << ladder+1 << endl; |
} |
2136 |
|
} |
2137 |
DataDSP[DSPlength]=( ((UShort_t)(ladder+1)) | 0x1800); |
} |
2138 |
DSPlength++; |
Ert=Ert/0.002; |
2139 |
ntrastot++; |
q=(Float_t)(random())/(Float_t)0x7fffffff; |
2140 |
trasmesso=0; |
w=0.7; |
2141 |
|
//E0=(Float_t)(4064./7.); |
2142 |
}; //end cycle inside dsp |
E0=4064./7.; |
2143 |
// std:: cout << "FINE DSP " << iv+1 << endl; |
if(Ert<1) S4=0; |
2144 |
// here put DSP header |
else S4=(Int_t)(4064.*(1.-exp(-(Ert-1.)/E0))); |
2145 |
DataDSP[0]=(0x1CA0 | ((UShort_t)(iv+1)) ); |
i=S4/4; |
2146 |
UShort_t Nword=(DSPlength*13)/16; |
if(S4%4==0) |
2147 |
if( ((DSPlength*13)%16)!=0) Nword++; |
S4v=S4+S4p; |
2148 |
DataDSP[1]=(0x1400 | ( Nword >> 10)); |
else if(S4%4==1){ |
2149 |
DataDSP[2]=(0x1400 | ( Nword & 0x03FF) ); |
if(q<w) S4v=S4-1+S4p; |
2150 |
DataDSP[3]=(0x1400 | (( (UShort_t)(fCounter >> 10) ) & 0x03FF) ); |
else S4v=S4+1+S4p; |
2151 |
DataDSP[4]=(0x1400 | (( (UShort_t)(fCounter) ) & 0x03FF) ); |
} else if(S4%4==2) S4v=S4+S4p; |
2152 |
DataDSP[5]=(0x1400 | ( (UShort_t)(fNclst << 7) ) | ( (UShort_t)(fCutzop << 4) ) |
else if(S4%4==3){ |
2153 |
| ( (UShort_t)fCutzop ) ); |
if(q<w) S4v=S4+1+S4p; |
2154 |
DataDSP[6]=0x1400; |
else S4v=S4-1+S4p; |
2155 |
DataDSP[7]=0x1400; |
} |
2156 |
DataDSP[8]=0x1400; |
if (DEBUG) |
2157 |
DataDSP[9]=0x1400; |
cout<<"Ert_S4 = " << Ert << " --- S4v = " << S4v << endl; |
2158 |
DataDSP[10]=0x1400; |
fDataS4[0]=S4v;//0xf028; |
2159 |
DataDSP[11]=0x1400; |
fDataS4[1]=0xd800; |
2160 |
DataDSP[12]=0x1400; |
fDataS4[2]=0x0300; |
2161 |
DataDSP[13]=0x1400; |
//cout<<" PMT "<<NdFT<<" "<<NdF<<endl; |
2162 |
DataDSP[14]=(0x1400 | (CheckSum & 0x00FF) ); |
//cin>>ciao; |
2163 |
DataDSP[15]=0x1C00; |
} |
2164 |
// end DSP header |
|
2165 |
|
|
2166 |
|
|
2167 |
// write 13 bit DataDSP bufer inside 16 bit fDataTrack buffer |
void Digitizer::DigitizeND(){ |
2168 |
Int_t Bit16free=16; |
// creato: S. Borisov, INFN Roma2 e MEPHI, Sett 2007 |
2169 |
UShort_t Dato; |
Int_t i=0; |
2170 |
for (Int_t NDSP=0; NDSP<DSPlength;NDSP++) { |
UShort_t NdN=0; |
2171 |
Int_t Bit13ToWrite=13; |
fhBookTree->SetBranchStatus("Nthnd",1); |
2172 |
while(Bit13ToWrite>0) { |
fhBookTree->SetBranchStatus("Itubend",1); |
2173 |
if(Bit13ToWrite<=Bit16free) { |
fhBookTree->SetBranchStatus("Iparnd",1); |
2174 |
Dato=((DataDSP[NDSP]&(0xFFFF >> (16-Bit13ToWrite)))<<(Bit16free-Bit13ToWrite)); |
fhBookTree->SetBranchStatus("Xinnd",1); |
2175 |
fDataTrack[fTracklength]=fDataTrack[fTracklength] | Dato ; |
fhBookTree->SetBranchStatus("Yinnd",1); |
2176 |
Bit16free=Bit16free-Bit13ToWrite; |
fhBookTree->SetBranchStatus("Zinnd",1); |
2177 |
Bit13ToWrite=0; |
fhBookTree->SetBranchStatus("Xoutnd",1); |
2178 |
if(Bit16free==0) { |
fhBookTree->SetBranchStatus("Youtnd",1); |
2179 |
if(NDSP>15) CheckSum=CheckSum^fDataTrack[fTracklength]; |
fhBookTree->SetBranchStatus("Zoutnd",1); |
2180 |
fTracklength++; |
fhBookTree->SetBranchStatus("Erelnd",1); |
2181 |
Bit16free=16; |
fhBookTree->SetBranchStatus("Timend",1); |
2182 |
}; |
fhBookTree->SetBranchStatus("Pathnd",1); |
2183 |
} |
fhBookTree->SetBranchStatus("P0nd",1); |
2184 |
else if(Bit13ToWrite>Bit16free) { |
//cout<<"n="<<Nthnd<<" "<<NdN<<"\n"; |
2185 |
Dato=( (DataDSP[NDSP]&(0xFFFF >> (16-Bit13ToWrite) ) ) >> (Bit13ToWrite-Bit16free) ); |
for(i=0;i<Nthnd;i++){ |
2186 |
fDataTrack[fTracklength]=fDataTrack[fTracklength] | Dato ; |
if(Iparnd[i]==13){ |
2187 |
if(NDSP>15) CheckSum=CheckSum^fDataTrack[fTracklength]; |
NdN++; |
2188 |
fTracklength++; |
} |
2189 |
Bit13ToWrite=Bit13ToWrite-Bit16free; |
} |
2190 |
Bit16free=16; |
//NdN=100; //only for debug |
2191 |
}; |
|
2192 |
|
for(i=0;i<3;i++){ |
2193 |
}; // end cycle while(Bit13ToWrite>0) |
fDataND[2*i]=0x0000; |
2194 |
|
fDataND[2*i+1]=0x010F; |
2195 |
}; // end cycle DataDSP |
} |
2196 |
if(Bit16free!=16) { fTracklength++; CheckSum=CheckSum^fDataTrack[fTracklength]; }; |
fDataND[0]=0xFF00 & (256*NdN); |
2197 |
CheckSum=(CheckSum >> 8)^(CheckSum&0x00FF); |
} |
2198 |
fDataTrack[fTracklength-Nword+11]=(0x0280 | (CheckSum >> 3)); |
|
2199 |
fDataTrack[fTracklength-Nword+12]=(0x1C00 | (CheckSum << 13) ); |
|
2200 |
|
void Digitizer::DigitizeDummy() { |
2201 |
// end write 13 bit DataDSP bufer inside 16 bit fDataTrack buffer |
|
2202 |
|
fhBookTree->SetBranchStatus("Enestrip",1); |
2203 |
//write trailer on buffer |
|
2204 |
UShort_t ReLength=(UShort_t)((Nword+13)*2+3); |
// dumy header |
2205 |
UShort_t OveCheckCode=0x0000; |
fDataDummy[0] = 0xCAAA; |
2206 |
|
|
2207 |
fDataTrack[fTracklength]=0x0000; |
for (Int_t i=1; i<fDummybuffer; i++){ |
2208 |
fTracklength++; |
fDataDummy[i] = 0xFFFF; |
2209 |
|
// printf("%0x ",fDataDummy[i]); |
2210 |
fDataTrack[fTracklength]=(ReLength >> 8); |
//if ((i+1)%8 ==0) cout << endl; |
2211 |
fTracklength++; |
} |
2212 |
|
}; |
2213 |
fDataTrack[fTracklength]=( (ReLength << 8) | (OveCheckCode & 0x00FF) ); |
|
2214 |
fTracklength++; |
void Digitizer::WriteRunHeader(){ |
2215 |
// end trailer |
fOutputfile.write(reinterpret_cast<char*>(fDataRunHeader),sizeof(UShort_t)*fRunHeaderbuffer); |
2216 |
// std:: cout << "DSPlength " <<DSPlength << endl; |
}; |
2217 |
// std:: cout << "Nword " << Nword << endl; |
|
2218 |
// std:: cout << "ReLength " << ReLength << endl; |
void Digitizer::WriteRunTrailer(){ |
2219 |
}; |
fOutputfile.write(reinterpret_cast<char*>(fDataRunTrailer),sizeof(UShort_t)*fRunTrailerbuffer); |
2220 |
// std:: cout << "ntrastot " << ntrastot << endl; |
}; |
2221 |
|
|
2222 |
}; |
void Digitizer::WriteData(){ |
2223 |
|
|
2224 |
Float_t Digitizer::SaturationTrack(Float_t ADC) { |
// Routine that writes the data to a binary file |
2225 |
|
// PSCU data are already swapped |
2226 |
Float_t SatFact=1.; |
fOutputfile.write(reinterpret_cast<char*>(fDataPSCU),sizeof(UShort_t)*fPSCUbuffer); |
2227 |
return SatFact; |
// TRG |
2228 |
}; |
fOutputfile.write(reinterpret_cast<char*>(fDataTrigger),sizeof(UChar_t)*fTRIGGERbuffer); //30/11/07 SO; it was 153 |
2229 |
|
// TOF |
2230 |
|
fOutputfile.write(reinterpret_cast<char*>(fDataTof),sizeof(UChar_t)*fTOFbuffer); |
2231 |
|
// AC |
2232 |
|
UShort_t temp[1000000]; |
2233 |
|
memset(temp,0,sizeof(UShort_t)*1000000); |
2234 |
|
swab(fDataAC,temp,sizeof(UShort_t)*fACbuffer); // WE MUST SWAP THE BYTES!!! |
2235 |
|
fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fACbuffer); |
2236 |
|
// CALO |
2237 |
|
memset(temp,0,sizeof(UShort_t)*1000000); |
2238 |
|
swab(fDataCALO,temp,sizeof(UShort_t)*fCALOlength); // WE MUST SWAP THE BYTES!!! |
2239 |
|
fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fCALOlength); |
2240 |
|
// TRK |
2241 |
|
memset(temp,0,sizeof(UShort_t)*1000000); |
2242 |
|
swab(fDataTrack,temp,sizeof(UShort_t)*fTracklength); // WE MUST SWAP THE BYTES!!! |
2243 |
|
fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fTracklength); |
2244 |
|
fTracklength=0; |
2245 |
|
// padding to 64 bytes |
2246 |
|
// |
2247 |
|
if ( fPadding ){ |
2248 |
|
fOutputfile.write(reinterpret_cast<char*>(fDataPadding),sizeof(UChar_t)*fPadding); |
2249 |
|
}; |
2250 |
|
// S4 |
2251 |
|
memset(temp,0,sizeof(UShort_t)*1000000); |
2252 |
|
swab(fDataS4,temp,sizeof(UShort_t)*fS4buffer); // WE MUST SWAP THE BYTES!!! |
2253 |
|
fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fS4buffer); |
2254 |
|
// ND |
2255 |
|
memset(temp,0,sizeof(UShort_t)*1000000); |
2256 |
|
swab(fDataND,temp,sizeof(UShort_t)*fNDbuffer); // WE MUST SWAP THE BYTES!!! |
2257 |
|
fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fNDbuffer); |
2258 |
|
}; |
2259 |
|
|
2260 |
|
|
2261 |
|
void Digitizer::ReadData(){ |
2262 |
|
|
2263 |
|
UShort_t InData[64]; |
2264 |
|
|
2265 |
|
// for debuggigng purposes only, write your own routine if you like (many |
2266 |
|
// hardwired things. |
2267 |
|
|
2268 |
|
ifstream InputFile; |
2269 |
|
|
2270 |
|
// if (!InputFile) { |
2271 |
|
|
2272 |
|
// std::cout << "ERROR" << endl; |
2273 |
|
// // An error occurred! |
2274 |
|
// // myFile.gcount() returns the number of bytes read. |
2275 |
|
// // calling myFile.clear() will reset the stream state |
2276 |
|
// // so it is usable again. |
2277 |
|
// }; |
2278 |
|
|
2279 |
|
|
2280 |
|
|
2281 |
|
//InputFile.seekg(0); |
2282 |
|
|
2283 |
|
InputFile.open(fFilename, ios::in | ios::binary); |
2284 |
|
// fOutputfile.seekg(0); |
2285 |
|
if (!InputFile.is_open()) std::cout << "ERROR" << endl; |
2286 |
|
|
2287 |
|
InputFile.seekg(0); |
2288 |
|
|
2289 |
|
for (Int_t k=0; k<=1000; k++){ |
2290 |
|
InputFile.read(reinterpret_cast<char*>(InData),384*sizeof(UShort_t)); |
2291 |
|
|
2292 |
|
std::cout << "Read back: " << endl << endl; |
2293 |
|
|
2294 |
|
for (Int_t i=0; i<=384; i++){ |
2295 |
|
printf("%4x ", InData[i]); |
2296 |
|
if ((i+1)%8 ==0) cout << endl; |
2297 |
|
} |
2298 |
|
|
2299 |
|
} |
2300 |
|
cout << endl; |
2301 |
|
InputFile.close(); |
2302 |
|
|
2303 |
|
}; |
2304 |
|
|
2305 |
|
|
2306 |
|
|
2307 |
|
void Digitizer::DigitizeTrack() { |
2308 |
|
//std:: cout << "Entering DigitizeTrack " << endl; |
2309 |
|
Float_t AdcTrack[fNviews][fNstrips_view]; // Vector of strips to be compressed |
2310 |
|
|
2311 |
|
Int_t Iview; |
2312 |
|
Int_t Nstrip; |
2313 |
|
|
2314 |
|
for (Int_t j=0; j<fNviews;j++) { |
2315 |
|
|
2316 |
|
for (Int_t i=0; i<fNladder;i++) { |
2317 |
|
|
2318 |
|
Float_t commonN1=gRandom->Gaus(0.,fSigmaCommon); |
2319 |
|
Float_t commonN2=gRandom->Gaus(0.,fSigmaCommon); |
2320 |
|
for (Int_t k=0; k<fNstrips_ladder;k++) { |
2321 |
|
Nstrip=i*fNstrips_ladder+k; |
2322 |
|
AdcTrack[j][Nstrip]=gRandom->Gaus(fPedeTrack[j][Nstrip],fSigmaTrack[j][Nstrip]); |
2323 |
|
if(k<4*128) {AdcTrack[j][Nstrip] += commonN1;} // full correlation of 4 VA1 Com. Noise |
2324 |
|
else {AdcTrack[j][Nstrip] += commonN2;} // full correlation of 4 VA1 Com. Noise |
2325 |
|
|
2326 |
|
}; |
2327 |
|
|
2328 |
|
|
2329 |
|
}; |
2330 |
|
|
2331 |
|
|
2332 |
|
}; |
2333 |
|
|
2334 |
|
|
2335 |
|
fhBookTree->SetBranchStatus("Nstrpx",1); |
2336 |
|
fhBookTree->SetBranchStatus("Npstripx",1); |
2337 |
|
fhBookTree->SetBranchStatus("Ntstripx",1); |
2338 |
|
fhBookTree->SetBranchStatus("Istripx",1); |
2339 |
|
fhBookTree->SetBranchStatus("Qstripx",1); |
2340 |
|
fhBookTree->SetBranchStatus("Xstripx",1); |
2341 |
|
fhBookTree->SetBranchStatus("Nstrpy",1); |
2342 |
|
fhBookTree->SetBranchStatus("Npstripy",1); |
2343 |
|
fhBookTree->SetBranchStatus("Ntstripy",1); |
2344 |
|
fhBookTree->SetBranchStatus("Istripy",1); |
2345 |
|
fhBookTree->SetBranchStatus("Qstripy",1); |
2346 |
|
fhBookTree->SetBranchStatus("Ystripy",1); |
2347 |
|
|
2348 |
|
|
2349 |
|
|
2350 |
|
Float_t ADCfull; |
2351 |
|
Int_t iladd=0; |
2352 |
|
for (Int_t ix=0; ix<Nstrpx;ix++) { |
2353 |
|
Iview=Npstripx[ix]*2-1; |
2354 |
|
Nstrip=(Int_t)Istripx[ix]-1; |
2355 |
|
if(Nstrip<fNstrips_ladder) iladd=0; |
2356 |
|
if((Nstrip>=fNstrips_ladder)&&(Nstrip<2*fNstrips_ladder)) iladd=1; |
2357 |
|
if((Nstrip>=2*fNstrips_ladder)&&(Nstrip<3*fNstrips_ladder)) iladd=2; |
2358 |
|
ADCfull=AdcTrack[Iview][Nstrip] += Qstripx[ix]*fMipCor[iladd][Iview]; |
2359 |
|
AdcTrack[Iview][Nstrip] *= SaturationTrack(ADCfull); |
2360 |
|
|
2361 |
|
}; |
2362 |
|
|
2363 |
|
|
2364 |
|
for (Int_t iy=0; iy<Nstrpy;iy++) { |
2365 |
|
Iview=Npstripy[iy]*2-2; |
2366 |
|
Nstrip=(Int_t)Istripy[iy]-1; |
2367 |
|
if(Nstrip<fNstrips_ladder) iladd=0; |
2368 |
|
if((Nstrip>=fNstrips_ladder)&&(Nstrip<2*fNstrips_ladder)) iladd=1; |
2369 |
|
if((Nstrip>=2*fNstrips_ladder)&&(Nstrip<3*fNstrips_ladder)) iladd=2; |
2370 |
|
ADCfull=AdcTrack[Iview][Nstrip] -= Qstripy[iy]*fMipCor[iladd][Iview]; |
2371 |
|
AdcTrack[Iview][Nstrip] *= SaturationTrack(ADCfull); |
2372 |
|
|
2373 |
|
}; |
2374 |
|
|
2375 |
|
CompressTrackData(AdcTrack); // Compress and Digitize data of one Ladder in turn for all ladders |
2376 |
|
|
2377 |
|
}; |
2378 |
|
|
2379 |
|
|
2380 |
|
|
2381 |
|
void Digitizer::DigitizeTrackCalib(Int_t ii) { |
2382 |
|
|
2383 |
|
std:: cout << "Entering DigitizeTrackCalib " << ii << endl; |
2384 |
|
if( (ii!=1)&&(ii!=2) ) { |
2385 |
|
std:: cout << "error wrong DigitizeTrackCalib argument" << endl; |
2386 |
|
return; |
2387 |
|
}; |
2388 |
|
|
2389 |
|
memset(fDataTrack,0,sizeof(UShort_t)*fTRACKbuffer); |
2390 |
|
fTracklength=0; |
2391 |
|
|
2392 |
|
UShort_t Dato; |
2393 |
|
|
2394 |
|
Float_t dato1; |
2395 |
|
Float_t dato2; |
2396 |
|
Float_t dato3; |
2397 |
|
Float_t dato4; |
2398 |
|
|
2399 |
|
UShort_t DatoDec; |
2400 |
|
UShort_t DatoDec1; |
2401 |
|
UShort_t DatoDec2; |
2402 |
|
UShort_t DatoDec3; |
2403 |
|
UShort_t DatoDec4; |
2404 |
|
|
2405 |
|
UShort_t EVENT_CAL; |
2406 |
|
UShort_t PED_L1; |
2407 |
|
UShort_t ReLength; |
2408 |
|
UShort_t OveCheckCode; |
2409 |
|
//UShort_t PED_L2; |
2410 |
|
//UShort_t PED_L3HI; |
2411 |
|
//UShort_t PED_L3LO; |
2412 |
|
//UShort_t SIG_L1HI; |
2413 |
|
//UShort_t SIG_L1LO; |
2414 |
|
//UShort_t SIG_L2HI; |
2415 |
|
//UShort_t SIG_L2LO; |
2416 |
|
//UShort_t SIG_L3; |
2417 |
|
//UShort_t BAD_L1; |
2418 |
|
//UShort_t BAD_L2LO; |
2419 |
|
//UShort_t BAD_L3HI; |
2420 |
|
//UShort_t BAD_L3LO; |
2421 |
|
//UShort_t FLAG; |
2422 |
|
|
2423 |
|
|
2424 |
|
Int_t DSPpos; |
2425 |
|
for (Int_t j=ii-1; j<fNviews;j+=2) { |
2426 |
|
UShort_t CkSum=0; |
2427 |
|
// here skip the dsp header and his trailer , to be written later |
2428 |
|
DSPpos=fTracklength; |
2429 |
|
fTracklength=fTracklength+13+3; |
2430 |
|
|
2431 |
|
|
2432 |
|
for (Int_t i=0; i<fNladder;i++) { |
2433 |
|
for (Int_t k=0; k<fNstrips_ladder;k++) { |
2434 |
|
// write in buffer the current LADDER |
2435 |
|
Dato=(UShort_t)fPedeTrack[j][i*fNstrips_ladder+k]; |
2436 |
|
dato1=fPedeTrack[j][i*fNstrips_ladder+k]-Dato; |
2437 |
|
|
2438 |
|
DatoDec1=(UShort_t)(dato1*2); |
2439 |
|
dato2=dato1*2-DatoDec1; |
2440 |
|
|
2441 |
|
DatoDec2=(UShort_t)(dato2*2); |
2442 |
|
dato3=dato2*2-DatoDec2; |
2443 |
|
|
2444 |
|
DatoDec3=(UShort_t)(dato3*2); |
2445 |
|
dato4=dato3*2-DatoDec3; |
2446 |
|
|
2447 |
|
DatoDec4=(UShort_t)(dato4*2); |
2448 |
|
|
2449 |
|
DatoDec=DatoDec1*0x0008+DatoDec2*0x0004+DatoDec3*0x0002+DatoDec4*0x0001; |
2450 |
|
fDataTrack[fTracklength]=( (Dato << 4) | (DatoDec & 0x000F) ); |
2451 |
|
CkSum=CkSum^fDataTrack[fTracklength]; |
2452 |
|
fTracklength++; |
2453 |
|
}; |
2454 |
|
|
2455 |
|
for (Int_t k=0; k<fNstrips_ladder;k++) { |
2456 |
|
// write in buffer the current LADDER |
2457 |
|
Dato=(UShort_t)fSigmaTrack[j][i*fNstrips_ladder+k]; |
2458 |
|
dato1=fSigmaTrack[j][i*fNstrips_ladder+k]-Dato; |
2459 |
|
|
2460 |
|
DatoDec1=(UShort_t)(dato1*2); |
2461 |
|
dato2=dato1*2-DatoDec1; |
2462 |
|
|
2463 |
|
DatoDec2=(UShort_t)(dato2*2); |
2464 |
|
dato3=dato2*2-DatoDec2; |
2465 |
|
|
2466 |
|
DatoDec3=(UShort_t)(dato3*2); |
2467 |
|
dato4=dato3*2-DatoDec3; |
2468 |
|
|
2469 |
|
DatoDec4=(UShort_t)(dato4*2); |
2470 |
|
|
2471 |
|
DatoDec=DatoDec1*0x0008+DatoDec2*0x0004+DatoDec3*0x0002+DatoDec4*0x0001; |
2472 |
|
|
2473 |
|
fDataTrack[fTracklength]=( (Dato << 4) | (DatoDec & 0x000F) ); |
2474 |
|
CkSum=CkSum^fDataTrack[fTracklength]; |
2475 |
|
fTracklength++; |
2476 |
|
}; |
2477 |
|
|
2478 |
|
for (Int_t k=0; k<64;k++) { |
2479 |
|
fDataTrack[fTracklength]=0x0000; |
2480 |
|
CkSum=CkSum^fDataTrack[fTracklength]; |
2481 |
|
fTracklength++; |
2482 |
|
|
2483 |
|
}; |
2484 |
|
// end ladder |
2485 |
|
|
2486 |
|
// write in buffer the end ladder word |
2487 |
|
if(i==0) fDataTrack[fTracklength]=0x1807; |
2488 |
|
if(i==1) fDataTrack[fTracklength]=0x1808; |
2489 |
|
if(i==2) fDataTrack[fTracklength]=0x1809; |
2490 |
|
CkSum=CkSum^fDataTrack[fTracklength]; |
2491 |
|
fTracklength++; |
2492 |
|
|
2493 |
|
// write in buffer the TRAILER |
2494 |
|
ReLength=(UShort_t)((fNstrips_ladder*2+64+1)*2+3); |
2495 |
|
OveCheckCode=0x0000; |
2496 |
|
|
2497 |
|
fDataTrack[fTracklength]=0x0000; |
2498 |
|
fTracklength++; |
2499 |
|
|
2500 |
|
fDataTrack[fTracklength]=(ReLength >> 8); |
2501 |
|
fTracklength++; |
2502 |
|
|
2503 |
|
fDataTrack[fTracklength]=( (ReLength << 8) | (OveCheckCode & 0x00FF) ); |
2504 |
|
fTracklength++; |
2505 |
|
|
2506 |
|
// end TRAILER |
2507 |
|
}; |
2508 |
|
|
2509 |
|
// write in buffer the DSP header |
2510 |
|
|
2511 |
|
fDataTrack[DSPpos]=(0xE800 | ( ((j+1) << 3) | 0x0005) ); |
2512 |
|
|
2513 |
|
fDataTrack[DSPpos+1]=0x01A9; |
2514 |
|
|
2515 |
|
fDataTrack[DSPpos+2]=0x8740; |
2516 |
|
|
2517 |
|
EVENT_CAL=0; |
2518 |
|
fDataTrack[DSPpos+3]=(0x1A00 | ( (0x03FF & EVENT_CAL)>> 1) ); |
2519 |
|
|
2520 |
|
PED_L1=0; |
2521 |
|
fDataTrack[DSPpos+4]=( ((EVENT_CAL << 15) | 0x5002 ) | ((0x03FF & PED_L1) << 2) ); |
2522 |
|
|
2523 |
|
// FROM HERE WE WRITE AS ALL VARIABLE apart CkSum are =0 |
2524 |
|
|
2525 |
|
fDataTrack[DSPpos+5]=0x8014; |
2526 |
|
|
2527 |
|
fDataTrack[DSPpos+6]=0x00A0; |
2528 |
|
|
2529 |
|
fDataTrack[DSPpos+7]=0x0500; |
2530 |
|
|
2531 |
|
fDataTrack[DSPpos+8]=0x2801; |
2532 |
|
|
2533 |
|
fDataTrack[DSPpos+9]=0x400A; |
2534 |
|
|
2535 |
|
fDataTrack[DSPpos+10]=0x0050; |
2536 |
|
|
2537 |
|
CkSum=(CkSum >> 8)^(CkSum&0x00FF); |
2538 |
|
fDataTrack[DSPpos+11]=(0x0280 | (CkSum >> 3)); |
2539 |
|
|
2540 |
|
fDataTrack[DSPpos+12]=(0x1FFF | (CkSum << 13) ); |
2541 |
|
|
2542 |
|
// end dsp header |
2543 |
|
|
2544 |
|
// write in buffer the TRAILER |
2545 |
|
|
2546 |
|
ReLength=(UShort_t)((13*2)+3); |
2547 |
|
OveCheckCode=0x0000; |
2548 |
|
fDataTrack[DSPpos+13]=0x0000; |
2549 |
|
|
2550 |
|
fDataTrack[DSPpos+14]=(ReLength >> 8); |
2551 |
|
|
2552 |
|
fDataTrack[DSPpos+15]=( (ReLength << 8) | (OveCheckCode & 0x00FF) ); |
2553 |
|
|
2554 |
|
// end TRAILER |
2555 |
|
|
2556 |
|
|
2557 |
|
|
2558 |
|
|
2559 |
|
// end DSP |
2560 |
|
}; |
2561 |
|
|
2562 |
|
|
2563 |
|
|
2564 |
|
}; |
2565 |
|
|
2566 |
|
void Digitizer::WriteTrackCalib() { |
2567 |
|
|
2568 |
|
|
2569 |
|
std:: cout << " Entering WriteTrackCalib " << endl; |
2570 |
|
|
2571 |
|
fOutputfile.write(reinterpret_cast<char*>(fDataPSCU),sizeof(UShort_t)*fPSCUbuffer); |
2572 |
|
|
2573 |
|
UShort_t temp[1000000]; |
2574 |
|
memset(temp,0,sizeof(UShort_t)*1000000); |
2575 |
|
swab(fDataTrack,temp,sizeof(UShort_t)*fTracklength); // WE MUST SWAP THE BYTES!!! |
2576 |
|
fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fTracklength); |
2577 |
|
fTracklength=0; |
2578 |
|
if ( fPadding ){ |
2579 |
|
fOutputfile.write(reinterpret_cast<char*>(fDataPadding),sizeof(UChar_t)*fPadding); |
2580 |
|
}; |
2581 |
|
|
2582 |
|
}; |
2583 |
|
|
2584 |
|
|
2585 |
|
void Digitizer::ClearTrackCalib() { |
2586 |
|
|
2587 |
|
std:: cout << "Entering ClearTrackCalib " << endl; |
2588 |
|
|
2589 |
|
|
2590 |
|
}; |
2591 |
|
|
2592 |
|
|
2593 |
|
void Digitizer::LoadTrackCalib() { |
2594 |
|
std:: cout << "Entering LoadTrackCalib " << endl; |
2595 |
|
|
2596 |
|
// Generate the pedestals and sigmas according to parametrization |
2597 |
|
for (Int_t j=0; j<fNviews;j++) { |
2598 |
|
for (Int_t i=0; i<fNstrips_view;i++) { |
2599 |
|
|
2600 |
|
if((j+1)%2==0) { |
2601 |
|
fPedeTrack[j][i]=gRandom->Gaus(fAvePedex,fSigmaPedex); |
2602 |
|
fSigmaTrack[j][i]=gRandom->Gaus(fAveSigmax,fSigmaSigmax); |
2603 |
|
}; |
2604 |
|
if((j+1)%2==1) { |
2605 |
|
fPedeTrack[j][i]=gRandom->Gaus(fAvePedey,fSigmaPedey); |
2606 |
|
fSigmaTrack[j][i]=gRandom->Gaus(fAveSigmay,fSigmaSigmay); |
2607 |
|
}; |
2608 |
|
|
2609 |
|
}; |
2610 |
|
}; |
2611 |
|
|
2612 |
|
|
2613 |
|
|
2614 |
|
}; |
2615 |
|
|
2616 |
|
void Digitizer::LoadMipCor() { |
2617 |
|
std:: cout << "Entering LoadMipCor" << endl; |
2618 |
|
Float_t xfactor=1./151.6*1.04; |
2619 |
|
Float_t yfactor=1./152.1; |
2620 |
|
|
2621 |
|
fMipCor[0][0]=140.02*yfactor; |
2622 |
|
fMipCor[0][1]=140.99*xfactor; |
2623 |
|
fMipCor[0][2]=134.48*yfactor; |
2624 |
|
fMipCor[0][3]=144.41*xfactor; |
2625 |
|
fMipCor[0][4]=140.74*yfactor; |
2626 |
|
fMipCor[0][5]=142.28*xfactor; |
2627 |
|
fMipCor[0][6]=134.53*yfactor; |
2628 |
|
fMipCor[0][7]=140.63*xfactor; |
2629 |
|
fMipCor[0][8]=135.55*yfactor; |
2630 |
|
fMipCor[0][9]=138.00*xfactor; |
2631 |
|
fMipCor[0][10]=154.95*yfactor; |
2632 |
|
fMipCor[0][11]=158.44*xfactor; |
2633 |
|
|
2634 |
|
|
2635 |
|
fMipCor[1][0]=136.07*yfactor; |
2636 |
|
fMipCor[1][1]=135.59*xfactor; |
2637 |
|
fMipCor[1][2]=142.69*yfactor; |
2638 |
|
fMipCor[1][3]=138.19*xfactor; |
2639 |
|
fMipCor[1][4]=137.35*yfactor; |
2640 |
|
fMipCor[1][5]=140.23*xfactor; |
2641 |
|
fMipCor[1][6]=153.15*yfactor; |
2642 |
|
fMipCor[1][7]=151.42*xfactor; |
2643 |
|
fMipCor[1][8]=129.76*yfactor; |
2644 |
|
fMipCor[1][9]=140.63*xfactor; |
2645 |
|
fMipCor[1][10]=157.87*yfactor; |
2646 |
|
fMipCor[1][11]=153.64*xfactor; |
2647 |
|
|
2648 |
|
fMipCor[2][0]=134.98*yfactor; |
2649 |
|
fMipCor[2][1]=143.95*xfactor; |
2650 |
|
fMipCor[2][2]=140.23*yfactor; |
2651 |
|
fMipCor[2][3]=138.88*xfactor; |
2652 |
|
fMipCor[2][4]=137.95*yfactor; |
2653 |
|
fMipCor[2][5]=134.87*xfactor; |
2654 |
|
fMipCor[2][6]=157.56*yfactor; |
2655 |
|
fMipCor[2][7]=157.31*xfactor; |
2656 |
|
fMipCor[2][8]=141.37*yfactor; |
2657 |
|
fMipCor[2][9]=143.39*xfactor; |
2658 |
|
fMipCor[2][10]=156.15*yfactor; |
2659 |
|
fMipCor[2][11]=158.79*xfactor; |
2660 |
|
|
2661 |
|
/* |
2662 |
|
for (Int_t j=0; j<fNviews;j++) { |
2663 |
|
for (Int_t i=0; i<fNstrips_view;i++) { |
2664 |
|
fMipCor[j][i]=1.; |
2665 |
|
}; |
2666 |
|
}; |
2667 |
|
|
2668 |
|
|
2669 |
|
*/ |
2670 |
|
}; |
2671 |
|
|
2672 |
|
void Digitizer::CompressTrackData(Float_t AdcTrack[fNviews][fNstrips_view]) { |
2673 |
|
// copy of the corresponding compression fortran routine + new digitization |
2674 |
|
// std:: cout << "Entering CompressTrackData " << endl; |
2675 |
|
Int_t oldval=0; |
2676 |
|
Int_t newval=0; |
2677 |
|
Int_t trasmesso=0; |
2678 |
|
Int_t ntrastot=0; |
2679 |
|
Float_t real; |
2680 |
|
Float_t inte; |
2681 |
|
Int_t cercacluster=0; |
2682 |
|
Int_t kt=0; |
2683 |
|
static const int DSPbufferSize = 4000; // 13 bit buffer to be rearranged in 16 bit Track buffer |
2684 |
|
UShort_t DataDSP[DSPbufferSize]; // 13 bit buffer to be rearranged in 16 bit Track buffer |
2685 |
|
UShort_t DSPlength; // 13 bit buffer to be rearranged in 16 bit Track buffer |
2686 |
|
|
2687 |
|
memset(fDataTrack,0,sizeof(UShort_t)*fTRACKbuffer); // probably not necessary becouse already done ? |
2688 |
|
fTracklength=0; |
2689 |
|
|
2690 |
|
for (Int_t iv=0; iv<fNviews;iv++) { |
2691 |
|
memset(DataDSP,0,sizeof(UShort_t)*DSPbufferSize); |
2692 |
|
DSPlength=16; // skip the header, to be written later |
2693 |
|
UShort_t CheckSum=0; |
2694 |
|
// write dsp header on buffer |
2695 |
|
|
2696 |
|
// fDataTrack[fTracklength]=0xE805; |
2697 |
|
// fTracklength++; |
2698 |
|
|
2699 |
|
// fDataTrack[fTracklength]=0x01A9; |
2700 |
|
// fTracklength++; |
2701 |
|
|
2702 |
|
// end dsp header |
2703 |
|
|
2704 |
|
// |
2705 |
|
// INIZIO VISTA IV - TAKE PROPER ACTION |
2706 |
|
// |
2707 |
|
|
2708 |
|
|
2709 |
|
|
2710 |
|
for (Int_t ladder=0; ladder<fNladder;ladder++) { |
2711 |
|
Int_t k=0; |
2712 |
|
while (k<fNstrips_ladder) { |
2713 |
|
// compress write in buffer the current LADDER |
2714 |
|
if ( k == 0) { |
2715 |
|
real=modff(AdcTrack[iv][ladder*fNstrips_ladder+k],&inte); |
2716 |
|
if (real > 0.5) inte=inte+1; |
2717 |
|
newval=(Int_t)inte -(Int_t)fPedeTrack[iv][ladder*fNstrips_ladder+k]; |
2718 |
|
// first strip of ladder is transmitted |
2719 |
|
// DC_TOT first " << AdcTrack[iv][ladder*fNstrips_ladder+k] << endl; |
2720 |
|
DataDSP[DSPlength]=( ((UShort_t)inte) & 0x0FFF); |
2721 |
|
DSPlength++; |
2722 |
|
ntrastot++; |
2723 |
|
trasmesso=1; |
2724 |
|
oldval=newval; |
2725 |
|
kt=k; |
2726 |
|
k++; |
2727 |
|
continue; |
2728 |
|
}; |
2729 |
|
real=modff(AdcTrack[iv][ladder*fNstrips_ladder+k],&inte); |
2730 |
|
if (real > 0.5) inte=inte+1; |
2731 |
|
newval=(Int_t)inte -(Int_t)(fPedeTrack[iv][ladder*fNstrips_ladder+k]); |
2732 |
|
cercacluster=1; // ????????? |
2733 |
|
if (cercacluster==1) { |
2734 |
|
|
2735 |
|
// controlla l'ordine di tutti queste strip ladder e DSP !!!!!!! |
2736 |
|
Int_t diff=0; |
2737 |
|
|
2738 |
|
|
2739 |
|
switch ((iv+1)%2) { |
2740 |
|
case 0: diff=newval-oldval; |
2741 |
|
break; |
2742 |
|
case 1: diff=oldval-newval; |
2743 |
|
break; |
2744 |
|
}; |
2745 |
|
|
2746 |
|
if (diff>fCutclu*(Int_t)fSigmaTrack[iv][ladder*fNstrips_ladder+k]) { |
2747 |
|
Int_t clval=newval; |
2748 |
|
Int_t klp=k; // go on to search for maximum |
2749 |
|
klp++; |
2750 |
|
|
2751 |
|
while(klp<fNstrips_ladder) { |
2752 |
|
real=modff(AdcTrack[iv][ladder*fNstrips_ladder+klp],&inte); |
2753 |
|
if (real > 0.5) inte=inte+1; |
2754 |
|
Int_t clvalp=(Int_t)inte -(Int_t)fPedeTrack[iv][ladder*fNstrips_ladder+klp]; |
2755 |
|
if((iv+1)%2==0) { |
2756 |
|
|
2757 |
|
if(clvalp>clval) { |
2758 |
|
clval=clvalp; |
2759 |
|
k=klp;} |
2760 |
|
else break; // max of cluster found |
2761 |
|
|
2762 |
|
} else { |
2763 |
|
|
2764 |
|
if(clvalp<clval) { |
2765 |
|
clval=clvalp; |
2766 |
|
k=klp;} |
2767 |
|
else break; // max of cluster found |
2768 |
|
|
2769 |
|
}; |
2770 |
|
|
2771 |
|
klp++; |
2772 |
|
}; |
2773 |
|
|
2774 |
|
Int_t kl1=k-fNclst; // max of cluster (or end of ladder ?) |
2775 |
|
trasmesso=0; |
2776 |
|
if(kl1<0) kl1=0; |
2777 |
|
|
2778 |
|
if(kt>=kl1) kl1=kt+1; |
2779 |
|
if( (kt+1)==kl1 ) trasmesso=1; |
2780 |
|
|
2781 |
|
|
2782 |
|
|
2783 |
|
Int_t kl2=k+fNclst; |
2784 |
|
if(kl2>=fNstrips_ladder) kl2=fNstrips_ladder-1; |
2785 |
|
|
2786 |
|
for(Int_t klt=kl1 ; klt<=kl2 ; klt++) { |
2787 |
|
if(trasmesso==0) { |
2788 |
|
// std:: cout << "STRIP " << klt << endl; |
2789 |
|
// std:: cout << "ADC_TOT " <<AdcTrack[iv][ladder*fNstrips_ladder+klt] << endl; |
2790 |
|
|
2791 |
|
DataDSP[DSPlength]=( ((UShort_t)klt) | 0x1000); |
2792 |
|
DSPlength++; |
2793 |
|
ntrastot++; |
2794 |
|
|
2795 |
|
|
2796 |
|
real=modff(AdcTrack[iv][ladder*fNstrips_ladder+klt],&inte); |
2797 |
|
if (real > 0.5) inte=inte+1; |
2798 |
|
DataDSP[DSPlength]=( ((UShort_t)inte) & 0x0FFF); |
2799 |
|
DSPlength++; |
2800 |
|
ntrastot++; |
2801 |
|
|
2802 |
|
} |
2803 |
|
else { |
2804 |
|
// std:: cout << "ADC_TOT " <<AdcTrack[iv][ladder*fNstrips_ladder+klt] << endl; |
2805 |
|
real=modff(AdcTrack[iv][ladder*fNstrips_ladder+klt],&inte); |
2806 |
|
if (real > 0.5) inte=inte+1; |
2807 |
|
DataDSP[DSPlength]=( ((UShort_t)inte) & 0x0FFF); |
2808 |
|
DSPlength++; |
2809 |
|
ntrastot++; |
2810 |
|
}; |
2811 |
|
trasmesso=1; |
2812 |
|
}; // end trasmission |
2813 |
|
kt=kl2; |
2814 |
|
k=kl2; |
2815 |
|
real=modff(AdcTrack[iv][ladder*fNstrips_ladder+kt],&inte); |
2816 |
|
if (real > 0.5) inte=inte+1; |
2817 |
|
oldval=(Int_t)inte -(Int_t)fPedeTrack[iv][ladder*fNstrips_ladder+kt]; |
2818 |
|
k++; |
2819 |
|
continue; |
2820 |
|
|
2821 |
|
|
2822 |
|
}; // end cercacluster |
2823 |
|
}; // end cercacluster |
2824 |
|
|
2825 |
|
// start ZOP check for strips no |
2826 |
|
|
2827 |
|
if(abs(newval-oldval)>=fCutzop*(Int_t)fSigmaTrack[iv][ladder*fNstrips_ladder+k]) { |
2828 |
|
|
2829 |
|
if(trasmesso==0) { |
2830 |
|
// std:: cout << "STRIP " << k << endl; |
2831 |
|
// std:: cout << "ADC_TOT " << AdcTrack[iv][ladder*fNstrips_ladder+k] << endl; |
2832 |
|
|
2833 |
|
DataDSP[DSPlength]=( ((UShort_t)k) | 0x1000); |
2834 |
|
DSPlength++; |
2835 |
|
ntrastot++; |
2836 |
|
|
2837 |
|
|
2838 |
|
real=modff(AdcTrack[iv][ladder*fNstrips_ladder+k],&inte); |
2839 |
|
if (real > 0.5) inte=inte+1; |
2840 |
|
DataDSP[DSPlength]=( ((UShort_t)inte) & 0x0FFF); |
2841 |
|
DSPlength++; |
2842 |
|
ntrastot++; |
2843 |
|
|
2844 |
|
} |
2845 |
|
else { |
2846 |
|
// std:: cout << "ADC_TOT " << AdcTrack[iv][ladder*fNstrips_ladder+k] << endl; |
2847 |
|
real=modff(AdcTrack[iv][ladder*fNstrips_ladder+k],&inte); |
2848 |
|
if (real > 0.5) inte=inte+1; |
2849 |
|
DataDSP[DSPlength]=( ((UShort_t)inte) & 0x0FFF); |
2850 |
|
DSPlength++; |
2851 |
|
ntrastot++; |
2852 |
|
}; |
2853 |
|
trasmesso=1; |
2854 |
|
oldval=newval; |
2855 |
|
kt=k; |
2856 |
|
|
2857 |
|
} |
2858 |
|
else trasmesso=0; |
2859 |
|
// end zop |
2860 |
|
|
2861 |
|
k++; |
2862 |
|
}; // end cycle inside ladder |
2863 |
|
// write here the end ladder bytes |
2864 |
|
// std:: cout << "FINE LADDER " << ladder+1 << endl; |
2865 |
|
|
2866 |
|
DataDSP[DSPlength]=( ((UShort_t)(ladder+1)) | 0x1800); |
2867 |
|
DSPlength++; |
2868 |
|
ntrastot++; |
2869 |
|
trasmesso=0; |
2870 |
|
|
2871 |
|
}; //end cycle inside dsp |
2872 |
|
// std:: cout << "FINE DSP " << iv+1 << endl; |
2873 |
|
// here put DSP header |
2874 |
|
DataDSP[0]=(0x1CA0 | ((UShort_t)(iv+1)) ); |
2875 |
|
UShort_t Nword=(DSPlength*13)/16; |
2876 |
|
if( ((DSPlength*13)%16)!=0) Nword++; |
2877 |
|
DataDSP[1]=(0x1400 | ( Nword >> 10)); |
2878 |
|
DataDSP[2]=(0x1400 | ( Nword & 0x03FF) ); |
2879 |
|
DataDSP[3]=(0x1400 | (( (UShort_t)(fCounter >> 10) ) & 0x03FF) ); |
2880 |
|
DataDSP[4]=(0x1400 | (( (UShort_t)(fCounter) ) & 0x03FF) ); |
2881 |
|
DataDSP[5]=(0x1400 | ( (UShort_t)(fNclst << 7) ) | ( (UShort_t)(fCutzop << 4) ) |
2882 |
|
| ( (UShort_t)fCutzop ) ); |
2883 |
|
DataDSP[6]=0x1400; |
2884 |
|
DataDSP[7]=0x1400; |
2885 |
|
DataDSP[8]=0x1400; |
2886 |
|
DataDSP[9]=0x1400; |
2887 |
|
DataDSP[10]=0x1400; |
2888 |
|
DataDSP[11]=0x1400; |
2889 |
|
DataDSP[12]=0x1400; |
2890 |
|
DataDSP[13]=0x1400; |
2891 |
|
DataDSP[14]=(0x1400 | (CheckSum & 0x00FF) ); |
2892 |
|
DataDSP[15]=0x1C00; |
2893 |
|
// end DSP header |
2894 |
|
|
2895 |
|
|
2896 |
|
// write 13 bit DataDSP bufer inside 16 bit fDataTrack buffer |
2897 |
|
Int_t Bit16free=16; |
2898 |
|
UShort_t Dato; |
2899 |
|
for (Int_t NDSP=0; NDSP<DSPlength;NDSP++) { |
2900 |
|
Int_t Bit13ToWrite=13; |
2901 |
|
while(Bit13ToWrite>0) { |
2902 |
|
if(Bit13ToWrite<=Bit16free) { |
2903 |
|
Dato=((DataDSP[NDSP]&(0xFFFF >> (16-Bit13ToWrite)))<<(Bit16free-Bit13ToWrite)); |
2904 |
|
fDataTrack[fTracklength]=fDataTrack[fTracklength] | Dato ; |
2905 |
|
Bit16free=Bit16free-Bit13ToWrite; |
2906 |
|
Bit13ToWrite=0; |
2907 |
|
if(Bit16free==0) { |
2908 |
|
if(NDSP>15) CheckSum=CheckSum^fDataTrack[fTracklength]; |
2909 |
|
fTracklength++; |
2910 |
|
Bit16free=16; |
2911 |
|
}; |
2912 |
|
} |
2913 |
|
else if(Bit13ToWrite>Bit16free) { |
2914 |
|
Dato=( (DataDSP[NDSP]&(0xFFFF >> (16-Bit13ToWrite) ) ) >> (Bit13ToWrite-Bit16free) ); |
2915 |
|
fDataTrack[fTracklength]=fDataTrack[fTracklength] | Dato ; |
2916 |
|
if(NDSP>15) CheckSum=CheckSum^fDataTrack[fTracklength]; |
2917 |
|
fTracklength++; |
2918 |
|
Bit13ToWrite=Bit13ToWrite-Bit16free; |
2919 |
|
Bit16free=16; |
2920 |
|
}; |
2921 |
|
|
2922 |
|
}; // end cycle while(Bit13ToWrite>0) |
2923 |
|
|
2924 |
|
}; // end cycle DataDSP |
2925 |
|
if(Bit16free!=16) { fTracklength++; CheckSum=CheckSum^fDataTrack[fTracklength]; }; |
2926 |
|
CheckSum=(CheckSum >> 8)^(CheckSum&0x00FF); |
2927 |
|
fDataTrack[fTracklength-Nword+11]=(0x0280 | (CheckSum >> 3)); |
2928 |
|
fDataTrack[fTracklength-Nword+12]=(0x1C00 | (CheckSum << 13) ); |
2929 |
|
|
2930 |
|
// end write 13 bit DataDSP bufer inside 16 bit fDataTrack buffer |
2931 |
|
|
2932 |
|
//write trailer on buffer |
2933 |
|
UShort_t ReLength=(UShort_t)((Nword+13)*2+3); |
2934 |
|
UShort_t OveCheckCode=0x0000; |
2935 |
|
|
2936 |
|
fDataTrack[fTracklength]=0x0000; |
2937 |
|
fTracklength++; |
2938 |
|
|
2939 |
|
fDataTrack[fTracklength]=(ReLength >> 8); |
2940 |
|
fTracklength++; |
2941 |
|
|
2942 |
|
fDataTrack[fTracklength]=( (ReLength << 8) | (OveCheckCode & 0x00FF) ); |
2943 |
|
fTracklength++; |
2944 |
|
// end trailer |
2945 |
|
// std:: cout << "DSPlength " <<DSPlength << endl; |
2946 |
|
// std:: cout << "Nword " << Nword << endl; |
2947 |
|
// std:: cout << "ReLength " << ReLength << endl; |
2948 |
|
}; |
2949 |
|
// std:: cout << "ntrastot " << ntrastot << endl; |
2950 |
|
|
2951 |
|
}; |
2952 |
|
|
2953 |
|
|
2954 |
|
Float_t Digitizer::SaturationTrack(Float_t ADC) { |
2955 |
|
Float_t SatFact=1.; |
2956 |
|
if(ADC<70.) { SatFact=80./ADC; }; |
2957 |
|
if(ADC>3000.) { SatFact=3000./ADC; }; |
2958 |
|
return SatFact; |
2959 |
|
}; |
2960 |
|
|
2961 |
|
|
2962 |
|
|
2963 |
|
|
2964 |
|
|
2965 |
|
|