| 1 |
// ------ PAMELA Digitizer ------
|
| 2 |
//
|
| 3 |
// Date, release and how-to: see file Pamelagp2Digits.cxx
|
| 4 |
//
|
| 5 |
// NB: Check length physics packet [packet type (0x10 = physics data)]
|
| 6 |
//
|
| 7 |
#include <sstream>
|
| 8 |
#include <fstream>
|
| 9 |
#include <stdlib.h>
|
| 10 |
#include <stdio.h>
|
| 11 |
#include <string.h>
|
| 12 |
#include <ctype.h>
|
| 13 |
#include <time.h>
|
| 14 |
#include "Riostream.h"
|
| 15 |
#include "TFile.h"
|
| 16 |
#include "TDirectory.h"
|
| 17 |
#include "TTree.h"
|
| 18 |
#include "TLeafI.h"
|
| 19 |
#include "TH1.h"
|
| 20 |
#include "TH2.h"
|
| 21 |
#include "TF1.h"
|
| 22 |
#include "TMath.h"
|
| 23 |
#include "TRandom.h"
|
| 24 |
#include "TSQLServer.h"
|
| 25 |
#include "TSystem.h"
|
| 26 |
//
|
| 27 |
#include "Digitizer.h"
|
| 28 |
#include "CRC.h"
|
| 29 |
//
|
| 30 |
#include <PamelaRun.h>
|
| 31 |
#include <physics/calorimeter/CalorimeterEvent.h>
|
| 32 |
#include <CalibCalPedEvent.h>
|
| 33 |
#include "GLTables.h"
|
| 34 |
//
|
| 35 |
extern "C"{
|
| 36 |
short crc(short, short);
|
| 37 |
};
|
| 38 |
//
|
| 39 |
|
| 40 |
Digitizer::Digitizer(TTree* tree, char* &file_raw){
|
| 41 |
fhBookTree = tree;
|
| 42 |
fFilename = file_raw;
|
| 43 |
fCounter = 0;
|
| 44 |
fCounterPhys = 0; // SO 5/12/'07
|
| 45 |
fOBT = 0;
|
| 46 |
|
| 47 |
//
|
| 48 |
// DB connections
|
| 49 |
//
|
| 50 |
TString host = "mysql://localhost/pamelaprod";
|
| 51 |
TString user = "anonymous";
|
| 52 |
TString psw = "";
|
| 53 |
//
|
| 54 |
const char *pamdbhost=gSystem->Getenv("PAM_DBHOST");
|
| 55 |
const char *pamdbuser=gSystem->Getenv("PAM_DBUSER");
|
| 56 |
const char *pamdbpsw=gSystem->Getenv("PAM_DBPSW");
|
| 57 |
if ( !pamdbhost ) pamdbhost = "";
|
| 58 |
if ( !pamdbuser ) pamdbuser = "";
|
| 59 |
if ( !pamdbpsw ) pamdbpsw = "";
|
| 60 |
if ( strcmp(pamdbhost,"") ) host = pamdbhost;
|
| 61 |
if ( strcmp(pamdbuser,"") ) user = pamdbuser;
|
| 62 |
if ( strcmp(pamdbpsw,"") ) psw = pamdbpsw;
|
| 63 |
fDbc = TSQLServer::Connect(host.Data(),user.Data(),psw.Data());
|
| 64 |
//
|
| 65 |
GL_TABLES *glt = new GL_TABLES(host,user,psw);
|
| 66 |
if ( glt->IsConnected(fDbc) ) printf("\n DB INFORMATION:\n SQL: %s Version: %s Host %s Port %i \n\n",fDbc->GetDBMS(),fDbc->ServerInfo(),fDbc->GetHost(),fDbc->GetPort());
|
| 67 |
//
|
| 68 |
// Use UTC in the DB and make timeout bigger
|
| 69 |
//
|
| 70 |
stringstream myquery;
|
| 71 |
myquery.str("");
|
| 72 |
myquery << "SET time_zone='+0:00'";
|
| 73 |
fDbc->Query(myquery.str().c_str());
|
| 74 |
myquery.str("");
|
| 75 |
myquery << "SET wait_timeout=173000;";
|
| 76 |
fDbc->Query(myquery.str().c_str());
|
| 77 |
//
|
| 78 |
|
| 79 |
std:: cout << "preparing tree" << endl;
|
| 80 |
|
| 81 |
// prepare tree
|
| 82 |
fhBookTree->SetBranchAddress("Irun",&Irun);
|
| 83 |
fhBookTree->SetBranchAddress("Ievnt",&Ievnt);
|
| 84 |
fhBookTree->SetBranchAddress("Ipa",&Ipa);
|
| 85 |
fhBookTree->SetBranchAddress("X0",&X0);
|
| 86 |
fhBookTree->SetBranchAddress("Y0",&Y0);
|
| 87 |
fhBookTree->SetBranchAddress("Z0",&Z0);
|
| 88 |
fhBookTree->SetBranchAddress("Theta",&Theta);
|
| 89 |
fhBookTree->SetBranchAddress("Phi",&Phi);
|
| 90 |
fhBookTree->SetBranchAddress("P0",&P0);
|
| 91 |
fhBookTree->SetBranchAddress("Nthtof",&Nthtof);
|
| 92 |
fhBookTree->SetBranchAddress("Ipltof",Ipltof);
|
| 93 |
fhBookTree->SetBranchAddress("Ipaddle",Ipaddle);
|
| 94 |
fhBookTree->SetBranchAddress("Ipartof",Ipartof);
|
| 95 |
fhBookTree->SetBranchAddress("Xintof",Xintof);
|
| 96 |
fhBookTree->SetBranchAddress("Yintof",Yintof);
|
| 97 |
fhBookTree->SetBranchAddress("Zintof",Zintof);
|
| 98 |
fhBookTree->SetBranchAddress("Xouttof",Xouttof);
|
| 99 |
fhBookTree->SetBranchAddress("Youttof",Youttof);
|
| 100 |
fhBookTree->SetBranchAddress("Zouttof",Zouttof);
|
| 101 |
fhBookTree->SetBranchAddress("Ereltof",Ereltof);
|
| 102 |
fhBookTree->SetBranchAddress("Timetof",Timetof);
|
| 103 |
fhBookTree->SetBranchAddress("Pathtof",Pathtof);
|
| 104 |
fhBookTree->SetBranchAddress("P0tof",P0tof);
|
| 105 |
fhBookTree->SetBranchAddress("Nthcat",&Nthcat);
|
| 106 |
fhBookTree->SetBranchAddress("Iparcat",Iparcat);
|
| 107 |
fhBookTree->SetBranchAddress("Icat",Icat);
|
| 108 |
fhBookTree->SetBranchAddress("Xincat",Xincat);
|
| 109 |
fhBookTree->SetBranchAddress("Yincat",Yincat);
|
| 110 |
fhBookTree->SetBranchAddress("Zincat",Zincat);
|
| 111 |
fhBookTree->SetBranchAddress("Xoutcat",Xoutcat);
|
| 112 |
fhBookTree->SetBranchAddress("Youtcat",Youtcat);
|
| 113 |
fhBookTree->SetBranchAddress("Zoutcat",Zoutcat);
|
| 114 |
fhBookTree->SetBranchAddress("Erelcat",Erelcat);
|
| 115 |
fhBookTree->SetBranchAddress("Timecat",Timecat);
|
| 116 |
fhBookTree->SetBranchAddress("Pathcat",Pathcat);
|
| 117 |
fhBookTree->SetBranchAddress("P0cat",P0cat);
|
| 118 |
fhBookTree->SetBranchAddress("Nthcas",&Nthcas);
|
| 119 |
fhBookTree->SetBranchAddress("Iparcas",Iparcas);
|
| 120 |
fhBookTree->SetBranchAddress("Icas",Icas);
|
| 121 |
fhBookTree->SetBranchAddress("Xincas",Xincas);
|
| 122 |
fhBookTree->SetBranchAddress("Yincas",Yincas);
|
| 123 |
fhBookTree->SetBranchAddress("Zincas",Zincas);
|
| 124 |
fhBookTree->SetBranchAddress("Xoutcas",Xoutcas);
|
| 125 |
fhBookTree->SetBranchAddress("Youtcas",Youtcas);
|
| 126 |
fhBookTree->SetBranchAddress("Zoutcas",Zoutcas);
|
| 127 |
fhBookTree->SetBranchAddress("Erelcas",Erelcas);
|
| 128 |
fhBookTree->SetBranchAddress("Timecas",Timecas);
|
| 129 |
fhBookTree->SetBranchAddress("Pathcas",Pathcas);
|
| 130 |
fhBookTree->SetBranchAddress("P0cas",P0cas);
|
| 131 |
fhBookTree->SetBranchAddress("Nthspe",&Nthspe);
|
| 132 |
fhBookTree->SetBranchAddress("Iparspe",Iparspe);
|
| 133 |
fhBookTree->SetBranchAddress("Itrpb",Itrpb);
|
| 134 |
fhBookTree->SetBranchAddress("Itrsl",Itrsl);
|
| 135 |
fhBookTree->SetBranchAddress("Itspa",Itspa);
|
| 136 |
fhBookTree->SetBranchAddress("Xinspe",Xinspe);
|
| 137 |
fhBookTree->SetBranchAddress("Yinspe",Yinspe);
|
| 138 |
fhBookTree->SetBranchAddress("Zinspe",Zinspe);
|
| 139 |
fhBookTree->SetBranchAddress("Xoutspe",Xoutspe);
|
| 140 |
fhBookTree->SetBranchAddress("Youtspe",Youtspe);
|
| 141 |
fhBookTree->SetBranchAddress("Zoutspe",Zoutspe);
|
| 142 |
fhBookTree->SetBranchAddress("Xavspe",Xavspe);
|
| 143 |
fhBookTree->SetBranchAddress("Yavspe",Yavspe);
|
| 144 |
fhBookTree->SetBranchAddress("Zavspe",Zavspe);
|
| 145 |
fhBookTree->SetBranchAddress("Erelspe",Erelspe);
|
| 146 |
fhBookTree->SetBranchAddress("Pathspe",Pathspe);
|
| 147 |
fhBookTree->SetBranchAddress("P0spe",P0spe);
|
| 148 |
fhBookTree->SetBranchAddress("Nxmult",Nxmult);
|
| 149 |
fhBookTree->SetBranchAddress("Nymult",Nymult);
|
| 150 |
fhBookTree->SetBranchAddress("Nstrpx",&Nstrpx);
|
| 151 |
fhBookTree->SetBranchAddress("Npstripx",Npstripx);
|
| 152 |
fhBookTree->SetBranchAddress("Ntstripx",Ntstripx);
|
| 153 |
fhBookTree->SetBranchAddress("Istripx",Istripx);
|
| 154 |
fhBookTree->SetBranchAddress("Qstripx",Qstripx);
|
| 155 |
fhBookTree->SetBranchAddress("Xstripx",Xstripx);
|
| 156 |
fhBookTree->SetBranchAddress("Nstrpy",&Nstrpy);
|
| 157 |
fhBookTree->SetBranchAddress("Npstripy",Npstripy);
|
| 158 |
fhBookTree->SetBranchAddress("Ntstripy",Ntstripy);
|
| 159 |
fhBookTree->SetBranchAddress("Istripy",Istripy);
|
| 160 |
fhBookTree->SetBranchAddress("Qstripy",Qstripy);
|
| 161 |
fhBookTree->SetBranchAddress("Ystripy",Ystripy);
|
| 162 |
fhBookTree->SetBranchAddress("Nthcali",&Nthcali);
|
| 163 |
fhBookTree->SetBranchAddress("Icaplane",Icaplane);
|
| 164 |
fhBookTree->SetBranchAddress("Icastrip",Icastrip);
|
| 165 |
fhBookTree->SetBranchAddress("Icamod",Icamod);
|
| 166 |
fhBookTree->SetBranchAddress("Enestrip",Enestrip);
|
| 167 |
fhBookTree->SetBranchAddress("Nthcal",&Nthcal);
|
| 168 |
fhBookTree->SetBranchAddress("Icapl",Icapl);
|
| 169 |
fhBookTree->SetBranchAddress("Icasi",Icasi);
|
| 170 |
fhBookTree->SetBranchAddress("Icast",Icast);
|
| 171 |
fhBookTree->SetBranchAddress("Xincal",Xincal);
|
| 172 |
fhBookTree->SetBranchAddress("Yincal",Yincal);
|
| 173 |
fhBookTree->SetBranchAddress("Zincal",Zincal);
|
| 174 |
fhBookTree->SetBranchAddress("Erelcal",Erelcal);
|
| 175 |
fhBookTree->SetBranchAddress("Nthnd",&Nthnd);
|
| 176 |
fhBookTree->SetBranchAddress("Itubend",Itubend);
|
| 177 |
fhBookTree->SetBranchAddress("Iparnd",Iparnd);
|
| 178 |
fhBookTree->SetBranchAddress("Xinnd",Xinnd);
|
| 179 |
fhBookTree->SetBranchAddress("Yinnd",Yinnd);
|
| 180 |
fhBookTree->SetBranchAddress("Zinnd",Zinnd);
|
| 181 |
fhBookTree->SetBranchAddress("Xoutnd",Xoutnd);
|
| 182 |
fhBookTree->SetBranchAddress("Youtnd",Youtnd);
|
| 183 |
fhBookTree->SetBranchAddress("Zoutnd",Zoutnd);
|
| 184 |
fhBookTree->SetBranchAddress("Erelnd",Erelnd);
|
| 185 |
fhBookTree->SetBranchAddress("Timend",Timend);
|
| 186 |
fhBookTree->SetBranchAddress("Pathnd",Pathnd);
|
| 187 |
fhBookTree->SetBranchAddress("P0nd",P0nd);
|
| 188 |
fhBookTree->SetBranchAddress("Nthcard",&Nthcard);
|
| 189 |
fhBookTree->SetBranchAddress("Iparcard",Iparcard);
|
| 190 |
fhBookTree->SetBranchAddress("Icard",Icard);
|
| 191 |
fhBookTree->SetBranchAddress("Xincard",Xincard);
|
| 192 |
fhBookTree->SetBranchAddress("Yincard",Yincard);
|
| 193 |
fhBookTree->SetBranchAddress("Zincard",Zincard);
|
| 194 |
fhBookTree->SetBranchAddress("Xoutcard",Xoutcard);
|
| 195 |
fhBookTree->SetBranchAddress("Youtcard",Youtcard);
|
| 196 |
fhBookTree->SetBranchAddress("Zoutcard",Zoutcard);
|
| 197 |
fhBookTree->SetBranchAddress("Erelcard",Erelcard);
|
| 198 |
fhBookTree->SetBranchAddress("Timecard",Timecard);
|
| 199 |
fhBookTree->SetBranchAddress("Pathcard",Pathcard);
|
| 200 |
fhBookTree->SetBranchAddress("P0card",P0card);
|
| 201 |
|
| 202 |
fhBookTree->SetBranchStatus("*",0);
|
| 203 |
|
| 204 |
};
|
| 205 |
|
| 206 |
|
| 207 |
|
| 208 |
void Digitizer::Close(){
|
| 209 |
|
| 210 |
delete fhBookTree;
|
| 211 |
|
| 212 |
};
|
| 213 |
|
| 214 |
|
| 215 |
|
| 216 |
|
| 217 |
void Digitizer::Loop() {
|
| 218 |
//
|
| 219 |
// opens the raw output file and loops over the events
|
| 220 |
//
|
| 221 |
fOutputfile.open(fFilename, ios::out | ios::binary);
|
| 222 |
//fOutputfile.open(Form("Output%s",fFilename), ios::out | ios::binary);
|
| 223 |
//
|
| 224 |
// Load in memory and save at the beginning of file the calorimeter calibration
|
| 225 |
//
|
| 226 |
CaloLoadCalib();
|
| 227 |
DigitizeCALOCALIB();
|
| 228 |
|
| 229 |
// load, digitize and write tracker calibration
|
| 230 |
LoadTrackCalib();
|
| 231 |
|
| 232 |
DigitizeTrackCalib(1);
|
| 233 |
UInt_t length=fTracklength*2;
|
| 234 |
DigitizePSCU(length,0x12,fDataPSCU);
|
| 235 |
AddPadding();
|
| 236 |
WriteTrackCalib();
|
| 237 |
|
| 238 |
DigitizeTrackCalib(2);
|
| 239 |
length=fTracklength*2;
|
| 240 |
DigitizePSCU(length,0x13,fDataPSCU);
|
| 241 |
AddPadding();
|
| 242 |
WriteTrackCalib();
|
| 243 |
|
| 244 |
DigitizeRunHeader();
|
| 245 |
WriteRunHeader();
|
| 246 |
|
| 247 |
LoadMipCor(); // some initialization of parameters -not used now-
|
| 248 |
// end loading, digitizing and writing tracker calibration
|
| 249 |
|
| 250 |
//
|
| 251 |
// loops over the events
|
| 252 |
//
|
| 253 |
|
| 254 |
Int_t nentries = fhBookTree->GetEntriesFast();
|
| 255 |
Long64_t nbytes = 0;
|
| 256 |
for (Int_t i=0; i<nentries;i++) {
|
| 257 |
//
|
| 258 |
nbytes += fhBookTree->GetEntry(i);
|
| 259 |
// read detectors sequentially:
|
| 260 |
// http://www.ts.infn.it/fileadmin/documents/physics/experiments/wizard/cpu/gen_arch/RM_Acquisition.pdf
|
| 261 |
// on pamelatov: /cvs/yoda/techmodel/physics/NeutronDetectorReader.cpp
|
| 262 |
//DigitizeTRIGGER();
|
| 263 |
DigitizeTOF();
|
| 264 |
DigitizeAC();
|
| 265 |
DigitizeCALO();
|
| 266 |
DigitizeTrack();
|
| 267 |
DigitizeS4();
|
| 268 |
DigitizeND();
|
| 269 |
//
|
| 270 |
// Add padding to 64 bits
|
| 271 |
//
|
| 272 |
AddPadding();
|
| 273 |
//
|
| 274 |
// Create CPU header, we need packet type (0x10 = physics data) and packet length.
|
| 275 |
//
|
| 276 |
UInt_t length=2*(fCALOlength+fACbuffer+fTracklength+fNDbuffer+fS4buffer)+fPadding+fTOFbuffer+fTRIGGERbuffer;
|
| 277 |
//UInt_t length=2*(fCALOlength+fACbuffer+fTracklength+fNDbuffer)+fPadding+fTOFbuffer+fTRIGGERbuffer;
|
| 278 |
DigitizePSCU(length,0x10,fDataPSCU);
|
| 279 |
if ( !i%100 ) std::cout << "writing event " << i << endl;
|
| 280 |
WriteData();
|
| 281 |
};
|
| 282 |
|
| 283 |
DigitizeRunTrailer();
|
| 284 |
WriteRunTrailer();
|
| 285 |
|
| 286 |
fOutputfile.close();
|
| 287 |
std::cout << "files closed" << endl << flush;
|
| 288 |
|
| 289 |
};
|
| 290 |
|
| 291 |
void Digitizer::DigitizeRunHeader(){
|
| 292 |
const Int_t lenRH = fRunHeaderbuffer*2;
|
| 293 |
UChar_t buffRH[lenRH];
|
| 294 |
UShort_t buffPSCU[8];
|
| 295 |
UChar_t *p;
|
| 296 |
p=buffRH;
|
| 297 |
|
| 298 |
// header: 16 bytes
|
| 299 |
DigitizePSCU(fRunHeaderbuffer*2,0x20,buffPSCU);
|
| 300 |
memcpy(p,buffPSCU,16*sizeof(UChar_t));
|
| 301 |
p+=16;
|
| 302 |
|
| 303 |
// time stamp (uint32): 0x82569c97
|
| 304 |
*(p++) = 0x82;
|
| 305 |
*(p++) = 0x56;
|
| 306 |
*(p++) = 0x9C;
|
| 307 |
*(p++) = 0x97;
|
| 308 |
|
| 309 |
// acq_setting_mode (uint8)
|
| 310 |
*(p++) = 2;
|
| 311 |
|
| 312 |
// obt (uint32)
|
| 313 |
ULong64_t obt = fOBT + 30LL;
|
| 314 |
while ( obt > 4294967295LL )
|
| 315 |
obt -= 4294967295LL;
|
| 316 |
fOBT = (UInt_t)obt;
|
| 317 |
//
|
| 318 |
*(p++) = (UChar_t)(fOBT >> 24);
|
| 319 |
*(p++) = (UChar_t)(fOBT >> 16);
|
| 320 |
*(p++) = (UChar_t)(fOBT >> 8);
|
| 321 |
*(p++) = (UChar_t)fOBT;
|
| 322 |
|
| 323 |
// last time_sync_info (uint32) (from file 000_001_00110)
|
| 324 |
*(p++) = 0x00;
|
| 325 |
*(p++) = 0x08;
|
| 326 |
*(p++) = 0x68;
|
| 327 |
*(p++) = 0xEF;
|
| 328 |
|
| 329 |
// fav. working schedule (uint8)
|
| 330 |
*(p++) = 0;
|
| 331 |
|
| 332 |
// eff. working schedule (uint8)
|
| 333 |
*(p++) = 0;
|
| 334 |
|
| 335 |
// trigger_mode_A (uint32)
|
| 336 |
*(p++) = 0;
|
| 337 |
*(p++) = 0;
|
| 338 |
*(p++) = 0;
|
| 339 |
*(p++) = 0x01;
|
| 340 |
|
| 341 |
// trigger_mode_B (uint32)
|
| 342 |
*(p++) = 0;
|
| 343 |
*(p++) = 0;
|
| 344 |
*(p++) = 0;
|
| 345 |
*(p++) = 0x03;
|
| 346 |
|
| 347 |
// acq_after_calib (0,1) (uint8)
|
| 348 |
*(p++) = 0;
|
| 349 |
|
| 350 |
// trk_calib_used (uint32)
|
| 351 |
*(p++) = 0;
|
| 352 |
*(p++) = 0;
|
| 353 |
*(p++) = 0;
|
| 354 |
*(p++) = 0x68;
|
| 355 |
|
| 356 |
// acq_build_info (4 zero bits + 28 1's) (uint32)
|
| 357 |
*(p++) = 0x3F;
|
| 358 |
*(p++) = 0xFF;
|
| 359 |
*(p++) = 0xFF;
|
| 360 |
*(p++) = 0xFF;
|
| 361 |
|
| 362 |
// acq_var_info (11 bits) (uint16)
|
| 363 |
*(p++) = 0x23;
|
| 364 |
*(p++) = 0x7F;
|
| 365 |
|
| 366 |
// cal_dsp_mask (uint8)
|
| 367 |
*(p++) = 0;
|
| 368 |
|
| 369 |
// crc (uint16)
|
| 370 |
UShort_t crcRH = (UShort_t)CM_Compute_CRC16((UINT16)0, (BYTE*)&buffRH, (UINT32)(fRunHeaderbuffer*2-2));
|
| 371 |
*(p++) = (UChar_t)(crcRH << 8);
|
| 372 |
*p = (UChar_t)crcRH;
|
| 373 |
|
| 374 |
memcpy(fDataRunHeader,buffRH,fRunHeaderbuffer*sizeof(UShort_t));
|
| 375 |
};
|
| 376 |
|
| 377 |
void Digitizer::DigitizeRunTrailer(){
|
| 378 |
UChar_t buffRT[fRunTrailerbuffer*2];
|
| 379 |
UShort_t buffPSCU[8];
|
| 380 |
UChar_t *p;
|
| 381 |
p=buffRT;
|
| 382 |
|
| 383 |
// header: 16 bytes
|
| 384 |
DigitizePSCU(fRunHeaderbuffer*2,0x21,buffPSCU);
|
| 385 |
memcpy(p,buffPSCU,16*sizeof(UChar_t));
|
| 386 |
p+=16;
|
| 387 |
|
| 388 |
// pkt_counter (uint32)
|
| 389 |
fCounterPhys++;
|
| 390 |
fCounter++;
|
| 391 |
while ( fCounterPhys > 16777215 )
|
| 392 |
fCounterPhys -= 16777215;
|
| 393 |
//
|
| 394 |
*(p++) = (UChar_t)(fCounterPhys >> 24);
|
| 395 |
*(p++) = (UChar_t)(fCounterPhys >> 16);
|
| 396 |
*(p++) = (UChar_t)(fCounterPhys >> 8);
|
| 397 |
*(p++) = (UChar_t)fCounterPhys;
|
| 398 |
|
| 399 |
// pkt_readyCounter: valid packets in the run (uint32)
|
| 400 |
*(p++) = 0;
|
| 401 |
*(p++) = 0;
|
| 402 |
*(p++) = 0;
|
| 403 |
*(p++) = 0;
|
| 404 |
|
| 405 |
// obt (uint32)
|
| 406 |
ULong64_t obt = fOBT + 30LL;
|
| 407 |
while ( obt > 4294967295LL )
|
| 408 |
obt -= 4294967295LL;
|
| 409 |
fOBT = (UInt_t)obt;
|
| 410 |
//
|
| 411 |
*(p++) = (UChar_t)(fOBT >> 24);
|
| 412 |
*(p++) = (UChar_t)(fOBT >> 16);
|
| 413 |
*(p++) = (UChar_t)(fOBT >> 8);
|
| 414 |
*(p++) = (UChar_t)fOBT;
|
| 415 |
|
| 416 |
// last time_sync_info (uint32)
|
| 417 |
*(p++) = 0;
|
| 418 |
*(p++) = 0;
|
| 419 |
*(p++) = 0;
|
| 420 |
*(p++) = 0;
|
| 421 |
|
| 422 |
// crc (uint16)
|
| 423 |
UShort_t crcRT = (UShort_t)CM_Compute_CRC16((UINT16)0, (BYTE*)(buffRT), (UINT32)(fRunTrailerbuffer*2-2));
|
| 424 |
*(p++) = (UChar_t)(crcRT << 8);
|
| 425 |
*p = (UChar_t)crcRT;
|
| 426 |
|
| 427 |
memcpy(fDataRunTrailer,buffRT,fRunTrailerbuffer*sizeof(UShort_t));
|
| 428 |
};
|
| 429 |
|
| 430 |
void Digitizer::AddPadding(){
|
| 431 |
//
|
| 432 |
Float_t pd0 = (fLen+16)/64.;
|
| 433 |
Float_t pd1 = pd0 - (Float_t)int(pd0);
|
| 434 |
Float_t padfrac = 64. - pd1 * 64.;
|
| 435 |
//
|
| 436 |
UInt_t padbytes = (UInt_t)padfrac;
|
| 437 |
if ( padbytes > 0 && padbytes < 64 ){
|
| 438 |
//
|
| 439 |
// here the padding length
|
| 440 |
//
|
| 441 |
fPadding = padbytes+64;
|
| 442 |
//
|
| 443 |
// random padding bytes
|
| 444 |
//
|
| 445 |
for (Int_t ur=0; ur<32; ur++){
|
| 446 |
fDataPadding[ur] = (UShort_t)rand();
|
| 447 |
};
|
| 448 |
};
|
| 449 |
};
|
| 450 |
|
| 451 |
|
| 452 |
void Digitizer::DigitizePSCU(UInt_t length, UChar_t type, UShort_t *pPSCU) {
|
| 453 |
//
|
| 454 |
UChar_t buff[16];
|
| 455 |
//
|
| 456 |
// CPU signature
|
| 457 |
//
|
| 458 |
buff[0] = 0xFA;
|
| 459 |
buff[1] = 0xFE;
|
| 460 |
buff[2] = 0xDE;
|
| 461 |
//
|
| 462 |
// packet type (twice)
|
| 463 |
//
|
| 464 |
buff[3] = type;
|
| 465 |
buff[4] = type;
|
| 466 |
//
|
| 467 |
// counter
|
| 468 |
//
|
| 469 |
fCounter++;
|
| 470 |
while ( fCounter > 16777215 ){
|
| 471 |
fCounter -= 16777215;
|
| 472 |
};
|
| 473 |
//
|
| 474 |
buff[5] = (UChar_t)(fCounter >> 16);
|
| 475 |
buff[6] = (UChar_t)(fCounter >> 8);
|
| 476 |
buff[7] = (UChar_t)fCounter;
|
| 477 |
//
|
| 478 |
// on board time
|
| 479 |
//
|
| 480 |
ULong64_t obt = fOBT + 30LL;
|
| 481 |
//
|
| 482 |
while ( obt > 4294967295LL ){
|
| 483 |
obt -= 4294967295LL;
|
| 484 |
};
|
| 485 |
fOBT = (UInt_t)obt;
|
| 486 |
//
|
| 487 |
buff[8] = (UChar_t)(fOBT >> 24);
|
| 488 |
buff[9] = (UChar_t)(fOBT >> 16);
|
| 489 |
buff[10] = (UChar_t)(fOBT >> 8);
|
| 490 |
buff[11] = (UChar_t)fOBT;
|
| 491 |
//
|
| 492 |
// Packet length
|
| 493 |
//
|
| 494 |
fLen = length;
|
| 495 |
//
|
| 496 |
buff[12] = (UChar_t)(fLen >> 16);
|
| 497 |
buff[13] = (UChar_t)(fLen >> 8);
|
| 498 |
buff[14] = (UChar_t)fLen;
|
| 499 |
//
|
| 500 |
// CPU header CRC
|
| 501 |
//
|
| 502 |
buff[15] = (BYTE)CM_Compute_CRC16((UINT16)0, (BYTE*)&buff, (UINT32)15);
|
| 503 |
//
|
| 504 |
//memcpy(fDataPSCU,buff,16*sizeof(UChar_t));
|
| 505 |
memcpy(pPSCU,buff,16*sizeof(UChar_t));
|
| 506 |
//
|
| 507 |
};
|
| 508 |
|
| 509 |
void Digitizer::ClearCaloCalib(Int_t s){
|
| 510 |
//
|
| 511 |
fcstwerr[s] = 0;
|
| 512 |
fcperror[s] = 0.;
|
| 513 |
for ( Int_t d=0 ; d<11 ;d++ ){
|
| 514 |
Int_t pre = -1;
|
| 515 |
for ( Int_t j=0; j<96 ;j++){
|
| 516 |
if ( j%16 == 0 ) pre++;
|
| 517 |
fcalped[s][d][j] = 0.;
|
| 518 |
fcstwerr[s] = 0.;
|
| 519 |
fcperror[s] = 0.;
|
| 520 |
fcalgood[s][d][j] = 0.;
|
| 521 |
fcalthr[s][d][pre] = 0.;
|
| 522 |
fcalrms[s][d][j] = 0.;
|
| 523 |
fcalbase[s][d][pre] = 0.;
|
| 524 |
fcalvar[s][d][pre] = 0.;
|
| 525 |
};
|
| 526 |
};
|
| 527 |
return;
|
| 528 |
}
|
| 529 |
|
| 530 |
Int_t Digitizer::CaloLoadCalib(Int_t s,TString fcalname, UInt_t calibno){
|
| 531 |
//
|
| 532 |
//
|
| 533 |
UInt_t e = 0;
|
| 534 |
if ( s == 0 ) e = 0;
|
| 535 |
if ( s == 1 ) e = 2;
|
| 536 |
if ( s == 2 ) e = 3;
|
| 537 |
if ( s == 3 ) e = 1;
|
| 538 |
//
|
| 539 |
ifstream myfile;
|
| 540 |
myfile.open(fcalname.Data());
|
| 541 |
if ( !myfile ){
|
| 542 |
return(-107);
|
| 543 |
};
|
| 544 |
myfile.close();
|
| 545 |
//
|
| 546 |
TFile *File = new TFile(fcalname.Data());
|
| 547 |
if ( !File ) return(-108);
|
| 548 |
TTree *tr = (TTree*)File->Get("CalibCalPed");
|
| 549 |
if ( !tr ) return(-109);
|
| 550 |
//
|
| 551 |
TBranch *calo = tr->GetBranch("CalibCalPed");
|
| 552 |
//
|
| 553 |
pamela::CalibCalPedEvent *ce = 0;
|
| 554 |
tr->SetBranchAddress("CalibCalPed", &ce);
|
| 555 |
//
|
| 556 |
Long64_t ncalibs = calo->GetEntries();
|
| 557 |
//
|
| 558 |
if ( !ncalibs ) return(-110);
|
| 559 |
//
|
| 560 |
calo->GetEntry(calibno);
|
| 561 |
//
|
| 562 |
if (ce->cstwerr[s] != 0 && ce->cperror[s] == 0 ) {
|
| 563 |
fcstwerr[s] = ce->cstwerr[s];
|
| 564 |
fcperror[s] = ce->cperror[s];
|
| 565 |
for ( Int_t d=0 ; d<11 ;d++ ){
|
| 566 |
Int_t pre = -1;
|
| 567 |
for ( Int_t j=0; j<96 ;j++){
|
| 568 |
if ( j%16 == 0 ) pre++;
|
| 569 |
fcalped[s][d][j] = ce->calped[e][d][j];
|
| 570 |
fcalgood[s][d][j] = ce->calgood[e][d][j];
|
| 571 |
fcalthr[s][d][pre] = ce->calthr[e][d][pre];
|
| 572 |
fcalrms[s][d][j] = ce->calrms[e][d][j];
|
| 573 |
fcalbase[s][d][pre] = ce->calbase[e][d][pre];
|
| 574 |
fcalvar[s][d][pre] = ce->calvar[e][d][pre];
|
| 575 |
};
|
| 576 |
};
|
| 577 |
} else {
|
| 578 |
printf(" CALORIMETER - ERROR: problems finding a good calibration in this file! \n\n ");
|
| 579 |
File->Close();
|
| 580 |
return(-111);
|
| 581 |
};
|
| 582 |
File->Close();
|
| 583 |
return(0);
|
| 584 |
}
|
| 585 |
|
| 586 |
|
| 587 |
void Digitizer::DigitizeCALOCALIB() {
|
| 588 |
//
|
| 589 |
// Header of the four sections
|
| 590 |
//
|
| 591 |
fSecCalo[0] = 0xAA00; // XE
|
| 592 |
fSecCalo[1] = 0xB100; // XO
|
| 593 |
fSecCalo[2] = 0xB600; // YE
|
| 594 |
fSecCalo[3] = 0xAD00; // YO
|
| 595 |
//
|
| 596 |
// length of the data is 0x1215
|
| 597 |
//
|
| 598 |
fSecCALOLength[0] = 0x1215; // XE
|
| 599 |
fSecCALOLength[1] = 0x1215; // XO
|
| 600 |
fSecCALOLength[2] = 0x1215; // YE
|
| 601 |
fSecCALOLength[3] = 0x1215; // YO
|
| 602 |
//
|
| 603 |
Int_t chksum = 0;
|
| 604 |
UInt_t tstrip = 0;
|
| 605 |
UInt_t fSecPointer = 0;
|
| 606 |
//
|
| 607 |
for (Int_t sec=0; sec < 4; sec++){
|
| 608 |
//
|
| 609 |
// sec = 0 -> XE 1 -> XO 2-> YE 3 -> YO
|
| 610 |
//
|
| 611 |
fCALOlength = 0;
|
| 612 |
memset(fDataCALO,0,sizeof(UShort_t)*fCALObuffer);
|
| 613 |
fSecPointer = fCALOlength;
|
| 614 |
//
|
| 615 |
// First of all we have section header and packet length
|
| 616 |
//
|
| 617 |
fDataCALO[fCALOlength] = fSecCalo[sec];
|
| 618 |
fCALOlength++;
|
| 619 |
fDataCALO[fCALOlength] = fSecCALOLength[sec];
|
| 620 |
fCALOlength++;
|
| 621 |
//
|
| 622 |
// Section XO is read in the opposite direction respect to the others
|
| 623 |
//
|
| 624 |
chksum = 0;
|
| 625 |
//
|
| 626 |
for (Int_t plane=0; plane < 11; plane++){
|
| 627 |
//
|
| 628 |
if ( sec == 1 ) tstrip = fCALOlength + 96*2;
|
| 629 |
//
|
| 630 |
for (Int_t strip=0; strip < 96; strip++){
|
| 631 |
//
|
| 632 |
chksum += (Int_t)fcalped[sec][plane][strip];
|
| 633 |
//
|
| 634 |
// save value
|
| 635 |
//
|
| 636 |
if ( sec == 1 ){
|
| 637 |
tstrip -= 2;
|
| 638 |
fDataCALO[tstrip] = (Int_t)fcalped[sec][plane][strip];
|
| 639 |
fDataCALO[tstrip+1] = (Int_t)fcalgood[sec][plane][strip];
|
| 640 |
} else {
|
| 641 |
fDataCALO[fCALOlength] = (Int_t)fcalped[sec][plane][strip];
|
| 642 |
fDataCALO[fCALOlength+1] = (Int_t)fcalgood[sec][plane][strip];
|
| 643 |
};
|
| 644 |
fCALOlength +=2;
|
| 645 |
};
|
| 646 |
//
|
| 647 |
};
|
| 648 |
//
|
| 649 |
fDataCALO[fCALOlength] = (UShort_t)chksum;
|
| 650 |
fCALOlength++;
|
| 651 |
fDataCALO[fCALOlength] = 0;
|
| 652 |
fCALOlength++;
|
| 653 |
fDataCALO[fCALOlength] = (UShort_t)((Int_t)(chksum >> 16));
|
| 654 |
fCALOlength++;
|
| 655 |
//
|
| 656 |
// Section XO is read in the opposite direction respect to the others
|
| 657 |
//
|
| 658 |
chksum = 0;
|
| 659 |
//
|
| 660 |
for (Int_t plane=0; plane < 11; plane++){
|
| 661 |
//
|
| 662 |
if ( sec == 1 ) tstrip = fCALOlength+6*2;
|
| 663 |
//
|
| 664 |
for (Int_t strip=0; strip < 6; strip++){
|
| 665 |
//
|
| 666 |
chksum += (Int_t)fcalthr[sec][plane][strip];
|
| 667 |
//
|
| 668 |
// save value
|
| 669 |
//
|
| 670 |
if ( sec == 1 ){
|
| 671 |
tstrip -= 2;
|
| 672 |
fDataCALO[tstrip] = 0;
|
| 673 |
fDataCALO[tstrip+1] = (Int_t)fcalthr[sec][plane][strip];
|
| 674 |
} else {
|
| 675 |
fDataCALO[fCALOlength] = 0;
|
| 676 |
fDataCALO[fCALOlength+1] = (Int_t)fcalthr[sec][plane][strip];
|
| 677 |
};
|
| 678 |
fCALOlength +=2;
|
| 679 |
};
|
| 680 |
//
|
| 681 |
};
|
| 682 |
//
|
| 683 |
fDataCALO[fCALOlength] = 0;
|
| 684 |
fCALOlength++;
|
| 685 |
fDataCALO[fCALOlength] = (UShort_t)chksum;
|
| 686 |
fCALOlength++;
|
| 687 |
fDataCALO[fCALOlength] = 0;
|
| 688 |
fCALOlength++;
|
| 689 |
fDataCALO[fCALOlength] = (UShort_t)((Int_t)(chksum >> 16));
|
| 690 |
fCALOlength++;
|
| 691 |
//
|
| 692 |
// Section XO is read in the opposite direction respect to the others
|
| 693 |
//
|
| 694 |
for (Int_t plane=0; plane < 11; plane++){
|
| 695 |
//
|
| 696 |
if ( sec == 1 ) tstrip = fCALOlength+96*2;
|
| 697 |
//
|
| 698 |
for (Int_t strip=0; strip < 96; strip++){
|
| 699 |
//
|
| 700 |
// save value
|
| 701 |
//
|
| 702 |
if ( sec == 1 ){
|
| 703 |
tstrip -= 2;
|
| 704 |
fDataCALO[tstrip] = 0;
|
| 705 |
fDataCALO[tstrip+1] = (Int_t)fcalrms[sec][plane][strip];
|
| 706 |
} else {
|
| 707 |
fDataCALO[fCALOlength] = 0;
|
| 708 |
fDataCALO[fCALOlength+1] = (Int_t)fcalrms[sec][plane][strip];
|
| 709 |
};
|
| 710 |
fCALOlength += 2;
|
| 711 |
};
|
| 712 |
//
|
| 713 |
};
|
| 714 |
//
|
| 715 |
// Section XO is read in the opposite direction respect to the others
|
| 716 |
//
|
| 717 |
for (Int_t plane=0; plane < 11; plane++){
|
| 718 |
//
|
| 719 |
if ( sec == 1 ) tstrip = fCALOlength+6*4;
|
| 720 |
//
|
| 721 |
for (Int_t strip=0; strip < 6; strip++){
|
| 722 |
//
|
| 723 |
// save value
|
| 724 |
//
|
| 725 |
if ( sec == 1 ){
|
| 726 |
tstrip -= 4;
|
| 727 |
fDataCALO[tstrip] = 0;
|
| 728 |
fDataCALO[tstrip+1] = (Int_t)fcalbase[sec][plane][strip];
|
| 729 |
fDataCALO[tstrip+2] = 0;
|
| 730 |
fDataCALO[tstrip+3] = (Int_t)fcalvar[sec][plane][strip];
|
| 731 |
} else {
|
| 732 |
fDataCALO[fCALOlength] = 0;
|
| 733 |
fDataCALO[fCALOlength+1] = (Int_t)fcalbase[sec][plane][strip];
|
| 734 |
fDataCALO[fCALOlength+2] = 0;
|
| 735 |
fDataCALO[fCALOlength+3] = (Int_t)fcalvar[sec][plane][strip];
|
| 736 |
};
|
| 737 |
fCALOlength +=4;
|
| 738 |
};
|
| 739 |
//
|
| 740 |
};
|
| 741 |
//
|
| 742 |
//
|
| 743 |
// here we calculate and save the CRC
|
| 744 |
//
|
| 745 |
fDataCALO[fCALOlength] = 0;
|
| 746 |
fCALOlength++;
|
| 747 |
Short_t CRC = 0;
|
| 748 |
for (UInt_t i=0; i<(fCALOlength-fSecPointer); i++){
|
| 749 |
CRC=crc(CRC,fDataCALO[i+fSecPointer]);
|
| 750 |
};
|
| 751 |
fDataCALO[fCALOlength] = (UShort_t)CRC;
|
| 752 |
fCALOlength++;
|
| 753 |
//
|
| 754 |
UInt_t length=fCALOlength*2;
|
| 755 |
DigitizePSCU(length,0x18,fDataPSCU);
|
| 756 |
//
|
| 757 |
// Add padding to 64 bits
|
| 758 |
//
|
| 759 |
AddPadding();
|
| 760 |
//
|
| 761 |
fOutputfile.write(reinterpret_cast<char*>(fDataPSCU),sizeof(UShort_t)*fPSCUbuffer);
|
| 762 |
UShort_t temp[1000000];
|
| 763 |
memset(temp,0,sizeof(UShort_t)*1000000);
|
| 764 |
swab(fDataCALO,temp,sizeof(UShort_t)*fCALOlength); // WE MUST SWAP THE BYTES!!!
|
| 765 |
fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fCALOlength);
|
| 766 |
//
|
| 767 |
// padding to 64 bytes
|
| 768 |
//
|
| 769 |
if ( fPadding ){
|
| 770 |
fOutputfile.write(reinterpret_cast<char*>(fDataPadding),sizeof(UChar_t)*fPadding);
|
| 771 |
};
|
| 772 |
//
|
| 773 |
//
|
| 774 |
};
|
| 775 |
//
|
| 776 |
};
|
| 777 |
|
| 778 |
void Digitizer::CaloLoadCalib() {
|
| 779 |
//
|
| 780 |
fGivenCaloCalib = 0; // ####@@@@ should be given as input par @@@@####
|
| 781 |
//
|
| 782 |
// first of all load the MIP to ADC conversion values
|
| 783 |
//
|
| 784 |
stringstream calfile;
|
| 785 |
Int_t error = 0;
|
| 786 |
GL_PARAM *glparam = new GL_PARAM();
|
| 787 |
//
|
| 788 |
// determine where I can find calorimeter ADC to MIP conversion file
|
| 789 |
//
|
| 790 |
error = 0;
|
| 791 |
error = glparam->Query_GL_PARAM(3,101,fDbc);
|
| 792 |
//
|
| 793 |
calfile.str("");
|
| 794 |
calfile << glparam->PATH.Data() << "/";
|
| 795 |
calfile << glparam->NAME.Data();
|
| 796 |
//
|
| 797 |
printf("\n Using Calorimeter ADC to MIP conversion file: \n %s \n",calfile.str().c_str());
|
| 798 |
FILE *f;
|
| 799 |
f = fopen(calfile.str().c_str(),"rb");
|
| 800 |
//
|
| 801 |
memset(fCalomip,0,4224*sizeof(fCalomip[0][0][0]));
|
| 802 |
//
|
| 803 |
for (Int_t m = 0; m < 2 ; m++ ){
|
| 804 |
for (Int_t k = 0; k < 22; k++ ){
|
| 805 |
for (Int_t l = 0; l < 96; l++ ){
|
| 806 |
fread(&fCalomip[m][k][l],sizeof(fCalomip[m][k][l]),1,f);
|
| 807 |
};
|
| 808 |
};
|
| 809 |
};
|
| 810 |
fclose(f);
|
| 811 |
//
|
| 812 |
// determine which calibration has to be used and load it for each section
|
| 813 |
//
|
| 814 |
GL_CALO_CALIB *glcalo = new GL_CALO_CALIB();
|
| 815 |
GL_ROOT *glroot = new GL_ROOT();
|
| 816 |
TString fcalname;
|
| 817 |
UInt_t idcalib;
|
| 818 |
UInt_t calibno;
|
| 819 |
UInt_t utime = 0;
|
| 820 |
//
|
| 821 |
for (UInt_t s=0; s<4; s++){
|
| 822 |
//
|
| 823 |
// clear calo calib variables for section s
|
| 824 |
//
|
| 825 |
ClearCaloCalib(s);
|
| 826 |
//
|
| 827 |
if ( fGivenCaloCalib ){
|
| 828 |
//
|
| 829 |
// a time has been given as input on the command line so retrieve the calibration that preceed that time
|
| 830 |
//
|
| 831 |
glcalo->Query_GL_CALO_CALIB(fGivenCaloCalib,utime,s,fDbc);
|
| 832 |
//
|
| 833 |
calibno = glcalo->EV_ROOT;
|
| 834 |
idcalib = glcalo->ID_ROOT_L0;
|
| 835 |
//
|
| 836 |
// determine path and name and entry of the calibration file
|
| 837 |
//
|
| 838 |
printf("\n");
|
| 839 |
printf(" ** SECTION %i **\n",s);
|
| 840 |
//
|
| 841 |
glroot->Query_GL_ROOT(idcalib,fDbc);
|
| 842 |
//
|
| 843 |
stringstream name;
|
| 844 |
name.str("");
|
| 845 |
name << glroot->PATH.Data() << "/";
|
| 846 |
name << glroot->NAME.Data();
|
| 847 |
//
|
| 848 |
fcalname = (TString)name.str().c_str();
|
| 849 |
//
|
| 850 |
printf("\n Section %i : using file %s calibration at entry %i: \n",s,fcalname.Data(),calibno);
|
| 851 |
//
|
| 852 |
} else {
|
| 853 |
error = 0;
|
| 854 |
error = glparam->Query_GL_PARAM(1,104,fDbc);
|
| 855 |
//
|
| 856 |
calfile.str("");
|
| 857 |
calfile << glparam->PATH.Data() << "/";
|
| 858 |
calfile << glparam->NAME.Data();
|
| 859 |
//
|
| 860 |
printf("\n Section %i : using default calorimeter calibration: \n %s \n",s,calfile.str().c_str());
|
| 861 |
//
|
| 862 |
fcalname = (TString)calfile.str().c_str();
|
| 863 |
calibno = s;
|
| 864 |
//
|
| 865 |
};
|
| 866 |
//
|
| 867 |
// load calibration variables in memory
|
| 868 |
//
|
| 869 |
CaloLoadCalib(s,fcalname,calibno);
|
| 870 |
//
|
| 871 |
};
|
| 872 |
//
|
| 873 |
// at this point we have in memory the calorimeter calibration and we can save it to disk in the correct format and use it to digitize the data
|
| 874 |
//
|
| 875 |
delete glparam;
|
| 876 |
delete glcalo;
|
| 877 |
delete glroot;
|
| 878 |
};
|
| 879 |
|
| 880 |
void Digitizer::DigitizeCALO() {
|
| 881 |
//
|
| 882 |
fModCalo = 0; // 0 is RAW, 1 is COMPRESS, 2 is FULL ####@@@@ should be given as input par @@@@####
|
| 883 |
//
|
| 884 |
//
|
| 885 |
//
|
| 886 |
fCALOlength = 0; // reset total dimension of calo data
|
| 887 |
//
|
| 888 |
// gpamela variables to be used
|
| 889 |
//
|
| 890 |
fhBookTree->SetBranchStatus("Nthcali",1);
|
| 891 |
fhBookTree->SetBranchStatus("Icaplane",1);
|
| 892 |
fhBookTree->SetBranchStatus("Icastrip",1);
|
| 893 |
fhBookTree->SetBranchStatus("Icamod",1);
|
| 894 |
fhBookTree->SetBranchStatus("Enestrip",1);
|
| 895 |
//
|
| 896 |
// call different routines depending on the acq mode you want to simulate
|
| 897 |
//
|
| 898 |
switch ( fModCalo ){
|
| 899 |
case 0:
|
| 900 |
this->DigitizeCALORAW();
|
| 901 |
break;
|
| 902 |
case 1:
|
| 903 |
this->DigitizeCALOCOMPRESS();
|
| 904 |
break;
|
| 905 |
case 2:
|
| 906 |
this->DigitizeCALOFULL();
|
| 907 |
break;
|
| 908 |
};
|
| 909 |
//
|
| 910 |
};
|
| 911 |
|
| 912 |
Float_t Digitizer::GetCALOen(Int_t sec, Int_t plane, Int_t strip){
|
| 913 |
//
|
| 914 |
// determine plane and strip
|
| 915 |
//
|
| 916 |
Int_t mplane = 0;
|
| 917 |
//
|
| 918 |
// wrong!
|
| 919 |
//
|
| 920 |
// if ( sec == 0 || sec == 3 ) mplane = (plane * 4) + sec + 1;
|
| 921 |
// if ( sec == 1 ) mplane = (plane * 4) + 2 + 1;
|
| 922 |
// if ( sec == 2 ) mplane = (plane * 4) + 1 + 1;
|
| 923 |
//
|
| 924 |
if ( sec == 0 ) mplane = plane * 4 + 1; // it must be 0, 4, 8, ... (+1) from plane = 0, 11
|
| 925 |
if ( sec == 1 ) mplane = plane * 4 + 2 + 1; // it must be 2, 6, 10, ... (+1) from plane = 0, 11
|
| 926 |
if ( sec == 2 ) mplane = plane * 4 + 3 + 1; // it must be 3, 7, 11, ... (+1) from plane = 0, 11
|
| 927 |
if ( sec == 3 ) mplane = plane * 4 + 1 + 1; // it must be 1, 5, 9, ... (+1) from plane = 0, 11
|
| 928 |
//
|
| 929 |
Int_t mstrip = strip + 1;
|
| 930 |
//
|
| 931 |
// search energy release in gpamela output
|
| 932 |
//
|
| 933 |
for (Int_t i=0; i<Nthcali;i++){
|
| 934 |
if ( Icaplane[i] == mplane && Icastrip[i] == mstrip ){
|
| 935 |
return (Enestrip[i]);
|
| 936 |
};
|
| 937 |
};
|
| 938 |
//
|
| 939 |
// if not found it means no energy release so return 0.
|
| 940 |
//
|
| 941 |
return(0.);
|
| 942 |
};
|
| 943 |
|
| 944 |
void Digitizer::DigitizeCALORAW() {
|
| 945 |
//
|
| 946 |
// some variables
|
| 947 |
//
|
| 948 |
Float_t ens = 0.;
|
| 949 |
UInt_t adcsig = 0;
|
| 950 |
UInt_t adcbase = 0;
|
| 951 |
UInt_t adc = 0;
|
| 952 |
Int_t pre = 0;
|
| 953 |
UInt_t l = 0;
|
| 954 |
UInt_t lpl = 0;
|
| 955 |
UInt_t tstrip = 0;
|
| 956 |
UInt_t fSecPointer = 0;
|
| 957 |
Double_t pedenoise;
|
| 958 |
Float_t rms = 0.;
|
| 959 |
Float_t pedestal = 0.;
|
| 960 |
//
|
| 961 |
// clean the data structure
|
| 962 |
//
|
| 963 |
memset(fDataCALO,0,sizeof(UShort_t)*fCALObuffer);
|
| 964 |
//
|
| 965 |
// Header of the four sections
|
| 966 |
//
|
| 967 |
fSecCalo[0] = 0xEA08; // XE
|
| 968 |
fSecCalo[1] = 0xF108; // XO
|
| 969 |
fSecCalo[2] = 0xF608; // YE
|
| 970 |
fSecCalo[3] = 0xED08; // YO
|
| 971 |
//
|
| 972 |
// length of the data is 0x0428 in RAW mode
|
| 973 |
//
|
| 974 |
fSecCALOLength[0] = 0x0428; // XE
|
| 975 |
fSecCALOLength[1] = 0x0428; // XO
|
| 976 |
fSecCALOLength[2] = 0x0428; // YE
|
| 977 |
fSecCALOLength[3] = 0x0428; // YO
|
| 978 |
//
|
| 979 |
// let's start
|
| 980 |
//
|
| 981 |
fCALOlength = 0;
|
| 982 |
//
|
| 983 |
for (Int_t sec=0; sec < 4; sec++){
|
| 984 |
//
|
| 985 |
// sec = 0 -> XE 1 -> XO 2-> YE 3 -> YO
|
| 986 |
//
|
| 987 |
l = 0; // XE and XO are Y planes
|
| 988 |
if ( sec < 2 ) l = 1; // while YE and YO are X planes
|
| 989 |
//
|
| 990 |
fSecPointer = fCALOlength;
|
| 991 |
//
|
| 992 |
// First of all we have section header and packet length
|
| 993 |
//
|
| 994 |
fDataCALO[fCALOlength] = fSecCalo[sec];
|
| 995 |
fCALOlength++;
|
| 996 |
fDataCALO[fCALOlength] = fSecCALOLength[sec];
|
| 997 |
fCALOlength++;
|
| 998 |
//
|
| 999 |
// selftrigger coincidences - in the future we should add here some code to simulate timing response of pre-amplifiers
|
| 1000 |
//
|
| 1001 |
for (Int_t autoplane=0; autoplane < 7; autoplane++){
|
| 1002 |
fDataCALO[fCALOlength] = 0x0000;
|
| 1003 |
fCALOlength++;
|
| 1004 |
};
|
| 1005 |
//
|
| 1006 |
//
|
| 1007 |
// here comes data
|
| 1008 |
//
|
| 1009 |
//
|
| 1010 |
// Section XO is read in the opposite direction respect to the others
|
| 1011 |
//
|
| 1012 |
if ( sec == 1 ){
|
| 1013 |
tstrip = 96*11 + fCALOlength;
|
| 1014 |
} else {
|
| 1015 |
tstrip = 0;
|
| 1016 |
};
|
| 1017 |
//
|
| 1018 |
pre = -1;
|
| 1019 |
//
|
| 1020 |
for (Int_t strip=0; strip < 96; strip++){
|
| 1021 |
//
|
| 1022 |
// which is the pre for this strip?
|
| 1023 |
//
|
| 1024 |
if (strip%16 == 0) {
|
| 1025 |
pre++;
|
| 1026 |
};
|
| 1027 |
//
|
| 1028 |
if ( sec == 1 ) tstrip -= 11;
|
| 1029 |
//
|
| 1030 |
for (Int_t plane=0; plane < 11; plane++){
|
| 1031 |
//
|
| 1032 |
// here is wrong!!!!
|
| 1033 |
//
|
| 1034 |
//
|
| 1035 |
// if ( plane%2 == 0 && sec%2 != 0){
|
| 1036 |
// lpl = plane*2;
|
| 1037 |
// } else {
|
| 1038 |
// lpl = (plane*2) + 1;
|
| 1039 |
// };
|
| 1040 |
//
|
| 1041 |
if ( sec == 0 || sec == 3 ) lpl = plane * 2;
|
| 1042 |
if ( sec == 1 || sec == 2 ) lpl = (plane * 2) + 1;
|
| 1043 |
//
|
| 1044 |
// get the energy in GeV from the simulation for that strip
|
| 1045 |
//
|
| 1046 |
ens = this->GetCALOen(sec,plane,strip);
|
| 1047 |
//
|
| 1048 |
// convert it into ADC channels
|
| 1049 |
//
|
| 1050 |
adcsig = int(ens*fCalomip[l][lpl][strip]/fCALOGeV2MIPratio);
|
| 1051 |
//
|
| 1052 |
// sum baselines
|
| 1053 |
//
|
| 1054 |
adcbase = (UInt_t)fcalbase[sec][plane][pre];
|
| 1055 |
//
|
| 1056 |
// add noise and pedestals
|
| 1057 |
//
|
| 1058 |
pedestal = fcalped[sec][plane][strip];
|
| 1059 |
rms = fcalrms[sec][plane][strip]/4.;
|
| 1060 |
//
|
| 1061 |
// Add random gaussian noise of RMS rms and Centered in the pedestal
|
| 1062 |
//
|
| 1063 |
pedenoise = gRandom->Gaus((Double_t)pedestal,(Double_t)rms);
|
| 1064 |
//
|
| 1065 |
// Sum all contribution
|
| 1066 |
//
|
| 1067 |
adc = adcsig + adcbase + (Int_t)round(pedenoise);
|
| 1068 |
//
|
| 1069 |
// Signal saturation
|
| 1070 |
//
|
| 1071 |
if ( adc > 0x7FFF ) adc = 0x7FFF;
|
| 1072 |
//
|
| 1073 |
// save value
|
| 1074 |
//
|
| 1075 |
if ( sec == 1 ){
|
| 1076 |
fDataCALO[tstrip] = adc;
|
| 1077 |
tstrip++;
|
| 1078 |
} else {
|
| 1079 |
fDataCALO[fCALOlength] = adc;
|
| 1080 |
};
|
| 1081 |
fCALOlength++;
|
| 1082 |
//
|
| 1083 |
};
|
| 1084 |
//
|
| 1085 |
if ( sec == 1 ) tstrip -= 11;
|
| 1086 |
//
|
| 1087 |
};
|
| 1088 |
//
|
| 1089 |
// here we calculate and save the CRC
|
| 1090 |
//
|
| 1091 |
Short_t CRC = 0;
|
| 1092 |
for (UInt_t i=0; i<(fCALOlength-fSecPointer); i++){
|
| 1093 |
CRC=crc(CRC,fDataCALO[i+fSecPointer]);
|
| 1094 |
};
|
| 1095 |
fDataCALO[fCALOlength] = (UShort_t)CRC;
|
| 1096 |
fCALOlength++;
|
| 1097 |
//
|
| 1098 |
};
|
| 1099 |
//
|
| 1100 |
// for (Int_t i=0; i<fCALOlength; i++){
|
| 1101 |
// printf(" WORD %i DIGIT %0x \n",i,fDataCALO[i]);
|
| 1102 |
// };
|
| 1103 |
//
|
| 1104 |
};
|
| 1105 |
|
| 1106 |
void Digitizer::DigitizeCALOCOMPRESS() {
|
| 1107 |
//
|
| 1108 |
printf(" COMPRESS MODE STILL NOT IMPLEMENTED! \n");
|
| 1109 |
//
|
| 1110 |
this->DigitizeCALORAW();
|
| 1111 |
return;
|
| 1112 |
//
|
| 1113 |
//
|
| 1114 |
//
|
| 1115 |
fSecCalo[0] = 0xEA00;
|
| 1116 |
fSecCalo[1] = 0xF100;
|
| 1117 |
fSecCalo[2] = 0xF600;
|
| 1118 |
fSecCalo[3] = 0xED00;
|
| 1119 |
//
|
| 1120 |
// length of the data in DSP mode must be calculated on fly during digitization
|
| 1121 |
//
|
| 1122 |
memset(fSecCALOLength,0x0,4*sizeof(UShort_t));
|
| 1123 |
//
|
| 1124 |
// here comes raw data
|
| 1125 |
//
|
| 1126 |
Int_t en = 0;
|
| 1127 |
//
|
| 1128 |
for (Int_t sec=0; sec < 4; sec++){
|
| 1129 |
fDataCALO[en] = fSecCalo[sec];
|
| 1130 |
en++;
|
| 1131 |
fDataCALO[en] = fSecCALOLength[sec];
|
| 1132 |
en++;
|
| 1133 |
for (Int_t plane=0; plane < 11; plane++){
|
| 1134 |
for (Int_t strip=0; strip < 11; strip++){
|
| 1135 |
fDataCALO[en] = 0x0;
|
| 1136 |
en++;
|
| 1137 |
};
|
| 1138 |
};
|
| 1139 |
};
|
| 1140 |
//
|
| 1141 |
};
|
| 1142 |
|
| 1143 |
void Digitizer::DigitizeCALOFULL() {
|
| 1144 |
//
|
| 1145 |
printf(" FULL MODE STILL NOT IMPLEMENTED! \n");
|
| 1146 |
//
|
| 1147 |
this->DigitizeCALORAW();
|
| 1148 |
return;
|
| 1149 |
//
|
| 1150 |
fSecCalo[0] = 0xEA00;
|
| 1151 |
fSecCalo[1] = 0xF100;
|
| 1152 |
fSecCalo[2] = 0xF600;
|
| 1153 |
fSecCalo[3] = 0xED00;
|
| 1154 |
//
|
| 1155 |
// length of the data in DSP mode must be calculated on fly during digitization
|
| 1156 |
//
|
| 1157 |
memset(fSecCALOLength,0x0,4*sizeof(UShort_t));
|
| 1158 |
//
|
| 1159 |
// here comes raw data
|
| 1160 |
//
|
| 1161 |
Int_t en = 0;
|
| 1162 |
//
|
| 1163 |
for (Int_t sec=0; sec < 4; sec++){
|
| 1164 |
fDataCALO[en] = fSecCalo[sec];
|
| 1165 |
en++;
|
| 1166 |
fDataCALO[en] = fSecCALOLength[sec];
|
| 1167 |
en++;
|
| 1168 |
for (Int_t plane=0; plane < 11; plane++){
|
| 1169 |
for (Int_t strip=0; strip < 11; strip++){
|
| 1170 |
fDataCALO[en] = 0x0;
|
| 1171 |
en++;
|
| 1172 |
};
|
| 1173 |
};
|
| 1174 |
};
|
| 1175 |
//
|
| 1176 |
};
|
| 1177 |
|
| 1178 |
//void Digitizer::DigitizeTRIGGER() {
|
| 1179 |
//fDataTrigger: 152 bytes
|
| 1180 |
// corrected 30/11/'07 SO (was 153)
|
| 1181 |
//for (Int_t j=0; j < 152; j++)
|
| 1182 |
// fDataTrigger[j]=0x00;
|
| 1183 |
//};
|
| 1184 |
|
| 1185 |
Int_t Digitizer::DigitizeTOF() {
|
| 1186 |
//fDataTof: 12 x 23 bytes (=276 bytes)
|
| 1187 |
UChar_t *pTof=fDataTof;
|
| 1188 |
Bool_t DEBUG=false;
|
| 1189 |
|
| 1190 |
// --- activate branches:
|
| 1191 |
fhBookTree->SetBranchStatus("Nthtof",1);
|
| 1192 |
fhBookTree->SetBranchStatus("Ipltof",1);
|
| 1193 |
fhBookTree->SetBranchStatus("Ipaddle",1);
|
| 1194 |
fhBookTree->SetBranchStatus("Xintof",1);
|
| 1195 |
fhBookTree->SetBranchStatus("Yintof",1);
|
| 1196 |
fhBookTree->SetBranchStatus("Xouttof",1);
|
| 1197 |
fhBookTree->SetBranchStatus("Youttof",1);
|
| 1198 |
fhBookTree->SetBranchStatus("Ereltof",1);
|
| 1199 |
fhBookTree->SetBranchStatus("Timetof",1);
|
| 1200 |
// not yet used: Zintof, Xouttof, Youttof, Zouttof
|
| 1201 |
|
| 1202 |
// ------ evaluate energy in each pmt: ------
|
| 1203 |
// strip geometry (lenght/width)
|
| 1204 |
Float_t dimel[6] = {33.0, 40.8 ,18.0, 15.0, 15.0, 18.0};
|
| 1205 |
//Float_t dimes[6] = {5.1, 5.5, 7.5, 9.0, 6.0, 5.0};
|
| 1206 |
|
| 1207 |
// S11 8 paddles 33.0 x 5.1 cm
|
| 1208 |
// S12 6 paddles 40.8 x 5.5 cm
|
| 1209 |
// S21 2 paddles 18.0 x 7.5 cm
|
| 1210 |
// S22 2 paddles 15.0 x 9.0 cm
|
| 1211 |
// S31 3 paddles 15.0 x 6.0 cm
|
| 1212 |
// S32 3 paddles 18.0 x 5.0 cm
|
| 1213 |
|
| 1214 |
Float_t FGeo[2]={0., 0.}; /* geometrical factor */
|
| 1215 |
|
| 1216 |
const Float_t Pho_keV = 10.; // photons per keV in scintillator
|
| 1217 |
const Float_t echarge = 1.6e-19; // electron charge
|
| 1218 |
Float_t Npho=0.;
|
| 1219 |
Float_t QevePmt_pC[48];
|
| 1220 |
Float_t QhitPad_pC[2]={0., 0.};
|
| 1221 |
Float_t QhitPmt_pC[2]={0., 0.};
|
| 1222 |
Float_t pmGain = 3.5e6; /* PMT Gain: the same for all PMTs */
|
| 1223 |
Float_t effi=0.21; /* Efficienza di fotocatodo */
|
| 1224 |
|
| 1225 |
// Float_t ADC_pC0=-58.1; // ADC/pC conversion coefficient 0
|
| 1226 |
// Float_t ADC_pC1=1.728; // ADC/pC conversion coefficient 1
|
| 1227 |
// Float_t ADC_pC2=-4.063e-05; // ADC/pC conversion coefficient 2
|
| 1228 |
// Float_t ADC_pC3=-5.763e-08; // ADC/pC conversion coefficient 3
|
| 1229 |
|
| 1230 |
// pC < 800
|
| 1231 |
Float_t ADC_pC0A = -4.437616e+01 ;
|
| 1232 |
Float_t ADC_pC1A = 1.573329e+00 ;
|
| 1233 |
Float_t ADC_pC2A = 2.780518e-04 ;
|
| 1234 |
Float_t ADC_pC3A = -2.302160e-07 ;
|
| 1235 |
|
| 1236 |
// pC > 800:
|
| 1237 |
Float_t ADC_pC0B = -2.245756e+02 ;
|
| 1238 |
Float_t ADC_pC1B = 2.184156e+00 ;
|
| 1239 |
Float_t ADC_pC2B = -4.171825e-04 ;
|
| 1240 |
Float_t ADC_pC3B = 3.789715e-08 ;
|
| 1241 |
|
| 1242 |
Float_t pCthres=40.; // threshold in charge
|
| 1243 |
Int_t ADClast=4095; // no signal --> ADC ch=4095
|
| 1244 |
Int_t ADCsat=3100; // saturation value for the ADCs
|
| 1245 |
Int_t ADCtof[48];
|
| 1246 |
|
| 1247 |
|
| 1248 |
// ---- introduce scale factors to tune simul ADC to real data 24-oct DC
|
| 1249 |
// Float_t ScaleFact[48]={0.18,0.22,0.35,0.26,0.47,0.35,0.31,0.37,
|
| 1250 |
// 0.44,0.23,0.38,0.60,0.39,0.29,0.40,0.23,
|
| 1251 |
// 0.30,0.66,0.22,1.53,0.17,0.55,
|
| 1252 |
// 0.84,0.19,0.21,1.64,0.62,0.13,
|
| 1253 |
// 0.18,0.15,0.10,0.14,0.14,0.14,0.14,0.12,
|
| 1254 |
// 0.26,0.18,0.25,0.23,0.20,0.40,0.19,0.23,0.25,0.23,0.25,0.20};
|
| 1255 |
|
| 1256 |
// new scale factors: WM 30-Oct-07
|
| 1257 |
// Float_t ScaleFact[48]={0.35,0.41,0.32,0.34,0.58,0.47,0.42,0.44,
|
| 1258 |
// 0.50,0.34,0.50,0.50,0.51,0.42,0.46,0.25,
|
| 1259 |
// 0.20,0.38,0.29,0.49,0.24,0.68,
|
| 1260 |
// 0.30,0.26,0.28,0.79,0.31,0.12,
|
| 1261 |
// 0.25,0.21,0.14,0.20,
|
| 1262 |
// 0.16,0.17,0.19,0.18,
|
| 1263 |
// 0.34,0.27,0.34,0.31,0.25,0.57,
|
| 1264 |
// 0.24,0.34,0.34,0.32,0.31,0.30};
|
| 1265 |
|
| 1266 |
Float_t ScaleFact[48]={0.39, 0.49, 0.38, 0.40, 0.65, 0.51, 0.43,
|
| 1267 |
0.49, 0.58, 0.38, 0.53, 0.57, 0.53, 0.45, 0.49, 0.16,
|
| 1268 |
0.15, 0.44, 0.28, 0.57, 0.26, 0.72, 0.37, 0.29, 0.30, 0.89,
|
| 1269 |
0.37, 0.08, 0.27, 0.23, 0.12, 0.22, 0.15, 0.16, 0.21,
|
| 1270 |
0.19, 0.41, 0.32, 0.39, 0.38, 0.28, 0.66, 0.28, 0.40, 0.39, 0.40, 0.37, 0.35 };
|
| 1271 |
|
| 1272 |
for(Int_t i=0; i<48; i++){
|
| 1273 |
QevePmt_pC[i] = 0;
|
| 1274 |
ADCtof[i]=0;
|
| 1275 |
}
|
| 1276 |
|
| 1277 |
// ------ read calibration file (get A1, A2, lambda1, lambda2)
|
| 1278 |
ifstream fileTriggerCalib;
|
| 1279 |
TString ftrigname="TrigCalibParam.txt";
|
| 1280 |
fileTriggerCalib.open(ftrigname.Data());
|
| 1281 |
if ( !fileTriggerCalib ) {
|
| 1282 |
printf("debug: no trigger calib file!\n");
|
| 1283 |
return(-117); //check output!
|
| 1284 |
};
|
| 1285 |
Float_t atte1[48],atte2[48],lambda1[48],lambda2[48];
|
| 1286 |
Int_t temp=0;
|
| 1287 |
// correct readout WM Oct '07
|
| 1288 |
for(Int_t i=0; i<48; i++){
|
| 1289 |
fileTriggerCalib >> temp;
|
| 1290 |
fileTriggerCalib >> atte1[i];
|
| 1291 |
fileTriggerCalib >> lambda1[i];
|
| 1292 |
fileTriggerCalib >> atte2[i];
|
| 1293 |
fileTriggerCalib >> lambda2[i];
|
| 1294 |
fileTriggerCalib >> temp;
|
| 1295 |
}
|
| 1296 |
fileTriggerCalib.close();
|
| 1297 |
|
| 1298 |
Int_t ip, ipad;
|
| 1299 |
//Int_t ipmt;
|
| 1300 |
Int_t pmtleft=0, pmtright=0;
|
| 1301 |
Int_t *pl, *pr;
|
| 1302 |
pl = &pmtleft;
|
| 1303 |
pr = &pmtright;
|
| 1304 |
|
| 1305 |
// TDC variables:
|
| 1306 |
Int_t TDClast=4095; // no signal --> TDC ch=4095
|
| 1307 |
Int_t TDCint[48];
|
| 1308 |
Float_t tdc[48],tdc1[48],tdcpmt[48];
|
| 1309 |
for(Int_t i=0; i<48; i++) {
|
| 1310 |
tdcpmt[i] = 1000.;
|
| 1311 |
tdc[i] = 0.; // 18-oct WM
|
| 1312 |
tdc1[i] = 0.; // 18-oct WM
|
| 1313 |
}
|
| 1314 |
|
| 1315 |
Float_t thresh=10.; // to be defined better... (Wolfgang)
|
| 1316 |
|
| 1317 |
// === TDC: simulate timing for each paddle
|
| 1318 |
//Float_t dt1 = 285.e-12 ; // single PMT resolution
|
| 1319 |
Float_t dt1 = 425.e-12 ; // single PMT resolution (WM, Nov'07)
|
| 1320 |
Float_t tdcres[50],c1_S[50],c2_S[50],c3_S[50];
|
| 1321 |
for(Int_t j=0;j<48;j++) tdcres[j] = 50.E-12; // TDC resolution 50 picosec
|
| 1322 |
for(Int_t j=0;j<48;j++) c1_S[j] = 500.; // cable length in channels
|
| 1323 |
for(Int_t j=0;j<48;j++) c2_S[j] = 0.;
|
| 1324 |
for(Int_t j=0;j<48;j++) c3_S[j] = 1000.;
|
| 1325 |
for(Int_t j=0;j<48;j++) c1_S[j] = c1_S[j]*tdcres[j]; // cable length in sec
|
| 1326 |
for(Int_t j=0;j<48;j++) c2_S[j] = c2_S[j]*tdcres[j];
|
| 1327 |
// ih = 0 + i1; // not used?? (Silvio)
|
| 1328 |
|
| 1329 |
/* ********************************** start loop over hits */
|
| 1330 |
|
| 1331 |
for(Int_t nh=0; nh<Nthtof; nh++){
|
| 1332 |
|
| 1333 |
Float_t s_l_g[6] = {8.0, 8.0, 20.9, 22.0, 9.8, 8.3 }; // length of the lightguide
|
| 1334 |
Float_t t1,t2,veff,veff1,veff0 ;
|
| 1335 |
veff0 = 100.*1.0e8 ; // light velocity in the scintillator in m/sec
|
| 1336 |
veff1 = 100.*1.5e8; // light velocity in the lightguide in m/sec
|
| 1337 |
veff=veff0; // signal velocity in the paddle
|
| 1338 |
|
| 1339 |
t1 = Timetof[nh] ; // Start
|
| 1340 |
t2 = Timetof[nh] ;
|
| 1341 |
|
| 1342 |
// Donatella: redefinition plane and pad for vectors in C
|
| 1343 |
ip = Ipltof[nh]-1;
|
| 1344 |
ipad = Ipaddle[nh]-1;
|
| 1345 |
pmtleft=0;
|
| 1346 |
pmtright=0;
|
| 1347 |
|
| 1348 |
// WM: S12 paddles are "reversed" (Nov'07)
|
| 1349 |
if (ip==2)
|
| 1350 |
if (ipad==0)
|
| 1351 |
ipad=1;
|
| 1352 |
else
|
| 1353 |
ipad=0;
|
| 1354 |
|
| 1355 |
if (ip<6) {
|
| 1356 |
Paddle2Pmt(ip, ipad, &pmtleft, &pmtright);
|
| 1357 |
|
| 1358 |
// DC: evaluates mean position and path inside the paddle
|
| 1359 |
|
| 1360 |
Float_t tpos=0.;
|
| 1361 |
Float_t path[2] = {0., 0.};
|
| 1362 |
//--- Strip in Y = S11,S22,S31 ------
|
| 1363 |
if(ip==0 || ip==3 || ip==4)
|
| 1364 |
tpos = (Yintof[nh]+Youttof[nh])/2.;
|
| 1365 |
else
|
| 1366 |
if(ip==1 || ip==2 || ip==5) //--- Strip in X for S12,S21,S32
|
| 1367 |
tpos = (Xintof[nh]+Xouttof[nh])/2.;
|
| 1368 |
else //if (ip!=6)
|
| 1369 |
printf("*** WARNING TOF: this option should never occur! (ip=%2i, nh=%2i)\n",ip,nh);
|
| 1370 |
|
| 1371 |
path[0]= tpos + dimel[ip]/2.; // path to left PMT
|
| 1372 |
path[1]= dimel[ip]/2.- tpos; // path to right PMT
|
| 1373 |
|
| 1374 |
// cout <<"Strip N. ="<< ipaddle <<" piano n.= "<< iplane <<" POSIZ = "<< tpos <<"\n";
|
| 1375 |
|
| 1376 |
if (DEBUG) {
|
| 1377 |
cout <<" plane "<<ip<<" strip # ="<< ipad <<" tpos "<< tpos <<"\n";
|
| 1378 |
cout <<"pmtleft, pmtright "<<pmtleft<<" "<<pmtright<<endl;
|
| 1379 |
}
|
| 1380 |
|
| 1381 |
// constant geometric factor, the rest is handled by the scaling factor
|
| 1382 |
FGeo[0] =0.5;
|
| 1383 |
FGeo[1] =0.5;
|
| 1384 |
// FGeo[1] = atan(path[1]/dimes[ip])/6.28318; // fraction of photons toward left
|
| 1385 |
// FGeo[2] = atan(path[2]/dimes[ip])/6.28318; // toward right
|
| 1386 |
|
| 1387 |
|
| 1388 |
// Npho = Poisson(ERELTOF[nh])*Pho_keV*1e6 Poissonian fluctuations to be inserted-DC
|
| 1389 |
Npho = Ereltof[nh]*Pho_keV*1.0e6; // Eloss in GeV
|
| 1390 |
|
| 1391 |
Float_t knorm[2]={0., 0.}; // Donatella
|
| 1392 |
Float_t Atten[2]={0., 0.}; // Donatella
|
| 1393 |
for(Int_t j=0; j<2; j++){
|
| 1394 |
QhitPad_pC[j]= Npho*FGeo[j]*effi*pmGain*echarge*1.E12*ScaleFact[pmtleft+j];
|
| 1395 |
// WM
|
| 1396 |
knorm[j]=atte1[pmtleft+j]*exp(lambda1[pmtleft+j]*dimel[ip]/2.*pow(-1,j+1)) +
|
| 1397 |
atte2[pmtleft+j]*exp(lambda2[pmtleft+j]*dimel[ip]/2.*pow(-1,j+1));
|
| 1398 |
Atten[j]=atte1[pmtleft+j]*exp(tpos*lambda1[pmtleft+j]) +
|
| 1399 |
atte2[pmtleft+j]*exp(tpos*lambda2[pmtleft+j]) ;
|
| 1400 |
QhitPmt_pC[j]= QhitPad_pC[j]*Atten[j]/knorm[j];
|
| 1401 |
// QhitPmt_pC[j]= QhitPad_pC[j]; //no attenuation
|
| 1402 |
|
| 1403 |
|
| 1404 |
if (DEBUG) {
|
| 1405 |
cout<<"pmtleft "<<pmtleft<<" j "<<j<<endl;
|
| 1406 |
cout<<" atte1 "<<atte1[pmtleft+j]<<"lambda1 "<<lambda1[pmtleft+j]<<" atte2 "<<atte2[pmtleft+j]<<"lambda2 "<<lambda2[pmtleft+j] <<endl;
|
| 1407 |
cout<<j<<" tpos "<<tpos<<" knorm "<<knorm[j]<<" "<<Atten[j]<<" "<<"QhitPmt_pC "<<QhitPmt_pC[j]<<endl;
|
| 1408 |
}
|
| 1409 |
}
|
| 1410 |
|
| 1411 |
if (DEBUG)
|
| 1412 |
cout<<"Npho "<<Npho<<" QhitPmt_pC "<<QhitPmt_pC[0]<<" "<<QhitPmt_pC[1]<<endl;
|
| 1413 |
|
| 1414 |
QevePmt_pC[pmtleft] += QhitPmt_pC[0];
|
| 1415 |
QevePmt_pC[pmtright] += QhitPmt_pC[1];
|
| 1416 |
|
| 1417 |
// TDC
|
| 1418 |
// WM right and left <->
|
| 1419 |
// t2 = t2 + fabs(path[0]/veff) + s_l_g[ip]/veff1 ; // Signal reaches PMT
|
| 1420 |
// t1 = t1 + fabs(path[1]/veff) + s_l_g[ip]/veff1;
|
| 1421 |
|
| 1422 |
t1 = t1 + fabs(path[0]/veff) + s_l_g[ip]/veff1;
|
| 1423 |
t2 = t2 + fabs(path[1]/veff) + s_l_g[ip]/veff1 ; // Signal reaches PMT
|
| 1424 |
|
| 1425 |
t1 = gRandom->Gaus(t1,dt1); //apply gaussian error dt
|
| 1426 |
t2 = gRandom->Gaus(t2,dt1); //apply gaussian error dt
|
| 1427 |
|
| 1428 |
t1 = t1 + c1_S[pmtleft] ; // Signal reaches Discriminator ,TDC starts to run
|
| 1429 |
t2 = t2 + c1_S[pmtright] ;
|
| 1430 |
|
| 1431 |
// check if signal is above threshold
|
| 1432 |
// then check if tdcpmt is already filled by another hit...
|
| 1433 |
// only re-fill if time is smaller
|
| 1434 |
|
| 1435 |
if (QhitPmt_pC[0] > thresh) {
|
| 1436 |
if (tdcpmt[pmtleft] == 1000.) { // fill for the first time
|
| 1437 |
tdcpmt[pmtleft] = t1;
|
| 1438 |
tdc[pmtleft] = t1 + c2_S[pmtleft] ; // Signal reaches Coincidence
|
| 1439 |
}
|
| 1440 |
if (tdcpmt[pmtleft] < 1000.) // is already filled!
|
| 1441 |
if (t1 < tdcpmt[pmtleft]) {
|
| 1442 |
tdcpmt[pmtleft] = t1;
|
| 1443 |
t1 = t1 + c2_S[pmtleft] ; // Signal reaches Coincidence
|
| 1444 |
tdc[pmtleft] = t1;
|
| 1445 |
}
|
| 1446 |
}
|
| 1447 |
if (QhitPmt_pC[1] > thresh) {
|
| 1448 |
if (tdcpmt[pmtright] == 1000.) { // fill for the first time
|
| 1449 |
tdcpmt[pmtright] = t2;
|
| 1450 |
tdc[pmtright] = t2 + c2_S[pmtright] ; // Signal reaches Coincidence
|
| 1451 |
}
|
| 1452 |
if (tdcpmt[pmtright] < 1000.) // is already filled!
|
| 1453 |
if (t2 < tdcpmt[pmtright]) {
|
| 1454 |
tdcpmt[pmtright] = t2;
|
| 1455 |
t2 = t2 + c2_S[pmtright] ;
|
| 1456 |
tdc[pmtright] = t2;
|
| 1457 |
}
|
| 1458 |
}
|
| 1459 |
|
| 1460 |
if (DEBUG)
|
| 1461 |
cout<<nh<<" "<<Timetof[nh]<<" "<<t1<<" "<<t2<<endl;
|
| 1462 |
|
| 1463 |
} // ip < 6
|
| 1464 |
|
| 1465 |
}; // **************************************** end loop over hits
|
| 1466 |
|
| 1467 |
// ====== ADC ======
|
| 1468 |
|
| 1469 |
for(Int_t i=0; i<48; i++){
|
| 1470 |
if (QevePmt_pC[i] < 800.) ADCtof[i]= (Int_t)(ADC_pC0A + ADC_pC1A*QevePmt_pC[i] + ADC_pC2A*pow(QevePmt_pC[i],2) + ADC_pC3A*pow(QevePmt_pC[i],3));
|
| 1471 |
if (QevePmt_pC[i] > 800.) ADCtof[i]= (Int_t)(ADC_pC0B + ADC_pC1B*QevePmt_pC[i] + ADC_pC2B*pow(QevePmt_pC[i],2) + ADC_pC3B*pow(QevePmt_pC[i],3));
|
| 1472 |
if (QevePmt_pC[i] > 2485.) ADCtof[i]= (Int_t)(1758. + 0.54*QevePmt_pC[i]); //assuming a fictional 0.54 ch/pC above ADCsat
|
| 1473 |
if (ADCtof[i]>ADCsat) ADCtof[i]=ADCsat;
|
| 1474 |
if (QevePmt_pC[i] < pCthres) ADCtof[i]= ADClast;
|
| 1475 |
if (ADCtof[i] < 0) ADCtof[i]=ADClast;
|
| 1476 |
if (ADCtof[i] > ADClast) ADCtof[i]=ADClast;
|
| 1477 |
}
|
| 1478 |
|
| 1479 |
// for(Int_t i=0; i<48; i++){
|
| 1480 |
// if(QevePmt_pC[i] >= pCthres){
|
| 1481 |
// ADCtof[i]= (Int_t)(ADC_pC0 + ADC_pC1*QevePmt_pC[i] + ADC_pC2*pow(QevePmt_pC[i],2) + ADC_pC3*pow(QevePmt_pC[i],3));
|
| 1482 |
// } else
|
| 1483 |
// ADCtof[i]= ADClast;
|
| 1484 |
// }
|
| 1485 |
|
| 1486 |
// // ---- introduce scale factors to tune simul ADC to real data 24-oct DC
|
| 1487 |
|
| 1488 |
// for(Int_t i=0; i<48; i++){
|
| 1489 |
// if(ADCtof[i] != ADClast){
|
| 1490 |
// // printf("%3d, %4d, %4.2f\n",i, ADCtof[i],ScaleFact[i]);
|
| 1491 |
// ADCtof[i]= Int_t (ADCtof[i]*ScaleFact[i]);
|
| 1492 |
// // printf("%3d, %4d,\n",i, ADCtof[i]);
|
| 1493 |
// }
|
| 1494 |
// }
|
| 1495 |
|
| 1496 |
// for(Int_t i=0; i<48; i++){
|
| 1497 |
// if(ADCtof[i] != ADClast){
|
| 1498 |
// if(ADCtof[i]> ADCsat) ADCtof[i]=ADCsat;
|
| 1499 |
// else if(ADCtof[i]< 0) ADCtof[i]=ADClast;
|
| 1500 |
// }
|
| 1501 |
// }
|
| 1502 |
|
| 1503 |
|
| 1504 |
// ====== build TDC coincidence ======
|
| 1505 |
|
| 1506 |
Float_t t_coinc = 0;
|
| 1507 |
Int_t ilast = 100;
|
| 1508 |
for (Int_t ii=0; ii<48;ii++)
|
| 1509 |
if (tdc[ii] > t_coinc) {
|
| 1510 |
t_coinc = tdc[ii];
|
| 1511 |
ilast = ii;
|
| 1512 |
}
|
| 1513 |
|
| 1514 |
// cout<<ilast<<" "<<t_coinc<<endl;
|
| 1515 |
// At t_coinc trigger condition is fulfilled
|
| 1516 |
|
| 1517 |
for (Int_t ii=0; ii<48;ii++){
|
| 1518 |
// if (tdc[ii] != 0) tdc1[ii] = t_coinc - tdc[ii]; // test 1
|
| 1519 |
if (tdc[ii] != 0) tdc1[ii] = t_coinc - tdcpmt[ii]; // test 2
|
| 1520 |
tdc1[ii] = tdc1[ii]/tdcres[ii]; // divide by TDC resolution
|
| 1521 |
if (tdc[ii] != 0) tdc1[ii] = tdc1[ii] + c3_S[ii]; // add cable length c3
|
| 1522 |
} // missing parenthesis inserted! (Silvio)
|
| 1523 |
|
| 1524 |
for(Int_t i=0; i<48; i++){
|
| 1525 |
if(tdc1[i] != 0.){
|
| 1526 |
TDCint[i]=(Int_t)tdc1[i];
|
| 1527 |
if (TDCint[i]>4093) TDCint[i]=TDClast; // 18-oct WM
|
| 1528 |
if (DEBUG)
|
| 1529 |
cout<<i<<" "<<TDCint[i]<<endl;
|
| 1530 |
//ADC[i]= ADC_pC * QevePmt_pC[i] + ADCoffset;
|
| 1531 |
//if(ADC[i]> ADClast) ADC[i]=ADClast;
|
| 1532 |
} else
|
| 1533 |
TDCint[i]= TDClast;
|
| 1534 |
}
|
| 1535 |
|
| 1536 |
if (DEBUG)
|
| 1537 |
cout<<"-----------"<<endl;
|
| 1538 |
|
| 1539 |
|
| 1540 |
//------ use channelmap for ToF: 18-oct WM
|
| 1541 |
|
| 1542 |
Int_t channelmap[] = {3,21,11,29,19,45,27,37,36,28,44,20,5,12,13,4,
|
| 1543 |
6,47,14,39,22,31,30,23,38,15,46,7,0,33,16,24,
|
| 1544 |
8,41,32,40,25,17,34,9,42,1,2,10,18,26,35,43};
|
| 1545 |
|
| 1546 |
Int_t ADChelp[48];
|
| 1547 |
Int_t TDChelp[48];
|
| 1548 |
|
| 1549 |
for(Int_t i=0; i<48; i++){
|
| 1550 |
Int_t ii=channelmap[i];
|
| 1551 |
ADChelp[ii]= ADCtof[i];
|
| 1552 |
TDChelp[ii]= TDCint[i];
|
| 1553 |
}
|
| 1554 |
|
| 1555 |
for(Int_t i=0; i<48; i++){
|
| 1556 |
ADCtof[i]= ADChelp[i];
|
| 1557 |
TDCint[i]= TDChelp[i];
|
| 1558 |
}
|
| 1559 |
|
| 1560 |
|
| 1561 |
// ====== write fDataTof =======
|
| 1562 |
|
| 1563 |
|
| 1564 |
// UChar_t tdcadd[8]={1,0,3,2,5,4,7,6}; (coded in 3 bit)
|
| 1565 |
UChar_t Ctrl3bit[8]={32,0,96,64,160,128,224,192}; // DC (msb in 8 bit word )
|
| 1566 |
|
| 1567 |
UChar_t tofBin;
|
| 1568 |
for (Int_t j=0; j < 12; j++){ // loop on TDC #12
|
| 1569 |
Int_t j12=j*23; // for each TDC 23 bytes (8 bits)
|
| 1570 |
fDataTof[j12+0]=0x00; // TDC_ID
|
| 1571 |
fDataTof[j12+1]=0x00; // EV_COUNT
|
| 1572 |
fDataTof[j12+2]=0x00; // TDC_MASK (1)
|
| 1573 |
fDataTof[j12+3]=0x00; // TDC_MASK (2)
|
| 1574 |
for (Int_t k=0; k < 4; k++){ // for each TDC 4 channels (ADC+TDC)
|
| 1575 |
|
| 1576 |
Int_t jk12=j12+4*k; // ADC,TDC channel (0-47)
|
| 1577 |
|
| 1578 |
tofBin =(UChar_t)(ADCtof[k+4*j]/256); // ADC# (msb)
|
| 1579 |
fDataTof[jk12+4] = Bin2GrayTof(tofBin,fDataTof[jk12+4]);
|
| 1580 |
/* control bits inserted here, after the bin to gray conv - DC*/
|
| 1581 |
fDataTof[jk12+4] = Ctrl3bit[2*k] | fDataTof[jk12+4];
|
| 1582 |
tofBin=(UChar_t)(ADCtof[k+4*j]%256); // ADC# (lsb)
|
| 1583 |
fDataTof[jk12+5] = Bin2GrayTof(tofBin,fDataTof[jk12+5]);
|
| 1584 |
tofBin=(UChar_t)(TDCint[k+4*j]/256); // TDC# (msb)
|
| 1585 |
fDataTof[jk12+6]=Bin2GrayTof(tofBin,fDataTof[jk12+6]);
|
| 1586 |
/* control bits inserted here, after the bin to gray conv - DC*/
|
| 1587 |
fDataTof[jk12+6] = Ctrl3bit[2*k+1] | fDataTof[jk12+6];
|
| 1588 |
tofBin=(UChar_t)(TDCint[k+4*j]%256); // TDC# (lsb)
|
| 1589 |
fDataTof[jk12+7]=Bin2GrayTof(tofBin,fDataTof[jk12+7]);
|
| 1590 |
};
|
| 1591 |
fDataTof[j12+20]=0x00; // TEMP1
|
| 1592 |
fDataTof[j12+21]=0x00; // TEMP2
|
| 1593 |
fDataTof[j12+22]= EvaluateCrcTof(pTof); // CRC
|
| 1594 |
pTof+=23;
|
| 1595 |
};
|
| 1596 |
|
| 1597 |
// ====== evaluate trigger variables =======
|
| 1598 |
|
| 1599 |
//fDataTrigger: 152 bytes (corrected 30/11/'07 SO - it was 153)
|
| 1600 |
|
| 1601 |
// initialization:
|
| 1602 |
for (Int_t j=0; j < 152; j++)
|
| 1603 |
fDataTrigger[j]=0x00;
|
| 1604 |
UChar_t *pTrg=fDataTrigger;
|
| 1605 |
|
| 1606 |
// Only the variables with a (*) are modified; the others are set to 0
|
| 1607 |
// info given in #bites data + #bites crc
|
| 1608 |
// TB_READ_PMT_PLANE : 6 + 1
|
| 1609 |
// TB_READ_EVENT_COUNT : 3 + 1 (*)
|
| 1610 |
// TB_READ_TRIGGER_RATE : 12 + 1
|
| 1611 |
// TB_READ_D_L_TIME : 4 + 1
|
| 1612 |
// TB_READ_S4_CAL_COUNT : 4 + 1
|
| 1613 |
// TB_READ_PMT_COUNT1 : 48 + 1
|
| 1614 |
// TB_READ_PMT_COUNT2 : 48 + 1
|
| 1615 |
// TB_READ_PATTERN_BUSY : 8 + 1
|
| 1616 |
// TB_READ_PATTERN_TRIGGER: 7 + 1 (*)
|
| 1617 |
// TB_READ_TRIGGER_CONF : 2 + 1 (*)
|
| 1618 |
|
| 1619 |
// TB_READ_EVENT_COUNT
|
| 1620 |
fhBookTree->SetBranchStatus("Ievnt",&Ievnt);
|
| 1621 |
UInt_t cTrg = (UInt_t)Ievnt; //counter
|
| 1622 |
UInt_t cTrg2 = 0; //counter with bits inverted, according to document
|
| 1623 |
//"formato dati provenienti dalla trigger board"
|
| 1624 |
for (Int_t i=0; i < 24; i++){ // Use the first 24 bits
|
| 1625 |
if (cTrg & (0x1 << i) )
|
| 1626 |
cTrg2 = cTrg2 | (0x1 << (24-i));
|
| 1627 |
};
|
| 1628 |
fDataTrigger[7] = (UChar_t)(cTrg2 >> 16); // 8 MSbits (out of 24)
|
| 1629 |
fDataTrigger[8] = (UChar_t)(cTrg2 >> 8); // 8 "middle" bits
|
| 1630 |
fDataTrigger[9] = (UChar_t)(cTrg2); // 8 LSbits
|
| 1631 |
pTrg=fDataTrigger+7;
|
| 1632 |
fDataTrigger[10]=EvaluateCrcTrigger(pTrg, 3);
|
| 1633 |
|
| 1634 |
// TB_READ_PATTERN_TRIGGER: bytes 141-148:
|
| 1635 |
// PatternTrigMap[i] corresponds to bit i in TB_READ_PATTERN_TRIGGER:
|
| 1636 |
// mapping according to documents:
|
| 1637 |
// 1. "formato dati provenienti dalla trigger board"
|
| 1638 |
// 2. "The ToF quicklook software", Appendix A (Campana, Nagni)
|
| 1639 |
Int_t PatternTrigMap[]={29,42,43,1,16,7,17,28,33,41,46,2,15,8,18,27,
|
| 1640 |
30,40,44,3,14,9,19,26,32,37,47,4,13,10,20,25,
|
| 1641 |
34,31,38,45,5,12,21,24,36,35,39,48,6,11,22,23};
|
| 1642 |
|
| 1643 |
for (Int_t i=0; i < 48; i++)
|
| 1644 |
//if (ADCtof[i]>thrTrg)
|
| 1645 |
if (tdc1[channelmap[i]]!=0)
|
| 1646 |
fDataTrigger[147-(Int_t)((PatternTrigMap[i]+1)/8)]=fDataTrigger[147-(Int_t)((PatternTrigMap[i]+1)/8)] | (0x1 << (PatternTrigMap[i]%8));
|
| 1647 |
pTrg=fDataTrigger+141;
|
| 1648 |
fDataTrigger[148]=EvaluateCrcTrigger(pTrg, 7);
|
| 1649 |
|
| 1650 |
// TB_READ_TRIGGER_CONF : set always acq.mode TOF4
|
| 1651 |
//
|
| 1652 |
// TOF1: S1-S2-S3 (&,|)
|
| 1653 |
// TOF4: S2-S3 (&,&)
|
| 1654 |
fDataTrigger[149]=0x02;
|
| 1655 |
fDataTrigger[150]=0x0;
|
| 1656 |
pTrg=fDataTrigger+149;
|
| 1657 |
fDataTrigger[151]=EvaluateCrcTrigger(pTrg, 2);
|
| 1658 |
|
| 1659 |
return(0);
|
| 1660 |
};
|
| 1661 |
|
| 1662 |
|
| 1663 |
UChar_t Digitizer::Bin2GrayTof(UChar_t binaTOF,UChar_t grayTOF){
|
| 1664 |
union graytof_data {
|
| 1665 |
UChar_t word;
|
| 1666 |
struct bit_field {
|
| 1667 |
unsigned b0:1;
|
| 1668 |
unsigned b1:1;
|
| 1669 |
unsigned b2:1;
|
| 1670 |
unsigned b3:1;
|
| 1671 |
unsigned b4:1;
|
| 1672 |
unsigned b5:1;
|
| 1673 |
unsigned b6:1;
|
| 1674 |
unsigned b7:1;
|
| 1675 |
} bit;
|
| 1676 |
} bi,gr;
|
| 1677 |
//
|
| 1678 |
bi.word = binaTOF;
|
| 1679 |
gr.word = grayTOF;
|
| 1680 |
//
|
| 1681 |
gr.bit.b0 = bi.bit.b1 ^ bi.bit.b0;
|
| 1682 |
gr.bit.b1 = bi.bit.b2 ^ bi.bit.b1;
|
| 1683 |
gr.bit.b2 = bi.bit.b3 ^ bi.bit.b2;
|
| 1684 |
gr.bit.b3 = bi.bit.b3;
|
| 1685 |
//
|
| 1686 |
/* bin to gray conversion 4 bit per time*/
|
| 1687 |
//
|
| 1688 |
gr.bit.b4 = bi.bit.b5 ^ bi.bit.b4;
|
| 1689 |
gr.bit.b5 = bi.bit.b6 ^ bi.bit.b5;
|
| 1690 |
gr.bit.b6 = bi.bit.b7 ^ bi.bit.b6;
|
| 1691 |
gr.bit.b7 = bi.bit.b7;
|
| 1692 |
//
|
| 1693 |
return(gr.word);
|
| 1694 |
}
|
| 1695 |
|
| 1696 |
UChar_t Digitizer::EvaluateCrcTof(UChar_t *pTof) {
|
| 1697 |
Bool_t DEBUG=false;
|
| 1698 |
if (DEBUG)
|
| 1699 |
return(0x00);
|
| 1700 |
|
| 1701 |
UChar_t crcTof=0x00;
|
| 1702 |
UChar_t *pc=&crcTof, *pc2;
|
| 1703 |
pc2=pTof;
|
| 1704 |
for (Int_t jp=0; jp < 23; jp++){
|
| 1705 |
//crcTof = crc8(...)
|
| 1706 |
Crc8Tof(pc2++,pc);
|
| 1707 |
// printf("%2i --- %x\n",jp,crcTof);
|
| 1708 |
}
|
| 1709 |
return(crcTof);
|
| 1710 |
}
|
| 1711 |
|
| 1712 |
UChar_t Digitizer::EvaluateCrcTrigger(UChar_t *pTrg, Int_t nb) {
|
| 1713 |
Bool_t DEBUG=false;
|
| 1714 |
if (DEBUG)
|
| 1715 |
return(0x00);
|
| 1716 |
|
| 1717 |
UChar_t crcTrg=0x00;
|
| 1718 |
UChar_t *pc=&crcTrg, *pc2;
|
| 1719 |
pc2=pTrg;
|
| 1720 |
for (Int_t jp=0; jp < nb; jp++)
|
| 1721 |
Crc8Tof(pc2++,pc);
|
| 1722 |
return(crcTrg);
|
| 1723 |
}
|
| 1724 |
|
| 1725 |
void Digitizer::Crc8Tof(UChar_t *oldCRC, UChar_t *crcTof){
|
| 1726 |
union crctof_data {
|
| 1727 |
UChar_t word;
|
| 1728 |
struct bit_field {
|
| 1729 |
unsigned b0:1;
|
| 1730 |
unsigned b1:1;
|
| 1731 |
unsigned b2:1;
|
| 1732 |
unsigned b3:1;
|
| 1733 |
unsigned b4:1;
|
| 1734 |
unsigned b5:1;
|
| 1735 |
unsigned b6:1;
|
| 1736 |
unsigned b7:1;
|
| 1737 |
} bit;
|
| 1738 |
} c,d,r;
|
| 1739 |
|
| 1740 |
c.word = *oldCRC;
|
| 1741 |
//d.word = *newCRC;
|
| 1742 |
d.word = *crcTof;
|
| 1743 |
r.word = 0;
|
| 1744 |
|
| 1745 |
r.bit.b0 = c.bit.b7 ^ c.bit.b6 ^ c.bit.b0 ^
|
| 1746 |
d.bit.b0 ^ d.bit.b6 ^ d.bit.b7;
|
| 1747 |
|
| 1748 |
r.bit.b1 = c.bit.b6 ^ c.bit.b1 ^ c.bit.b0 ^
|
| 1749 |
d.bit.b0 ^ d.bit.b1 ^ d.bit.b6;
|
| 1750 |
|
| 1751 |
r.bit.b2 = c.bit.b6 ^ c.bit.b2 ^ c.bit.b1 ^ c.bit.b0 ^
|
| 1752 |
d.bit.b0 ^ d.bit.b1 ^ d.bit.b2 ^ d.bit.b6;
|
| 1753 |
|
| 1754 |
r.bit.b3 = c.bit.b7 ^ c.bit.b3 ^ c.bit.b2 ^ c.bit.b1 ^
|
| 1755 |
d.bit.b1 ^ d.bit.b2 ^ d.bit.b3 ^ d.bit.b7;
|
| 1756 |
|
| 1757 |
r.bit.b4 = c.bit.b4 ^ c.bit.b3 ^ c.bit.b2 ^
|
| 1758 |
d.bit.b2 ^ d.bit.b3 ^ d.bit.b4;
|
| 1759 |
|
| 1760 |
r.bit.b5 = c.bit.b5 ^ c.bit.b4 ^ c.bit.b3 ^
|
| 1761 |
d.bit.b3 ^ d.bit.b4 ^ d.bit.b5;
|
| 1762 |
|
| 1763 |
r.bit.b6 = c.bit.b6 ^ c.bit.b5 ^ c.bit.b4 ^
|
| 1764 |
d.bit.b4 ^ d.bit.b5 ^ d.bit.b6;
|
| 1765 |
|
| 1766 |
r.bit.b7 = c.bit.b7 ^ c.bit.b6 ^ c.bit.b5 ^
|
| 1767 |
d.bit.b5 ^ d.bit.b6 ^ d.bit.b7 ;
|
| 1768 |
|
| 1769 |
*crcTof=r.word;
|
| 1770 |
//return r.word;
|
| 1771 |
};
|
| 1772 |
|
| 1773 |
//void Digitizer::Paddle2Pmt(Int_t plane, Int_t paddle, Int_t* &pmtleft, Int_t* &pmtright){
|
| 1774 |
void Digitizer::Paddle2Pmt(Int_t plane, Int_t paddle, Int_t *pl, Int_t *pr){
|
| 1775 |
//* @param plane (0 - 5)
|
| 1776 |
//* @param paddle (plane=0, paddle = 0,...5)
|
| 1777 |
//* @param padid (0 - 23)
|
| 1778 |
//
|
| 1779 |
Int_t padid=-1;
|
| 1780 |
Int_t pads[6]={8,6,2,2,3,3};
|
| 1781 |
//
|
| 1782 |
Int_t somma=0;
|
| 1783 |
Int_t np=plane;
|
| 1784 |
for(Int_t j=0; j<np; j++)
|
| 1785 |
somma+=pads[j];
|
| 1786 |
padid=paddle+somma;
|
| 1787 |
*pl = padid*2;
|
| 1788 |
// *pr = *pr + 1;
|
| 1789 |
*pr = *pl + 1; // WM
|
| 1790 |
};
|
| 1791 |
|
| 1792 |
void Digitizer::DigitizeAC() {
|
| 1793 |
// created: J. Conrad, KTH
|
| 1794 |
// modified: S. Orsi, INFN Roma2
|
| 1795 |
// fDataAC[0-63]: main AC board
|
| 1796 |
// fDataAC[64-127]: extra AC board (identical to main board, for now)
|
| 1797 |
|
| 1798 |
// We activate all branches. Once the digitization algorithm is determined
|
| 1799 |
// only the branches that involve needed information will be activated
|
| 1800 |
|
| 1801 |
fhBookTree->SetBranchStatus("Ievnt",&Ievnt);
|
| 1802 |
fhBookTree->SetBranchStatus("Nthcat",1);
|
| 1803 |
fhBookTree->SetBranchStatus("Iparcat",1);
|
| 1804 |
fhBookTree->SetBranchStatus("Icat",1);
|
| 1805 |
fhBookTree->SetBranchStatus("Xincat",1);
|
| 1806 |
fhBookTree->SetBranchStatus("Yincat",1);
|
| 1807 |
fhBookTree->SetBranchStatus("Zincat",1);
|
| 1808 |
fhBookTree->SetBranchStatus("Xoutcat",1);
|
| 1809 |
fhBookTree->SetBranchStatus("Youtcat",1);
|
| 1810 |
fhBookTree->SetBranchStatus("Zoutcat",1);
|
| 1811 |
fhBookTree->SetBranchStatus("Erelcat",1);
|
| 1812 |
fhBookTree->SetBranchStatus("Timecat",1);
|
| 1813 |
fhBookTree->SetBranchStatus("Pathcat",1);
|
| 1814 |
fhBookTree->SetBranchStatus("P0cat",1);
|
| 1815 |
fhBookTree->SetBranchStatus("Nthcas",1);
|
| 1816 |
fhBookTree->SetBranchStatus("Iparcas",1);
|
| 1817 |
fhBookTree->SetBranchStatus("Icas",1);
|
| 1818 |
fhBookTree->SetBranchStatus("Xincas",1);
|
| 1819 |
fhBookTree->SetBranchStatus("Yincas",1);
|
| 1820 |
fhBookTree->SetBranchStatus("Zincas",1);
|
| 1821 |
fhBookTree->SetBranchStatus("Xoutcas",1);
|
| 1822 |
fhBookTree->SetBranchStatus("Youtcas",1);
|
| 1823 |
fhBookTree->SetBranchStatus("Zoutcas",1);
|
| 1824 |
fhBookTree->SetBranchStatus("Erelcas",1);
|
| 1825 |
fhBookTree->SetBranchStatus("Timecas",1);
|
| 1826 |
fhBookTree->SetBranchStatus("Pathcas",1);
|
| 1827 |
fhBookTree->SetBranchStatus("P0cas",1);
|
| 1828 |
fhBookTree->SetBranchStatus("Nthcard",1);
|
| 1829 |
fhBookTree->SetBranchStatus("Iparcard",1);
|
| 1830 |
fhBookTree->SetBranchStatus("Icard",1);
|
| 1831 |
fhBookTree->SetBranchStatus("Xincard",1);
|
| 1832 |
fhBookTree->SetBranchStatus("Yincard",1);
|
| 1833 |
fhBookTree->SetBranchStatus("Zincard",1);
|
| 1834 |
fhBookTree->SetBranchStatus("Xoutcard",1);
|
| 1835 |
fhBookTree->SetBranchStatus("Youtcard",1);
|
| 1836 |
fhBookTree->SetBranchStatus("Zoutcard",1);
|
| 1837 |
fhBookTree->SetBranchStatus("Erelcard",1);
|
| 1838 |
fhBookTree->SetBranchStatus("Timecard",1);
|
| 1839 |
fhBookTree->SetBranchStatus("Pathcard",1);
|
| 1840 |
fhBookTree->SetBranchStatus("P0card",1);
|
| 1841 |
|
| 1842 |
fDataAC[0] = 0xACAC;
|
| 1843 |
fDataAC[64]= 0xACAC;
|
| 1844 |
fDataAC[1] = 0xAC11;
|
| 1845 |
fDataAC[65] = 0xAC22;
|
| 1846 |
|
| 1847 |
// the third word is a status word (dummy: "no errors are present in the AC boards")
|
| 1848 |
fDataAC[2] = 0xFFFF; //FFEF?
|
| 1849 |
fDataAC[66] = 0xFFFF;
|
| 1850 |
|
| 1851 |
const UInt_t nReg = 6;
|
| 1852 |
|
| 1853 |
// FPGA Registers (dummy)
|
| 1854 |
for (UInt_t i=0; i<=nReg; i++){
|
| 1855 |
fDataAC[i+4] = 0xFFFF;
|
| 1856 |
fDataAC[i+68] = 0xFFFF;
|
| 1857 |
}
|
| 1858 |
|
| 1859 |
// the last word is a CRC
|
| 1860 |
// Dummy for the time being, but it might need to be calculated in the end
|
| 1861 |
fDataAC[63] = 0xABCD;
|
| 1862 |
fDataAC[127] = 0xABCD;
|
| 1863 |
|
| 1864 |
// shift registers (moved to the end of the routine)
|
| 1865 |
|
| 1866 |
//Int_t evntLSB=Ievnt%65536;
|
| 1867 |
//Int_t evntMSB=(Int_t)(Ievnt/65536);
|
| 1868 |
Int_t evntLSB=(UShort_t)Ievnt;
|
| 1869 |
Int_t evntMSB=Ievnt >> 16;
|
| 1870 |
|
| 1871 |
// singles counters are dummy
|
| 1872 |
for (UInt_t i=0; i<=15; i++){ //SO Oct '07: // for (UInt_t i=0; i<=16; i++){
|
| 1873 |
// fDataAC[i+26] = 0x0000;
|
| 1874 |
// fDataAC[i+90] = 0x0000;
|
| 1875 |
fDataAC[i+26] = evntLSB;
|
| 1876 |
fDataAC[i+90] = evntLSB;
|
| 1877 |
};
|
| 1878 |
|
| 1879 |
// coincidences are dummy (increment by 1 at each event)
|
| 1880 |
// for (UInt_t i=0; i<=7; i++){
|
| 1881 |
// fDataAC[i+42] = 0x0000;
|
| 1882 |
// fDataAC[i+106] = 0x0000;
|
| 1883 |
// }
|
| 1884 |
for (UInt_t i=0; i<=7; i++){
|
| 1885 |
fDataAC[i+42] = evntLSB;
|
| 1886 |
fDataAC[i+106] = evntLSB;
|
| 1887 |
};
|
| 1888 |
|
| 1889 |
// increments for every trigger might be needed at some point.
|
| 1890 |
// dummy for now
|
| 1891 |
fDataAC[50] = 0x0000;
|
| 1892 |
fDataAC[114] = 0x0000;
|
| 1893 |
|
| 1894 |
// dummy FPGA clock (increment by 1 at each event)
|
| 1895 |
/*
|
| 1896 |
fDataAC[51] = 0x006C;
|
| 1897 |
fDataAC[52] = 0x6C6C;
|
| 1898 |
fDataAC[115] = 0x006C;
|
| 1899 |
fDataAC[116] = 0x6C6C;
|
| 1900 |
*/
|
| 1901 |
if (Ievnt<=0xFFFF) {
|
| 1902 |
fDataAC[51] = 0x0000;
|
| 1903 |
fDataAC[52] = Ievnt;
|
| 1904 |
fDataAC[115] = 0x0000;
|
| 1905 |
fDataAC[116] = Ievnt;
|
| 1906 |
} else {
|
| 1907 |
fDataAC[51] = evntMSB;
|
| 1908 |
fDataAC[52] = evntLSB;
|
| 1909 |
fDataAC[115] = fDataAC[51];
|
| 1910 |
fDataAC[116] = fDataAC[52];
|
| 1911 |
}
|
| 1912 |
|
| 1913 |
// dummy temperatures
|
| 1914 |
fDataAC[53] = 0x0000;
|
| 1915 |
fDataAC[54] = 0x0000;
|
| 1916 |
fDataAC[117] = 0x0000;
|
| 1917 |
fDataAC[118] = 0x0000;
|
| 1918 |
|
| 1919 |
|
| 1920 |
// dummy DAC thresholds
|
| 1921 |
for (UInt_t i=0; i<=7; i++){
|
| 1922 |
fDataAC[i+55] = 0x1A13;
|
| 1923 |
fDataAC[i+119] = 0x1A13;
|
| 1924 |
}
|
| 1925 |
|
| 1926 |
// In this simpliefied approach we will assume that once
|
| 1927 |
// a particle releases > 0.5 mip in one of the 12 AC detectors it
|
| 1928 |
// will fire. We will furthermore assume that both cards read out
|
| 1929 |
// identical data.
|
| 1930 |
|
| 1931 |
// If you develop your digitization algorithm, you should start by
|
| 1932 |
// identifying the information present in level2 (post-darth-vader)
|
| 1933 |
// data.
|
| 1934 |
|
| 1935 |
Float_t SumEcat[5];
|
| 1936 |
Float_t SumEcas[5];
|
| 1937 |
Float_t SumEcard[5];
|
| 1938 |
for (Int_t k= 0;k<5;k++){
|
| 1939 |
SumEcat[k]=0.;
|
| 1940 |
SumEcas[k]=0.;
|
| 1941 |
SumEcard[k]=0.;
|
| 1942 |
};
|
| 1943 |
|
| 1944 |
if (Nthcat>50 || Nthcas>50 || Nthcard>50)
|
| 1945 |
printf("*** ERROR AC! NthAC out of range!\n\n");
|
| 1946 |
|
| 1947 |
// energy dependence on position (see file AcFitOutputDistancePmt.C by S.Orsi)
|
| 1948 |
// based on J.Lundquist's calculations (PhD thesis, page 94)
|
| 1949 |
// function: [0]+[1]*atan([2]/(x+1)), where the 3 parameters are:
|
| 1950 |
// 8.25470e-01 +- 1.79489e-02
|
| 1951 |
// 6.41609e-01 +- 2.65846e-02
|
| 1952 |
// 9.81177e+00 +- 1.21284e+00
|
| 1953 |
// hp: 1 minimum ionising particle at 35cm from the PMT releases 1mip
|
| 1954 |
|
| 1955 |
TF1 *attenAC = new TF1("fAttAC",".825+.64*atan(9.8/x)",0.,45.);
|
| 1956 |
|
| 1957 |
// PMT positions: x,y,z: (average position of the 2 PMTs)
|
| 1958 |
Float_t posCasPmt[4][3]={{28.308, -17.168, 63.644}, // 1 - CAS CPU: x,y,z
|
| 1959 |
{18.893, 24.913, 63.644}, // 2 - CAS DCDC
|
| 1960 |
{-24.307, 17.162, 63.644}, // 3 - CAS VME
|
| 1961 |
{-17.765, -28.300, 63.644}}; // 4 - CAS IPM
|
| 1962 |
|
| 1963 |
Float_t dAC=0.; // distance from PMT
|
| 1964 |
|
| 1965 |
// look in CAT
|
| 1966 |
// for (UInt_t k= 0;k<50;k++){
|
| 1967 |
for (Int_t k= 0;k<Nthcat;k++){
|
| 1968 |
if (Erelcat[k] > 0)
|
| 1969 |
SumEcat[Icat[k]] += Erelcat[k];
|
| 1970 |
};
|
| 1971 |
|
| 1972 |
// look in CAS
|
| 1973 |
for (Int_t k= 0;k<Nthcas;k++){
|
| 1974 |
if (Erelcas[k] >0) {
|
| 1975 |
dAC=sqrt(pow((Xincas[k]+Xoutcas[k])/2 - posCasPmt[Icas[k]-1][0],2) + pow((Yincas[k]+Youtcas[k])/2 - posCasPmt[Icas[k]-1][1],2) + pow((Zincas[k]+Zoutcas[k])/2 - posCasPmt[Icas[k]-1][2],2));
|
| 1976 |
SumEcas[Icas[k]] += Erelcas[k]*attenAC->Eval(dAC);
|
| 1977 |
}
|
| 1978 |
};
|
| 1979 |
|
| 1980 |
// look in CARD
|
| 1981 |
for (Int_t k= 0;k<Nthcard;k++){
|
| 1982 |
if (Erelcard[k] >0)
|
| 1983 |
SumEcard[Icard[k]] += Erelcard[k];
|
| 1984 |
};
|
| 1985 |
|
| 1986 |
// channel mapping Hit Map
|
| 1987 |
// 1 CARD4 0 LSB
|
| 1988 |
// 2 CAT2 0
|
| 1989 |
// 3 CAS1 0
|
| 1990 |
// 4 NC 0
|
| 1991 |
// 5 CARD2 0
|
| 1992 |
// 6 CAT4 1
|
| 1993 |
// 7 CAS4 0
|
| 1994 |
// 8 NC 0
|
| 1995 |
// 9 CARD3 0
|
| 1996 |
// 10 CAT3 0
|
| 1997 |
// 11 CAS3 0
|
| 1998 |
// 12 NC 0
|
| 1999 |
// 13 CARD1 0
|
| 2000 |
// 14 CAT1 0
|
| 2001 |
// 15 CAS2 0
|
| 2002 |
// 16 NC 0 MSB
|
| 2003 |
|
| 2004 |
// In the first version only the hit-map is filled, not the SR.
|
| 2005 |
|
| 2006 |
// Threshold: 0.8 MeV.
|
| 2007 |
|
| 2008 |
Float_t thr = 8e-4;
|
| 2009 |
|
| 2010 |
fDataAC[3] = 0x0000;
|
| 2011 |
|
| 2012 |
if (SumEcas[0] > thr) fDataAC[3] = 0x0004;
|
| 2013 |
if (SumEcas[1] > thr) fDataAC[3] += 0x4000;
|
| 2014 |
if (SumEcas[2] > thr) fDataAC[3] += 0x0400;
|
| 2015 |
if (SumEcas[3] > thr) fDataAC[3] += 0x0040;
|
| 2016 |
|
| 2017 |
if (SumEcat[0] > thr) fDataAC[3] += 0x2000;
|
| 2018 |
if (SumEcat[1] > thr) fDataAC[3] += 0x0002;
|
| 2019 |
if (SumEcat[2] > thr) fDataAC[3] += 0x0200;
|
| 2020 |
if (SumEcat[3] > thr) fDataAC[3] += 0x0020;
|
| 2021 |
|
| 2022 |
if (SumEcard[0] > thr) fDataAC[3] += 0x1000;
|
| 2023 |
if (SumEcard[1] > thr) fDataAC[3] += 0x0010;
|
| 2024 |
if (SumEcard[2] > thr) fDataAC[3] += 0x0100;
|
| 2025 |
if (SumEcard[3] > thr) fDataAC[3] += 0x0001;
|
| 2026 |
|
| 2027 |
fDataAC[67] = fDataAC[3];
|
| 2028 |
|
| 2029 |
// shift registers
|
| 2030 |
// the central bin is equal to the hitmap, all other bins in the shift register are 0
|
| 2031 |
for (UInt_t i=0; i<=15; i++){
|
| 2032 |
fDataAC[i+11] = 0x0000;
|
| 2033 |
fDataAC[i+75] = 0x0000;
|
| 2034 |
}
|
| 2035 |
fDataAC[18] = fDataAC[3];
|
| 2036 |
fDataAC[82] = fDataAC[3];
|
| 2037 |
|
| 2038 |
// for (Int_t i=0; i<fACbuffer; i++){
|
| 2039 |
// printf("%0x ",fDataAC[i]);
|
| 2040 |
// if ((i+1)%8 ==0) cout << endl;
|
| 2041 |
// }
|
| 2042 |
};
|
| 2043 |
|
| 2044 |
|
| 2045 |
void Digitizer::DigitizeS4(){
|
| 2046 |
Int_t DEBUG=0;
|
| 2047 |
// creato: S. Borisov, INFN Roma2 e MEPHI, Sett 2007
|
| 2048 |
TString ciao,modo="ns";
|
| 2049 |
Int_t i,j,t,NdF,pmt,NdFT,S4,S4v=0,S4p=32;
|
| 2050 |
Float_t E0,E1=1e-6,Ert,X,Y,Z,x,y,z,V[3],Xs[2],Ys[2],Zs[2],Yp[6],q,w,p=0.1,l,l0=500;
|
| 2051 |
Xs[0]=-24.1;
|
| 2052 |
Xs[1]=24.1;
|
| 2053 |
Ys[0]=-24.1;
|
| 2054 |
Ys[1]=24.1;
|
| 2055 |
Zs[0]=-0.5;
|
| 2056 |
Zs[1]=0.5;
|
| 2057 |
Yp[0]=-20.;
|
| 2058 |
Yp[2]=-1.;
|
| 2059 |
Yp[4]=17.;
|
| 2060 |
for(i=0;i<3;i++)
|
| 2061 |
Yp[2*i+1]=Yp[2*i]+3;
|
| 2062 |
srand(time(NULL));
|
| 2063 |
// --- activate branches:
|
| 2064 |
fhBookTree->SetBranchStatus("Nthtof",1);
|
| 2065 |
fhBookTree->SetBranchStatus("Ipltof",1);
|
| 2066 |
fhBookTree->SetBranchStatus("Ipaddle",1);
|
| 2067 |
|
| 2068 |
fhBookTree->SetBranchStatus("Xintof",1);
|
| 2069 |
fhBookTree->SetBranchStatus("Yintof",1);
|
| 2070 |
fhBookTree->SetBranchStatus("Xouttof",1);
|
| 2071 |
fhBookTree->SetBranchStatus("Youttof",1);
|
| 2072 |
|
| 2073 |
fhBookTree->SetBranchStatus("Ereltof",1);
|
| 2074 |
fhBookTree->SetBranchStatus("Timetof",1);
|
| 2075 |
NdFT=0;
|
| 2076 |
Ert=0;
|
| 2077 |
for(i=0;i<Nthtof;i++){
|
| 2078 |
if(Ipltof[i]!=6) continue;
|
| 2079 |
Ert+=Ereltof[i];
|
| 2080 |
|
| 2081 |
if(modo=="ns") continue;
|
| 2082 |
NdF=Int_t(Ereltof[i]/E1);
|
| 2083 |
NdFT=0;
|
| 2084 |
X=Xintof[i];
|
| 2085 |
Y=Yintof[i];
|
| 2086 |
Z=(Float_t)(random())/(Float_t)(0x7fffffff)-0.5;
|
| 2087 |
//cout<<"XYZ "<<X<<" "<<Y<<" "<<Z<<endl;
|
| 2088 |
for(j=0;j<NdF;j++){
|
| 2089 |
q=(Float_t)random()/(Float_t)0x7fffffff;
|
| 2090 |
w=(Float_t)random()/(Float_t)0x7fffffff;
|
| 2091 |
// cout<<"qw "<<q<<" "<<w<<endl;
|
| 2092 |
V[0]=p*cos(6.28318*q);
|
| 2093 |
V[1]=p*sin(6.28318*q);
|
| 2094 |
V[2]=p*(2.*w-1.);
|
| 2095 |
pmt=0;
|
| 2096 |
x=X;
|
| 2097 |
y=Y;
|
| 2098 |
z=Z;
|
| 2099 |
while(pmt==0 && (x>Xs[0] && x<Xs[1])&&(y>Ys[0] && y<Ys[1])&&(z>Zs[0] && z<Zs[1])){
|
| 2100 |
l=0;
|
| 2101 |
while(pmt==0 && (x>Xs[0] && x<Xs[1])&&(y>Ys[0] && y<Ys[1])&&(z>Zs[0] && z<Zs[1])){
|
| 2102 |
x+=V[0];
|
| 2103 |
y+=V[1];
|
| 2104 |
z+=V[2];
|
| 2105 |
l+=p;
|
| 2106 |
//cout<<x<<" "<<y<<" "<<z<<" "<<l<<endl;
|
| 2107 |
//cin>>ciao;
|
| 2108 |
}
|
| 2109 |
if((x<Xs[0]+p || x>Xs[1]-p)&&(y>Ys[0]+p && y<Ys[1]-p)&&(z>Zs[0]+p && z<Zs[1]-p)){
|
| 2110 |
for(t=0;t<3;t++){
|
| 2111 |
if(y>=Yp[2*t] && y<Yp[2*t+1]){
|
| 2112 |
if(pmt==0)NdFT++;
|
| 2113 |
pmt=1;
|
| 2114 |
//cout<<NdFT<<endl;
|
| 2115 |
break;
|
| 2116 |
}
|
| 2117 |
}
|
| 2118 |
if(pmt==1)break;
|
| 2119 |
V[0]=-V[0];
|
| 2120 |
}
|
| 2121 |
q=(Float_t)random()/(Float_t)0x7fffffff;
|
| 2122 |
w=1-exp(-l/l0);
|
| 2123 |
if(q<w)break;
|
| 2124 |
q=(Float_t)random()/(Float_t)0x7fffffff;
|
| 2125 |
w=0.5;
|
| 2126 |
if(q<w)break;
|
| 2127 |
if((x>Xs[0]+p && x<Xs[1]-p)&&(y<Ys[0]+p || y>Ys[1]-p)&&(z>Zs[0]+p && z<Zs[1]-p))V[1]=-V[1];
|
| 2128 |
if((x>Xs[0]+p && x<Xs[1]-p)&&(y>Ys[0]+p && y<Ys[1]-p)&&(z<Zs[0]+p || z>Zs[1]-p))V[2]=-V[2];
|
| 2129 |
x+=V[0];
|
| 2130 |
y+=V[1];
|
| 2131 |
z+=V[2];
|
| 2132 |
l=0;
|
| 2133 |
//cout<<x<<" "<<y<<" "<<z<<" "<<l<<endl;
|
| 2134 |
//cin>>ciao;
|
| 2135 |
}
|
| 2136 |
}
|
| 2137 |
}
|
| 2138 |
Ert=Ert/0.002;
|
| 2139 |
q=(Float_t)(random())/(Float_t)0x7fffffff;
|
| 2140 |
w=0.7;
|
| 2141 |
//E0=(Float_t)(4064./7.);
|
| 2142 |
E0=4064./7.;
|
| 2143 |
if(Ert<1) S4=0;
|
| 2144 |
else S4=(Int_t)(4064.*(1.-exp(-(Ert-1.)/E0)));
|
| 2145 |
i=S4/4;
|
| 2146 |
if(S4%4==0)
|
| 2147 |
S4v=S4+S4p;
|
| 2148 |
else if(S4%4==1){
|
| 2149 |
if(q<w) S4v=S4-1+S4p;
|
| 2150 |
else S4v=S4+1+S4p;
|
| 2151 |
} else if(S4%4==2) S4v=S4+S4p;
|
| 2152 |
else if(S4%4==3){
|
| 2153 |
if(q<w) S4v=S4+1+S4p;
|
| 2154 |
else S4v=S4-1+S4p;
|
| 2155 |
}
|
| 2156 |
if (DEBUG)
|
| 2157 |
cout<<"Ert_S4 = " << Ert << " --- S4v = " << S4v << endl;
|
| 2158 |
fDataS4[0]=S4v;//0xf028;
|
| 2159 |
fDataS4[1]=0xd800;
|
| 2160 |
fDataS4[2]=0x0300;
|
| 2161 |
//cout<<" PMT "<<NdFT<<" "<<NdF<<endl;
|
| 2162 |
//cin>>ciao;
|
| 2163 |
}
|
| 2164 |
|
| 2165 |
|
| 2166 |
|
| 2167 |
void Digitizer::DigitizeND(){
|
| 2168 |
// creato: S. Borisov, INFN Roma2 e MEPHI, Sett 2007
|
| 2169 |
Int_t i=0;
|
| 2170 |
UShort_t NdN=0;
|
| 2171 |
fhBookTree->SetBranchStatus("Nthnd",1);
|
| 2172 |
fhBookTree->SetBranchStatus("Itubend",1);
|
| 2173 |
fhBookTree->SetBranchStatus("Iparnd",1);
|
| 2174 |
fhBookTree->SetBranchStatus("Xinnd",1);
|
| 2175 |
fhBookTree->SetBranchStatus("Yinnd",1);
|
| 2176 |
fhBookTree->SetBranchStatus("Zinnd",1);
|
| 2177 |
fhBookTree->SetBranchStatus("Xoutnd",1);
|
| 2178 |
fhBookTree->SetBranchStatus("Youtnd",1);
|
| 2179 |
fhBookTree->SetBranchStatus("Zoutnd",1);
|
| 2180 |
fhBookTree->SetBranchStatus("Erelnd",1);
|
| 2181 |
fhBookTree->SetBranchStatus("Timend",1);
|
| 2182 |
fhBookTree->SetBranchStatus("Pathnd",1);
|
| 2183 |
fhBookTree->SetBranchStatus("P0nd",1);
|
| 2184 |
//cout<<"n="<<Nthnd<<" "<<NdN<<"\n";
|
| 2185 |
for(i=0;i<Nthnd;i++){
|
| 2186 |
if(Iparnd[i]==13){
|
| 2187 |
NdN++;
|
| 2188 |
}
|
| 2189 |
}
|
| 2190 |
//NdN=100; //only for debug
|
| 2191 |
|
| 2192 |
for(i=0;i<3;i++){
|
| 2193 |
fDataND[2*i]=0x0000;
|
| 2194 |
fDataND[2*i+1]=0x010F;
|
| 2195 |
}
|
| 2196 |
fDataND[0]=0xFF00 & (256*NdN);
|
| 2197 |
}
|
| 2198 |
|
| 2199 |
|
| 2200 |
void Digitizer::DigitizeDummy() {
|
| 2201 |
|
| 2202 |
fhBookTree->SetBranchStatus("Enestrip",1);
|
| 2203 |
|
| 2204 |
// dumy header
|
| 2205 |
fDataDummy[0] = 0xCAAA;
|
| 2206 |
|
| 2207 |
for (Int_t i=1; i<fDummybuffer; i++){
|
| 2208 |
fDataDummy[i] = 0xFFFF;
|
| 2209 |
// printf("%0x ",fDataDummy[i]);
|
| 2210 |
//if ((i+1)%8 ==0) cout << endl;
|
| 2211 |
}
|
| 2212 |
};
|
| 2213 |
|
| 2214 |
void Digitizer::WriteRunHeader(){
|
| 2215 |
fOutputfile.write(reinterpret_cast<char*>(fDataRunHeader),sizeof(UShort_t)*fRunHeaderbuffer);
|
| 2216 |
};
|
| 2217 |
|
| 2218 |
void Digitizer::WriteRunTrailer(){
|
| 2219 |
fOutputfile.write(reinterpret_cast<char*>(fDataRunTrailer),sizeof(UShort_t)*fRunTrailerbuffer);
|
| 2220 |
};
|
| 2221 |
|
| 2222 |
void Digitizer::WriteData(){
|
| 2223 |
|
| 2224 |
// Routine that writes the data to a binary file
|
| 2225 |
// PSCU data are already swapped
|
| 2226 |
fOutputfile.write(reinterpret_cast<char*>(fDataPSCU),sizeof(UShort_t)*fPSCUbuffer);
|
| 2227 |
// TRG
|
| 2228 |
fOutputfile.write(reinterpret_cast<char*>(fDataTrigger),sizeof(UChar_t)*fTRIGGERbuffer); //30/11/07 SO; it was 153
|
| 2229 |
// TOF
|
| 2230 |
fOutputfile.write(reinterpret_cast<char*>(fDataTof),sizeof(UChar_t)*fTOFbuffer);
|
| 2231 |
// AC
|
| 2232 |
UShort_t temp[1000000];
|
| 2233 |
memset(temp,0,sizeof(UShort_t)*1000000);
|
| 2234 |
swab(fDataAC,temp,sizeof(UShort_t)*fACbuffer); // WE MUST SWAP THE BYTES!!!
|
| 2235 |
fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fACbuffer);
|
| 2236 |
// CALO
|
| 2237 |
memset(temp,0,sizeof(UShort_t)*1000000);
|
| 2238 |
swab(fDataCALO,temp,sizeof(UShort_t)*fCALOlength); // WE MUST SWAP THE BYTES!!!
|
| 2239 |
fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fCALOlength);
|
| 2240 |
// TRK
|
| 2241 |
memset(temp,0,sizeof(UShort_t)*1000000);
|
| 2242 |
swab(fDataTrack,temp,sizeof(UShort_t)*fTracklength); // WE MUST SWAP THE BYTES!!!
|
| 2243 |
fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fTracklength);
|
| 2244 |
fTracklength=0;
|
| 2245 |
// padding to 64 bytes
|
| 2246 |
//
|
| 2247 |
if ( fPadding ){
|
| 2248 |
fOutputfile.write(reinterpret_cast<char*>(fDataPadding),sizeof(UChar_t)*fPadding);
|
| 2249 |
};
|
| 2250 |
// S4
|
| 2251 |
memset(temp,0,sizeof(UShort_t)*1000000);
|
| 2252 |
swab(fDataS4,temp,sizeof(UShort_t)*fS4buffer); // WE MUST SWAP THE BYTES!!!
|
| 2253 |
fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fS4buffer);
|
| 2254 |
// ND
|
| 2255 |
memset(temp,0,sizeof(UShort_t)*1000000);
|
| 2256 |
swab(fDataND,temp,sizeof(UShort_t)*fNDbuffer); // WE MUST SWAP THE BYTES!!!
|
| 2257 |
fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fNDbuffer);
|
| 2258 |
};
|
| 2259 |
|
| 2260 |
|
| 2261 |
void Digitizer::ReadData(){
|
| 2262 |
|
| 2263 |
UShort_t InData[64];
|
| 2264 |
|
| 2265 |
// for debuggigng purposes only, write your own routine if you like (many
|
| 2266 |
// hardwired things.
|
| 2267 |
|
| 2268 |
ifstream InputFile;
|
| 2269 |
|
| 2270 |
// if (!InputFile) {
|
| 2271 |
|
| 2272 |
// std::cout << "ERROR" << endl;
|
| 2273 |
// // An error occurred!
|
| 2274 |
// // myFile.gcount() returns the number of bytes read.
|
| 2275 |
// // calling myFile.clear() will reset the stream state
|
| 2276 |
// // so it is usable again.
|
| 2277 |
// };
|
| 2278 |
|
| 2279 |
|
| 2280 |
|
| 2281 |
//InputFile.seekg(0);
|
| 2282 |
|
| 2283 |
InputFile.open(fFilename, ios::in | ios::binary);
|
| 2284 |
// fOutputfile.seekg(0);
|
| 2285 |
if (!InputFile.is_open()) std::cout << "ERROR" << endl;
|
| 2286 |
|
| 2287 |
InputFile.seekg(0);
|
| 2288 |
|
| 2289 |
for (Int_t k=0; k<=1000; k++){
|
| 2290 |
InputFile.read(reinterpret_cast<char*>(InData),384*sizeof(UShort_t));
|
| 2291 |
|
| 2292 |
std::cout << "Read back: " << endl << endl;
|
| 2293 |
|
| 2294 |
for (Int_t i=0; i<=384; i++){
|
| 2295 |
printf("%4x ", InData[i]);
|
| 2296 |
if ((i+1)%8 ==0) cout << endl;
|
| 2297 |
}
|
| 2298 |
|
| 2299 |
}
|
| 2300 |
cout << endl;
|
| 2301 |
InputFile.close();
|
| 2302 |
|
| 2303 |
};
|
| 2304 |
|
| 2305 |
|
| 2306 |
|
| 2307 |
void Digitizer::DigitizeTrack() {
|
| 2308 |
//std:: cout << "Entering DigitizeTrack " << endl;
|
| 2309 |
Float_t AdcTrack[fNviews][fNstrips_view]; // Vector of strips to be compressed
|
| 2310 |
|
| 2311 |
Int_t Iview;
|
| 2312 |
Int_t Nstrip;
|
| 2313 |
|
| 2314 |
for (Int_t j=0; j<fNviews;j++) {
|
| 2315 |
|
| 2316 |
for (Int_t i=0; i<fNladder;i++) {
|
| 2317 |
|
| 2318 |
Float_t commonN1=gRandom->Gaus(0.,fSigmaCommon);
|
| 2319 |
Float_t commonN2=gRandom->Gaus(0.,fSigmaCommon);
|
| 2320 |
for (Int_t k=0; k<fNstrips_ladder;k++) {
|
| 2321 |
Nstrip=i*fNstrips_ladder+k;
|
| 2322 |
AdcTrack[j][Nstrip]=gRandom->Gaus(fPedeTrack[j][Nstrip],fSigmaTrack[j][Nstrip]);
|
| 2323 |
if(k<4*128) {AdcTrack[j][Nstrip] += commonN1;} // full correlation of 4 VA1 Com. Noise
|
| 2324 |
else {AdcTrack[j][Nstrip] += commonN2;} // full correlation of 4 VA1 Com. Noise
|
| 2325 |
|
| 2326 |
};
|
| 2327 |
|
| 2328 |
|
| 2329 |
};
|
| 2330 |
|
| 2331 |
|
| 2332 |
};
|
| 2333 |
|
| 2334 |
|
| 2335 |
fhBookTree->SetBranchStatus("Nstrpx",1);
|
| 2336 |
fhBookTree->SetBranchStatus("Npstripx",1);
|
| 2337 |
fhBookTree->SetBranchStatus("Ntstripx",1);
|
| 2338 |
fhBookTree->SetBranchStatus("Istripx",1);
|
| 2339 |
fhBookTree->SetBranchStatus("Qstripx",1);
|
| 2340 |
fhBookTree->SetBranchStatus("Xstripx",1);
|
| 2341 |
fhBookTree->SetBranchStatus("Nstrpy",1);
|
| 2342 |
fhBookTree->SetBranchStatus("Npstripy",1);
|
| 2343 |
fhBookTree->SetBranchStatus("Ntstripy",1);
|
| 2344 |
fhBookTree->SetBranchStatus("Istripy",1);
|
| 2345 |
fhBookTree->SetBranchStatus("Qstripy",1);
|
| 2346 |
fhBookTree->SetBranchStatus("Ystripy",1);
|
| 2347 |
|
| 2348 |
|
| 2349 |
|
| 2350 |
Float_t ADCfull;
|
| 2351 |
Int_t iladd=0;
|
| 2352 |
for (Int_t ix=0; ix<Nstrpx;ix++) {
|
| 2353 |
Iview=Npstripx[ix]*2-1;
|
| 2354 |
Nstrip=(Int_t)Istripx[ix]-1;
|
| 2355 |
if(Nstrip<fNstrips_ladder) iladd=0;
|
| 2356 |
if((Nstrip>=fNstrips_ladder)&&(Nstrip<2*fNstrips_ladder)) iladd=1;
|
| 2357 |
if((Nstrip>=2*fNstrips_ladder)&&(Nstrip<3*fNstrips_ladder)) iladd=2;
|
| 2358 |
ADCfull=AdcTrack[Iview][Nstrip] += Qstripx[ix]*fMipCor[iladd][Iview];
|
| 2359 |
AdcTrack[Iview][Nstrip] *= SaturationTrack(ADCfull);
|
| 2360 |
|
| 2361 |
};
|
| 2362 |
|
| 2363 |
|
| 2364 |
for (Int_t iy=0; iy<Nstrpy;iy++) {
|
| 2365 |
Iview=Npstripy[iy]*2-2;
|
| 2366 |
Nstrip=(Int_t)Istripy[iy]-1;
|
| 2367 |
if(Nstrip<fNstrips_ladder) iladd=0;
|
| 2368 |
if((Nstrip>=fNstrips_ladder)&&(Nstrip<2*fNstrips_ladder)) iladd=1;
|
| 2369 |
if((Nstrip>=2*fNstrips_ladder)&&(Nstrip<3*fNstrips_ladder)) iladd=2;
|
| 2370 |
ADCfull=AdcTrack[Iview][Nstrip] -= Qstripy[iy]*fMipCor[iladd][Iview];
|
| 2371 |
AdcTrack[Iview][Nstrip] *= SaturationTrack(ADCfull);
|
| 2372 |
|
| 2373 |
};
|
| 2374 |
|
| 2375 |
CompressTrackData(AdcTrack); // Compress and Digitize data of one Ladder in turn for all ladders
|
| 2376 |
|
| 2377 |
};
|
| 2378 |
|
| 2379 |
|
| 2380 |
|
| 2381 |
void Digitizer::DigitizeTrackCalib(Int_t ii) {
|
| 2382 |
|
| 2383 |
std:: cout << "Entering DigitizeTrackCalib " << ii << endl;
|
| 2384 |
if( (ii!=1)&&(ii!=2) ) {
|
| 2385 |
std:: cout << "error wrong DigitizeTrackCalib argument" << endl;
|
| 2386 |
return;
|
| 2387 |
};
|
| 2388 |
|
| 2389 |
memset(fDataTrack,0,sizeof(UShort_t)*fTRACKbuffer);
|
| 2390 |
fTracklength=0;
|
| 2391 |
|
| 2392 |
UShort_t Dato;
|
| 2393 |
|
| 2394 |
Float_t dato1;
|
| 2395 |
Float_t dato2;
|
| 2396 |
Float_t dato3;
|
| 2397 |
Float_t dato4;
|
| 2398 |
|
| 2399 |
UShort_t DatoDec;
|
| 2400 |
UShort_t DatoDec1;
|
| 2401 |
UShort_t DatoDec2;
|
| 2402 |
UShort_t DatoDec3;
|
| 2403 |
UShort_t DatoDec4;
|
| 2404 |
|
| 2405 |
UShort_t EVENT_CAL;
|
| 2406 |
UShort_t PED_L1;
|
| 2407 |
UShort_t ReLength;
|
| 2408 |
UShort_t OveCheckCode;
|
| 2409 |
//UShort_t PED_L2;
|
| 2410 |
//UShort_t PED_L3HI;
|
| 2411 |
//UShort_t PED_L3LO;
|
| 2412 |
//UShort_t SIG_L1HI;
|
| 2413 |
//UShort_t SIG_L1LO;
|
| 2414 |
//UShort_t SIG_L2HI;
|
| 2415 |
//UShort_t SIG_L2LO;
|
| 2416 |
//UShort_t SIG_L3;
|
| 2417 |
//UShort_t BAD_L1;
|
| 2418 |
//UShort_t BAD_L2LO;
|
| 2419 |
//UShort_t BAD_L3HI;
|
| 2420 |
//UShort_t BAD_L3LO;
|
| 2421 |
//UShort_t FLAG;
|
| 2422 |
|
| 2423 |
|
| 2424 |
Int_t DSPpos;
|
| 2425 |
for (Int_t j=ii-1; j<fNviews;j+=2) {
|
| 2426 |
UShort_t CkSum=0;
|
| 2427 |
// here skip the dsp header and his trailer , to be written later
|
| 2428 |
DSPpos=fTracklength;
|
| 2429 |
fTracklength=fTracklength+13+3;
|
| 2430 |
|
| 2431 |
|
| 2432 |
for (Int_t i=0; i<fNladder;i++) {
|
| 2433 |
for (Int_t k=0; k<fNstrips_ladder;k++) {
|
| 2434 |
// write in buffer the current LADDER
|
| 2435 |
Dato=(UShort_t)fPedeTrack[j][i*fNstrips_ladder+k];
|
| 2436 |
dato1=fPedeTrack[j][i*fNstrips_ladder+k]-Dato;
|
| 2437 |
|
| 2438 |
DatoDec1=(UShort_t)(dato1*2);
|
| 2439 |
dato2=dato1*2-DatoDec1;
|
| 2440 |
|
| 2441 |
DatoDec2=(UShort_t)(dato2*2);
|
| 2442 |
dato3=dato2*2-DatoDec2;
|
| 2443 |
|
| 2444 |
DatoDec3=(UShort_t)(dato3*2);
|
| 2445 |
dato4=dato3*2-DatoDec3;
|
| 2446 |
|
| 2447 |
DatoDec4=(UShort_t)(dato4*2);
|
| 2448 |
|
| 2449 |
DatoDec=DatoDec1*0x0008+DatoDec2*0x0004+DatoDec3*0x0002+DatoDec4*0x0001;
|
| 2450 |
fDataTrack[fTracklength]=( (Dato << 4) | (DatoDec & 0x000F) );
|
| 2451 |
CkSum=CkSum^fDataTrack[fTracklength];
|
| 2452 |
fTracklength++;
|
| 2453 |
};
|
| 2454 |
|
| 2455 |
for (Int_t k=0; k<fNstrips_ladder;k++) {
|
| 2456 |
// write in buffer the current LADDER
|
| 2457 |
Dato=(UShort_t)fSigmaTrack[j][i*fNstrips_ladder+k];
|
| 2458 |
dato1=fSigmaTrack[j][i*fNstrips_ladder+k]-Dato;
|
| 2459 |
|
| 2460 |
DatoDec1=(UShort_t)(dato1*2);
|
| 2461 |
dato2=dato1*2-DatoDec1;
|
| 2462 |
|
| 2463 |
DatoDec2=(UShort_t)(dato2*2);
|
| 2464 |
dato3=dato2*2-DatoDec2;
|
| 2465 |
|
| 2466 |
DatoDec3=(UShort_t)(dato3*2);
|
| 2467 |
dato4=dato3*2-DatoDec3;
|
| 2468 |
|
| 2469 |
DatoDec4=(UShort_t)(dato4*2);
|
| 2470 |
|
| 2471 |
DatoDec=DatoDec1*0x0008+DatoDec2*0x0004+DatoDec3*0x0002+DatoDec4*0x0001;
|
| 2472 |
|
| 2473 |
fDataTrack[fTracklength]=( (Dato << 4) | (DatoDec & 0x000F) );
|
| 2474 |
CkSum=CkSum^fDataTrack[fTracklength];
|
| 2475 |
fTracklength++;
|
| 2476 |
};
|
| 2477 |
|
| 2478 |
for (Int_t k=0; k<64;k++) {
|
| 2479 |
fDataTrack[fTracklength]=0x0000;
|
| 2480 |
CkSum=CkSum^fDataTrack[fTracklength];
|
| 2481 |
fTracklength++;
|
| 2482 |
|
| 2483 |
};
|
| 2484 |
// end ladder
|
| 2485 |
|
| 2486 |
// write in buffer the end ladder word
|
| 2487 |
if(i==0) fDataTrack[fTracklength]=0x1807;
|
| 2488 |
if(i==1) fDataTrack[fTracklength]=0x1808;
|
| 2489 |
if(i==2) fDataTrack[fTracklength]=0x1809;
|
| 2490 |
CkSum=CkSum^fDataTrack[fTracklength];
|
| 2491 |
fTracklength++;
|
| 2492 |
|
| 2493 |
// write in buffer the TRAILER
|
| 2494 |
ReLength=(UShort_t)((fNstrips_ladder*2+64+1)*2+3);
|
| 2495 |
OveCheckCode=0x0000;
|
| 2496 |
|
| 2497 |
fDataTrack[fTracklength]=0x0000;
|
| 2498 |
fTracklength++;
|
| 2499 |
|
| 2500 |
fDataTrack[fTracklength]=(ReLength >> 8);
|
| 2501 |
fTracklength++;
|
| 2502 |
|
| 2503 |
fDataTrack[fTracklength]=( (ReLength << 8) | (OveCheckCode & 0x00FF) );
|
| 2504 |
fTracklength++;
|
| 2505 |
|
| 2506 |
// end TRAILER
|
| 2507 |
};
|
| 2508 |
|
| 2509 |
// write in buffer the DSP header
|
| 2510 |
|
| 2511 |
fDataTrack[DSPpos]=(0xE800 | ( ((j+1) << 3) | 0x0005) );
|
| 2512 |
|
| 2513 |
fDataTrack[DSPpos+1]=0x01A9;
|
| 2514 |
|
| 2515 |
fDataTrack[DSPpos+2]=0x8740;
|
| 2516 |
|
| 2517 |
EVENT_CAL=0;
|
| 2518 |
fDataTrack[DSPpos+3]=(0x1A00 | ( (0x03FF & EVENT_CAL)>> 1) );
|
| 2519 |
|
| 2520 |
PED_L1=0;
|
| 2521 |
fDataTrack[DSPpos+4]=( ((EVENT_CAL << 15) | 0x5002 ) | ((0x03FF & PED_L1) << 2) );
|
| 2522 |
|
| 2523 |
// FROM HERE WE WRITE AS ALL VARIABLE apart CkSum are =0
|
| 2524 |
|
| 2525 |
fDataTrack[DSPpos+5]=0x8014;
|
| 2526 |
|
| 2527 |
fDataTrack[DSPpos+6]=0x00A0;
|
| 2528 |
|
| 2529 |
fDataTrack[DSPpos+7]=0x0500;
|
| 2530 |
|
| 2531 |
fDataTrack[DSPpos+8]=0x2801;
|
| 2532 |
|
| 2533 |
fDataTrack[DSPpos+9]=0x400A;
|
| 2534 |
|
| 2535 |
fDataTrack[DSPpos+10]=0x0050;
|
| 2536 |
|
| 2537 |
CkSum=(CkSum >> 8)^(CkSum&0x00FF);
|
| 2538 |
fDataTrack[DSPpos+11]=(0x0280 | (CkSum >> 3));
|
| 2539 |
|
| 2540 |
fDataTrack[DSPpos+12]=(0x1FFF | (CkSum << 13) );
|
| 2541 |
|
| 2542 |
// end dsp header
|
| 2543 |
|
| 2544 |
// write in buffer the TRAILER
|
| 2545 |
|
| 2546 |
ReLength=(UShort_t)((13*2)+3);
|
| 2547 |
OveCheckCode=0x0000;
|
| 2548 |
fDataTrack[DSPpos+13]=0x0000;
|
| 2549 |
|
| 2550 |
fDataTrack[DSPpos+14]=(ReLength >> 8);
|
| 2551 |
|
| 2552 |
fDataTrack[DSPpos+15]=( (ReLength << 8) | (OveCheckCode & 0x00FF) );
|
| 2553 |
|
| 2554 |
// end TRAILER
|
| 2555 |
|
| 2556 |
|
| 2557 |
|
| 2558 |
|
| 2559 |
// end DSP
|
| 2560 |
};
|
| 2561 |
|
| 2562 |
|
| 2563 |
|
| 2564 |
};
|
| 2565 |
|
| 2566 |
void Digitizer::WriteTrackCalib() {
|
| 2567 |
|
| 2568 |
|
| 2569 |
std:: cout << " Entering WriteTrackCalib " << endl;
|
| 2570 |
|
| 2571 |
fOutputfile.write(reinterpret_cast<char*>(fDataPSCU),sizeof(UShort_t)*fPSCUbuffer);
|
| 2572 |
|
| 2573 |
UShort_t temp[1000000];
|
| 2574 |
memset(temp,0,sizeof(UShort_t)*1000000);
|
| 2575 |
swab(fDataTrack,temp,sizeof(UShort_t)*fTracklength); // WE MUST SWAP THE BYTES!!!
|
| 2576 |
fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fTracklength);
|
| 2577 |
fTracklength=0;
|
| 2578 |
if ( fPadding ){
|
| 2579 |
fOutputfile.write(reinterpret_cast<char*>(fDataPadding),sizeof(UChar_t)*fPadding);
|
| 2580 |
};
|
| 2581 |
|
| 2582 |
};
|
| 2583 |
|
| 2584 |
|
| 2585 |
void Digitizer::ClearTrackCalib() {
|
| 2586 |
|
| 2587 |
std:: cout << "Entering ClearTrackCalib " << endl;
|
| 2588 |
|
| 2589 |
|
| 2590 |
};
|
| 2591 |
|
| 2592 |
|
| 2593 |
void Digitizer::LoadTrackCalib() {
|
| 2594 |
std:: cout << "Entering LoadTrackCalib " << endl;
|
| 2595 |
|
| 2596 |
// Generate the pedestals and sigmas according to parametrization
|
| 2597 |
for (Int_t j=0; j<fNviews;j++) {
|
| 2598 |
for (Int_t i=0; i<fNstrips_view;i++) {
|
| 2599 |
|
| 2600 |
if((j+1)%2==0) {
|
| 2601 |
fPedeTrack[j][i]=gRandom->Gaus(fAvePedex,fSigmaPedex);
|
| 2602 |
fSigmaTrack[j][i]=gRandom->Gaus(fAveSigmax,fSigmaSigmax);
|
| 2603 |
};
|
| 2604 |
if((j+1)%2==1) {
|
| 2605 |
fPedeTrack[j][i]=gRandom->Gaus(fAvePedey,fSigmaPedey);
|
| 2606 |
fSigmaTrack[j][i]=gRandom->Gaus(fAveSigmay,fSigmaSigmay);
|
| 2607 |
};
|
| 2608 |
|
| 2609 |
};
|
| 2610 |
};
|
| 2611 |
|
| 2612 |
|
| 2613 |
|
| 2614 |
};
|
| 2615 |
|
| 2616 |
void Digitizer::LoadMipCor() {
|
| 2617 |
std:: cout << "Entering LoadMipCor" << endl;
|
| 2618 |
Float_t xfactor=1./151.6*1.04;
|
| 2619 |
Float_t yfactor=1./152.1;
|
| 2620 |
|
| 2621 |
fMipCor[0][0]=140.02*yfactor;
|
| 2622 |
fMipCor[0][1]=140.99*xfactor;
|
| 2623 |
fMipCor[0][2]=134.48*yfactor;
|
| 2624 |
fMipCor[0][3]=144.41*xfactor;
|
| 2625 |
fMipCor[0][4]=140.74*yfactor;
|
| 2626 |
fMipCor[0][5]=142.28*xfactor;
|
| 2627 |
fMipCor[0][6]=134.53*yfactor;
|
| 2628 |
fMipCor[0][7]=140.63*xfactor;
|
| 2629 |
fMipCor[0][8]=135.55*yfactor;
|
| 2630 |
fMipCor[0][9]=138.00*xfactor;
|
| 2631 |
fMipCor[0][10]=154.95*yfactor;
|
| 2632 |
fMipCor[0][11]=158.44*xfactor;
|
| 2633 |
|
| 2634 |
|
| 2635 |
fMipCor[1][0]=136.07*yfactor;
|
| 2636 |
fMipCor[1][1]=135.59*xfactor;
|
| 2637 |
fMipCor[1][2]=142.69*yfactor;
|
| 2638 |
fMipCor[1][3]=138.19*xfactor;
|
| 2639 |
fMipCor[1][4]=137.35*yfactor;
|
| 2640 |
fMipCor[1][5]=140.23*xfactor;
|
| 2641 |
fMipCor[1][6]=153.15*yfactor;
|
| 2642 |
fMipCor[1][7]=151.42*xfactor;
|
| 2643 |
fMipCor[1][8]=129.76*yfactor;
|
| 2644 |
fMipCor[1][9]=140.63*xfactor;
|
| 2645 |
fMipCor[1][10]=157.87*yfactor;
|
| 2646 |
fMipCor[1][11]=153.64*xfactor;
|
| 2647 |
|
| 2648 |
fMipCor[2][0]=134.98*yfactor;
|
| 2649 |
fMipCor[2][1]=143.95*xfactor;
|
| 2650 |
fMipCor[2][2]=140.23*yfactor;
|
| 2651 |
fMipCor[2][3]=138.88*xfactor;
|
| 2652 |
fMipCor[2][4]=137.95*yfactor;
|
| 2653 |
fMipCor[2][5]=134.87*xfactor;
|
| 2654 |
fMipCor[2][6]=157.56*yfactor;
|
| 2655 |
fMipCor[2][7]=157.31*xfactor;
|
| 2656 |
fMipCor[2][8]=141.37*yfactor;
|
| 2657 |
fMipCor[2][9]=143.39*xfactor;
|
| 2658 |
fMipCor[2][10]=156.15*yfactor;
|
| 2659 |
fMipCor[2][11]=158.79*xfactor;
|
| 2660 |
|
| 2661 |
/*
|
| 2662 |
for (Int_t j=0; j<fNviews;j++) {
|
| 2663 |
for (Int_t i=0; i<fNstrips_view;i++) {
|
| 2664 |
fMipCor[j][i]=1.;
|
| 2665 |
};
|
| 2666 |
};
|
| 2667 |
|
| 2668 |
|
| 2669 |
*/
|
| 2670 |
};
|
| 2671 |
|
| 2672 |
void Digitizer::CompressTrackData(Float_t AdcTrack[fNviews][fNstrips_view]) {
|
| 2673 |
// copy of the corresponding compression fortran routine + new digitization
|
| 2674 |
// std:: cout << "Entering CompressTrackData " << endl;
|
| 2675 |
Int_t oldval=0;
|
| 2676 |
Int_t newval=0;
|
| 2677 |
Int_t trasmesso=0;
|
| 2678 |
Int_t ntrastot=0;
|
| 2679 |
Float_t real;
|
| 2680 |
Float_t inte;
|
| 2681 |
Int_t cercacluster=0;
|
| 2682 |
Int_t kt=0;
|
| 2683 |
static const int DSPbufferSize = 4000; // 13 bit buffer to be rearranged in 16 bit Track buffer
|
| 2684 |
UShort_t DataDSP[DSPbufferSize]; // 13 bit buffer to be rearranged in 16 bit Track buffer
|
| 2685 |
UShort_t DSPlength; // 13 bit buffer to be rearranged in 16 bit Track buffer
|
| 2686 |
|
| 2687 |
memset(fDataTrack,0,sizeof(UShort_t)*fTRACKbuffer); // probably not necessary becouse already done ?
|
| 2688 |
fTracklength=0;
|
| 2689 |
|
| 2690 |
for (Int_t iv=0; iv<fNviews;iv++) {
|
| 2691 |
memset(DataDSP,0,sizeof(UShort_t)*DSPbufferSize);
|
| 2692 |
DSPlength=16; // skip the header, to be written later
|
| 2693 |
UShort_t CheckSum=0;
|
| 2694 |
// write dsp header on buffer
|
| 2695 |
|
| 2696 |
// fDataTrack[fTracklength]=0xE805;
|
| 2697 |
// fTracklength++;
|
| 2698 |
|
| 2699 |
// fDataTrack[fTracklength]=0x01A9;
|
| 2700 |
// fTracklength++;
|
| 2701 |
|
| 2702 |
// end dsp header
|
| 2703 |
|
| 2704 |
//
|
| 2705 |
// INIZIO VISTA IV - TAKE PROPER ACTION
|
| 2706 |
//
|
| 2707 |
|
| 2708 |
|
| 2709 |
|
| 2710 |
for (Int_t ladder=0; ladder<fNladder;ladder++) {
|
| 2711 |
Int_t k=0;
|
| 2712 |
while (k<fNstrips_ladder) {
|
| 2713 |
// compress write in buffer the current LADDER
|
| 2714 |
if ( k == 0) {
|
| 2715 |
real=modff(AdcTrack[iv][ladder*fNstrips_ladder+k],&inte);
|
| 2716 |
if (real > 0.5) inte=inte+1;
|
| 2717 |
newval=(Int_t)inte -(Int_t)fPedeTrack[iv][ladder*fNstrips_ladder+k];
|
| 2718 |
// first strip of ladder is transmitted
|
| 2719 |
// DC_TOT first " << AdcTrack[iv][ladder*fNstrips_ladder+k] << endl;
|
| 2720 |
DataDSP[DSPlength]=( ((UShort_t)inte) & 0x0FFF);
|
| 2721 |
DSPlength++;
|
| 2722 |
ntrastot++;
|
| 2723 |
trasmesso=1;
|
| 2724 |
oldval=newval;
|
| 2725 |
kt=k;
|
| 2726 |
k++;
|
| 2727 |
continue;
|
| 2728 |
};
|
| 2729 |
real=modff(AdcTrack[iv][ladder*fNstrips_ladder+k],&inte);
|
| 2730 |
if (real > 0.5) inte=inte+1;
|
| 2731 |
newval=(Int_t)inte -(Int_t)(fPedeTrack[iv][ladder*fNstrips_ladder+k]);
|
| 2732 |
cercacluster=1; // ?????????
|
| 2733 |
if (cercacluster==1) {
|
| 2734 |
|
| 2735 |
// controlla l'ordine di tutti queste strip ladder e DSP !!!!!!!
|
| 2736 |
Int_t diff=0;
|
| 2737 |
|
| 2738 |
|
| 2739 |
switch ((iv+1)%2) {
|
| 2740 |
case 0: diff=newval-oldval;
|
| 2741 |
break;
|
| 2742 |
case 1: diff=oldval-newval;
|
| 2743 |
break;
|
| 2744 |
};
|
| 2745 |
|
| 2746 |
if (diff>fCutclu*(Int_t)fSigmaTrack[iv][ladder*fNstrips_ladder+k]) {
|
| 2747 |
Int_t clval=newval;
|
| 2748 |
Int_t klp=k; // go on to search for maximum
|
| 2749 |
klp++;
|
| 2750 |
|
| 2751 |
while(klp<fNstrips_ladder) {
|
| 2752 |
real=modff(AdcTrack[iv][ladder*fNstrips_ladder+klp],&inte);
|
| 2753 |
if (real > 0.5) inte=inte+1;
|
| 2754 |
Int_t clvalp=(Int_t)inte -(Int_t)fPedeTrack[iv][ladder*fNstrips_ladder+klp];
|
| 2755 |
if((iv+1)%2==0) {
|
| 2756 |
|
| 2757 |
if(clvalp>clval) {
|
| 2758 |
clval=clvalp;
|
| 2759 |
k=klp;}
|
| 2760 |
else break; // max of cluster found
|
| 2761 |
|
| 2762 |
} else {
|
| 2763 |
|
| 2764 |
if(clvalp<clval) {
|
| 2765 |
clval=clvalp;
|
| 2766 |
k=klp;}
|
| 2767 |
else break; // max of cluster found
|
| 2768 |
|
| 2769 |
};
|
| 2770 |
|
| 2771 |
klp++;
|
| 2772 |
};
|
| 2773 |
|
| 2774 |
Int_t kl1=k-fNclst; // max of cluster (or end of ladder ?)
|
| 2775 |
trasmesso=0;
|
| 2776 |
if(kl1<0) kl1=0;
|
| 2777 |
|
| 2778 |
if(kt>=kl1) kl1=kt+1;
|
| 2779 |
if( (kt+1)==kl1 ) trasmesso=1;
|
| 2780 |
|
| 2781 |
|
| 2782 |
|
| 2783 |
Int_t kl2=k+fNclst;
|
| 2784 |
if(kl2>=fNstrips_ladder) kl2=fNstrips_ladder-1;
|
| 2785 |
|
| 2786 |
for(Int_t klt=kl1 ; klt<=kl2 ; klt++) {
|
| 2787 |
if(trasmesso==0) {
|
| 2788 |
// std:: cout << "STRIP " << klt << endl;
|
| 2789 |
// std:: cout << "ADC_TOT " <<AdcTrack[iv][ladder*fNstrips_ladder+klt] << endl;
|
| 2790 |
|
| 2791 |
DataDSP[DSPlength]=( ((UShort_t)klt) | 0x1000);
|
| 2792 |
DSPlength++;
|
| 2793 |
ntrastot++;
|
| 2794 |
|
| 2795 |
|
| 2796 |
real=modff(AdcTrack[iv][ladder*fNstrips_ladder+klt],&inte);
|
| 2797 |
if (real > 0.5) inte=inte+1;
|
| 2798 |
DataDSP[DSPlength]=( ((UShort_t)inte) & 0x0FFF);
|
| 2799 |
DSPlength++;
|
| 2800 |
ntrastot++;
|
| 2801 |
|
| 2802 |
}
|
| 2803 |
else {
|
| 2804 |
// std:: cout << "ADC_TOT " <<AdcTrack[iv][ladder*fNstrips_ladder+klt] << endl;
|
| 2805 |
real=modff(AdcTrack[iv][ladder*fNstrips_ladder+klt],&inte);
|
| 2806 |
if (real > 0.5) inte=inte+1;
|
| 2807 |
DataDSP[DSPlength]=( ((UShort_t)inte) & 0x0FFF);
|
| 2808 |
DSPlength++;
|
| 2809 |
ntrastot++;
|
| 2810 |
};
|
| 2811 |
trasmesso=1;
|
| 2812 |
}; // end trasmission
|
| 2813 |
kt=kl2;
|
| 2814 |
k=kl2;
|
| 2815 |
real=modff(AdcTrack[iv][ladder*fNstrips_ladder+kt],&inte);
|
| 2816 |
if (real > 0.5) inte=inte+1;
|
| 2817 |
oldval=(Int_t)inte -(Int_t)fPedeTrack[iv][ladder*fNstrips_ladder+kt];
|
| 2818 |
k++;
|
| 2819 |
continue;
|
| 2820 |
|
| 2821 |
|
| 2822 |
}; // end cercacluster
|
| 2823 |
}; // end cercacluster
|
| 2824 |
|
| 2825 |
// start ZOP check for strips no
|
| 2826 |
|
| 2827 |
if(abs(newval-oldval)>=fCutzop*(Int_t)fSigmaTrack[iv][ladder*fNstrips_ladder+k]) {
|
| 2828 |
|
| 2829 |
if(trasmesso==0) {
|
| 2830 |
// std:: cout << "STRIP " << k << endl;
|
| 2831 |
// std:: cout << "ADC_TOT " << AdcTrack[iv][ladder*fNstrips_ladder+k] << endl;
|
| 2832 |
|
| 2833 |
DataDSP[DSPlength]=( ((UShort_t)k) | 0x1000);
|
| 2834 |
DSPlength++;
|
| 2835 |
ntrastot++;
|
| 2836 |
|
| 2837 |
|
| 2838 |
real=modff(AdcTrack[iv][ladder*fNstrips_ladder+k],&inte);
|
| 2839 |
if (real > 0.5) inte=inte+1;
|
| 2840 |
DataDSP[DSPlength]=( ((UShort_t)inte) & 0x0FFF);
|
| 2841 |
DSPlength++;
|
| 2842 |
ntrastot++;
|
| 2843 |
|
| 2844 |
}
|
| 2845 |
else {
|
| 2846 |
// std:: cout << "ADC_TOT " << AdcTrack[iv][ladder*fNstrips_ladder+k] << endl;
|
| 2847 |
real=modff(AdcTrack[iv][ladder*fNstrips_ladder+k],&inte);
|
| 2848 |
if (real > 0.5) inte=inte+1;
|
| 2849 |
DataDSP[DSPlength]=( ((UShort_t)inte) & 0x0FFF);
|
| 2850 |
DSPlength++;
|
| 2851 |
ntrastot++;
|
| 2852 |
};
|
| 2853 |
trasmesso=1;
|
| 2854 |
oldval=newval;
|
| 2855 |
kt=k;
|
| 2856 |
|
| 2857 |
}
|
| 2858 |
else trasmesso=0;
|
| 2859 |
// end zop
|
| 2860 |
|
| 2861 |
k++;
|
| 2862 |
}; // end cycle inside ladder
|
| 2863 |
// write here the end ladder bytes
|
| 2864 |
// std:: cout << "FINE LADDER " << ladder+1 << endl;
|
| 2865 |
|
| 2866 |
DataDSP[DSPlength]=( ((UShort_t)(ladder+1)) | 0x1800);
|
| 2867 |
DSPlength++;
|
| 2868 |
ntrastot++;
|
| 2869 |
trasmesso=0;
|
| 2870 |
|
| 2871 |
}; //end cycle inside dsp
|
| 2872 |
// std:: cout << "FINE DSP " << iv+1 << endl;
|
| 2873 |
// here put DSP header
|
| 2874 |
DataDSP[0]=(0x1CA0 | ((UShort_t)(iv+1)) );
|
| 2875 |
UShort_t Nword=(DSPlength*13)/16;
|
| 2876 |
if( ((DSPlength*13)%16)!=0) Nword++;
|
| 2877 |
DataDSP[1]=(0x1400 | ( Nword >> 10));
|
| 2878 |
DataDSP[2]=(0x1400 | ( Nword & 0x03FF) );
|
| 2879 |
DataDSP[3]=(0x1400 | (( (UShort_t)(fCounter >> 10) ) & 0x03FF) );
|
| 2880 |
DataDSP[4]=(0x1400 | (( (UShort_t)(fCounter) ) & 0x03FF) );
|
| 2881 |
DataDSP[5]=(0x1400 | ( (UShort_t)(fNclst << 7) ) | ( (UShort_t)(fCutzop << 4) )
|
| 2882 |
| ( (UShort_t)fCutzop ) );
|
| 2883 |
DataDSP[6]=0x1400;
|
| 2884 |
DataDSP[7]=0x1400;
|
| 2885 |
DataDSP[8]=0x1400;
|
| 2886 |
DataDSP[9]=0x1400;
|
| 2887 |
DataDSP[10]=0x1400;
|
| 2888 |
DataDSP[11]=0x1400;
|
| 2889 |
DataDSP[12]=0x1400;
|
| 2890 |
DataDSP[13]=0x1400;
|
| 2891 |
DataDSP[14]=(0x1400 | (CheckSum & 0x00FF) );
|
| 2892 |
DataDSP[15]=0x1C00;
|
| 2893 |
// end DSP header
|
| 2894 |
|
| 2895 |
|
| 2896 |
// write 13 bit DataDSP bufer inside 16 bit fDataTrack buffer
|
| 2897 |
Int_t Bit16free=16;
|
| 2898 |
UShort_t Dato;
|
| 2899 |
for (Int_t NDSP=0; NDSP<DSPlength;NDSP++) {
|
| 2900 |
Int_t Bit13ToWrite=13;
|
| 2901 |
while(Bit13ToWrite>0) {
|
| 2902 |
if(Bit13ToWrite<=Bit16free) {
|
| 2903 |
Dato=((DataDSP[NDSP]&(0xFFFF >> (16-Bit13ToWrite)))<<(Bit16free-Bit13ToWrite));
|
| 2904 |
fDataTrack[fTracklength]=fDataTrack[fTracklength] | Dato ;
|
| 2905 |
Bit16free=Bit16free-Bit13ToWrite;
|
| 2906 |
Bit13ToWrite=0;
|
| 2907 |
if(Bit16free==0) {
|
| 2908 |
if(NDSP>15) CheckSum=CheckSum^fDataTrack[fTracklength];
|
| 2909 |
fTracklength++;
|
| 2910 |
Bit16free=16;
|
| 2911 |
};
|
| 2912 |
}
|
| 2913 |
else if(Bit13ToWrite>Bit16free) {
|
| 2914 |
Dato=( (DataDSP[NDSP]&(0xFFFF >> (16-Bit13ToWrite) ) ) >> (Bit13ToWrite-Bit16free) );
|
| 2915 |
fDataTrack[fTracklength]=fDataTrack[fTracklength] | Dato ;
|
| 2916 |
if(NDSP>15) CheckSum=CheckSum^fDataTrack[fTracklength];
|
| 2917 |
fTracklength++;
|
| 2918 |
Bit13ToWrite=Bit13ToWrite-Bit16free;
|
| 2919 |
Bit16free=16;
|
| 2920 |
};
|
| 2921 |
|
| 2922 |
}; // end cycle while(Bit13ToWrite>0)
|
| 2923 |
|
| 2924 |
}; // end cycle DataDSP
|
| 2925 |
if(Bit16free!=16) { fTracklength++; CheckSum=CheckSum^fDataTrack[fTracklength]; };
|
| 2926 |
CheckSum=(CheckSum >> 8)^(CheckSum&0x00FF);
|
| 2927 |
fDataTrack[fTracklength-Nword+11]=(0x0280 | (CheckSum >> 3));
|
| 2928 |
fDataTrack[fTracklength-Nword+12]=(0x1C00 | (CheckSum << 13) );
|
| 2929 |
|
| 2930 |
// end write 13 bit DataDSP bufer inside 16 bit fDataTrack buffer
|
| 2931 |
|
| 2932 |
//write trailer on buffer
|
| 2933 |
UShort_t ReLength=(UShort_t)((Nword+13)*2+3);
|
| 2934 |
UShort_t OveCheckCode=0x0000;
|
| 2935 |
|
| 2936 |
fDataTrack[fTracklength]=0x0000;
|
| 2937 |
fTracklength++;
|
| 2938 |
|
| 2939 |
fDataTrack[fTracklength]=(ReLength >> 8);
|
| 2940 |
fTracklength++;
|
| 2941 |
|
| 2942 |
fDataTrack[fTracklength]=( (ReLength << 8) | (OveCheckCode & 0x00FF) );
|
| 2943 |
fTracklength++;
|
| 2944 |
// end trailer
|
| 2945 |
// std:: cout << "DSPlength " <<DSPlength << endl;
|
| 2946 |
// std:: cout << "Nword " << Nword << endl;
|
| 2947 |
// std:: cout << "ReLength " << ReLength << endl;
|
| 2948 |
};
|
| 2949 |
// std:: cout << "ntrastot " << ntrastot << endl;
|
| 2950 |
|
| 2951 |
};
|
| 2952 |
|
| 2953 |
|
| 2954 |
Float_t Digitizer::SaturationTrack(Float_t ADC) {
|
| 2955 |
Float_t SatFact=1.;
|
| 2956 |
if(ADC<70.) { SatFact=80./ADC; };
|
| 2957 |
if(ADC>3000.) { SatFact=3000./ADC; };
|
| 2958 |
return SatFact;
|
| 2959 |
};
|
| 2960 |
|
| 2961 |
|
| 2962 |
|
| 2963 |
|
| 2964 |
|
| 2965 |
|