| 1 |
// ------ PAMELA Digitizer ------ |
| 2 |
// |
| 3 |
// Date, release and how-to: see file Pamelagp2Digits.cxx |
| 4 |
// |
| 5 |
// NB: Check length physics packet [packet type (0x10 = physics data)] |
| 6 |
// |
| 7 |
#include <sstream> |
| 8 |
#include <fstream> |
| 9 |
#include <stdlib.h> |
| 10 |
#include <stdio.h> |
| 11 |
#include <string.h> |
| 12 |
#include <ctype.h> |
| 13 |
#include <time.h> |
| 14 |
#include "Riostream.h" |
| 15 |
#include "TFile.h" |
| 16 |
#include "TDirectory.h" |
| 17 |
#include "TTree.h" |
| 18 |
#include "TLeafI.h" |
| 19 |
#include "TH1.h" |
| 20 |
#include "TH2.h" |
| 21 |
#include "TMath.h" |
| 22 |
#include "TRandom.h" |
| 23 |
#include "TSQLServer.h" |
| 24 |
#include "TSystem.h" |
| 25 |
// |
| 26 |
#include "Digitizer.h" |
| 27 |
#include "CRC.h" |
| 28 |
// |
| 29 |
#include <PamelaRun.h> |
| 30 |
#include <physics/calorimeter/CalorimeterEvent.h> |
| 31 |
#include <CalibCalPedEvent.h> |
| 32 |
#include "GLTables.h" |
| 33 |
// |
| 34 |
extern "C"{ |
| 35 |
short crc(short, short); |
| 36 |
}; |
| 37 |
// |
| 38 |
|
| 39 |
Digitizer::Digitizer(TTree* tree, char* &file_raw){ |
| 40 |
fhBookTree = tree; |
| 41 |
fFilename = file_raw; |
| 42 |
fCounter = 0; |
| 43 |
fOBT = 0; |
| 44 |
|
| 45 |
// |
| 46 |
// DB connections |
| 47 |
// |
| 48 |
TString host = "mysql://localhost/pamelaprod"; |
| 49 |
TString user = "anonymous"; |
| 50 |
TString psw = ""; |
| 51 |
// |
| 52 |
const char *pamdbhost=gSystem->Getenv("PAM_DBHOST"); |
| 53 |
const char *pamdbuser=gSystem->Getenv("PAM_DBUSER"); |
| 54 |
const char *pamdbpsw=gSystem->Getenv("PAM_DBPSW"); |
| 55 |
if ( !pamdbhost ) pamdbhost = ""; |
| 56 |
if ( !pamdbuser ) pamdbuser = ""; |
| 57 |
if ( !pamdbpsw ) pamdbpsw = ""; |
| 58 |
if ( strcmp(pamdbhost,"") ) host = pamdbhost; |
| 59 |
if ( strcmp(pamdbuser,"") ) user = pamdbuser; |
| 60 |
if ( strcmp(pamdbpsw,"") ) psw = pamdbpsw; |
| 61 |
fDbc = TSQLServer::Connect(host.Data(),user.Data(),psw.Data()); |
| 62 |
// |
| 63 |
GL_TABLES *glt = new GL_TABLES(host,user,psw); |
| 64 |
if ( glt->IsConnected(fDbc) ) printf("\n DB INFORMATION:\n SQL: %s Version: %s Host %s Port %i \n\n",fDbc->GetDBMS(),fDbc->ServerInfo(),fDbc->GetHost(),fDbc->GetPort()); |
| 65 |
// |
| 66 |
// Use UTC in the DB and make timeout bigger |
| 67 |
// |
| 68 |
stringstream myquery; |
| 69 |
myquery.str(""); |
| 70 |
myquery << "SET time_zone='+0:00'"; |
| 71 |
fDbc->Query(myquery.str().c_str()); |
| 72 |
myquery.str(""); |
| 73 |
myquery << "SET wait_timeout=173000;"; |
| 74 |
fDbc->Query(myquery.str().c_str()); |
| 75 |
// |
| 76 |
|
| 77 |
std:: cout << "preparing tree" << endl; |
| 78 |
|
| 79 |
// prepare tree |
| 80 |
fhBookTree->SetBranchAddress("Irun",&Irun); |
| 81 |
fhBookTree->SetBranchAddress("Ievnt",&Ievnt); |
| 82 |
fhBookTree->SetBranchAddress("Ipa",&Ipa); |
| 83 |
fhBookTree->SetBranchAddress("X0",&X0); |
| 84 |
fhBookTree->SetBranchAddress("Y0",&Y0); |
| 85 |
fhBookTree->SetBranchAddress("Z0",&Z0); |
| 86 |
fhBookTree->SetBranchAddress("Theta",&Theta); |
| 87 |
fhBookTree->SetBranchAddress("Phi",&Phi); |
| 88 |
fhBookTree->SetBranchAddress("P0",&P0); |
| 89 |
fhBookTree->SetBranchAddress("Nthtof",&Nthtof); |
| 90 |
fhBookTree->SetBranchAddress("Ipltof",Ipltof); |
| 91 |
fhBookTree->SetBranchAddress("Ipaddle",Ipaddle); |
| 92 |
fhBookTree->SetBranchAddress("Ipartof",Ipartof); |
| 93 |
fhBookTree->SetBranchAddress("Xintof",Xintof); |
| 94 |
fhBookTree->SetBranchAddress("Yintof",Yintof); |
| 95 |
fhBookTree->SetBranchAddress("Zintof",Zintof); |
| 96 |
fhBookTree->SetBranchAddress("Xouttof",Xouttof); |
| 97 |
fhBookTree->SetBranchAddress("Youttof",Youttof); |
| 98 |
fhBookTree->SetBranchAddress("Zouttof",Zouttof); |
| 99 |
fhBookTree->SetBranchAddress("Ereltof",Ereltof); |
| 100 |
fhBookTree->SetBranchAddress("Timetof",Timetof); |
| 101 |
fhBookTree->SetBranchAddress("Pathtof",Pathtof); |
| 102 |
fhBookTree->SetBranchAddress("P0tof",P0tof); |
| 103 |
fhBookTree->SetBranchAddress("Nthcat",&Nthcat); |
| 104 |
fhBookTree->SetBranchAddress("Iparcat",Iparcat); |
| 105 |
fhBookTree->SetBranchAddress("Icat",Icat); |
| 106 |
fhBookTree->SetBranchAddress("Xincat",Xincat); |
| 107 |
fhBookTree->SetBranchAddress("Yincat",Yincat); |
| 108 |
fhBookTree->SetBranchAddress("Zincat",Zincat); |
| 109 |
fhBookTree->SetBranchAddress("Xoutcat",Xoutcat); |
| 110 |
fhBookTree->SetBranchAddress("Youtcat",Youtcat); |
| 111 |
fhBookTree->SetBranchAddress("Zoutcat",Zoutcat); |
| 112 |
fhBookTree->SetBranchAddress("Erelcat",Erelcat); |
| 113 |
fhBookTree->SetBranchAddress("Timecat",Timecat); |
| 114 |
fhBookTree->SetBranchAddress("Pathcat",Pathcat); |
| 115 |
fhBookTree->SetBranchAddress("P0cat",P0cat); |
| 116 |
fhBookTree->SetBranchAddress("Nthcas",&Nthcas); |
| 117 |
fhBookTree->SetBranchAddress("Iparcas",Iparcas); |
| 118 |
fhBookTree->SetBranchAddress("Icas",Icas); |
| 119 |
fhBookTree->SetBranchAddress("Xincas",Xincas); |
| 120 |
fhBookTree->SetBranchAddress("Yincas",Yincas); |
| 121 |
fhBookTree->SetBranchAddress("Zincas",Zincas); |
| 122 |
fhBookTree->SetBranchAddress("Xoutcas",Xoutcas); |
| 123 |
fhBookTree->SetBranchAddress("Youtcas",Youtcas); |
| 124 |
fhBookTree->SetBranchAddress("Zoutcas",Zoutcas); |
| 125 |
fhBookTree->SetBranchAddress("Erelcas",Erelcas); |
| 126 |
fhBookTree->SetBranchAddress("Timecas",Timecas); |
| 127 |
fhBookTree->SetBranchAddress("Pathcas",Pathcas); |
| 128 |
fhBookTree->SetBranchAddress("P0cas",P0cas); |
| 129 |
fhBookTree->SetBranchAddress("Nthspe",&Nthspe); |
| 130 |
fhBookTree->SetBranchAddress("Iparspe",Iparspe); |
| 131 |
fhBookTree->SetBranchAddress("Itrpb",Itrpb); |
| 132 |
fhBookTree->SetBranchAddress("Itrsl",Itrsl); |
| 133 |
fhBookTree->SetBranchAddress("Itspa",Itspa); |
| 134 |
fhBookTree->SetBranchAddress("Xinspe",Xinspe); |
| 135 |
fhBookTree->SetBranchAddress("Yinspe",Yinspe); |
| 136 |
fhBookTree->SetBranchAddress("Zinspe",Zinspe); |
| 137 |
fhBookTree->SetBranchAddress("Xoutspe",Xoutspe); |
| 138 |
fhBookTree->SetBranchAddress("Youtspe",Youtspe); |
| 139 |
fhBookTree->SetBranchAddress("Zoutspe",Zoutspe); |
| 140 |
fhBookTree->SetBranchAddress("Xavspe",Xavspe); |
| 141 |
fhBookTree->SetBranchAddress("Yavspe",Yavspe); |
| 142 |
fhBookTree->SetBranchAddress("Zavspe",Zavspe); |
| 143 |
fhBookTree->SetBranchAddress("Erelspe",Erelspe); |
| 144 |
fhBookTree->SetBranchAddress("Pathspe",Pathspe); |
| 145 |
fhBookTree->SetBranchAddress("P0spe",P0spe); |
| 146 |
fhBookTree->SetBranchAddress("Nxmult",Nxmult); |
| 147 |
fhBookTree->SetBranchAddress("Nymult",Nymult); |
| 148 |
fhBookTree->SetBranchAddress("Nstrpx",&Nstrpx); |
| 149 |
fhBookTree->SetBranchAddress("Npstripx",Npstripx); |
| 150 |
fhBookTree->SetBranchAddress("Ntstripx",Ntstripx); |
| 151 |
fhBookTree->SetBranchAddress("Istripx",Istripx); |
| 152 |
fhBookTree->SetBranchAddress("Qstripx",Qstripx); |
| 153 |
fhBookTree->SetBranchAddress("Xstripx",Xstripx); |
| 154 |
fhBookTree->SetBranchAddress("Nstrpy",&Nstrpy); |
| 155 |
fhBookTree->SetBranchAddress("Npstripy",Npstripy); |
| 156 |
fhBookTree->SetBranchAddress("Ntstripy",Ntstripy); |
| 157 |
fhBookTree->SetBranchAddress("Istripy",Istripy); |
| 158 |
fhBookTree->SetBranchAddress("Qstripy",Qstripy); |
| 159 |
fhBookTree->SetBranchAddress("Ystripy",Ystripy); |
| 160 |
fhBookTree->SetBranchAddress("Nthcali",&Nthcali); |
| 161 |
fhBookTree->SetBranchAddress("Icaplane",Icaplane); |
| 162 |
fhBookTree->SetBranchAddress("Icastrip",Icastrip); |
| 163 |
fhBookTree->SetBranchAddress("Icamod",Icamod); |
| 164 |
fhBookTree->SetBranchAddress("Enestrip",Enestrip); |
| 165 |
fhBookTree->SetBranchAddress("Nthcal",&Nthcal); |
| 166 |
fhBookTree->SetBranchAddress("Icapl",Icapl); |
| 167 |
fhBookTree->SetBranchAddress("Icasi",Icasi); |
| 168 |
fhBookTree->SetBranchAddress("Icast",Icast); |
| 169 |
fhBookTree->SetBranchAddress("Xincal",Xincal); |
| 170 |
fhBookTree->SetBranchAddress("Yincal",Yincal); |
| 171 |
fhBookTree->SetBranchAddress("Zincal",Zincal); |
| 172 |
fhBookTree->SetBranchAddress("Erelcal",Erelcal); |
| 173 |
fhBookTree->SetBranchAddress("Nthnd",&Nthnd); |
| 174 |
fhBookTree->SetBranchAddress("Itubend",Itubend); |
| 175 |
fhBookTree->SetBranchAddress("Iparnd",Iparnd); |
| 176 |
fhBookTree->SetBranchAddress("Xinnd",Xinnd); |
| 177 |
fhBookTree->SetBranchAddress("Yinnd",Yinnd); |
| 178 |
fhBookTree->SetBranchAddress("Zinnd",Zinnd); |
| 179 |
fhBookTree->SetBranchAddress("Xoutnd",Xoutnd); |
| 180 |
fhBookTree->SetBranchAddress("Youtnd",Youtnd); |
| 181 |
fhBookTree->SetBranchAddress("Zoutnd",Zoutnd); |
| 182 |
fhBookTree->SetBranchAddress("Erelnd",Erelnd); |
| 183 |
fhBookTree->SetBranchAddress("Timend",Timend); |
| 184 |
fhBookTree->SetBranchAddress("Pathnd",Pathnd); |
| 185 |
fhBookTree->SetBranchAddress("P0nd",P0nd); |
| 186 |
fhBookTree->SetBranchAddress("Nthcard",&Nthcard); |
| 187 |
fhBookTree->SetBranchAddress("Iparcard",Iparcard); |
| 188 |
fhBookTree->SetBranchAddress("Icard",Icard); |
| 189 |
fhBookTree->SetBranchAddress("Xincard",Xincard); |
| 190 |
fhBookTree->SetBranchAddress("Yincard",Yincard); |
| 191 |
fhBookTree->SetBranchAddress("Zincard",Zincard); |
| 192 |
fhBookTree->SetBranchAddress("Xoutcard",Xoutcard); |
| 193 |
fhBookTree->SetBranchAddress("Youtcard",Youtcard); |
| 194 |
fhBookTree->SetBranchAddress("Zoutcard",Zoutcard); |
| 195 |
fhBookTree->SetBranchAddress("Erelcard",Erelcard); |
| 196 |
fhBookTree->SetBranchAddress("Timecard",Timecard); |
| 197 |
fhBookTree->SetBranchAddress("Pathcard",Pathcard); |
| 198 |
fhBookTree->SetBranchAddress("P0card",P0card); |
| 199 |
|
| 200 |
fhBookTree->SetBranchStatus("*",0); |
| 201 |
|
| 202 |
}; |
| 203 |
|
| 204 |
|
| 205 |
|
| 206 |
void Digitizer::Close(){ |
| 207 |
|
| 208 |
delete fhBookTree; |
| 209 |
|
| 210 |
}; |
| 211 |
|
| 212 |
|
| 213 |
|
| 214 |
|
| 215 |
void Digitizer::Loop() { |
| 216 |
// |
| 217 |
// opens the raw output file and loops over the events |
| 218 |
// |
| 219 |
fOutputfile.open(fFilename, ios::out | ios::binary); |
| 220 |
//fOutputfile.open(Form("Output%s",fFilename), ios::out | ios::binary); |
| 221 |
// |
| 222 |
// Load in memory and save at the beginning of file the calorimeter calibration |
| 223 |
// |
| 224 |
CaloLoadCalib(); |
| 225 |
DigitizeCALOCALIB(); |
| 226 |
|
| 227 |
// load, digitize and write tracker calibration |
| 228 |
LoadTrackCalib(); |
| 229 |
|
| 230 |
DigitizeTrackCalib(1); |
| 231 |
UInt_t length=fTracklength*2; |
| 232 |
DigitizePSCU(length,0x12); |
| 233 |
AddPadding(); |
| 234 |
WriteTrackCalib(); |
| 235 |
|
| 236 |
DigitizeTrackCalib(2); |
| 237 |
length=fTracklength*2; |
| 238 |
DigitizePSCU(length,0x13); |
| 239 |
AddPadding(); |
| 240 |
WriteTrackCalib(); |
| 241 |
|
| 242 |
LoadMipCor(); // some initialization of parameters -not used now- |
| 243 |
// end loading, digitizing and writing tracker calibration |
| 244 |
|
| 245 |
// |
| 246 |
// loops over the events |
| 247 |
// |
| 248 |
|
| 249 |
Int_t nentries = fhBookTree->GetEntriesFast(); |
| 250 |
Long64_t nbytes = 0; |
| 251 |
for (Int_t i=0; i<nentries;i++) { |
| 252 |
// |
| 253 |
nbytes += fhBookTree->GetEntry(i); |
| 254 |
// read detectors sequentially: |
| 255 |
// http://www.ts.infn.it/fileadmin/documents/physics/experiments/wizard/cpu/gen_arch/RM_Acquisition.pdf |
| 256 |
// on pamelatov: |
| 257 |
// /cvs/yoda/techmodel/physics/NeutronDetectorReader.cpp |
| 258 |
DigitizeTRIGGER(); |
| 259 |
DigitizeTOF(); |
| 260 |
DigitizeAC(); |
| 261 |
DigitizeCALO(); |
| 262 |
DigitizeTrack(); |
| 263 |
DigitizeS4(); |
| 264 |
DigitizeND(); |
| 265 |
// |
| 266 |
// Add padding to 64 bits |
| 267 |
// |
| 268 |
AddPadding(); |
| 269 |
// |
| 270 |
// Create CPU header, we need packet type (0x10 = physics data) and packet length. |
| 271 |
// |
| 272 |
UInt_t length=2*(fCALOlength+fACbuffer+fTracklength+fNDbuffer+fS4buffer)+fPadding+fTOFbuffer+fTRIGGERbuffer; |
| 273 |
//UInt_t length=2*(fCALOlength+fACbuffer+fTracklength+fNDbuffer)+fPadding+fTOFbuffer+fTRIGGERbuffer; |
| 274 |
DigitizePSCU(length,0x10); |
| 275 |
if ( !i%100 ) std::cout << "writing event " << i << endl; |
| 276 |
WriteData(); |
| 277 |
}; |
| 278 |
|
| 279 |
fOutputfile.close(); |
| 280 |
std::cout << "files closed" << endl << flush; |
| 281 |
|
| 282 |
}; |
| 283 |
|
| 284 |
void Digitizer::AddPadding(){ |
| 285 |
// |
| 286 |
Float_t pd0 = (fLen+16)/64.; |
| 287 |
Float_t pd1 = pd0 - (Float_t)int(pd0); |
| 288 |
Float_t padfrac = 64. - pd1 * 64.; |
| 289 |
// |
| 290 |
UInt_t padbytes = (UInt_t)padfrac; |
| 291 |
if ( padbytes > 0 && padbytes < 64 ){ |
| 292 |
// |
| 293 |
// here the padding length |
| 294 |
// |
| 295 |
fPadding = padbytes+64; |
| 296 |
// |
| 297 |
// random padding bytes |
| 298 |
// |
| 299 |
for (Int_t ur=0; ur<32; ur++){ |
| 300 |
fDataPadding[ur] = (UShort_t)rand(); |
| 301 |
}; |
| 302 |
}; |
| 303 |
}; |
| 304 |
|
| 305 |
|
| 306 |
void Digitizer::DigitizePSCU(UInt_t length, UChar_t type) { |
| 307 |
// |
| 308 |
UChar_t buff[16]; |
| 309 |
// |
| 310 |
// CPU signature |
| 311 |
// |
| 312 |
buff[0] = 0xFA; |
| 313 |
buff[1] = 0xFE; |
| 314 |
buff[2] = 0xDE; |
| 315 |
// |
| 316 |
// packet type (twice) |
| 317 |
// |
| 318 |
buff[3] = type; |
| 319 |
buff[4] = type; |
| 320 |
// |
| 321 |
// counter |
| 322 |
// |
| 323 |
fCounter++; |
| 324 |
while ( fCounter > 16777215 ){ |
| 325 |
fCounter -= 16777215; |
| 326 |
}; |
| 327 |
// |
| 328 |
buff[5] = (UChar_t)(fCounter >> 16); |
| 329 |
buff[6] = (UChar_t)(fCounter >> 8); |
| 330 |
buff[7] = (UChar_t)fCounter; |
| 331 |
// |
| 332 |
// on board time |
| 333 |
// |
| 334 |
ULong64_t obt = fOBT + 30LL; |
| 335 |
// |
| 336 |
while ( obt > 4294967295LL ){ |
| 337 |
obt -= 4294967295LL; |
| 338 |
}; |
| 339 |
fOBT = (UInt_t)obt; |
| 340 |
// |
| 341 |
buff[8] = (UChar_t)(fOBT >> 24); |
| 342 |
buff[9] = (UChar_t)(fOBT >> 16); |
| 343 |
buff[10] = (UChar_t)(fOBT >> 8); |
| 344 |
buff[11] = (UChar_t)fOBT; |
| 345 |
// |
| 346 |
// Packet length |
| 347 |
// |
| 348 |
fLen = length; |
| 349 |
// |
| 350 |
buff[12] = (UChar_t)(fLen >> 16); |
| 351 |
buff[13] = (UChar_t)(fLen >> 8); |
| 352 |
buff[14] = (UChar_t)fLen; |
| 353 |
// |
| 354 |
// CPU header CRC |
| 355 |
// |
| 356 |
buff[15] = (BYTE)CM_Compute_CRC16((UINT16)0, (BYTE*)&buff, (UINT32)15); |
| 357 |
// |
| 358 |
memcpy(fDataPSCU,buff,16*sizeof(UChar_t)); |
| 359 |
// |
| 360 |
}; |
| 361 |
|
| 362 |
void Digitizer::ClearCaloCalib(Int_t s){ |
| 363 |
// |
| 364 |
fcstwerr[s] = 0; |
| 365 |
fcperror[s] = 0.; |
| 366 |
for ( Int_t d=0 ; d<11 ;d++ ){ |
| 367 |
Int_t pre = -1; |
| 368 |
for ( Int_t j=0; j<96 ;j++){ |
| 369 |
if ( j%16 == 0 ) pre++; |
| 370 |
fcalped[s][d][j] = 0.; |
| 371 |
fcstwerr[s] = 0.; |
| 372 |
fcperror[s] = 0.; |
| 373 |
fcalgood[s][d][j] = 0.; |
| 374 |
fcalthr[s][d][pre] = 0.; |
| 375 |
fcalrms[s][d][j] = 0.; |
| 376 |
fcalbase[s][d][pre] = 0.; |
| 377 |
fcalvar[s][d][pre] = 0.; |
| 378 |
}; |
| 379 |
}; |
| 380 |
return; |
| 381 |
} |
| 382 |
|
| 383 |
Int_t Digitizer::CaloLoadCalib(Int_t s,TString fcalname, UInt_t calibno){ |
| 384 |
// |
| 385 |
// |
| 386 |
UInt_t e = 0; |
| 387 |
if ( s == 0 ) e = 0; |
| 388 |
if ( s == 1 ) e = 2; |
| 389 |
if ( s == 2 ) e = 3; |
| 390 |
if ( s == 3 ) e = 1; |
| 391 |
// |
| 392 |
ifstream myfile; |
| 393 |
myfile.open(fcalname.Data()); |
| 394 |
if ( !myfile ){ |
| 395 |
return(-107); |
| 396 |
}; |
| 397 |
myfile.close(); |
| 398 |
// |
| 399 |
TFile *File = new TFile(fcalname.Data()); |
| 400 |
if ( !File ) return(-108); |
| 401 |
TTree *tr = (TTree*)File->Get("CalibCalPed"); |
| 402 |
if ( !tr ) return(-109); |
| 403 |
// |
| 404 |
TBranch *calo = tr->GetBranch("CalibCalPed"); |
| 405 |
// |
| 406 |
pamela::CalibCalPedEvent *ce = 0; |
| 407 |
tr->SetBranchAddress("CalibCalPed", &ce); |
| 408 |
// |
| 409 |
Long64_t ncalibs = calo->GetEntries(); |
| 410 |
// |
| 411 |
if ( !ncalibs ) return(-110); |
| 412 |
// |
| 413 |
calo->GetEntry(calibno); |
| 414 |
// |
| 415 |
if (ce->cstwerr[s] != 0 && ce->cperror[s] == 0 ) { |
| 416 |
fcstwerr[s] = ce->cstwerr[s]; |
| 417 |
fcperror[s] = ce->cperror[s]; |
| 418 |
for ( Int_t d=0 ; d<11 ;d++ ){ |
| 419 |
Int_t pre = -1; |
| 420 |
for ( Int_t j=0; j<96 ;j++){ |
| 421 |
if ( j%16 == 0 ) pre++; |
| 422 |
fcalped[s][d][j] = ce->calped[e][d][j]; |
| 423 |
fcalgood[s][d][j] = ce->calgood[e][d][j]; |
| 424 |
fcalthr[s][d][pre] = ce->calthr[e][d][pre]; |
| 425 |
fcalrms[s][d][j] = ce->calrms[e][d][j]; |
| 426 |
fcalbase[s][d][pre] = ce->calbase[e][d][pre]; |
| 427 |
fcalvar[s][d][pre] = ce->calvar[e][d][pre]; |
| 428 |
}; |
| 429 |
}; |
| 430 |
} else { |
| 431 |
printf(" CALORIMETER - ERROR: problems finding a good calibration in this file! \n\n "); |
| 432 |
File->Close(); |
| 433 |
return(-111); |
| 434 |
}; |
| 435 |
File->Close(); |
| 436 |
return(0); |
| 437 |
} |
| 438 |
|
| 439 |
|
| 440 |
void Digitizer::DigitizeCALOCALIB() { |
| 441 |
// |
| 442 |
// Header of the four sections |
| 443 |
// |
| 444 |
fSecCalo[0] = 0xAA00; // XE |
| 445 |
fSecCalo[1] = 0xB100; // XO |
| 446 |
fSecCalo[2] = 0xB600; // YE |
| 447 |
fSecCalo[3] = 0xAD00; // YO |
| 448 |
// |
| 449 |
// length of the data is 0x1215 |
| 450 |
// |
| 451 |
fSecCALOLength[0] = 0x1215; // XE |
| 452 |
fSecCALOLength[1] = 0x1215; // XO |
| 453 |
fSecCALOLength[2] = 0x1215; // YE |
| 454 |
fSecCALOLength[3] = 0x1215; // YO |
| 455 |
// |
| 456 |
Int_t chksum = 0; |
| 457 |
UInt_t tstrip = 0; |
| 458 |
UInt_t fSecPointer = 0; |
| 459 |
// |
| 460 |
for (Int_t sec=0; sec < 4; sec++){ |
| 461 |
// |
| 462 |
// sec = 0 -> XE 1 -> XO 2-> YE 3 -> YO |
| 463 |
// |
| 464 |
fCALOlength = 0; |
| 465 |
memset(fDataCALO,0,sizeof(UShort_t)*fCALObuffer); |
| 466 |
fSecPointer = fCALOlength; |
| 467 |
// |
| 468 |
// First of all we have section header and packet length |
| 469 |
// |
| 470 |
fDataCALO[fCALOlength] = fSecCalo[sec]; |
| 471 |
fCALOlength++; |
| 472 |
fDataCALO[fCALOlength] = fSecCALOLength[sec]; |
| 473 |
fCALOlength++; |
| 474 |
// |
| 475 |
// Section XO is read in the opposite direction respect to the others |
| 476 |
// |
| 477 |
chksum = 0; |
| 478 |
// |
| 479 |
for (Int_t plane=0; plane < 11; plane++){ |
| 480 |
// |
| 481 |
if ( sec == 1 ) tstrip = fCALOlength + 96*2; |
| 482 |
// |
| 483 |
for (Int_t strip=0; strip < 96; strip++){ |
| 484 |
// |
| 485 |
chksum += (Int_t)fcalped[sec][plane][strip]; |
| 486 |
// |
| 487 |
// save value |
| 488 |
// |
| 489 |
if ( sec == 1 ){ |
| 490 |
tstrip -= 2; |
| 491 |
fDataCALO[tstrip] = (Int_t)fcalped[sec][plane][strip]; |
| 492 |
fDataCALO[tstrip+1] = (Int_t)fcalgood[sec][plane][strip]; |
| 493 |
} else { |
| 494 |
fDataCALO[fCALOlength] = (Int_t)fcalped[sec][plane][strip]; |
| 495 |
fDataCALO[fCALOlength+1] = (Int_t)fcalgood[sec][plane][strip]; |
| 496 |
}; |
| 497 |
fCALOlength +=2; |
| 498 |
}; |
| 499 |
// |
| 500 |
}; |
| 501 |
// |
| 502 |
fDataCALO[fCALOlength] = (UShort_t)chksum; |
| 503 |
fCALOlength++; |
| 504 |
fDataCALO[fCALOlength] = 0; |
| 505 |
fCALOlength++; |
| 506 |
fDataCALO[fCALOlength] = (UShort_t)((Int_t)(chksum >> 16)); |
| 507 |
fCALOlength++; |
| 508 |
// |
| 509 |
// Section XO is read in the opposite direction respect to the others |
| 510 |
// |
| 511 |
chksum = 0; |
| 512 |
// |
| 513 |
for (Int_t plane=0; plane < 11; plane++){ |
| 514 |
// |
| 515 |
if ( sec == 1 ) tstrip = fCALOlength+6*2; |
| 516 |
// |
| 517 |
for (Int_t strip=0; strip < 6; strip++){ |
| 518 |
// |
| 519 |
chksum += (Int_t)fcalthr[sec][plane][strip]; |
| 520 |
// |
| 521 |
// save value |
| 522 |
// |
| 523 |
if ( sec == 1 ){ |
| 524 |
tstrip -= 2; |
| 525 |
fDataCALO[tstrip] = 0; |
| 526 |
fDataCALO[tstrip+1] = (Int_t)fcalthr[sec][plane][strip]; |
| 527 |
} else { |
| 528 |
fDataCALO[fCALOlength] = 0; |
| 529 |
fDataCALO[fCALOlength+1] = (Int_t)fcalthr[sec][plane][strip]; |
| 530 |
}; |
| 531 |
fCALOlength +=2; |
| 532 |
}; |
| 533 |
// |
| 534 |
}; |
| 535 |
// |
| 536 |
fDataCALO[fCALOlength] = 0; |
| 537 |
fCALOlength++; |
| 538 |
fDataCALO[fCALOlength] = (UShort_t)chksum; |
| 539 |
fCALOlength++; |
| 540 |
fDataCALO[fCALOlength] = 0; |
| 541 |
fCALOlength++; |
| 542 |
fDataCALO[fCALOlength] = (UShort_t)((Int_t)(chksum >> 16)); |
| 543 |
fCALOlength++; |
| 544 |
// |
| 545 |
// Section XO is read in the opposite direction respect to the others |
| 546 |
// |
| 547 |
for (Int_t plane=0; plane < 11; plane++){ |
| 548 |
// |
| 549 |
if ( sec == 1 ) tstrip = fCALOlength+96*2; |
| 550 |
// |
| 551 |
for (Int_t strip=0; strip < 96; strip++){ |
| 552 |
// |
| 553 |
// save value |
| 554 |
// |
| 555 |
if ( sec == 1 ){ |
| 556 |
tstrip -= 2; |
| 557 |
fDataCALO[tstrip] = 0; |
| 558 |
fDataCALO[tstrip+1] = (Int_t)fcalrms[sec][plane][strip]; |
| 559 |
} else { |
| 560 |
fDataCALO[fCALOlength] = 0; |
| 561 |
fDataCALO[fCALOlength+1] = (Int_t)fcalrms[sec][plane][strip]; |
| 562 |
}; |
| 563 |
fCALOlength += 2; |
| 564 |
}; |
| 565 |
// |
| 566 |
}; |
| 567 |
// |
| 568 |
// Section XO is read in the opposite direction respect to the others |
| 569 |
// |
| 570 |
for (Int_t plane=0; plane < 11; plane++){ |
| 571 |
// |
| 572 |
if ( sec == 1 ) tstrip = fCALOlength+6*4; |
| 573 |
// |
| 574 |
for (Int_t strip=0; strip < 6; strip++){ |
| 575 |
// |
| 576 |
// save value |
| 577 |
// |
| 578 |
if ( sec == 1 ){ |
| 579 |
tstrip -= 4; |
| 580 |
fDataCALO[tstrip] = 0; |
| 581 |
fDataCALO[tstrip+1] = (Int_t)fcalbase[sec][plane][strip]; |
| 582 |
fDataCALO[tstrip+2] = 0; |
| 583 |
fDataCALO[tstrip+3] = (Int_t)fcalvar[sec][plane][strip]; |
| 584 |
} else { |
| 585 |
fDataCALO[fCALOlength] = 0; |
| 586 |
fDataCALO[fCALOlength+1] = (Int_t)fcalbase[sec][plane][strip]; |
| 587 |
fDataCALO[fCALOlength+2] = 0; |
| 588 |
fDataCALO[fCALOlength+3] = (Int_t)fcalvar[sec][plane][strip]; |
| 589 |
}; |
| 590 |
fCALOlength +=4; |
| 591 |
}; |
| 592 |
// |
| 593 |
}; |
| 594 |
// |
| 595 |
// |
| 596 |
// here we calculate and save the CRC |
| 597 |
// |
| 598 |
fDataCALO[fCALOlength] = 0; |
| 599 |
fCALOlength++; |
| 600 |
Short_t CRC = 0; |
| 601 |
for (UInt_t i=0; i<(fCALOlength-fSecPointer); i++){ |
| 602 |
CRC=crc(CRC,fDataCALO[i+fSecPointer]); |
| 603 |
}; |
| 604 |
fDataCALO[fCALOlength] = (UShort_t)CRC; |
| 605 |
fCALOlength++; |
| 606 |
// |
| 607 |
UInt_t length=fCALOlength*2; |
| 608 |
DigitizePSCU(length,0x18); |
| 609 |
// |
| 610 |
// Add padding to 64 bits |
| 611 |
// |
| 612 |
AddPadding(); |
| 613 |
// |
| 614 |
fOutputfile.write(reinterpret_cast<char*>(fDataPSCU),sizeof(UShort_t)*fPSCUbuffer); |
| 615 |
UShort_t temp[1000000]; |
| 616 |
memset(temp,0,sizeof(UShort_t)*1000000); |
| 617 |
swab(fDataCALO,temp,sizeof(UShort_t)*fCALOlength); // WE MUST SWAP THE BYTES!!! |
| 618 |
fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fCALOlength); |
| 619 |
// |
| 620 |
// padding to 64 bytes |
| 621 |
// |
| 622 |
if ( fPadding ){ |
| 623 |
fOutputfile.write(reinterpret_cast<char*>(fDataPadding),sizeof(UChar_t)*fPadding); |
| 624 |
}; |
| 625 |
// |
| 626 |
// |
| 627 |
}; |
| 628 |
// |
| 629 |
}; |
| 630 |
|
| 631 |
void Digitizer::CaloLoadCalib() { |
| 632 |
// |
| 633 |
fGivenCaloCalib = 0; // ####@@@@ should be given as input par @@@@#### |
| 634 |
// |
| 635 |
// first of all load the MIP to ADC conversion values |
| 636 |
// |
| 637 |
stringstream calfile; |
| 638 |
Int_t error = 0; |
| 639 |
GL_PARAM *glparam = new GL_PARAM(); |
| 640 |
// |
| 641 |
// determine where I can find calorimeter ADC to MIP conversion file |
| 642 |
// |
| 643 |
error = 0; |
| 644 |
error = glparam->Query_GL_PARAM(3,101,fDbc); |
| 645 |
// |
| 646 |
calfile.str(""); |
| 647 |
calfile << glparam->PATH.Data() << "/"; |
| 648 |
calfile << glparam->NAME.Data(); |
| 649 |
// |
| 650 |
printf("\n Using Calorimeter ADC to MIP conversion file: \n %s \n",calfile.str().c_str()); |
| 651 |
FILE *f; |
| 652 |
f = fopen(calfile.str().c_str(),"rb"); |
| 653 |
// |
| 654 |
memset(fCalomip,0,4224*sizeof(fCalomip[0][0][0])); |
| 655 |
// |
| 656 |
for (Int_t m = 0; m < 2 ; m++ ){ |
| 657 |
for (Int_t k = 0; k < 22; k++ ){ |
| 658 |
for (Int_t l = 0; l < 96; l++ ){ |
| 659 |
fread(&fCalomip[m][k][l],sizeof(fCalomip[m][k][l]),1,f); |
| 660 |
}; |
| 661 |
}; |
| 662 |
}; |
| 663 |
fclose(f); |
| 664 |
// |
| 665 |
// determine which calibration has to be used and load it for each section |
| 666 |
// |
| 667 |
GL_CALO_CALIB *glcalo = new GL_CALO_CALIB(); |
| 668 |
GL_ROOT *glroot = new GL_ROOT(); |
| 669 |
TString fcalname; |
| 670 |
UInt_t idcalib; |
| 671 |
UInt_t calibno; |
| 672 |
UInt_t utime = 0; |
| 673 |
// |
| 674 |
for (UInt_t s=0; s<4; s++){ |
| 675 |
// |
| 676 |
// clear calo calib variables for section s |
| 677 |
// |
| 678 |
ClearCaloCalib(s); |
| 679 |
// |
| 680 |
if ( fGivenCaloCalib ){ |
| 681 |
// |
| 682 |
// a time has been given as input on the command line so retrieve the calibration that preceed that time |
| 683 |
// |
| 684 |
glcalo->Query_GL_CALO_CALIB(fGivenCaloCalib,utime,s,fDbc); |
| 685 |
// |
| 686 |
calibno = glcalo->EV_ROOT; |
| 687 |
idcalib = glcalo->ID_ROOT_L0; |
| 688 |
// |
| 689 |
// determine path and name and entry of the calibration file |
| 690 |
// |
| 691 |
printf("\n"); |
| 692 |
printf(" ** SECTION %i **\n",s); |
| 693 |
// |
| 694 |
glroot->Query_GL_ROOT(idcalib,fDbc); |
| 695 |
// |
| 696 |
stringstream name; |
| 697 |
name.str(""); |
| 698 |
name << glroot->PATH.Data() << "/"; |
| 699 |
name << glroot->NAME.Data(); |
| 700 |
// |
| 701 |
fcalname = (TString)name.str().c_str(); |
| 702 |
// |
| 703 |
printf("\n Section %i : using file %s calibration at entry %i: \n",s,fcalname.Data(),calibno); |
| 704 |
// |
| 705 |
} else { |
| 706 |
error = 0; |
| 707 |
error = glparam->Query_GL_PARAM(1,104,fDbc); |
| 708 |
// |
| 709 |
calfile.str(""); |
| 710 |
calfile << glparam->PATH.Data() << "/"; |
| 711 |
calfile << glparam->NAME.Data(); |
| 712 |
// |
| 713 |
printf("\n Section %i : using default calorimeter calibration: \n %s \n",s,calfile.str().c_str()); |
| 714 |
// |
| 715 |
fcalname = (TString)calfile.str().c_str(); |
| 716 |
calibno = s; |
| 717 |
// |
| 718 |
}; |
| 719 |
// |
| 720 |
// load calibration variables in memory |
| 721 |
// |
| 722 |
CaloLoadCalib(s,fcalname,calibno); |
| 723 |
// |
| 724 |
}; |
| 725 |
// |
| 726 |
// at this point we have in memory the calorimeter calibration and we can save it to disk in the correct format and use it to digitize the data |
| 727 |
// |
| 728 |
delete glparam; |
| 729 |
delete glcalo; |
| 730 |
delete glroot; |
| 731 |
}; |
| 732 |
|
| 733 |
void Digitizer::DigitizeCALO() { |
| 734 |
// |
| 735 |
fModCalo = 0; // 0 is RAW, 1 is COMPRESS, 2 is FULL ####@@@@ should be given as input par @@@@#### |
| 736 |
// |
| 737 |
// |
| 738 |
// |
| 739 |
fCALOlength = 0; // reset total dimension of calo data |
| 740 |
// |
| 741 |
// gpamela variables to be used |
| 742 |
// |
| 743 |
fhBookTree->SetBranchStatus("Nthcali",1); |
| 744 |
fhBookTree->SetBranchStatus("Icaplane",1); |
| 745 |
fhBookTree->SetBranchStatus("Icastrip",1); |
| 746 |
fhBookTree->SetBranchStatus("Icamod",1); |
| 747 |
fhBookTree->SetBranchStatus("Enestrip",1); |
| 748 |
// |
| 749 |
// call different routines depending on the acq mode you want to simulate |
| 750 |
// |
| 751 |
switch ( fModCalo ){ |
| 752 |
case 0: |
| 753 |
this->DigitizeCALORAW(); |
| 754 |
break; |
| 755 |
case 1: |
| 756 |
this->DigitizeCALOCOMPRESS(); |
| 757 |
break; |
| 758 |
case 2: |
| 759 |
this->DigitizeCALOFULL(); |
| 760 |
break; |
| 761 |
}; |
| 762 |
// |
| 763 |
}; |
| 764 |
|
| 765 |
Float_t Digitizer::GetCALOen(Int_t sec, Int_t plane, Int_t strip){ |
| 766 |
// |
| 767 |
// determine plane and strip |
| 768 |
// |
| 769 |
Int_t mplane = 0; |
| 770 |
// |
| 771 |
// wrong! |
| 772 |
// |
| 773 |
// if ( sec == 0 || sec == 3 ) mplane = (plane * 4) + sec + 1; |
| 774 |
// if ( sec == 1 ) mplane = (plane * 4) + 2 + 1; |
| 775 |
// if ( sec == 2 ) mplane = (plane * 4) + 1 + 1; |
| 776 |
// |
| 777 |
if ( sec == 0 ) mplane = plane * 4 + 1; // it must be 0, 4, 8, ... (+1) from plane = 0, 11 |
| 778 |
if ( sec == 1 ) mplane = plane * 4 + 2 + 1; // it must be 2, 6, 10, ... (+1) from plane = 0, 11 |
| 779 |
if ( sec == 2 ) mplane = plane * 4 + 3 + 1; // it must be 3, 7, 11, ... (+1) from plane = 0, 11 |
| 780 |
if ( sec == 3 ) mplane = plane * 4 + 1 + 1; // it must be 1, 5, 9, ... (+1) from plane = 0, 11 |
| 781 |
// |
| 782 |
Int_t mstrip = strip + 1; |
| 783 |
// |
| 784 |
// search energy release in gpamela output |
| 785 |
// |
| 786 |
for (Int_t i=0; i<Nthcali;i++){ |
| 787 |
if ( Icaplane[i] == mplane && Icastrip[i] == mstrip ){ |
| 788 |
return (Enestrip[i]); |
| 789 |
}; |
| 790 |
}; |
| 791 |
// |
| 792 |
// if not found it means no energy release so return 0. |
| 793 |
// |
| 794 |
return(0.); |
| 795 |
}; |
| 796 |
|
| 797 |
void Digitizer::DigitizeCALORAW() { |
| 798 |
// |
| 799 |
// some variables |
| 800 |
// |
| 801 |
Float_t ens = 0.; |
| 802 |
UInt_t adcsig = 0; |
| 803 |
UInt_t adcbase = 0; |
| 804 |
UInt_t adc = 0; |
| 805 |
Int_t pre = 0; |
| 806 |
UInt_t l = 0; |
| 807 |
UInt_t lpl = 0; |
| 808 |
UInt_t tstrip = 0; |
| 809 |
UInt_t fSecPointer = 0; |
| 810 |
Double_t pedenoise; |
| 811 |
Float_t rms = 0.; |
| 812 |
Float_t pedestal = 0.; |
| 813 |
// |
| 814 |
// clean the data structure |
| 815 |
// |
| 816 |
memset(fDataCALO,0,sizeof(UShort_t)*fCALObuffer); |
| 817 |
// |
| 818 |
// Header of the four sections |
| 819 |
// |
| 820 |
fSecCalo[0] = 0xEA08; // XE |
| 821 |
fSecCalo[1] = 0xF108; // XO |
| 822 |
fSecCalo[2] = 0xF608; // YE |
| 823 |
fSecCalo[3] = 0xED08; // YO |
| 824 |
// |
| 825 |
// length of the data is 0x0428 in RAW mode |
| 826 |
// |
| 827 |
fSecCALOLength[0] = 0x0428; // XE |
| 828 |
fSecCALOLength[1] = 0x0428; // XO |
| 829 |
fSecCALOLength[2] = 0x0428; // YE |
| 830 |
fSecCALOLength[3] = 0x0428; // YO |
| 831 |
// |
| 832 |
// let's start |
| 833 |
// |
| 834 |
fCALOlength = 0; |
| 835 |
// |
| 836 |
for (Int_t sec=0; sec < 4; sec++){ |
| 837 |
// |
| 838 |
// sec = 0 -> XE 1 -> XO 2-> YE 3 -> YO |
| 839 |
// |
| 840 |
l = 0; // XE and XO are Y planes |
| 841 |
if ( sec < 2 ) l = 1; // while YE and YO are X planes |
| 842 |
// |
| 843 |
fSecPointer = fCALOlength; |
| 844 |
// |
| 845 |
// First of all we have section header and packet length |
| 846 |
// |
| 847 |
fDataCALO[fCALOlength] = fSecCalo[sec]; |
| 848 |
fCALOlength++; |
| 849 |
fDataCALO[fCALOlength] = fSecCALOLength[sec]; |
| 850 |
fCALOlength++; |
| 851 |
// |
| 852 |
// selftrigger coincidences - in the future we should add here some code to simulate timing response of pre-amplifiers |
| 853 |
// |
| 854 |
for (Int_t autoplane=0; autoplane < 7; autoplane++){ |
| 855 |
fDataCALO[fCALOlength] = 0x0000; |
| 856 |
fCALOlength++; |
| 857 |
}; |
| 858 |
// |
| 859 |
// |
| 860 |
// here comes data |
| 861 |
// |
| 862 |
// |
| 863 |
// Section XO is read in the opposite direction respect to the others |
| 864 |
// |
| 865 |
if ( sec == 1 ){ |
| 866 |
tstrip = 96*11 + fCALOlength; |
| 867 |
} else { |
| 868 |
tstrip = 0; |
| 869 |
}; |
| 870 |
// |
| 871 |
pre = -1; |
| 872 |
// |
| 873 |
for (Int_t strip=0; strip < 96; strip++){ |
| 874 |
// |
| 875 |
// which is the pre for this strip? |
| 876 |
// |
| 877 |
if (strip%16 == 0) { |
| 878 |
pre++; |
| 879 |
}; |
| 880 |
// |
| 881 |
if ( sec == 1 ) tstrip -= 11; |
| 882 |
// |
| 883 |
for (Int_t plane=0; plane < 11; plane++){ |
| 884 |
// |
| 885 |
// here is wrong!!!! |
| 886 |
// |
| 887 |
// |
| 888 |
// if ( plane%2 == 0 && sec%2 != 0){ |
| 889 |
// lpl = plane*2; |
| 890 |
// } else { |
| 891 |
// lpl = (plane*2) + 1; |
| 892 |
// }; |
| 893 |
// |
| 894 |
if ( sec == 0 || sec == 3 ) lpl = plane * 2; |
| 895 |
if ( sec == 1 || sec == 2 ) lpl = (plane * 2) + 1; |
| 896 |
// |
| 897 |
// get the energy in GeV from the simulation for that strip |
| 898 |
// |
| 899 |
ens = this->GetCALOen(sec,plane,strip); |
| 900 |
// |
| 901 |
// convert it into ADC channels |
| 902 |
// |
| 903 |
adcsig = int(ens*fCalomip[l][lpl][strip]/fCALOGeV2MIPratio); |
| 904 |
// |
| 905 |
// sum baselines |
| 906 |
// |
| 907 |
adcbase = (UInt_t)fcalbase[sec][plane][pre]; |
| 908 |
// |
| 909 |
// add noise and pedestals |
| 910 |
// |
| 911 |
pedestal = fcalped[sec][plane][strip]; |
| 912 |
rms = fcalrms[sec][plane][strip]/4.; |
| 913 |
// |
| 914 |
// Add random gaussian noise of RMS rms and Centered in the pedestal |
| 915 |
// |
| 916 |
pedenoise = gRandom->Gaus((Double_t)pedestal,(Double_t)rms); |
| 917 |
// |
| 918 |
// Sum all contribution |
| 919 |
// |
| 920 |
adc = adcsig + adcbase + (Int_t)round(pedenoise); |
| 921 |
// |
| 922 |
// Signal saturation |
| 923 |
// |
| 924 |
if ( adc > 0x7FFF ) adc = 0x7FFF; |
| 925 |
// |
| 926 |
// save value |
| 927 |
// |
| 928 |
if ( sec == 1 ){ |
| 929 |
fDataCALO[tstrip] = adc; |
| 930 |
tstrip++; |
| 931 |
} else { |
| 932 |
fDataCALO[fCALOlength] = adc; |
| 933 |
}; |
| 934 |
fCALOlength++; |
| 935 |
// |
| 936 |
}; |
| 937 |
// |
| 938 |
if ( sec == 1 ) tstrip -= 11; |
| 939 |
// |
| 940 |
}; |
| 941 |
// |
| 942 |
// here we calculate and save the CRC |
| 943 |
// |
| 944 |
Short_t CRC = 0; |
| 945 |
for (UInt_t i=0; i<(fCALOlength-fSecPointer); i++){ |
| 946 |
CRC=crc(CRC,fDataCALO[i+fSecPointer]); |
| 947 |
}; |
| 948 |
fDataCALO[fCALOlength] = (UShort_t)CRC; |
| 949 |
fCALOlength++; |
| 950 |
// |
| 951 |
}; |
| 952 |
// |
| 953 |
// for (Int_t i=0; i<fCALOlength; i++){ |
| 954 |
// printf(" WORD %i DIGIT %0x \n",i,fDataCALO[i]); |
| 955 |
// }; |
| 956 |
// |
| 957 |
}; |
| 958 |
|
| 959 |
void Digitizer::DigitizeCALOCOMPRESS() { |
| 960 |
// |
| 961 |
printf(" COMPRESS MODE STILL NOT IMPLEMENTED! \n"); |
| 962 |
// |
| 963 |
this->DigitizeCALORAW(); |
| 964 |
return; |
| 965 |
// |
| 966 |
// |
| 967 |
// |
| 968 |
fSecCalo[0] = 0xEA00; |
| 969 |
fSecCalo[1] = 0xF100; |
| 970 |
fSecCalo[2] = 0xF600; |
| 971 |
fSecCalo[3] = 0xED00; |
| 972 |
// |
| 973 |
// length of the data in DSP mode must be calculated on fly during digitization |
| 974 |
// |
| 975 |
memset(fSecCALOLength,0x0,4*sizeof(UShort_t)); |
| 976 |
// |
| 977 |
// here comes raw data |
| 978 |
// |
| 979 |
Int_t en = 0; |
| 980 |
// |
| 981 |
for (Int_t sec=0; sec < 4; sec++){ |
| 982 |
fDataCALO[en] = fSecCalo[sec]; |
| 983 |
en++; |
| 984 |
fDataCALO[en] = fSecCALOLength[sec]; |
| 985 |
en++; |
| 986 |
for (Int_t plane=0; plane < 11; plane++){ |
| 987 |
for (Int_t strip=0; strip < 11; strip++){ |
| 988 |
fDataCALO[en] = 0x0; |
| 989 |
en++; |
| 990 |
}; |
| 991 |
}; |
| 992 |
}; |
| 993 |
// |
| 994 |
}; |
| 995 |
|
| 996 |
void Digitizer::DigitizeCALOFULL() { |
| 997 |
// |
| 998 |
printf(" FULL MODE STILL NOT IMPLEMENTED! \n"); |
| 999 |
// |
| 1000 |
this->DigitizeCALORAW(); |
| 1001 |
return; |
| 1002 |
// |
| 1003 |
fSecCalo[0] = 0xEA00; |
| 1004 |
fSecCalo[1] = 0xF100; |
| 1005 |
fSecCalo[2] = 0xF600; |
| 1006 |
fSecCalo[3] = 0xED00; |
| 1007 |
// |
| 1008 |
// length of the data in DSP mode must be calculated on fly during digitization |
| 1009 |
// |
| 1010 |
memset(fSecCALOLength,0x0,4*sizeof(UShort_t)); |
| 1011 |
// |
| 1012 |
// here comes raw data |
| 1013 |
// |
| 1014 |
Int_t en = 0; |
| 1015 |
// |
| 1016 |
for (Int_t sec=0; sec < 4; sec++){ |
| 1017 |
fDataCALO[en] = fSecCalo[sec]; |
| 1018 |
en++; |
| 1019 |
fDataCALO[en] = fSecCALOLength[sec]; |
| 1020 |
en++; |
| 1021 |
for (Int_t plane=0; plane < 11; plane++){ |
| 1022 |
for (Int_t strip=0; strip < 11; strip++){ |
| 1023 |
fDataCALO[en] = 0x0; |
| 1024 |
en++; |
| 1025 |
}; |
| 1026 |
}; |
| 1027 |
}; |
| 1028 |
// |
| 1029 |
}; |
| 1030 |
|
| 1031 |
void Digitizer::DigitizeTRIGGER() { |
| 1032 |
//fDataTrigger: 153 bytes |
| 1033 |
for (Int_t j=0; j < 153; j++) |
| 1034 |
fDataTrigger[0]=0x00; |
| 1035 |
}; |
| 1036 |
|
| 1037 |
Int_t Digitizer::DigitizeTOF() { |
| 1038 |
//fDataTof: 12 x 23 bytes (=276 bytes) |
| 1039 |
UChar_t *pTof=fDataTof; |
| 1040 |
Bool_t DEBUG=false; |
| 1041 |
|
| 1042 |
// --- activate branches: |
| 1043 |
fhBookTree->SetBranchStatus("Nthtof",1); |
| 1044 |
fhBookTree->SetBranchStatus("Ipltof",1); |
| 1045 |
fhBookTree->SetBranchStatus("Ipaddle",1); |
| 1046 |
fhBookTree->SetBranchStatus("Xintof",1); |
| 1047 |
fhBookTree->SetBranchStatus("Yintof",1); |
| 1048 |
fhBookTree->SetBranchStatus("Xouttof",1); |
| 1049 |
fhBookTree->SetBranchStatus("Youttof",1); |
| 1050 |
fhBookTree->SetBranchStatus("Ereltof",1); |
| 1051 |
fhBookTree->SetBranchStatus("Timetof",1); |
| 1052 |
// not yet used: Zintof, Xouttof, Youttof, Zouttof |
| 1053 |
|
| 1054 |
// ------ evaluate energy in each pmt: ------ |
| 1055 |
// strip geometry (lenght/width) |
| 1056 |
Float_t dimel[6] = {33.0, 40.8 ,18.0, 15.0, 15.0, 18.0}; |
| 1057 |
//Float_t dimes[6] = {5.1, 5.5, 7.5, 9.0, 6.0, 5.0}; |
| 1058 |
|
| 1059 |
// S11 8 paddles 33.0 x 5.1 cm |
| 1060 |
// S12 6 paddles 40.8 x 5.5 cm |
| 1061 |
// S21 2 paddles 18.0 x 7.5 cm |
| 1062 |
// S22 2 paddles 15.0 x 9.0 cm |
| 1063 |
// S31 3 paddles 15.0 x 6.0 cm |
| 1064 |
// S32 3 paddles 18.0 x 5.0 cm |
| 1065 |
|
| 1066 |
// distance from the interaction point to the pmts (right,left) |
| 1067 |
Float_t xpath[2]={0., 0.}; /*path(cm) in X per S12,S21,S32 verso il pmt DX o SX*/ |
| 1068 |
Float_t ypath[2]={0., 0.}; /*path(cm) in Y per S11,S22,S31 verso il pmt DX o SX*/ |
| 1069 |
Float_t FGeo[2]={0., 0.}; /* fattore geometrico */ |
| 1070 |
|
| 1071 |
const Float_t Pho_keV = 10.; // photons per keV in scintillator |
| 1072 |
const Float_t echarge = 1.6e-19; // carica dell'elettrone |
| 1073 |
Float_t Npho=0.; |
| 1074 |
Float_t QevePmt_pC[48]; |
| 1075 |
Float_t QhitPad_pC[2]={0., 0.}; |
| 1076 |
Float_t QhitPmt_pC[2]={0., 0.}; |
| 1077 |
Float_t pmGain = 3.5e6; /* Gain: per il momento uguale per tutti */ |
| 1078 |
Float_t effi=0.21; /* Efficienza di fotocatodo */ |
| 1079 |
Float_t ADC_pC=1.666667; // ADC_ch/pC conversion = 0.6 pC/channel (+30 di offset) |
| 1080 |
Float_t ADCoffset=30.; |
| 1081 |
Int_t ADClast=4095; // no signal --> ADC ch=4095 |
| 1082 |
Int_t ADCtof[48]; |
| 1083 |
//Float_t ADCsat=3100; ci pensiamo in futuro ! |
| 1084 |
//Float_t pCsat=2500; |
| 1085 |
for(Int_t i=0; i<48; i++){ |
| 1086 |
QevePmt_pC[i] = 0; |
| 1087 |
ADCtof[i]=0; |
| 1088 |
} |
| 1089 |
|
| 1090 |
// ------ read calibration file (get A1, A2, lambda1, lambda2) |
| 1091 |
ifstream fileTriggerCalib; |
| 1092 |
TString ftrigname="TrigCalibParam.txt"; |
| 1093 |
fileTriggerCalib.open(ftrigname.Data()); |
| 1094 |
if ( !fileTriggerCalib ) { |
| 1095 |
printf("debug: no trigger calib file!\n"); |
| 1096 |
return(-117); //check output! |
| 1097 |
}; |
| 1098 |
Float_t atte1[48],atte2[48],lambda1[48],lambda2[48]; |
| 1099 |
Int_t temp=0; |
| 1100 |
// correct readout WM Oct '07 |
| 1101 |
for(Int_t i=0; i<48; i++){ |
| 1102 |
fileTriggerCalib >> temp; |
| 1103 |
fileTriggerCalib >> atte1[i]; |
| 1104 |
fileTriggerCalib >> lambda1[i]; |
| 1105 |
fileTriggerCalib >> atte2[i]; |
| 1106 |
fileTriggerCalib >> lambda2[i]; |
| 1107 |
fileTriggerCalib >> temp; |
| 1108 |
} |
| 1109 |
fileTriggerCalib.close(); |
| 1110 |
|
| 1111 |
// Read from file the 48*4 values of the attenuation fit function |
| 1112 |
// NB: lambda<0; x,y defined in gpamela (=0 in the centre of the cavity) |
| 1113 |
// Qhitpmt_pC = atte1 * exp(x/lambda1) + atte2 * exp(x/lambda2) |
| 1114 |
|
| 1115 |
// fine lettura dal file */ |
| 1116 |
|
| 1117 |
//const Int_t nmax=??; = Nthtof |
| 1118 |
Int_t ip, ipad; |
| 1119 |
//Int_t ipmt; |
| 1120 |
Int_t pmtleft=0, pmtright=0; |
| 1121 |
Int_t *pl, *pr; |
| 1122 |
pl = &pmtleft; |
| 1123 |
pr = &pmtright; |
| 1124 |
|
| 1125 |
// TDC variables: |
| 1126 |
Int_t TDClast=4095; // no signal --> ADC ch=4095 |
| 1127 |
Int_t TDCint[48]; |
| 1128 |
Float_t tdc[48],tdc1[48],tdcpmt[48]; |
| 1129 |
for(Int_t i=0; i<48; i++) |
| 1130 |
tdcpmt[i] = 1000.; |
| 1131 |
Float_t thresh=10.; // to be defined better... (Wolfgang) |
| 1132 |
|
| 1133 |
// === TDC: simulate timing for each paddle |
| 1134 |
Float_t dt1 = 285.e-12 ; // single PMT resolution |
| 1135 |
Float_t tdcres[50],c1_S[50],c2_S[50],c3_S[50]; |
| 1136 |
for(Int_t j=0;j<48;j++) tdcres[j] = 50.E-12; // TDC resolution 50 picosec |
| 1137 |
for(Int_t j=0;j<48;j++) c1_S[j] = 500.; // cable length in channels |
| 1138 |
for(Int_t j=0;j<48;j++) c2_S[j] = 0.; |
| 1139 |
for(Int_t j=0;j<48;j++) c3_S[j] = 1000.; |
| 1140 |
for(Int_t j=0;j<48;j++) c1_S[j] = c1_S[j]*tdcres[j]; // cable length in sec |
| 1141 |
for(Int_t j=0;j<48;j++) c2_S[j] = c2_S[j]*tdcres[j]; |
| 1142 |
// ih = 0 + i1; // not used?? (Silvio) |
| 1143 |
|
| 1144 |
/* ********************************** start loop over hits */ |
| 1145 |
|
| 1146 |
for(Int_t nh=0; nh<Nthtof; nh++){ |
| 1147 |
|
| 1148 |
for(Int_t j=0; j<2; j++) { // already done!! remove??? |
| 1149 |
xpath[j]=0.; |
| 1150 |
ypath[j]=0.; |
| 1151 |
FGeo[j]=0.; |
| 1152 |
} |
| 1153 |
|
| 1154 |
Float_t s_l_g[6] = {8.0, 8.0, 20.9, 22.0, 9.8, 8.3 }; // length of the lightguide |
| 1155 |
Float_t t1,t2,veff,veff1,veff0 ; |
| 1156 |
veff0 = 100.*1.0e8 ; // light velocity in the scintillator in m/sec |
| 1157 |
veff1 = 100.*1.5e8; // light velocity in the lightguide in m/sec |
| 1158 |
veff=veff0; // signal velocity in the paddle |
| 1159 |
|
| 1160 |
t1 = Timetof[nh] ; // Start |
| 1161 |
t2 = Timetof[nh] ; |
| 1162 |
|
| 1163 |
// Donatella: redefinition plane and pad for vectors in C |
| 1164 |
ip = Ipltof[nh]-1; |
| 1165 |
ipad = Ipaddle[nh]-1; |
| 1166 |
pmtleft=0; |
| 1167 |
pmtright=0; |
| 1168 |
|
| 1169 |
if (ip<6) { |
| 1170 |
Paddle2Pmt(ip, ipad, &pmtleft, &pmtright); |
| 1171 |
|
| 1172 |
// per avere anche la corrispondenza pmt --> half board e canale |
| 1173 |
// metodo GetPMTIndex(Int_t ipmt, Int_t &hb, Int_t &ch) // non lo usiamo x ora |
| 1174 |
|
| 1175 |
// evaluates mean position and path inside the paddle |
| 1176 |
|
| 1177 |
Float_t tpos=0.; |
| 1178 |
Float_t path[2] = {0., 0.}; |
| 1179 |
//--- Strip in Y = S11,S22,S31 ------ |
| 1180 |
if(ip==0 || ip==3 || ip==4) |
| 1181 |
tpos = (Yintof[nh]+Youttof[nh])/2.; |
| 1182 |
else |
| 1183 |
if(ip==1 || ip==2 || ip==5) //--- Strip in X per S12,S21,S32 |
| 1184 |
tpos = (Xintof[nh]+Xouttof[nh])/2.; |
| 1185 |
else //if (ip!=6) |
| 1186 |
printf("*** WARNING TOF: this option should never occur! (ip=%2i, nh=%2i)\n",ip,nh); |
| 1187 |
path[0]= tpos + dimel[ip]/2.; |
| 1188 |
path[1]= dimel[ip]/2.- tpos; |
| 1189 |
|
| 1190 |
// cout <<"Strip N. ="<< ipaddle <<" piano n.= "<< iplane <<" POSIZ = "<< tpos <<"\n"; |
| 1191 |
|
| 1192 |
if (DEBUG) { |
| 1193 |
cout <<" plane "<<ip<<" strip # ="<< ipad <<" tpos "<< tpos <<"\n"; |
| 1194 |
cout <<"pmtleft, pmtright "<<pmtleft<<" "<<pmtright<<endl; |
| 1195 |
} |
| 1196 |
|
| 1197 |
// constant geometric factor, for the moment |
| 1198 |
FGeo[0] =0.5; |
| 1199 |
FGeo[1] =0.5; |
| 1200 |
// FGeo[1] = atan(path[1]/dimes[ip])/6.28318; // frazione fotoni verso SX |
| 1201 |
// FGeo[2] = atan(path[2]/dimes[ip])/6.28318; // e verso DX |
| 1202 |
|
| 1203 |
/* rimando la fluttuazione poissoniana sui fotoni prodotti |
| 1204 |
sto studiando come funziona la funzione: |
| 1205 |
long int i = sto.Poisson(double x); */ |
| 1206 |
// Npho = Poisson(ERELTOF[nh])*Pho_keV*1e6 Eloss in GeV ? |
| 1207 |
Npho = Ereltof[nh]*Pho_keV*1.0e6; // Eloss in GeV ? |
| 1208 |
|
| 1209 |
Float_t knorm[2]={0., 0.}; // Donatella |
| 1210 |
Float_t Atten[2]={0., 0.}; // Donatella |
| 1211 |
for(Int_t j=0; j<2; j++){ |
| 1212 |
QhitPad_pC[j]= Npho*FGeo[j]*effi*pmGain*echarge*1.E12; // corrected WM |
| 1213 |
/* knorm[j]=QhitPad_pC[j]/(atte1[pmtleft+j]*exp((dimel[ip]/2.*pow(-1,j+1))/lambda1[pmtleft+j]) + |
| 1214 |
atte2[pmtleft+j]*exp((dimel[ip]/2.*pow(-1,j+1))/lambda2[pmtleft+j])); |
| 1215 |
Atten[j]=knorm[j]*(atte1[pmtleft+j]*exp(tpos/lambda1[pmtleft+j]) + |
| 1216 |
atte2[pmtleft+j]*exp(tpos/lambda2[pmtleft+j])); |
| 1217 |
QhitPmt_pC[j]= QhitPad_pC[j]*Atten[j]; |
| 1218 |
*/ |
| 1219 |
// WM |
| 1220 |
knorm[j]=atte1[pmtleft+j]*exp(lambda1[pmtleft+j]*dimel[ip]/2.*pow(-1,j+1)) + |
| 1221 |
atte2[pmtleft+j]*exp(lambda2[pmtleft+j]*dimel[ip]/2.*pow(-1,j+1)); |
| 1222 |
Atten[j]=atte1[pmtleft+j]*exp(tpos*lambda1[pmtleft+j]) + |
| 1223 |
atte2[pmtleft+j]*exp(tpos*lambda2[pmtleft+j]) ; |
| 1224 |
QhitPmt_pC[j]= QhitPad_pC[j]*Atten[j]/knorm[j]; |
| 1225 |
if (DEBUG) { |
| 1226 |
cout<<"pmtleft "<<pmtleft<<" j "<<j<<endl; |
| 1227 |
cout<<" atte1 "<<atte1[pmtleft+j]<<"lambda1 "<<lambda1[pmtleft+j]<<" atte2 "<<atte2[pmtleft+j]<<"lambda2 "<<lambda2[pmtleft+j] <<endl; |
| 1228 |
cout<<j<<" tpos "<<tpos<<" knorm "<<knorm[j]<<" "<<Atten[j]<<" "<<"QhitPmt_pC "<<QhitPmt_pC[j]<<endl; |
| 1229 |
} |
| 1230 |
} |
| 1231 |
|
| 1232 |
if (DEBUG) |
| 1233 |
cout<<"Npho "<<Npho<<" QhitPmt_pC "<<QhitPmt_pC[0]<<" "<<QhitPmt_pC[1]<<endl; |
| 1234 |
|
| 1235 |
QevePmt_pC[pmtleft] += QhitPmt_pC[0]; |
| 1236 |
QevePmt_pC[pmtright] += QhitPmt_pC[1]; |
| 1237 |
|
| 1238 |
// TDC |
| 1239 |
t2 = t2 + fabs(path[0]/veff) + s_l_g[ip]/veff1 ; // Signal reaches PMT |
| 1240 |
t1 = t1 + fabs(path[1]/veff) + s_l_g[ip]/veff1; |
| 1241 |
|
| 1242 |
TRandom r; |
| 1243 |
t1 = r.Gaus(t1,dt1); //apply gaussian error dt |
| 1244 |
t2 = r.Gaus(t2,dt1); //apply gaussian error dt |
| 1245 |
|
| 1246 |
t1 = t1 + c1_S[pmtleft] ; // Signal reaches Discriminator ,TDC starts to run |
| 1247 |
t2 = t2 + c1_S[pmtright] ; |
| 1248 |
|
| 1249 |
// check if signal is above threshold |
| 1250 |
// then check if tdcpmt is already filled by another hit... |
| 1251 |
// only re-fill if time is smaller |
| 1252 |
|
| 1253 |
if (QhitPmt_pC[0] > thresh) { |
| 1254 |
if (tdcpmt[pmtleft] == 1000.) { // fill for the first time |
| 1255 |
tdcpmt[pmtleft] = t1; |
| 1256 |
tdc[pmtleft] = t1 + c2_S[pmtleft] ; // Signal reaches Coincidence |
| 1257 |
} |
| 1258 |
if (tdcpmt[pmtleft] < 1000.) // is already filled! |
| 1259 |
if (t1 < tdcpmt[pmtleft]) { |
| 1260 |
tdcpmt[pmtleft] = t1; |
| 1261 |
t1 = t1 + c2_S[pmtleft] ; // Signal reaches Coincidence |
| 1262 |
tdc[pmtleft] = t1; |
| 1263 |
} |
| 1264 |
} |
| 1265 |
if (QhitPmt_pC[1] > thresh) { |
| 1266 |
if (tdcpmt[pmtright] == 1000.) { // fill for the first time |
| 1267 |
tdcpmt[pmtright] = t2; |
| 1268 |
tdc[pmtright] = t2 + c2_S[pmtright] ; // Signal reaches Coincidence |
| 1269 |
} |
| 1270 |
if (tdcpmt[pmtright] < 1000.) // is already filled! |
| 1271 |
if (t2 < tdcpmt[pmtright]) { |
| 1272 |
tdcpmt[pmtright] = t2; |
| 1273 |
t2 = t2 + c2_S[pmtright] ; |
| 1274 |
tdc[pmtright] = t2; |
| 1275 |
} |
| 1276 |
} |
| 1277 |
|
| 1278 |
if (DEBUG) |
| 1279 |
cout<<nh<<" "<<Timetof[nh]<<" "<<t1<<" "<<t2<<endl; |
| 1280 |
|
| 1281 |
} // ip < 6 |
| 1282 |
|
| 1283 |
}; // **************************************** end loop over hits |
| 1284 |
|
| 1285 |
// ====== ADC ====== |
| 1286 |
for(Int_t i=0; i<48; i++){ |
| 1287 |
if(QevePmt_pC[i] != 0.){ |
| 1288 |
ADCtof[i]= (Int_t)(ADC_pC*QevePmt_pC[i] + ADCoffset); |
| 1289 |
if(ADCtof[i]> ADClast) ADCtof[i]=ADClast; |
| 1290 |
} else |
| 1291 |
ADCtof[i]= ADClast; |
| 1292 |
} |
| 1293 |
|
| 1294 |
|
| 1295 |
// ====== build TDC coincidence ====== |
| 1296 |
|
| 1297 |
Float_t t_coinc = 0; |
| 1298 |
Int_t ilast = 100; |
| 1299 |
for (Int_t ii=0; ii<48;ii++) |
| 1300 |
if (tdc[ii] > t_coinc) { |
| 1301 |
t_coinc = tdc[ii]; |
| 1302 |
ilast = ii; |
| 1303 |
} |
| 1304 |
|
| 1305 |
// cout<<ilast<<" "<<t_coinc<<endl; |
| 1306 |
// At t_coinc trigger condition is fulfilled |
| 1307 |
|
| 1308 |
for (Int_t ii=0; ii<48;ii++){ |
| 1309 |
// if (tdc[ii] != 0) tdc1[ii] = t_coinc - tdc[ii]; // test 1 |
| 1310 |
if (tdc[ii] != 0) tdc1[ii] = t_coinc - tdcpmt[ii]; // test 2 |
| 1311 |
tdc1[ii] = tdc1[ii]/tdcres[ii]; // divide by TDC resolution |
| 1312 |
if (tdc[ii] != 0) tdc1[ii] = tdc1[ii] + c3_S[ii]; // add cable length c3 |
| 1313 |
|
| 1314 |
} // missing parenthesis inserted! (Silvio) |
| 1315 |
|
| 1316 |
for(Int_t i=0; i<48; i++){ |
| 1317 |
if(tdc1[i] != 0.){ |
| 1318 |
TDCint[i]=(Int_t)tdc1[i]; |
| 1319 |
if (DEBUG) |
| 1320 |
cout<<i<<" "<<TDCint[i]<<endl; |
| 1321 |
//ADC[i]= ADC_pC * QevePmt_pC[i] + ADCoffset; |
| 1322 |
//if(ADC[i]> ADClast) ADC[i]=ADClast; |
| 1323 |
} else |
| 1324 |
TDCint[i]= TDClast; |
| 1325 |
} |
| 1326 |
|
| 1327 |
if (DEBUG) |
| 1328 |
cout<<"-----------"<<endl; |
| 1329 |
|
| 1330 |
// ====== write fDataTof ======= |
| 1331 |
UChar_t tofBin; |
| 1332 |
for (Int_t j=0; j < 12; j++){ |
| 1333 |
Int_t j12=j*12; |
| 1334 |
fDataTof[j12+0]=0x00; // TDC_ID |
| 1335 |
fDataTof[j12+1]=0x00; // EV_COUNT |
| 1336 |
fDataTof[j12+2]=0x00; // TDC_MASK (1) |
| 1337 |
fDataTof[j12+3]=0x00; // TDC_MASK (2) |
| 1338 |
for (Int_t k=0; k < 4; k++){ |
| 1339 |
Int_t jk12=j12+k; |
| 1340 |
tofBin=(UChar_t)(ADCtof[k+4*j]/256); // ADC# (msb) (#=1+k+4*j) |
| 1341 |
fDataTof[jk12+4] = Bin2GrayTof(tofBin,fDataTof[jk12+4]); |
| 1342 |
tofBin=(UChar_t)(ADCtof[k+4*j]%256); // ADC# (lsb) |
| 1343 |
fDataTof[jk12+5] = Bin2GrayTof(tofBin,fDataTof[jk12+5]); |
| 1344 |
tofBin=(UChar_t)(TDCint[k+4*j]/256); // TDC# (msb) |
| 1345 |
fDataTof[jk12+6]=Bin2GrayTof(tofBin,fDataTof[jk12+6]); |
| 1346 |
tofBin=(UChar_t)(TDCint[k+4*j]%256); // TDC# (lsb) |
| 1347 |
fDataTof[jk12+7]=Bin2GrayTof(tofBin,fDataTof[jk12+7]); |
| 1348 |
}; |
| 1349 |
fDataTof[j12+20]=0x00; // TEMP1 |
| 1350 |
fDataTof[j12+21]=0x00; // TEMP2 |
| 1351 |
fDataTof[j12+22]= EvaluateCrcTof(pTof); // CRC |
| 1352 |
pTof+=23; |
| 1353 |
}; |
| 1354 |
return(0); |
| 1355 |
}; |
| 1356 |
|
| 1357 |
UChar_t Digitizer::Bin2GrayTof(UChar_t binaTOF,UChar_t grayTOF){ |
| 1358 |
union graytof_data { |
| 1359 |
UChar_t word; |
| 1360 |
struct bit_field { |
| 1361 |
unsigned b0:1; |
| 1362 |
unsigned b1:1; |
| 1363 |
unsigned b2:1; |
| 1364 |
unsigned b3:1; |
| 1365 |
unsigned b4:1; |
| 1366 |
unsigned b5:1; |
| 1367 |
unsigned b6:1; |
| 1368 |
unsigned b7:1; |
| 1369 |
} bit; |
| 1370 |
} bi,gr; |
| 1371 |
// |
| 1372 |
bi.word = binaTOF; |
| 1373 |
gr.word = grayTOF; |
| 1374 |
// |
| 1375 |
gr.bit.b0 = bi.bit.b1 ^ bi.bit.b0; |
| 1376 |
gr.bit.b1 = bi.bit.b2 ^ bi.bit.b1; |
| 1377 |
gr.bit.b2 = bi.bit.b3 ^ bi.bit.b2; |
| 1378 |
gr.bit.b3 = bi.bit.b3; |
| 1379 |
// |
| 1380 |
/* bin to gray conversion 4 bit per time*/ |
| 1381 |
// |
| 1382 |
gr.bit.b4 = bi.bit.b5 ^ bi.bit.b4; |
| 1383 |
gr.bit.b5 = bi.bit.b6 ^ bi.bit.b5; |
| 1384 |
gr.bit.b6 = bi.bit.b7 ^ bi.bit.b6; |
| 1385 |
gr.bit.b7 = bi.bit.b7; |
| 1386 |
// |
| 1387 |
return(gr.word); |
| 1388 |
} |
| 1389 |
|
| 1390 |
UChar_t Digitizer::EvaluateCrcTof(UChar_t *pTof) { |
| 1391 |
// UChar_t crcTof=0x00; |
| 1392 |
// for (Int_t jp=0; jp < 23; jp++){ |
| 1393 |
// crcTof = crc8(...) |
| 1394 |
// } |
| 1395 |
return(0x00); |
| 1396 |
}; |
| 1397 |
|
| 1398 |
//void Digitizer::Paddle2Pmt(Int_t plane, Int_t paddle, Int_t* &pmtleft, Int_t* &pmtright){ |
| 1399 |
void Digitizer::Paddle2Pmt(Int_t plane, Int_t paddle, Int_t *pl, Int_t *pr){ |
| 1400 |
//* @param plane (0 - 5) |
| 1401 |
//* @param paddle (plane=0, paddle = 0,...5) |
| 1402 |
//* @param padid (0 - 23) |
| 1403 |
// |
| 1404 |
Int_t padid=-1; |
| 1405 |
Int_t pads[6]={8,6,2,2,3,3}; |
| 1406 |
// |
| 1407 |
Int_t somma=0; |
| 1408 |
Int_t np=plane; |
| 1409 |
for(Int_t j=0; j<np; j++) |
| 1410 |
somma+=pads[j]; |
| 1411 |
padid=paddle+somma; |
| 1412 |
*pl = padid*2; |
| 1413 |
// *pr = *pr + 1; |
| 1414 |
*pr = *pl + 1; // WM |
| 1415 |
}; |
| 1416 |
|
| 1417 |
void Digitizer::DigitizeAC() { |
| 1418 |
// created: J. Conrad, KTH |
| 1419 |
// modified: S. Orsi, INFN Roma2 |
| 1420 |
// fDataAC[0-63]: main AC board |
| 1421 |
// fDataAC[64-127]: extra AC board |
| 1422 |
|
| 1423 |
fDataAC[0] = 0xACAC; |
| 1424 |
fDataAC[64]= 0xACAC; |
| 1425 |
fDataAC[1] = 0xAC11; |
| 1426 |
fDataAC[65] = 0xAC22; |
| 1427 |
|
| 1428 |
// the third word is a status word (dummy: "no errors are present in the AC boards") |
| 1429 |
fDataAC[2] = 0xFFFF; //FFEF? |
| 1430 |
fDataAC[66] = 0xFFFF; |
| 1431 |
|
| 1432 |
const UInt_t nReg = 6; |
| 1433 |
|
| 1434 |
// FPGA Registers (dummy) |
| 1435 |
for (UInt_t i=0; i<=nReg; i++){ |
| 1436 |
fDataAC[i+4] = 0xFFFF; |
| 1437 |
fDataAC[i+68] = 0xFFFF; |
| 1438 |
} |
| 1439 |
|
| 1440 |
// the last word is a CRC |
| 1441 |
// Dummy for the time being, but it might need to be calculated in the end |
| 1442 |
fDataAC[63] = 0xABCD; |
| 1443 |
fDataAC[127] = 0xABCD; |
| 1444 |
|
| 1445 |
// shift registers (moved to the end of the routine) |
| 1446 |
|
| 1447 |
Int_t evntLSB=Ievnt%65536; |
| 1448 |
Int_t evntMSB=(Int_t)(Ievnt/65536); |
| 1449 |
|
| 1450 |
// singles counters are dummy |
| 1451 |
for (UInt_t i=0; i<=15; i++){ //SO Oct '07: // for (UInt_t i=0; i<=16; i++){ |
| 1452 |
// fDataAC[i+26] = 0x0000; |
| 1453 |
// fDataAC[i+90] = 0x0000; |
| 1454 |
fDataAC[i+26] = evntLSB; |
| 1455 |
fDataAC[i+90] = evntLSB; |
| 1456 |
}; |
| 1457 |
|
| 1458 |
// coincidences are dummy (increment by 1 at each event) |
| 1459 |
// for (UInt_t i=0; i<=7; i++){ |
| 1460 |
// fDataAC[i+42] = 0x0000; |
| 1461 |
// fDataAC[i+106] = 0x0000; |
| 1462 |
// } |
| 1463 |
for (UInt_t i=0; i<=7; i++){ |
| 1464 |
fDataAC[i+42] = evntLSB; |
| 1465 |
fDataAC[i+106] = evntLSB; |
| 1466 |
}; |
| 1467 |
|
| 1468 |
// increments for every trigger might be needed at some point. |
| 1469 |
// dummy for now |
| 1470 |
fDataAC[50] = 0x0000; |
| 1471 |
fDataAC[114] = 0x0000; |
| 1472 |
|
| 1473 |
// dummy FPGA clock (increment by 1 at each event) |
| 1474 |
/* |
| 1475 |
fDataAC[51] = 0x006C; |
| 1476 |
fDataAC[52] = 0x6C6C; |
| 1477 |
fDataAC[115] = 0x006C; |
| 1478 |
fDataAC[116] = 0x6C6C; |
| 1479 |
*/ |
| 1480 |
if (Ievnt<=0xFFFF) { |
| 1481 |
fDataAC[51] = 0x0000; |
| 1482 |
fDataAC[52] = Ievnt; |
| 1483 |
fDataAC[115] = 0x0000; |
| 1484 |
fDataAC[116] = Ievnt; |
| 1485 |
} else { |
| 1486 |
fDataAC[51] = evntMSB; |
| 1487 |
fDataAC[52] = evntLSB; |
| 1488 |
fDataAC[115] = fDataAC[51]; |
| 1489 |
fDataAC[116] = fDataAC[52]; |
| 1490 |
} |
| 1491 |
|
| 1492 |
// dummy temperatures |
| 1493 |
fDataAC[53] = 0x0000; |
| 1494 |
fDataAC[54] = 0x0000; |
| 1495 |
fDataAC[117] = 0x0000; |
| 1496 |
fDataAC[118] = 0x0000; |
| 1497 |
|
| 1498 |
|
| 1499 |
// dummy DAC thresholds |
| 1500 |
for (UInt_t i=0; i<=7; i++){ |
| 1501 |
fDataAC[i+55] = 0x1A13; |
| 1502 |
fDataAC[i+119] = 0x1A13; |
| 1503 |
} |
| 1504 |
|
| 1505 |
// We activate all branches. Once the digitization algorithm is determined |
| 1506 |
// only the branches that involve needed information will be activated |
| 1507 |
|
| 1508 |
fhBookTree->SetBranchAddress("Ievnt",&Ievnt); |
| 1509 |
fhBookTree->SetBranchStatus("Nthcat",1); |
| 1510 |
fhBookTree->SetBranchStatus("Iparcat",1); |
| 1511 |
fhBookTree->SetBranchStatus("Icat",1); |
| 1512 |
fhBookTree->SetBranchStatus("Xincat",1); |
| 1513 |
fhBookTree->SetBranchStatus("Yincat",1); |
| 1514 |
fhBookTree->SetBranchStatus("Zincat",1); |
| 1515 |
fhBookTree->SetBranchStatus("Xoutcat",1); |
| 1516 |
fhBookTree->SetBranchStatus("Youtcat",1); |
| 1517 |
fhBookTree->SetBranchStatus("Zoutcat",1); |
| 1518 |
fhBookTree->SetBranchStatus("Erelcat",1); |
| 1519 |
fhBookTree->SetBranchStatus("Timecat",1); |
| 1520 |
fhBookTree->SetBranchStatus("Pathcat",1); |
| 1521 |
fhBookTree->SetBranchStatus("P0cat",1); |
| 1522 |
fhBookTree->SetBranchStatus("Nthcas",1); |
| 1523 |
fhBookTree->SetBranchStatus("Iparcas",1); |
| 1524 |
fhBookTree->SetBranchStatus("Icas",1); |
| 1525 |
fhBookTree->SetBranchStatus("Xincas",1); |
| 1526 |
fhBookTree->SetBranchStatus("Yincas",1); |
| 1527 |
fhBookTree->SetBranchStatus("Zincas",1); |
| 1528 |
fhBookTree->SetBranchStatus("Xoutcas",1); |
| 1529 |
fhBookTree->SetBranchStatus("Youtcas",1); |
| 1530 |
fhBookTree->SetBranchStatus("Zoutcas",1); |
| 1531 |
fhBookTree->SetBranchStatus("Erelcas",1); |
| 1532 |
fhBookTree->SetBranchStatus("Timecas",1); |
| 1533 |
fhBookTree->SetBranchStatus("Pathcas",1); |
| 1534 |
fhBookTree->SetBranchStatus("P0cas",1); |
| 1535 |
fhBookTree->SetBranchStatus("Nthcard",1); |
| 1536 |
fhBookTree->SetBranchStatus("Iparcard",1); |
| 1537 |
fhBookTree->SetBranchStatus("Icard",1); |
| 1538 |
fhBookTree->SetBranchStatus("Xincard",1); |
| 1539 |
fhBookTree->SetBranchStatus("Yincard",1); |
| 1540 |
fhBookTree->SetBranchStatus("Zincard",1); |
| 1541 |
fhBookTree->SetBranchStatus("Xoutcard",1); |
| 1542 |
fhBookTree->SetBranchStatus("Youtcard",1); |
| 1543 |
fhBookTree->SetBranchStatus("Zoutcard",1); |
| 1544 |
fhBookTree->SetBranchStatus("Erelcard",1); |
| 1545 |
fhBookTree->SetBranchStatus("Timecard",1); |
| 1546 |
fhBookTree->SetBranchStatus("Pathcard",1); |
| 1547 |
fhBookTree->SetBranchStatus("P0card",1); |
| 1548 |
|
| 1549 |
// In this simpliefied approach we will assume that once |
| 1550 |
// a particle releases > 0.5 mip in one of the 12 AC detectors it |
| 1551 |
// will fire. We will furthermore assume that both cards read out |
| 1552 |
// identical data. |
| 1553 |
|
| 1554 |
// If you develop your digitization algorithm, you should start by |
| 1555 |
// identifying the information present in level2 (post-darth-vader) |
| 1556 |
// data. |
| 1557 |
|
| 1558 |
Float_t SumEcat[5]; |
| 1559 |
Float_t SumEcas[5]; |
| 1560 |
Float_t SumEcard[5]; |
| 1561 |
for (Int_t k= 0;k<5;k++){ |
| 1562 |
SumEcat[k]=0.; |
| 1563 |
SumEcas[k]=0.; |
| 1564 |
SumEcard[k]=0.; |
| 1565 |
}; |
| 1566 |
|
| 1567 |
if (Nthcat>50 || Nthcas>50 || Nthcard>50) |
| 1568 |
printf("*** ERROR AC! NthAC out of range!\n\n"); |
| 1569 |
|
| 1570 |
// energy dependence on position (see file AcFitOutputDistancePmt.C by S.Orsi) |
| 1571 |
// based on J.Lundquist's calculations (PhD thesis, page 94) |
| 1572 |
// function: [0]+[1]*atan([2]/(x+1)), where the 3 parameters are: |
| 1573 |
// 8.25470e-01 +- 1.79489e-02 |
| 1574 |
// 6.41609e-01 +- 2.65846e-02 |
| 1575 |
// 9.81177e+00 +- 1.21284e+00 |
| 1576 |
// hp: 1 minimum ionising particle at 35cm from the PMT releases 1mip |
| 1577 |
// |
| 1578 |
// NB: the PMT positions are needed! |
| 1579 |
|
| 1580 |
// look in CAT |
| 1581 |
// for (UInt_t k= 0;k<50;k++){ |
| 1582 |
for (Int_t k= 0;k<Nthcat;k++){ |
| 1583 |
if (Erelcat[k] > 0) |
| 1584 |
SumEcat[Icat[k]] += Erelcat[k]; |
| 1585 |
}; |
| 1586 |
|
| 1587 |
// look in CAS |
| 1588 |
for (Int_t k= 0;k<Nthcas;k++){ |
| 1589 |
if (Erelcas[k] >0) |
| 1590 |
SumEcas[Icas[k]] += Erelcas[k]; |
| 1591 |
}; |
| 1592 |
|
| 1593 |
// look in CARD |
| 1594 |
for (Int_t k= 0;k<Nthcard;k++){ |
| 1595 |
if (Erelcard[k] >0) |
| 1596 |
SumEcard[Icard[k]] += Erelcard[k]; |
| 1597 |
}; |
| 1598 |
|
| 1599 |
// channel mapping Hit Map |
| 1600 |
// 1 CARD4 0 LSB |
| 1601 |
// 2 CAT2 0 |
| 1602 |
// 3 CAS1 0 |
| 1603 |
// 4 NC 0 |
| 1604 |
// 5 CARD2 0 |
| 1605 |
// 6 CAT4 1 |
| 1606 |
// 7 CAS4 0 |
| 1607 |
// 8 NC 0 |
| 1608 |
// 9 CARD3 0 |
| 1609 |
// 10 CAT3 0 |
| 1610 |
// 11 CAS3 0 |
| 1611 |
// 12 NC 0 |
| 1612 |
// 13 CARD1 0 |
| 1613 |
// 14 CAT1 0 |
| 1614 |
// 15 CAS2 0 |
| 1615 |
// 16 NC 0 MSB |
| 1616 |
|
| 1617 |
// In the first version only the hit-map is filled, not the SR. |
| 1618 |
|
| 1619 |
// Threshold: 0.8 MeV. |
| 1620 |
|
| 1621 |
Float_t thr = 8e-4; |
| 1622 |
|
| 1623 |
fDataAC[3] = 0x0000; |
| 1624 |
|
| 1625 |
if (SumEcas[0] > thr) fDataAC[3] = 0x0004; |
| 1626 |
if (SumEcas[1] > thr) fDataAC[3] += 0x4000; |
| 1627 |
if (SumEcas[2] > thr) fDataAC[3] += 0x0400; |
| 1628 |
if (SumEcas[3] > thr) fDataAC[3] += 0x0040; |
| 1629 |
|
| 1630 |
if (SumEcat[0] > thr) fDataAC[3] += 0x2000; |
| 1631 |
if (SumEcat[1] > thr) fDataAC[3] += 0x0002; |
| 1632 |
if (SumEcat[2] > thr) fDataAC[3] += 0x0200; |
| 1633 |
if (SumEcat[3] > thr) fDataAC[3] += 0x0020; |
| 1634 |
|
| 1635 |
if (SumEcard[0] > thr) fDataAC[3] += 0x1000; |
| 1636 |
if (SumEcard[1] > thr) fDataAC[3] += 0x0010; |
| 1637 |
if (SumEcard[2] > thr) fDataAC[3] += 0x0100; |
| 1638 |
if (SumEcard[3] > thr) fDataAC[3] += 0x0001; |
| 1639 |
|
| 1640 |
fDataAC[67] = fDataAC[3]; |
| 1641 |
|
| 1642 |
// shift registers |
| 1643 |
// the central bin is equal to the hitmap, all other bins in the shift register are 0 |
| 1644 |
for (UInt_t i=0; i<=15; i++){ |
| 1645 |
fDataAC[i+11] = 0x0000; |
| 1646 |
fDataAC[i+75] = 0x0000; |
| 1647 |
} |
| 1648 |
fDataAC[18] = fDataAC[3]; |
| 1649 |
fDataAC[82] = fDataAC[3]; |
| 1650 |
|
| 1651 |
// for (Int_t i=0; i<fACbuffer; i++){ |
| 1652 |
// printf("%0x ",fDataAC[i]); |
| 1653 |
// if ((i+1)%8 ==0) cout << endl; |
| 1654 |
// } |
| 1655 |
}; |
| 1656 |
|
| 1657 |
|
| 1658 |
void Digitizer::DigitizeS4(){ |
| 1659 |
Int_t DEBUG=0; |
| 1660 |
// creato: S. Borisov, INFN Roma2 e MEPHI, Sett 2007 |
| 1661 |
TString ciao,modo="ns"; |
| 1662 |
Int_t i,j,t,NdF,pmt,NdFT,S4,S4v=0,S4p=32; |
| 1663 |
Float_t E0,E1=1e-6,Ert,X,Y,Z,x,y,z,V[3],Xs[2],Ys[2],Zs[2],Yp[6],q,w,p=0.1,l,l0=500; |
| 1664 |
Xs[0]=-24.1; |
| 1665 |
Xs[1]=24.1; |
| 1666 |
Ys[0]=-24.1; |
| 1667 |
Ys[1]=24.1; |
| 1668 |
Zs[0]=-0.5; |
| 1669 |
Zs[1]=0.5; |
| 1670 |
Yp[0]=-20.; |
| 1671 |
Yp[2]=-1.; |
| 1672 |
Yp[4]=17.; |
| 1673 |
for(i=0;i<3;i++) |
| 1674 |
Yp[2*i+1]=Yp[2*i]+3; |
| 1675 |
srand(time(NULL)); |
| 1676 |
// --- activate branches: |
| 1677 |
fhBookTree->SetBranchStatus("Nthtof",1); |
| 1678 |
fhBookTree->SetBranchStatus("Ipltof",1); |
| 1679 |
fhBookTree->SetBranchStatus("Ipaddle",1); |
| 1680 |
|
| 1681 |
fhBookTree->SetBranchStatus("Xintof",1); |
| 1682 |
fhBookTree->SetBranchStatus("Yintof",1); |
| 1683 |
fhBookTree->SetBranchStatus("Xouttof",1); |
| 1684 |
fhBookTree->SetBranchStatus("Youttof",1); |
| 1685 |
|
| 1686 |
fhBookTree->SetBranchStatus("Ereltof",1); |
| 1687 |
fhBookTree->SetBranchStatus("Timetof",1); |
| 1688 |
NdFT=0; |
| 1689 |
Ert=0; |
| 1690 |
for(i=0;i<Nthtof;i++){ |
| 1691 |
if(Ipltof[i]!=6) continue; |
| 1692 |
Ert+=Ereltof[i]; |
| 1693 |
|
| 1694 |
if(modo=="ns") continue; |
| 1695 |
NdF=Int_t(Ereltof[i]/E1); |
| 1696 |
NdFT=0; |
| 1697 |
X=Xintof[i]; |
| 1698 |
Y=Yintof[i]; |
| 1699 |
Z=(Float_t)(random())/(Float_t)(0x7fffffff)-0.5; |
| 1700 |
//cout<<"XYZ "<<X<<" "<<Y<<" "<<Z<<endl; |
| 1701 |
for(j=0;j<NdF;j++){ |
| 1702 |
q=(Float_t)random()/(Float_t)0x7fffffff; |
| 1703 |
w=(Float_t)random()/(Float_t)0x7fffffff; |
| 1704 |
// cout<<"qw "<<q<<" "<<w<<endl; |
| 1705 |
V[0]=p*cos(6.28318*q); |
| 1706 |
V[1]=p*sin(6.28318*q); |
| 1707 |
V[2]=p*(2.*w-1.); |
| 1708 |
pmt=0; |
| 1709 |
x=X; |
| 1710 |
y=Y; |
| 1711 |
z=Z; |
| 1712 |
while(pmt==0 && (x>Xs[0] && x<Xs[1])&&(y>Ys[0] && y<Ys[1])&&(z>Zs[0] && z<Zs[1])){ |
| 1713 |
l=0; |
| 1714 |
while(pmt==0 && (x>Xs[0] && x<Xs[1])&&(y>Ys[0] && y<Ys[1])&&(z>Zs[0] && z<Zs[1])){ |
| 1715 |
x+=V[0]; |
| 1716 |
y+=V[1]; |
| 1717 |
z+=V[2]; |
| 1718 |
l+=p; |
| 1719 |
//cout<<x<<" "<<y<<" "<<z<<" "<<l<<endl; |
| 1720 |
//cin>>ciao; |
| 1721 |
} |
| 1722 |
if((x<Xs[0]+p || x>Xs[1]-p)&&(y>Ys[0]+p && y<Ys[1]-p)&&(z>Zs[0]+p && z<Zs[1]-p)){ |
| 1723 |
for(t=0;t<3;t++){ |
| 1724 |
if(y>=Yp[2*t] && y<Yp[2*t+1]){ |
| 1725 |
if(pmt==0)NdFT++; |
| 1726 |
pmt=1; |
| 1727 |
//cout<<NdFT<<endl; |
| 1728 |
break; |
| 1729 |
} |
| 1730 |
} |
| 1731 |
if(pmt==1)break; |
| 1732 |
V[0]=-V[0]; |
| 1733 |
} |
| 1734 |
q=(Float_t)random()/(Float_t)0x7fffffff; |
| 1735 |
w=1-exp(-l/l0); |
| 1736 |
if(q<w)break; |
| 1737 |
q=(Float_t)random()/(Float_t)0x7fffffff; |
| 1738 |
w=0.5; |
| 1739 |
if(q<w)break; |
| 1740 |
if((x>Xs[0]+p && x<Xs[1]-p)&&(y<Ys[0]+p || y>Ys[1]-p)&&(z>Zs[0]+p && z<Zs[1]-p))V[1]=-V[1]; |
| 1741 |
if((x>Xs[0]+p && x<Xs[1]-p)&&(y>Ys[0]+p && y<Ys[1]-p)&&(z<Zs[0]+p || z>Zs[1]-p))V[2]=-V[2]; |
| 1742 |
x+=V[0]; |
| 1743 |
y+=V[1]; |
| 1744 |
z+=V[2]; |
| 1745 |
l=0; |
| 1746 |
//cout<<x<<" "<<y<<" "<<z<<" "<<l<<endl; |
| 1747 |
//cin>>ciao; |
| 1748 |
} |
| 1749 |
} |
| 1750 |
} |
| 1751 |
Ert=Ert/0.002; |
| 1752 |
q=(Float_t)(random())/(Float_t)0x7fffffff; |
| 1753 |
w=0.7; |
| 1754 |
//E0=(Float_t)(4064./7.); |
| 1755 |
E0=4064./7.; |
| 1756 |
if(Ert<1) S4=0; |
| 1757 |
else S4=(Int_t)(4064.*(1.-exp(-(Ert-1.)/E0))); |
| 1758 |
i=S4/4; |
| 1759 |
if(S4%4==0) |
| 1760 |
S4v=S4+S4p; |
| 1761 |
else if(S4%4==1){ |
| 1762 |
if(q<w) S4v=S4-1+S4p; |
| 1763 |
else S4v=S4+1+S4p; |
| 1764 |
} else if(S4%4==2) S4v=S4+S4p; |
| 1765 |
else if(S4%4==3){ |
| 1766 |
if(q<w) S4v=S4+1+S4p; |
| 1767 |
else S4v=S4-1+S4p; |
| 1768 |
} |
| 1769 |
if (DEBUG) |
| 1770 |
cout<<"Ert_S4 = " << Ert << " --- S4v = " << S4v << endl; |
| 1771 |
fDataS4[0]=S4v;//0xf028; |
| 1772 |
fDataS4[1]=0xd800; |
| 1773 |
fDataS4[2]=0x0300; |
| 1774 |
//cout<<" PMT "<<NdFT<<" "<<NdF<<endl; |
| 1775 |
//cin>>ciao; |
| 1776 |
} |
| 1777 |
|
| 1778 |
|
| 1779 |
|
| 1780 |
void Digitizer::DigitizeND(){ |
| 1781 |
// creato: S. Borisov, INFN Roma2 e MEPHI, Sett 2007 |
| 1782 |
Int_t i=0; |
| 1783 |
UShort_t NdN=0; |
| 1784 |
fhBookTree->SetBranchStatus("Nthnd",1); |
| 1785 |
fhBookTree->SetBranchStatus("Itubend",1); |
| 1786 |
fhBookTree->SetBranchStatus("Iparnd",1); |
| 1787 |
fhBookTree->SetBranchStatus("Xinnd",1); |
| 1788 |
fhBookTree->SetBranchStatus("Yinnd",1); |
| 1789 |
fhBookTree->SetBranchStatus("Zinnd",1); |
| 1790 |
fhBookTree->SetBranchStatus("Xoutnd",1); |
| 1791 |
fhBookTree->SetBranchStatus("Youtnd",1); |
| 1792 |
fhBookTree->SetBranchStatus("Zoutnd",1); |
| 1793 |
fhBookTree->SetBranchStatus("Erelnd",1); |
| 1794 |
fhBookTree->SetBranchStatus("Timend",1); |
| 1795 |
fhBookTree->SetBranchStatus("Pathnd",1); |
| 1796 |
fhBookTree->SetBranchStatus("P0nd",1); |
| 1797 |
//cout<<"n="<<Nthnd<<" "<<NdN<<"\n"; |
| 1798 |
for(i=0;i<Nthnd;i++){ |
| 1799 |
if(Iparnd[i]==13){ |
| 1800 |
NdN++; |
| 1801 |
} |
| 1802 |
} |
| 1803 |
//NdN=100; //only for debug |
| 1804 |
|
| 1805 |
for(i=0;i<3;i++){ |
| 1806 |
fDataND[2*i]=0x0000; |
| 1807 |
fDataND[2*i+1]=0x010F; |
| 1808 |
} |
| 1809 |
fDataND[0]=0xFF00 & (256*NdN); |
| 1810 |
} |
| 1811 |
|
| 1812 |
|
| 1813 |
void Digitizer::DigitizeDummy() { |
| 1814 |
|
| 1815 |
fhBookTree->SetBranchStatus("Enestrip",1); |
| 1816 |
|
| 1817 |
// dumy header |
| 1818 |
fDataDummy[0] = 0xCAAA; |
| 1819 |
|
| 1820 |
for (Int_t i=1; i<fDummybuffer; i++){ |
| 1821 |
fDataDummy[i] = 0xFFFF; |
| 1822 |
// printf("%0x ",fDataDummy[i]); |
| 1823 |
//if ((i+1)%8 ==0) cout << endl; |
| 1824 |
} |
| 1825 |
}; |
| 1826 |
|
| 1827 |
|
| 1828 |
void Digitizer::WriteData(){ |
| 1829 |
|
| 1830 |
// Routine that writes the data to a binary file |
| 1831 |
// PSCU data are already swapped |
| 1832 |
fOutputfile.write(reinterpret_cast<char*>(fDataPSCU),sizeof(UShort_t)*fPSCUbuffer); |
| 1833 |
// TRG |
| 1834 |
fOutputfile.write(reinterpret_cast<char*>(fDataTrigger),sizeof(UChar_t)*153); |
| 1835 |
// TOF |
| 1836 |
fOutputfile.write(reinterpret_cast<char*>(fDataTof),sizeof(UChar_t)*276); |
| 1837 |
// AC |
| 1838 |
UShort_t temp[1000000]; |
| 1839 |
memset(temp,0,sizeof(UShort_t)*1000000); |
| 1840 |
swab(fDataAC,temp,sizeof(UShort_t)*fACbuffer); // WE MUST SWAP THE BYTES!!! |
| 1841 |
fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fACbuffer); |
| 1842 |
// CALO |
| 1843 |
memset(temp,0,sizeof(UShort_t)*1000000); |
| 1844 |
swab(fDataCALO,temp,sizeof(UShort_t)*fCALOlength); // WE MUST SWAP THE BYTES!!! |
| 1845 |
fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fCALOlength); |
| 1846 |
// TRK |
| 1847 |
memset(temp,0,sizeof(UShort_t)*1000000); |
| 1848 |
swab(fDataTrack,temp,sizeof(UShort_t)*fTracklength); // WE MUST SWAP THE BYTES!!! |
| 1849 |
fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fTracklength); |
| 1850 |
fTracklength=0; |
| 1851 |
// padding to 64 bytes |
| 1852 |
// |
| 1853 |
if ( fPadding ){ |
| 1854 |
fOutputfile.write(reinterpret_cast<char*>(fDataPadding),sizeof(UChar_t)*fPadding); |
| 1855 |
}; |
| 1856 |
// S4 |
| 1857 |
memset(temp,0,sizeof(UShort_t)*1000000); |
| 1858 |
swab(fDataS4,temp,sizeof(UShort_t)*fS4buffer); // WE MUST SWAP THE BYTES!!! |
| 1859 |
fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fS4buffer); |
| 1860 |
// ND |
| 1861 |
memset(temp,0,sizeof(UShort_t)*1000000); |
| 1862 |
swab(fDataND,temp,sizeof(UShort_t)*fNDbuffer); // WE MUST SWAP THE BYTES!!! |
| 1863 |
fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fNDbuffer); |
| 1864 |
}; |
| 1865 |
|
| 1866 |
|
| 1867 |
void Digitizer::ReadData(){ |
| 1868 |
|
| 1869 |
UShort_t InData[64]; |
| 1870 |
|
| 1871 |
// for debuggigng purposes only, write your own routine if you like (many |
| 1872 |
// hardwired things. |
| 1873 |
|
| 1874 |
ifstream InputFile; |
| 1875 |
|
| 1876 |
// if (!InputFile) { |
| 1877 |
|
| 1878 |
// std::cout << "ERROR" << endl; |
| 1879 |
// // An error occurred! |
| 1880 |
// // myFile.gcount() returns the number of bytes read. |
| 1881 |
// // calling myFile.clear() will reset the stream state |
| 1882 |
// // so it is usable again. |
| 1883 |
// }; |
| 1884 |
|
| 1885 |
|
| 1886 |
|
| 1887 |
//InputFile.seekg(0); |
| 1888 |
|
| 1889 |
InputFile.open(fFilename, ios::in | ios::binary); |
| 1890 |
// fOutputfile.seekg(0); |
| 1891 |
if (!InputFile.is_open()) std::cout << "ERROR" << endl; |
| 1892 |
|
| 1893 |
InputFile.seekg(0); |
| 1894 |
|
| 1895 |
for (Int_t k=0; k<=1000; k++){ |
| 1896 |
InputFile.read(reinterpret_cast<char*>(InData),384*sizeof(UShort_t)); |
| 1897 |
|
| 1898 |
std::cout << "Read back: " << endl << endl; |
| 1899 |
|
| 1900 |
for (Int_t i=0; i<=384; i++){ |
| 1901 |
printf("%4x ", InData[i]); |
| 1902 |
if ((i+1)%8 ==0) cout << endl; |
| 1903 |
} |
| 1904 |
|
| 1905 |
} |
| 1906 |
cout << endl; |
| 1907 |
InputFile.close(); |
| 1908 |
|
| 1909 |
}; |
| 1910 |
|
| 1911 |
|
| 1912 |
|
| 1913 |
void Digitizer::DigitizeTrack() { |
| 1914 |
//std:: cout << "Entering DigitizeTrack " << endl; |
| 1915 |
Float_t AdcTrack[fNviews][fNstrips_view]; // Vector of strips to be compressed |
| 1916 |
|
| 1917 |
Int_t Iview; |
| 1918 |
Int_t Nstrip; |
| 1919 |
|
| 1920 |
for (Int_t j=0; j<fNviews;j++) { |
| 1921 |
|
| 1922 |
for (Int_t i=0; i<fNladder;i++) { |
| 1923 |
|
| 1924 |
Float_t commonN1=gRandom->Gaus(0.,fSigmaCommon); |
| 1925 |
Float_t commonN2=gRandom->Gaus(0.,fSigmaCommon); |
| 1926 |
for (Int_t k=0; k<fNstrips_ladder;k++) { |
| 1927 |
Nstrip=i*fNstrips_ladder+k; |
| 1928 |
AdcTrack[j][Nstrip]=gRandom->Gaus(fPedeTrack[j][Nstrip],fSigmaTrack[j][Nstrip]); |
| 1929 |
if(k<4*128) {AdcTrack[j][Nstrip] += commonN1;} // full correlation of 4 VA1 Com. Noise |
| 1930 |
else {AdcTrack[j][Nstrip] += commonN2;} // full correlation of 4 VA1 Com. Noise |
| 1931 |
|
| 1932 |
}; |
| 1933 |
|
| 1934 |
|
| 1935 |
}; |
| 1936 |
|
| 1937 |
|
| 1938 |
}; |
| 1939 |
|
| 1940 |
|
| 1941 |
fhBookTree->SetBranchStatus("Nstrpx",1); |
| 1942 |
fhBookTree->SetBranchStatus("Npstripx",1); |
| 1943 |
fhBookTree->SetBranchStatus("Ntstripx",1); |
| 1944 |
fhBookTree->SetBranchStatus("Istripx",1); |
| 1945 |
fhBookTree->SetBranchStatus("Qstripx",1); |
| 1946 |
fhBookTree->SetBranchStatus("Xstripx",1); |
| 1947 |
fhBookTree->SetBranchStatus("Nstrpy",1); |
| 1948 |
fhBookTree->SetBranchStatus("Npstripy",1); |
| 1949 |
fhBookTree->SetBranchStatus("Ntstripy",1); |
| 1950 |
fhBookTree->SetBranchStatus("Istripy",1); |
| 1951 |
fhBookTree->SetBranchStatus("Qstripy",1); |
| 1952 |
fhBookTree->SetBranchStatus("Ystripy",1); |
| 1953 |
|
| 1954 |
|
| 1955 |
|
| 1956 |
Float_t ADCfull; |
| 1957 |
Int_t iladd=0; |
| 1958 |
for (Int_t ix=0; ix<Nstrpx;ix++) { |
| 1959 |
Iview=Npstripx[ix]*2-1; |
| 1960 |
Nstrip=(Int_t)Istripx[ix]-1; |
| 1961 |
if(Nstrip<fNstrips_ladder) iladd=0; |
| 1962 |
if((Nstrip>=fNstrips_ladder)&&(Nstrip<2*fNstrips_ladder)) iladd=1; |
| 1963 |
if((Nstrip>=2*fNstrips_ladder)&&(Nstrip<3*fNstrips_ladder)) iladd=2; |
| 1964 |
ADCfull=AdcTrack[Iview][Nstrip] += Qstripx[ix]*fMipCor[iladd][Iview]; |
| 1965 |
AdcTrack[Iview][Nstrip] *= SaturationTrack(ADCfull); |
| 1966 |
|
| 1967 |
}; |
| 1968 |
|
| 1969 |
|
| 1970 |
for (Int_t iy=0; iy<Nstrpy;iy++) { |
| 1971 |
Iview=Npstripy[iy]*2-2; |
| 1972 |
Nstrip=(Int_t)Istripy[iy]-1; |
| 1973 |
if(Nstrip<fNstrips_ladder) iladd=0; |
| 1974 |
if((Nstrip>=fNstrips_ladder)&&(Nstrip<2*fNstrips_ladder)) iladd=1; |
| 1975 |
if((Nstrip>=2*fNstrips_ladder)&&(Nstrip<3*fNstrips_ladder)) iladd=2; |
| 1976 |
ADCfull=AdcTrack[Iview][Nstrip] -= Qstripy[iy]*fMipCor[iladd][Iview]; |
| 1977 |
AdcTrack[Iview][Nstrip] *= SaturationTrack(ADCfull); |
| 1978 |
|
| 1979 |
}; |
| 1980 |
|
| 1981 |
CompressTrackData(AdcTrack); // Compress and Digitize data of one Ladder in turn for all ladders |
| 1982 |
|
| 1983 |
}; |
| 1984 |
|
| 1985 |
|
| 1986 |
|
| 1987 |
void Digitizer::DigitizeTrackCalib(Int_t ii) { |
| 1988 |
|
| 1989 |
std:: cout << "Entering DigitizeTrackCalib " << ii << endl; |
| 1990 |
if( (ii!=1)&&(ii!=2) ) { |
| 1991 |
std:: cout << "error wrong DigitizeTrackCalib argument" << endl; |
| 1992 |
return; |
| 1993 |
}; |
| 1994 |
|
| 1995 |
memset(fDataTrack,0,sizeof(UShort_t)*fTRACKbuffer); |
| 1996 |
fTracklength=0; |
| 1997 |
|
| 1998 |
UShort_t Dato; |
| 1999 |
|
| 2000 |
Float_t dato1; |
| 2001 |
Float_t dato2; |
| 2002 |
Float_t dato3; |
| 2003 |
Float_t dato4; |
| 2004 |
|
| 2005 |
UShort_t DatoDec; |
| 2006 |
UShort_t DatoDec1; |
| 2007 |
UShort_t DatoDec2; |
| 2008 |
UShort_t DatoDec3; |
| 2009 |
UShort_t DatoDec4; |
| 2010 |
|
| 2011 |
UShort_t EVENT_CAL; |
| 2012 |
UShort_t PED_L1; |
| 2013 |
UShort_t ReLength; |
| 2014 |
UShort_t OveCheckCode; |
| 2015 |
//UShort_t PED_L2; |
| 2016 |
//UShort_t PED_L3HI; |
| 2017 |
//UShort_t PED_L3LO; |
| 2018 |
//UShort_t SIG_L1HI; |
| 2019 |
//UShort_t SIG_L1LO; |
| 2020 |
//UShort_t SIG_L2HI; |
| 2021 |
//UShort_t SIG_L2LO; |
| 2022 |
//UShort_t SIG_L3; |
| 2023 |
//UShort_t BAD_L1; |
| 2024 |
//UShort_t BAD_L2LO; |
| 2025 |
//UShort_t BAD_L3HI; |
| 2026 |
//UShort_t BAD_L3LO; |
| 2027 |
//UShort_t FLAG; |
| 2028 |
|
| 2029 |
|
| 2030 |
Int_t DSPpos; |
| 2031 |
for (Int_t j=ii-1; j<fNviews;j+=2) { |
| 2032 |
UShort_t CkSum=0; |
| 2033 |
// here skip the dsp header and his trailer , to be written later |
| 2034 |
DSPpos=fTracklength; |
| 2035 |
fTracklength=fTracklength+13+3; |
| 2036 |
|
| 2037 |
|
| 2038 |
for (Int_t i=0; i<fNladder;i++) { |
| 2039 |
for (Int_t k=0; k<fNstrips_ladder;k++) { |
| 2040 |
// write in buffer the current LADDER |
| 2041 |
Dato=(UShort_t)fPedeTrack[j][i*fNstrips_ladder+k]; |
| 2042 |
dato1=fPedeTrack[j][i*fNstrips_ladder+k]-Dato; |
| 2043 |
|
| 2044 |
DatoDec1=(UShort_t)(dato1*2); |
| 2045 |
dato2=dato1*2-DatoDec1; |
| 2046 |
|
| 2047 |
DatoDec2=(UShort_t)(dato2*2); |
| 2048 |
dato3=dato2*2-DatoDec2; |
| 2049 |
|
| 2050 |
DatoDec3=(UShort_t)(dato3*2); |
| 2051 |
dato4=dato3*2-DatoDec3; |
| 2052 |
|
| 2053 |
DatoDec4=(UShort_t)(dato4*2); |
| 2054 |
|
| 2055 |
DatoDec=DatoDec1*0x0008+DatoDec2*0x0004+DatoDec3*0x0002+DatoDec4*0x0001; |
| 2056 |
fDataTrack[fTracklength]=( (Dato << 4) | (DatoDec & 0x000F) ); |
| 2057 |
CkSum=CkSum^fDataTrack[fTracklength]; |
| 2058 |
fTracklength++; |
| 2059 |
}; |
| 2060 |
|
| 2061 |
for (Int_t k=0; k<fNstrips_ladder;k++) { |
| 2062 |
// write in buffer the current LADDER |
| 2063 |
Dato=(UShort_t)fSigmaTrack[j][i*fNstrips_ladder+k]; |
| 2064 |
dato1=fSigmaTrack[j][i*fNstrips_ladder+k]-Dato; |
| 2065 |
|
| 2066 |
DatoDec1=(UShort_t)(dato1*2); |
| 2067 |
dato2=dato1*2-DatoDec1; |
| 2068 |
|
| 2069 |
DatoDec2=(UShort_t)(dato2*2); |
| 2070 |
dato3=dato2*2-DatoDec2; |
| 2071 |
|
| 2072 |
DatoDec3=(UShort_t)(dato3*2); |
| 2073 |
dato4=dato3*2-DatoDec3; |
| 2074 |
|
| 2075 |
DatoDec4=(UShort_t)(dato4*2); |
| 2076 |
|
| 2077 |
DatoDec=DatoDec1*0x0008+DatoDec2*0x0004+DatoDec3*0x0002+DatoDec4*0x0001; |
| 2078 |
|
| 2079 |
fDataTrack[fTracklength]=( (Dato << 4) | (DatoDec & 0x000F) ); |
| 2080 |
CkSum=CkSum^fDataTrack[fTracklength]; |
| 2081 |
fTracklength++; |
| 2082 |
}; |
| 2083 |
|
| 2084 |
for (Int_t k=0; k<64;k++) { |
| 2085 |
fDataTrack[fTracklength]=0x0000; |
| 2086 |
CkSum=CkSum^fDataTrack[fTracklength]; |
| 2087 |
fTracklength++; |
| 2088 |
|
| 2089 |
}; |
| 2090 |
// end ladder |
| 2091 |
|
| 2092 |
// write in buffer the end ladder word |
| 2093 |
if(i==0) fDataTrack[fTracklength]=0x1807; |
| 2094 |
if(i==1) fDataTrack[fTracklength]=0x1808; |
| 2095 |
if(i==2) fDataTrack[fTracklength]=0x1809; |
| 2096 |
CkSum=CkSum^fDataTrack[fTracklength]; |
| 2097 |
fTracklength++; |
| 2098 |
|
| 2099 |
// write in buffer the TRAILER |
| 2100 |
ReLength=(UShort_t)((fNstrips_ladder*2+64+1)*2+3); |
| 2101 |
OveCheckCode=0x0000; |
| 2102 |
|
| 2103 |
fDataTrack[fTracklength]=0x0000; |
| 2104 |
fTracklength++; |
| 2105 |
|
| 2106 |
fDataTrack[fTracklength]=(ReLength >> 8); |
| 2107 |
fTracklength++; |
| 2108 |
|
| 2109 |
fDataTrack[fTracklength]=( (ReLength << 8) | (OveCheckCode & 0x00FF) ); |
| 2110 |
fTracklength++; |
| 2111 |
|
| 2112 |
// end TRAILER |
| 2113 |
}; |
| 2114 |
|
| 2115 |
// write in buffer the DSP header |
| 2116 |
|
| 2117 |
fDataTrack[DSPpos]=(0xE800 | ( ((j+1) << 3) | 0x0005) ); |
| 2118 |
|
| 2119 |
fDataTrack[DSPpos+1]=0x01A9; |
| 2120 |
|
| 2121 |
fDataTrack[DSPpos+2]=0x8740; |
| 2122 |
|
| 2123 |
EVENT_CAL=0; |
| 2124 |
fDataTrack[DSPpos+3]=(0x1A00 | ( (0x03FF & EVENT_CAL)>> 1) ); |
| 2125 |
|
| 2126 |
PED_L1=0; |
| 2127 |
fDataTrack[DSPpos+4]=( ((EVENT_CAL << 15) | 0x5002 ) | ((0x03FF & PED_L1) << 2) ); |
| 2128 |
|
| 2129 |
// FROM HERE WE WRITE AS ALL VARIABLE apart CkSum are =0 |
| 2130 |
|
| 2131 |
fDataTrack[DSPpos+5]=0x8014; |
| 2132 |
|
| 2133 |
fDataTrack[DSPpos+6]=0x00A0; |
| 2134 |
|
| 2135 |
fDataTrack[DSPpos+7]=0x0500; |
| 2136 |
|
| 2137 |
fDataTrack[DSPpos+8]=0x2801; |
| 2138 |
|
| 2139 |
fDataTrack[DSPpos+9]=0x400A; |
| 2140 |
|
| 2141 |
fDataTrack[DSPpos+10]=0x0050; |
| 2142 |
|
| 2143 |
CkSum=(CkSum >> 8)^(CkSum&0x00FF); |
| 2144 |
fDataTrack[DSPpos+11]=(0x0280 | (CkSum >> 3)); |
| 2145 |
|
| 2146 |
fDataTrack[DSPpos+12]=(0x1FFF | (CkSum << 13) ); |
| 2147 |
|
| 2148 |
// end dsp header |
| 2149 |
|
| 2150 |
// write in buffer the TRAILER |
| 2151 |
|
| 2152 |
ReLength=(UShort_t)((13*2)+3); |
| 2153 |
OveCheckCode=0x0000; |
| 2154 |
fDataTrack[DSPpos+13]=0x0000; |
| 2155 |
|
| 2156 |
fDataTrack[DSPpos+14]=(ReLength >> 8); |
| 2157 |
|
| 2158 |
fDataTrack[DSPpos+15]=( (ReLength << 8) | (OveCheckCode & 0x00FF) ); |
| 2159 |
|
| 2160 |
// end TRAILER |
| 2161 |
|
| 2162 |
|
| 2163 |
|
| 2164 |
|
| 2165 |
// end DSP |
| 2166 |
}; |
| 2167 |
|
| 2168 |
|
| 2169 |
|
| 2170 |
}; |
| 2171 |
|
| 2172 |
void Digitizer::WriteTrackCalib() { |
| 2173 |
|
| 2174 |
|
| 2175 |
std:: cout << " Entering WriteTrackCalib " << endl; |
| 2176 |
|
| 2177 |
fOutputfile.write(reinterpret_cast<char*>(fDataPSCU),sizeof(UShort_t)*fPSCUbuffer); |
| 2178 |
|
| 2179 |
UShort_t temp[1000000]; |
| 2180 |
memset(temp,0,sizeof(UShort_t)*1000000); |
| 2181 |
swab(fDataTrack,temp,sizeof(UShort_t)*fTracklength); // WE MUST SWAP THE BYTES!!! |
| 2182 |
fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fTracklength); |
| 2183 |
fTracklength=0; |
| 2184 |
if ( fPadding ){ |
| 2185 |
fOutputfile.write(reinterpret_cast<char*>(fDataPadding),sizeof(UChar_t)*fPadding); |
| 2186 |
}; |
| 2187 |
|
| 2188 |
}; |
| 2189 |
|
| 2190 |
|
| 2191 |
void Digitizer::ClearTrackCalib() { |
| 2192 |
|
| 2193 |
std:: cout << "Entering ClearTrackCalib " << endl; |
| 2194 |
|
| 2195 |
|
| 2196 |
}; |
| 2197 |
|
| 2198 |
|
| 2199 |
void Digitizer::LoadTrackCalib() { |
| 2200 |
std:: cout << "Entering LoadTrackCalib " << endl; |
| 2201 |
|
| 2202 |
// Generate the pedestals and sigmas according to parametrization |
| 2203 |
for (Int_t j=0; j<fNviews;j++) { |
| 2204 |
for (Int_t i=0; i<fNstrips_view;i++) { |
| 2205 |
|
| 2206 |
if((j+1)%2==0) { |
| 2207 |
fPedeTrack[j][i]=gRandom->Gaus(fAvePedex,fSigmaPedex); |
| 2208 |
fSigmaTrack[j][i]=gRandom->Gaus(fAveSigmax,fSigmaSigmax); |
| 2209 |
}; |
| 2210 |
if((j+1)%2==1) { |
| 2211 |
fPedeTrack[j][i]=gRandom->Gaus(fAvePedey,fSigmaPedey); |
| 2212 |
fSigmaTrack[j][i]=gRandom->Gaus(fAveSigmay,fSigmaSigmay); |
| 2213 |
}; |
| 2214 |
|
| 2215 |
}; |
| 2216 |
}; |
| 2217 |
|
| 2218 |
|
| 2219 |
|
| 2220 |
}; |
| 2221 |
|
| 2222 |
void Digitizer::LoadMipCor() { |
| 2223 |
std:: cout << "Entering LoadMipCor" << endl; |
| 2224 |
Float_t xfactor=1./151.6*1.04; |
| 2225 |
Float_t yfactor=1./152.1; |
| 2226 |
|
| 2227 |
fMipCor[0][0]=140.02*yfactor; |
| 2228 |
fMipCor[0][1]=140.99*xfactor; |
| 2229 |
fMipCor[0][2]=134.48*yfactor; |
| 2230 |
fMipCor[0][3]=144.41*xfactor; |
| 2231 |
fMipCor[0][4]=140.74*yfactor; |
| 2232 |
fMipCor[0][5]=142.28*xfactor; |
| 2233 |
fMipCor[0][6]=134.53*yfactor; |
| 2234 |
fMipCor[0][7]=140.63*xfactor; |
| 2235 |
fMipCor[0][8]=135.55*yfactor; |
| 2236 |
fMipCor[0][9]=138.00*xfactor; |
| 2237 |
fMipCor[0][10]=154.95*yfactor; |
| 2238 |
fMipCor[0][11]=158.44*xfactor; |
| 2239 |
|
| 2240 |
|
| 2241 |
fMipCor[1][0]=136.07*yfactor; |
| 2242 |
fMipCor[1][1]=135.59*xfactor; |
| 2243 |
fMipCor[1][2]=142.69*yfactor; |
| 2244 |
fMipCor[1][3]=138.19*xfactor; |
| 2245 |
fMipCor[1][4]=137.35*yfactor; |
| 2246 |
fMipCor[1][5]=140.23*xfactor; |
| 2247 |
fMipCor[1][6]=153.15*yfactor; |
| 2248 |
fMipCor[1][7]=151.42*xfactor; |
| 2249 |
fMipCor[1][8]=129.76*yfactor; |
| 2250 |
fMipCor[1][9]=140.63*xfactor; |
| 2251 |
fMipCor[1][10]=157.87*yfactor; |
| 2252 |
fMipCor[1][11]=153.64*xfactor; |
| 2253 |
|
| 2254 |
fMipCor[2][0]=134.98*yfactor; |
| 2255 |
fMipCor[2][1]=143.95*xfactor; |
| 2256 |
fMipCor[2][2]=140.23*yfactor; |
| 2257 |
fMipCor[2][3]=138.88*xfactor; |
| 2258 |
fMipCor[2][4]=137.95*yfactor; |
| 2259 |
fMipCor[2][5]=134.87*xfactor; |
| 2260 |
fMipCor[2][6]=157.56*yfactor; |
| 2261 |
fMipCor[2][7]=157.31*xfactor; |
| 2262 |
fMipCor[2][8]=141.37*yfactor; |
| 2263 |
fMipCor[2][9]=143.39*xfactor; |
| 2264 |
fMipCor[2][10]=156.15*yfactor; |
| 2265 |
fMipCor[2][11]=158.79*xfactor; |
| 2266 |
|
| 2267 |
/* |
| 2268 |
for (Int_t j=0; j<fNviews;j++) { |
| 2269 |
for (Int_t i=0; i<fNstrips_view;i++) { |
| 2270 |
fMipCor[j][i]=1.; |
| 2271 |
}; |
| 2272 |
}; |
| 2273 |
|
| 2274 |
|
| 2275 |
*/ |
| 2276 |
}; |
| 2277 |
|
| 2278 |
void Digitizer::CompressTrackData(Float_t AdcTrack[fNviews][fNstrips_view]) { |
| 2279 |
// copy of the corresponding compression fortran routine + new digitization |
| 2280 |
// std:: cout << "Entering CompressTrackData " << endl; |
| 2281 |
Int_t oldval=0; |
| 2282 |
Int_t newval=0; |
| 2283 |
Int_t trasmesso=0; |
| 2284 |
Int_t ntrastot=0; |
| 2285 |
Float_t real; |
| 2286 |
Float_t inte; |
| 2287 |
Int_t cercacluster=0; |
| 2288 |
Int_t kt=0; |
| 2289 |
static const int DSPbufferSize = 4000; // 13 bit buffer to be rearranged in 16 bit Track buffer |
| 2290 |
UShort_t DataDSP[DSPbufferSize]; // 13 bit buffer to be rearranged in 16 bit Track buffer |
| 2291 |
UShort_t DSPlength; // 13 bit buffer to be rearranged in 16 bit Track buffer |
| 2292 |
|
| 2293 |
memset(fDataTrack,0,sizeof(UShort_t)*fTRACKbuffer); // probably not necessary becouse already done ? |
| 2294 |
fTracklength=0; |
| 2295 |
|
| 2296 |
for (Int_t iv=0; iv<fNviews;iv++) { |
| 2297 |
memset(DataDSP,0,sizeof(UShort_t)*DSPbufferSize); |
| 2298 |
DSPlength=16; // skip the header, to be written later |
| 2299 |
UShort_t CheckSum=0; |
| 2300 |
// write dsp header on buffer |
| 2301 |
|
| 2302 |
// fDataTrack[fTracklength]=0xE805; |
| 2303 |
// fTracklength++; |
| 2304 |
|
| 2305 |
// fDataTrack[fTracklength]=0x01A9; |
| 2306 |
// fTracklength++; |
| 2307 |
|
| 2308 |
// end dsp header |
| 2309 |
|
| 2310 |
// |
| 2311 |
// INIZIO VISTA IV - TAKE PROPER ACTION |
| 2312 |
// |
| 2313 |
|
| 2314 |
|
| 2315 |
|
| 2316 |
for (Int_t ladder=0; ladder<fNladder;ladder++) { |
| 2317 |
Int_t k=0; |
| 2318 |
while (k<fNstrips_ladder) { |
| 2319 |
// compress write in buffer the current LADDER |
| 2320 |
if ( k == 0) { |
| 2321 |
real=modff(AdcTrack[iv][ladder*fNstrips_ladder+k],&inte); |
| 2322 |
if (real > 0.5) inte=inte+1; |
| 2323 |
newval=(Int_t)inte -(Int_t)fPedeTrack[iv][ladder*fNstrips_ladder+k]; |
| 2324 |
// first strip of ladder is transmitted |
| 2325 |
// DC_TOT first " << AdcTrack[iv][ladder*fNstrips_ladder+k] << endl; |
| 2326 |
DataDSP[DSPlength]=( ((UShort_t)inte) & 0x0FFF); |
| 2327 |
DSPlength++; |
| 2328 |
ntrastot++; |
| 2329 |
trasmesso=1; |
| 2330 |
oldval=newval; |
| 2331 |
kt=k; |
| 2332 |
k++; |
| 2333 |
continue; |
| 2334 |
}; |
| 2335 |
real=modff(AdcTrack[iv][ladder*fNstrips_ladder+k],&inte); |
| 2336 |
if (real > 0.5) inte=inte+1; |
| 2337 |
newval=(Int_t)inte -(Int_t)(fPedeTrack[iv][ladder*fNstrips_ladder+k]); |
| 2338 |
cercacluster=1; // ????????? |
| 2339 |
if (cercacluster==1) { |
| 2340 |
|
| 2341 |
// controlla l'ordine di tutti queste strip ladder e DSP !!!!!!! |
| 2342 |
Int_t diff=0; |
| 2343 |
|
| 2344 |
|
| 2345 |
switch ((iv+1)%2) { |
| 2346 |
case 0: diff=newval-oldval; |
| 2347 |
break; |
| 2348 |
case 1: diff=oldval-newval; |
| 2349 |
break; |
| 2350 |
}; |
| 2351 |
|
| 2352 |
if (diff>fCutclu*(Int_t)fSigmaTrack[iv][ladder*fNstrips_ladder+k]) { |
| 2353 |
Int_t clval=newval; |
| 2354 |
Int_t klp=k; // go on to search for maximum |
| 2355 |
klp++; |
| 2356 |
|
| 2357 |
while(klp<fNstrips_ladder) { |
| 2358 |
real=modff(AdcTrack[iv][ladder*fNstrips_ladder+klp],&inte); |
| 2359 |
if (real > 0.5) inte=inte+1; |
| 2360 |
Int_t clvalp=(Int_t)inte -(Int_t)fPedeTrack[iv][ladder*fNstrips_ladder+klp]; |
| 2361 |
if((iv+1)%2==0) { |
| 2362 |
|
| 2363 |
if(clvalp>clval) { |
| 2364 |
clval=clvalp; |
| 2365 |
k=klp;} |
| 2366 |
else break; // max of cluster found |
| 2367 |
|
| 2368 |
} else { |
| 2369 |
|
| 2370 |
if(clvalp<clval) { |
| 2371 |
clval=clvalp; |
| 2372 |
k=klp;} |
| 2373 |
else break; // max of cluster found |
| 2374 |
|
| 2375 |
}; |
| 2376 |
|
| 2377 |
klp++; |
| 2378 |
}; |
| 2379 |
|
| 2380 |
Int_t kl1=k-fNclst; // max of cluster (or end of ladder ?) |
| 2381 |
trasmesso=0; |
| 2382 |
if(kl1<0) kl1=0; |
| 2383 |
|
| 2384 |
if(kt>=kl1) kl1=kt+1; |
| 2385 |
if( (kt+1)==kl1 ) trasmesso=1; |
| 2386 |
|
| 2387 |
|
| 2388 |
|
| 2389 |
Int_t kl2=k+fNclst; |
| 2390 |
if(kl2>=fNstrips_ladder) kl2=fNstrips_ladder-1; |
| 2391 |
|
| 2392 |
for(Int_t klt=kl1 ; klt<=kl2 ; klt++) { |
| 2393 |
if(trasmesso==0) { |
| 2394 |
// std:: cout << "STRIP " << klt << endl; |
| 2395 |
// std:: cout << "ADC_TOT " <<AdcTrack[iv][ladder*fNstrips_ladder+klt] << endl; |
| 2396 |
|
| 2397 |
DataDSP[DSPlength]=( ((UShort_t)klt) | 0x1000); |
| 2398 |
DSPlength++; |
| 2399 |
ntrastot++; |
| 2400 |
|
| 2401 |
|
| 2402 |
real=modff(AdcTrack[iv][ladder*fNstrips_ladder+klt],&inte); |
| 2403 |
if (real > 0.5) inte=inte+1; |
| 2404 |
DataDSP[DSPlength]=( ((UShort_t)inte) & 0x0FFF); |
| 2405 |
DSPlength++; |
| 2406 |
ntrastot++; |
| 2407 |
|
| 2408 |
} |
| 2409 |
else { |
| 2410 |
// std:: cout << "ADC_TOT " <<AdcTrack[iv][ladder*fNstrips_ladder+klt] << endl; |
| 2411 |
real=modff(AdcTrack[iv][ladder*fNstrips_ladder+klt],&inte); |
| 2412 |
if (real > 0.5) inte=inte+1; |
| 2413 |
DataDSP[DSPlength]=( ((UShort_t)inte) & 0x0FFF); |
| 2414 |
DSPlength++; |
| 2415 |
ntrastot++; |
| 2416 |
}; |
| 2417 |
trasmesso=1; |
| 2418 |
}; // end trasmission |
| 2419 |
kt=kl2; |
| 2420 |
k=kl2; |
| 2421 |
real=modff(AdcTrack[iv][ladder*fNstrips_ladder+kt],&inte); |
| 2422 |
if (real > 0.5) inte=inte+1; |
| 2423 |
oldval=(Int_t)inte -(Int_t)fPedeTrack[iv][ladder*fNstrips_ladder+kt]; |
| 2424 |
k++; |
| 2425 |
continue; |
| 2426 |
|
| 2427 |
|
| 2428 |
}; // end cercacluster |
| 2429 |
}; // end cercacluster |
| 2430 |
|
| 2431 |
// start ZOP check for strips no |
| 2432 |
|
| 2433 |
if(abs(newval-oldval)>=fCutzop*(Int_t)fSigmaTrack[iv][ladder*fNstrips_ladder+k]) { |
| 2434 |
|
| 2435 |
if(trasmesso==0) { |
| 2436 |
// std:: cout << "STRIP " << k << endl; |
| 2437 |
// std:: cout << "ADC_TOT " << AdcTrack[iv][ladder*fNstrips_ladder+k] << endl; |
| 2438 |
|
| 2439 |
DataDSP[DSPlength]=( ((UShort_t)k) | 0x1000); |
| 2440 |
DSPlength++; |
| 2441 |
ntrastot++; |
| 2442 |
|
| 2443 |
|
| 2444 |
real=modff(AdcTrack[iv][ladder*fNstrips_ladder+k],&inte); |
| 2445 |
if (real > 0.5) inte=inte+1; |
| 2446 |
DataDSP[DSPlength]=( ((UShort_t)inte) & 0x0FFF); |
| 2447 |
DSPlength++; |
| 2448 |
ntrastot++; |
| 2449 |
|
| 2450 |
} |
| 2451 |
else { |
| 2452 |
// std:: cout << "ADC_TOT " << AdcTrack[iv][ladder*fNstrips_ladder+k] << endl; |
| 2453 |
real=modff(AdcTrack[iv][ladder*fNstrips_ladder+k],&inte); |
| 2454 |
if (real > 0.5) inte=inte+1; |
| 2455 |
DataDSP[DSPlength]=( ((UShort_t)inte) & 0x0FFF); |
| 2456 |
DSPlength++; |
| 2457 |
ntrastot++; |
| 2458 |
}; |
| 2459 |
trasmesso=1; |
| 2460 |
oldval=newval; |
| 2461 |
kt=k; |
| 2462 |
|
| 2463 |
} |
| 2464 |
else trasmesso=0; |
| 2465 |
// end zop |
| 2466 |
|
| 2467 |
k++; |
| 2468 |
}; // end cycle inside ladder |
| 2469 |
// write here the end ladder bytes |
| 2470 |
// std:: cout << "FINE LADDER " << ladder+1 << endl; |
| 2471 |
|
| 2472 |
DataDSP[DSPlength]=( ((UShort_t)(ladder+1)) | 0x1800); |
| 2473 |
DSPlength++; |
| 2474 |
ntrastot++; |
| 2475 |
trasmesso=0; |
| 2476 |
|
| 2477 |
}; //end cycle inside dsp |
| 2478 |
// std:: cout << "FINE DSP " << iv+1 << endl; |
| 2479 |
// here put DSP header |
| 2480 |
DataDSP[0]=(0x1CA0 | ((UShort_t)(iv+1)) ); |
| 2481 |
UShort_t Nword=(DSPlength*13)/16; |
| 2482 |
if( ((DSPlength*13)%16)!=0) Nword++; |
| 2483 |
DataDSP[1]=(0x1400 | ( Nword >> 10)); |
| 2484 |
DataDSP[2]=(0x1400 | ( Nword & 0x03FF) ); |
| 2485 |
DataDSP[3]=(0x1400 | (( (UShort_t)(fCounter >> 10) ) & 0x03FF) ); |
| 2486 |
DataDSP[4]=(0x1400 | (( (UShort_t)(fCounter) ) & 0x03FF) ); |
| 2487 |
DataDSP[5]=(0x1400 | ( (UShort_t)(fNclst << 7) ) | ( (UShort_t)(fCutzop << 4) ) |
| 2488 |
| ( (UShort_t)fCutzop ) ); |
| 2489 |
DataDSP[6]=0x1400; |
| 2490 |
DataDSP[7]=0x1400; |
| 2491 |
DataDSP[8]=0x1400; |
| 2492 |
DataDSP[9]=0x1400; |
| 2493 |
DataDSP[10]=0x1400; |
| 2494 |
DataDSP[11]=0x1400; |
| 2495 |
DataDSP[12]=0x1400; |
| 2496 |
DataDSP[13]=0x1400; |
| 2497 |
DataDSP[14]=(0x1400 | (CheckSum & 0x00FF) ); |
| 2498 |
DataDSP[15]=0x1C00; |
| 2499 |
// end DSP header |
| 2500 |
|
| 2501 |
|
| 2502 |
// write 13 bit DataDSP bufer inside 16 bit fDataTrack buffer |
| 2503 |
Int_t Bit16free=16; |
| 2504 |
UShort_t Dato; |
| 2505 |
for (Int_t NDSP=0; NDSP<DSPlength;NDSP++) { |
| 2506 |
Int_t Bit13ToWrite=13; |
| 2507 |
while(Bit13ToWrite>0) { |
| 2508 |
if(Bit13ToWrite<=Bit16free) { |
| 2509 |
Dato=((DataDSP[NDSP]&(0xFFFF >> (16-Bit13ToWrite)))<<(Bit16free-Bit13ToWrite)); |
| 2510 |
fDataTrack[fTracklength]=fDataTrack[fTracklength] | Dato ; |
| 2511 |
Bit16free=Bit16free-Bit13ToWrite; |
| 2512 |
Bit13ToWrite=0; |
| 2513 |
if(Bit16free==0) { |
| 2514 |
if(NDSP>15) CheckSum=CheckSum^fDataTrack[fTracklength]; |
| 2515 |
fTracklength++; |
| 2516 |
Bit16free=16; |
| 2517 |
}; |
| 2518 |
} |
| 2519 |
else if(Bit13ToWrite>Bit16free) { |
| 2520 |
Dato=( (DataDSP[NDSP]&(0xFFFF >> (16-Bit13ToWrite) ) ) >> (Bit13ToWrite-Bit16free) ); |
| 2521 |
fDataTrack[fTracklength]=fDataTrack[fTracklength] | Dato ; |
| 2522 |
if(NDSP>15) CheckSum=CheckSum^fDataTrack[fTracklength]; |
| 2523 |
fTracklength++; |
| 2524 |
Bit13ToWrite=Bit13ToWrite-Bit16free; |
| 2525 |
Bit16free=16; |
| 2526 |
}; |
| 2527 |
|
| 2528 |
}; // end cycle while(Bit13ToWrite>0) |
| 2529 |
|
| 2530 |
}; // end cycle DataDSP |
| 2531 |
if(Bit16free!=16) { fTracklength++; CheckSum=CheckSum^fDataTrack[fTracklength]; }; |
| 2532 |
CheckSum=(CheckSum >> 8)^(CheckSum&0x00FF); |
| 2533 |
fDataTrack[fTracklength-Nword+11]=(0x0280 | (CheckSum >> 3)); |
| 2534 |
fDataTrack[fTracklength-Nword+12]=(0x1C00 | (CheckSum << 13) ); |
| 2535 |
|
| 2536 |
// end write 13 bit DataDSP bufer inside 16 bit fDataTrack buffer |
| 2537 |
|
| 2538 |
//write trailer on buffer |
| 2539 |
UShort_t ReLength=(UShort_t)((Nword+13)*2+3); |
| 2540 |
UShort_t OveCheckCode=0x0000; |
| 2541 |
|
| 2542 |
fDataTrack[fTracklength]=0x0000; |
| 2543 |
fTracklength++; |
| 2544 |
|
| 2545 |
fDataTrack[fTracklength]=(ReLength >> 8); |
| 2546 |
fTracklength++; |
| 2547 |
|
| 2548 |
fDataTrack[fTracklength]=( (ReLength << 8) | (OveCheckCode & 0x00FF) ); |
| 2549 |
fTracklength++; |
| 2550 |
// end trailer |
| 2551 |
// std:: cout << "DSPlength " <<DSPlength << endl; |
| 2552 |
// std:: cout << "Nword " << Nword << endl; |
| 2553 |
// std:: cout << "ReLength " << ReLength << endl; |
| 2554 |
}; |
| 2555 |
// std:: cout << "ntrastot " << ntrastot << endl; |
| 2556 |
|
| 2557 |
}; |
| 2558 |
|
| 2559 |
|
| 2560 |
Float_t Digitizer::SaturationTrack(Float_t ADC) { |
| 2561 |
Float_t SatFact=1.; |
| 2562 |
if(ADC<70.) { SatFact=80./ADC; }; |
| 2563 |
if(ADC>3000.) { SatFact=3000./ADC; }; |
| 2564 |
return SatFact; |
| 2565 |
}; |
| 2566 |
|
| 2567 |
|
| 2568 |
|
| 2569 |
|
| 2570 |
|
| 2571 |
|