1 |
// ------ PAMELA Digitizer ------ |
2 |
// |
3 |
// Date, release and how-to: see file Pamelagp2Digits.cxx |
4 |
// |
5 |
// NB: Check length physics packet [packet type (0x10 = physics data)] |
6 |
// |
7 |
#include <sstream> |
8 |
#include <fstream> |
9 |
#include <stdlib.h> |
10 |
#include <stdio.h> |
11 |
#include <string.h> |
12 |
#include <ctype.h> |
13 |
#include <time.h> |
14 |
#include "Riostream.h" |
15 |
#include "TFile.h" |
16 |
#include "TDirectory.h" |
17 |
#include "TTree.h" |
18 |
#include "TLeafI.h" |
19 |
#include "TH1.h" |
20 |
#include "TH2.h" |
21 |
#include "TMath.h" |
22 |
#include "TRandom.h" |
23 |
#include "TSQLServer.h" |
24 |
#include "TSystem.h" |
25 |
// |
26 |
#include "Digitizer.h" |
27 |
#include "CRC.h" |
28 |
// |
29 |
#include <PamelaRun.h> |
30 |
#include <physics/calorimeter/CalorimeterEvent.h> |
31 |
#include <CalibCalPedEvent.h> |
32 |
#include "GLTables.h" |
33 |
// |
34 |
extern "C"{ |
35 |
short crc(short, short); |
36 |
}; |
37 |
// |
38 |
|
39 |
Digitizer::Digitizer(TTree* tree, char* &file_raw){ |
40 |
fhBookTree = tree; |
41 |
fFilename = file_raw; |
42 |
fCounter = 0; |
43 |
fOBT = 0; |
44 |
|
45 |
// |
46 |
// DB connections |
47 |
// |
48 |
TString host = "mysql://localhost/pamelaprod"; |
49 |
TString user = "anonymous"; |
50 |
TString psw = ""; |
51 |
// |
52 |
const char *pamdbhost=gSystem->Getenv("PAM_DBHOST"); |
53 |
const char *pamdbuser=gSystem->Getenv("PAM_DBUSER"); |
54 |
const char *pamdbpsw=gSystem->Getenv("PAM_DBPSW"); |
55 |
if ( !pamdbhost ) pamdbhost = ""; |
56 |
if ( !pamdbuser ) pamdbuser = ""; |
57 |
if ( !pamdbpsw ) pamdbpsw = ""; |
58 |
if ( strcmp(pamdbhost,"") ) host = pamdbhost; |
59 |
if ( strcmp(pamdbuser,"") ) user = pamdbuser; |
60 |
if ( strcmp(pamdbpsw,"") ) psw = pamdbpsw; |
61 |
fDbc = TSQLServer::Connect(host.Data(),user.Data(),psw.Data()); |
62 |
// |
63 |
GL_TABLES *glt = new GL_TABLES(host,user,psw); |
64 |
if ( glt->IsConnected(fDbc) ) printf("\n DB INFORMATION:\n SQL: %s Version: %s Host %s Port %i \n\n",fDbc->GetDBMS(),fDbc->ServerInfo(),fDbc->GetHost(),fDbc->GetPort()); |
65 |
// |
66 |
// Use UTC in the DB and make timeout bigger |
67 |
// |
68 |
stringstream myquery; |
69 |
myquery.str(""); |
70 |
myquery << "SET time_zone='+0:00'"; |
71 |
fDbc->Query(myquery.str().c_str()); |
72 |
myquery.str(""); |
73 |
myquery << "SET wait_timeout=173000;"; |
74 |
fDbc->Query(myquery.str().c_str()); |
75 |
// |
76 |
|
77 |
std:: cout << "preparing tree" << endl; |
78 |
|
79 |
// prepare tree |
80 |
fhBookTree->SetBranchAddress("Irun",&Irun); |
81 |
fhBookTree->SetBranchAddress("Ievnt",&Ievnt); |
82 |
fhBookTree->SetBranchAddress("Ipa",&Ipa); |
83 |
fhBookTree->SetBranchAddress("X0",&X0); |
84 |
fhBookTree->SetBranchAddress("Y0",&Y0); |
85 |
fhBookTree->SetBranchAddress("Z0",&Z0); |
86 |
fhBookTree->SetBranchAddress("Theta",&Theta); |
87 |
fhBookTree->SetBranchAddress("Phi",&Phi); |
88 |
fhBookTree->SetBranchAddress("P0",&P0); |
89 |
fhBookTree->SetBranchAddress("Nthtof",&Nthtof); |
90 |
fhBookTree->SetBranchAddress("Ipltof",Ipltof); |
91 |
fhBookTree->SetBranchAddress("Ipaddle",Ipaddle); |
92 |
fhBookTree->SetBranchAddress("Ipartof",Ipartof); |
93 |
fhBookTree->SetBranchAddress("Xintof",Xintof); |
94 |
fhBookTree->SetBranchAddress("Yintof",Yintof); |
95 |
fhBookTree->SetBranchAddress("Zintof",Zintof); |
96 |
fhBookTree->SetBranchAddress("Xouttof",Xouttof); |
97 |
fhBookTree->SetBranchAddress("Youttof",Youttof); |
98 |
fhBookTree->SetBranchAddress("Zouttof",Zouttof); |
99 |
fhBookTree->SetBranchAddress("Ereltof",Ereltof); |
100 |
fhBookTree->SetBranchAddress("Timetof",Timetof); |
101 |
fhBookTree->SetBranchAddress("Pathtof",Pathtof); |
102 |
fhBookTree->SetBranchAddress("P0tof",P0tof); |
103 |
fhBookTree->SetBranchAddress("Nthcat",&Nthcat); |
104 |
fhBookTree->SetBranchAddress("Iparcat",Iparcat); |
105 |
fhBookTree->SetBranchAddress("Icat",Icat); |
106 |
fhBookTree->SetBranchAddress("Xincat",Xincat); |
107 |
fhBookTree->SetBranchAddress("Yincat",Yincat); |
108 |
fhBookTree->SetBranchAddress("Zincat",Zincat); |
109 |
fhBookTree->SetBranchAddress("Xoutcat",Xoutcat); |
110 |
fhBookTree->SetBranchAddress("Youtcat",Youtcat); |
111 |
fhBookTree->SetBranchAddress("Zoutcat",Zoutcat); |
112 |
fhBookTree->SetBranchAddress("Erelcat",Erelcat); |
113 |
fhBookTree->SetBranchAddress("Timecat",Timecat); |
114 |
fhBookTree->SetBranchAddress("Pathcat",Pathcat); |
115 |
fhBookTree->SetBranchAddress("P0cat",P0cat); |
116 |
fhBookTree->SetBranchAddress("Nthcas",&Nthcas); |
117 |
fhBookTree->SetBranchAddress("Iparcas",Iparcas); |
118 |
fhBookTree->SetBranchAddress("Icas",Icas); |
119 |
fhBookTree->SetBranchAddress("Xincas",Xincas); |
120 |
fhBookTree->SetBranchAddress("Yincas",Yincas); |
121 |
fhBookTree->SetBranchAddress("Zincas",Zincas); |
122 |
fhBookTree->SetBranchAddress("Xoutcas",Xoutcas); |
123 |
fhBookTree->SetBranchAddress("Youtcas",Youtcas); |
124 |
fhBookTree->SetBranchAddress("Zoutcas",Zoutcas); |
125 |
fhBookTree->SetBranchAddress("Erelcas",Erelcas); |
126 |
fhBookTree->SetBranchAddress("Timecas",Timecas); |
127 |
fhBookTree->SetBranchAddress("Pathcas",Pathcas); |
128 |
fhBookTree->SetBranchAddress("P0cas",P0cas); |
129 |
fhBookTree->SetBranchAddress("Nthspe",&Nthspe); |
130 |
fhBookTree->SetBranchAddress("Iparspe",Iparspe); |
131 |
fhBookTree->SetBranchAddress("Itrpb",Itrpb); |
132 |
fhBookTree->SetBranchAddress("Itrsl",Itrsl); |
133 |
fhBookTree->SetBranchAddress("Itspa",Itspa); |
134 |
fhBookTree->SetBranchAddress("Xinspe",Xinspe); |
135 |
fhBookTree->SetBranchAddress("Yinspe",Yinspe); |
136 |
fhBookTree->SetBranchAddress("Zinspe",Zinspe); |
137 |
fhBookTree->SetBranchAddress("Xoutspe",Xoutspe); |
138 |
fhBookTree->SetBranchAddress("Youtspe",Youtspe); |
139 |
fhBookTree->SetBranchAddress("Zoutspe",Zoutspe); |
140 |
fhBookTree->SetBranchAddress("Xavspe",Xavspe); |
141 |
fhBookTree->SetBranchAddress("Yavspe",Yavspe); |
142 |
fhBookTree->SetBranchAddress("Zavspe",Zavspe); |
143 |
fhBookTree->SetBranchAddress("Erelspe",Erelspe); |
144 |
fhBookTree->SetBranchAddress("Pathspe",Pathspe); |
145 |
fhBookTree->SetBranchAddress("P0spe",P0spe); |
146 |
fhBookTree->SetBranchAddress("Nxmult",Nxmult); |
147 |
fhBookTree->SetBranchAddress("Nymult",Nymult); |
148 |
fhBookTree->SetBranchAddress("Nstrpx",&Nstrpx); |
149 |
fhBookTree->SetBranchAddress("Npstripx",Npstripx); |
150 |
fhBookTree->SetBranchAddress("Ntstripx",Ntstripx); |
151 |
fhBookTree->SetBranchAddress("Istripx",Istripx); |
152 |
fhBookTree->SetBranchAddress("Qstripx",Qstripx); |
153 |
fhBookTree->SetBranchAddress("Xstripx",Xstripx); |
154 |
fhBookTree->SetBranchAddress("Nstrpy",&Nstrpy); |
155 |
fhBookTree->SetBranchAddress("Npstripy",Npstripy); |
156 |
fhBookTree->SetBranchAddress("Ntstripy",Ntstripy); |
157 |
fhBookTree->SetBranchAddress("Istripy",Istripy); |
158 |
fhBookTree->SetBranchAddress("Qstripy",Qstripy); |
159 |
fhBookTree->SetBranchAddress("Ystripy",Ystripy); |
160 |
fhBookTree->SetBranchAddress("Nthcali",&Nthcali); |
161 |
fhBookTree->SetBranchAddress("Icaplane",Icaplane); |
162 |
fhBookTree->SetBranchAddress("Icastrip",Icastrip); |
163 |
fhBookTree->SetBranchAddress("Icamod",Icamod); |
164 |
fhBookTree->SetBranchAddress("Enestrip",Enestrip); |
165 |
fhBookTree->SetBranchAddress("Nthcal",&Nthcal); |
166 |
fhBookTree->SetBranchAddress("Icapl",Icapl); |
167 |
fhBookTree->SetBranchAddress("Icasi",Icasi); |
168 |
fhBookTree->SetBranchAddress("Icast",Icast); |
169 |
fhBookTree->SetBranchAddress("Xincal",Xincal); |
170 |
fhBookTree->SetBranchAddress("Yincal",Yincal); |
171 |
fhBookTree->SetBranchAddress("Zincal",Zincal); |
172 |
fhBookTree->SetBranchAddress("Erelcal",Erelcal); |
173 |
fhBookTree->SetBranchAddress("Nthnd",&Nthnd); |
174 |
fhBookTree->SetBranchAddress("Itubend",Itubend); |
175 |
fhBookTree->SetBranchAddress("Iparnd",Iparnd); |
176 |
fhBookTree->SetBranchAddress("Xinnd",Xinnd); |
177 |
fhBookTree->SetBranchAddress("Yinnd",Yinnd); |
178 |
fhBookTree->SetBranchAddress("Zinnd",Zinnd); |
179 |
fhBookTree->SetBranchAddress("Xoutnd",Xoutnd); |
180 |
fhBookTree->SetBranchAddress("Youtnd",Youtnd); |
181 |
fhBookTree->SetBranchAddress("Zoutnd",Zoutnd); |
182 |
fhBookTree->SetBranchAddress("Erelnd",Erelnd); |
183 |
fhBookTree->SetBranchAddress("Timend",Timend); |
184 |
fhBookTree->SetBranchAddress("Pathnd",Pathnd); |
185 |
fhBookTree->SetBranchAddress("P0nd",P0nd); |
186 |
fhBookTree->SetBranchAddress("Nthcard",&Nthcard); |
187 |
fhBookTree->SetBranchAddress("Iparcard",Iparcard); |
188 |
fhBookTree->SetBranchAddress("Icard",Icard); |
189 |
fhBookTree->SetBranchAddress("Xincard",Xincard); |
190 |
fhBookTree->SetBranchAddress("Yincard",Yincard); |
191 |
fhBookTree->SetBranchAddress("Zincard",Zincard); |
192 |
fhBookTree->SetBranchAddress("Xoutcard",Xoutcard); |
193 |
fhBookTree->SetBranchAddress("Youtcard",Youtcard); |
194 |
fhBookTree->SetBranchAddress("Zoutcard",Zoutcard); |
195 |
fhBookTree->SetBranchAddress("Erelcard",Erelcard); |
196 |
fhBookTree->SetBranchAddress("Timecard",Timecard); |
197 |
fhBookTree->SetBranchAddress("Pathcard",Pathcard); |
198 |
fhBookTree->SetBranchAddress("P0card",P0card); |
199 |
|
200 |
fhBookTree->SetBranchStatus("*",0); |
201 |
|
202 |
}; |
203 |
|
204 |
|
205 |
|
206 |
void Digitizer::Close(){ |
207 |
|
208 |
delete fhBookTree; |
209 |
|
210 |
}; |
211 |
|
212 |
|
213 |
|
214 |
|
215 |
void Digitizer::Loop() { |
216 |
// |
217 |
// opens the raw output file and loops over the events |
218 |
// |
219 |
fOutputfile.open(fFilename, ios::out | ios::binary); |
220 |
//fOutputfile.open(Form("Output%s",fFilename), ios::out | ios::binary); |
221 |
// |
222 |
// Load in memory and save at the beginning of file the calorimeter calibration |
223 |
// |
224 |
CaloLoadCalib(); |
225 |
DigitizeCALOCALIB(); |
226 |
|
227 |
// load, digitize and write tracker calibration |
228 |
LoadTrackCalib(); |
229 |
|
230 |
DigitizeTrackCalib(1); |
231 |
UInt_t length=fTracklength*2; |
232 |
DigitizePSCU(length,0x12); |
233 |
AddPadding(); |
234 |
WriteTrackCalib(); |
235 |
|
236 |
DigitizeTrackCalib(2); |
237 |
length=fTracklength*2; |
238 |
DigitizePSCU(length,0x13); |
239 |
AddPadding(); |
240 |
WriteTrackCalib(); |
241 |
|
242 |
LoadMipCor(); // some initialization of parameters -not used now- |
243 |
// end loading, digitizing and writing tracker calibration |
244 |
|
245 |
// |
246 |
// loops over the events |
247 |
// |
248 |
|
249 |
Int_t nentries = fhBookTree->GetEntriesFast(); |
250 |
Long64_t nbytes = 0; |
251 |
for (Int_t i=0; i<nentries;i++) { |
252 |
// |
253 |
nbytes += fhBookTree->GetEntry(i); |
254 |
// read detectors sequentially: |
255 |
// http://www.ts.infn.it/fileadmin/documents/physics/experiments/wizard/cpu/gen_arch/RM_Acquisition.pdf |
256 |
// on pamelatov: |
257 |
// /cvs/yoda/techmodel/physics/NeutronDetectorReader.cpp |
258 |
DigitizeTRIGGER(); |
259 |
DigitizeTOF(); |
260 |
DigitizeAC(); |
261 |
DigitizeCALO(); |
262 |
DigitizeTrack(); |
263 |
DigitizeS4(); |
264 |
DigitizeND(); |
265 |
// |
266 |
// Add padding to 64 bits |
267 |
// |
268 |
AddPadding(); |
269 |
// |
270 |
// Create CPU header, we need packet type (0x10 = physics data) and packet length. |
271 |
// |
272 |
UInt_t length=2*(fCALOlength+fACbuffer+fTracklength+fNDbuffer+fS4buffer)+fPadding+fTOFbuffer+fTRIGGERbuffer; |
273 |
//UInt_t length=2*(fCALOlength+fACbuffer+fTracklength+fNDbuffer)+fPadding+fTOFbuffer+fTRIGGERbuffer; |
274 |
DigitizePSCU(length,0x10); |
275 |
if ( !i%100 ) std::cout << "writing event " << i << endl; |
276 |
WriteData(); |
277 |
}; |
278 |
|
279 |
fOutputfile.close(); |
280 |
std::cout << "files closed" << endl << flush; |
281 |
|
282 |
}; |
283 |
|
284 |
void Digitizer::AddPadding(){ |
285 |
// |
286 |
Float_t pd0 = (fLen+16)/64.; |
287 |
Float_t pd1 = pd0 - (Float_t)int(pd0); |
288 |
Float_t padfrac = 64. - pd1 * 64.; |
289 |
// |
290 |
UInt_t padbytes = (UInt_t)padfrac; |
291 |
if ( padbytes > 0 && padbytes < 64 ){ |
292 |
// |
293 |
// here the padding length |
294 |
// |
295 |
fPadding = padbytes+64; |
296 |
// |
297 |
// random padding bytes |
298 |
// |
299 |
for (Int_t ur=0; ur<32; ur++){ |
300 |
fDataPadding[ur] = (UShort_t)rand(); |
301 |
}; |
302 |
}; |
303 |
}; |
304 |
|
305 |
|
306 |
void Digitizer::DigitizePSCU(UInt_t length, UChar_t type) { |
307 |
// |
308 |
UChar_t buff[16]; |
309 |
// |
310 |
// CPU signature |
311 |
// |
312 |
buff[0] = 0xFA; |
313 |
buff[1] = 0xFE; |
314 |
buff[2] = 0xDE; |
315 |
// |
316 |
// packet type (twice) |
317 |
// |
318 |
buff[3] = type; |
319 |
buff[4] = type; |
320 |
// |
321 |
// counter |
322 |
// |
323 |
fCounter++; |
324 |
while ( fCounter > 16777215 ){ |
325 |
fCounter -= 16777215; |
326 |
}; |
327 |
// |
328 |
buff[5] = (UChar_t)(fCounter >> 16); |
329 |
buff[6] = (UChar_t)(fCounter >> 8); |
330 |
buff[7] = (UChar_t)fCounter; |
331 |
// |
332 |
// on board time |
333 |
// |
334 |
ULong64_t obt = fOBT + 30LL; |
335 |
// |
336 |
while ( obt > 4294967295LL ){ |
337 |
obt -= 4294967295LL; |
338 |
}; |
339 |
fOBT = (UInt_t)obt; |
340 |
// |
341 |
buff[8] = (UChar_t)(fOBT >> 24); |
342 |
buff[9] = (UChar_t)(fOBT >> 16); |
343 |
buff[10] = (UChar_t)(fOBT >> 8); |
344 |
buff[11] = (UChar_t)fOBT; |
345 |
// |
346 |
// Packet length |
347 |
// |
348 |
fLen = length; |
349 |
// |
350 |
buff[12] = (UChar_t)(fLen >> 16); |
351 |
buff[13] = (UChar_t)(fLen >> 8); |
352 |
buff[14] = (UChar_t)fLen; |
353 |
// |
354 |
// CPU header CRC |
355 |
// |
356 |
buff[15] = (BYTE)CM_Compute_CRC16((UINT16)0, (BYTE*)&buff, (UINT32)15); |
357 |
// |
358 |
memcpy(fDataPSCU,buff,16*sizeof(UChar_t)); |
359 |
// |
360 |
}; |
361 |
|
362 |
void Digitizer::ClearCaloCalib(Int_t s){ |
363 |
// |
364 |
fcstwerr[s] = 0; |
365 |
fcperror[s] = 0.; |
366 |
for ( Int_t d=0 ; d<11 ;d++ ){ |
367 |
Int_t pre = -1; |
368 |
for ( Int_t j=0; j<96 ;j++){ |
369 |
if ( j%16 == 0 ) pre++; |
370 |
fcalped[s][d][j] = 0.; |
371 |
fcstwerr[s] = 0.; |
372 |
fcperror[s] = 0.; |
373 |
fcalgood[s][d][j] = 0.; |
374 |
fcalthr[s][d][pre] = 0.; |
375 |
fcalrms[s][d][j] = 0.; |
376 |
fcalbase[s][d][pre] = 0.; |
377 |
fcalvar[s][d][pre] = 0.; |
378 |
}; |
379 |
}; |
380 |
return; |
381 |
} |
382 |
|
383 |
Int_t Digitizer::CaloLoadCalib(Int_t s,TString fcalname, UInt_t calibno){ |
384 |
// |
385 |
// |
386 |
UInt_t e = 0; |
387 |
if ( s == 0 ) e = 0; |
388 |
if ( s == 1 ) e = 2; |
389 |
if ( s == 2 ) e = 3; |
390 |
if ( s == 3 ) e = 1; |
391 |
// |
392 |
ifstream myfile; |
393 |
myfile.open(fcalname.Data()); |
394 |
if ( !myfile ){ |
395 |
return(-107); |
396 |
}; |
397 |
myfile.close(); |
398 |
// |
399 |
TFile *File = new TFile(fcalname.Data()); |
400 |
if ( !File ) return(-108); |
401 |
TTree *tr = (TTree*)File->Get("CalibCalPed"); |
402 |
if ( !tr ) return(-109); |
403 |
// |
404 |
TBranch *calo = tr->GetBranch("CalibCalPed"); |
405 |
// |
406 |
pamela::CalibCalPedEvent *ce = 0; |
407 |
tr->SetBranchAddress("CalibCalPed", &ce); |
408 |
// |
409 |
Long64_t ncalibs = calo->GetEntries(); |
410 |
// |
411 |
if ( !ncalibs ) return(-110); |
412 |
// |
413 |
calo->GetEntry(calibno); |
414 |
// |
415 |
if (ce->cstwerr[s] != 0 && ce->cperror[s] == 0 ) { |
416 |
fcstwerr[s] = ce->cstwerr[s]; |
417 |
fcperror[s] = ce->cperror[s]; |
418 |
for ( Int_t d=0 ; d<11 ;d++ ){ |
419 |
Int_t pre = -1; |
420 |
for ( Int_t j=0; j<96 ;j++){ |
421 |
if ( j%16 == 0 ) pre++; |
422 |
fcalped[s][d][j] = ce->calped[e][d][j]; |
423 |
fcalgood[s][d][j] = ce->calgood[e][d][j]; |
424 |
fcalthr[s][d][pre] = ce->calthr[e][d][pre]; |
425 |
fcalrms[s][d][j] = ce->calrms[e][d][j]; |
426 |
fcalbase[s][d][pre] = ce->calbase[e][d][pre]; |
427 |
fcalvar[s][d][pre] = ce->calvar[e][d][pre]; |
428 |
}; |
429 |
}; |
430 |
} else { |
431 |
printf(" CALORIMETER - ERROR: problems finding a good calibration in this file! \n\n "); |
432 |
File->Close(); |
433 |
return(-111); |
434 |
}; |
435 |
File->Close(); |
436 |
return(0); |
437 |
} |
438 |
|
439 |
|
440 |
void Digitizer::DigitizeCALOCALIB() { |
441 |
// |
442 |
// Header of the four sections |
443 |
// |
444 |
fSecCalo[0] = 0xAA00; // XE |
445 |
fSecCalo[1] = 0xB100; // XO |
446 |
fSecCalo[2] = 0xB600; // YE |
447 |
fSecCalo[3] = 0xAD00; // YO |
448 |
// |
449 |
// length of the data is 0x1215 |
450 |
// |
451 |
fSecCALOLength[0] = 0x1215; // XE |
452 |
fSecCALOLength[1] = 0x1215; // XO |
453 |
fSecCALOLength[2] = 0x1215; // YE |
454 |
fSecCALOLength[3] = 0x1215; // YO |
455 |
// |
456 |
Int_t chksum = 0; |
457 |
UInt_t tstrip = 0; |
458 |
UInt_t fSecPointer = 0; |
459 |
// |
460 |
for (Int_t sec=0; sec < 4; sec++){ |
461 |
// |
462 |
// sec = 0 -> XE 1 -> XO 2-> YE 3 -> YO |
463 |
// |
464 |
fCALOlength = 0; |
465 |
memset(fDataCALO,0,sizeof(UShort_t)*fCALObuffer); |
466 |
fSecPointer = fCALOlength; |
467 |
// |
468 |
// First of all we have section header and packet length |
469 |
// |
470 |
fDataCALO[fCALOlength] = fSecCalo[sec]; |
471 |
fCALOlength++; |
472 |
fDataCALO[fCALOlength] = fSecCALOLength[sec]; |
473 |
fCALOlength++; |
474 |
// |
475 |
// Section XO is read in the opposite direction respect to the others |
476 |
// |
477 |
chksum = 0; |
478 |
// |
479 |
for (Int_t plane=0; plane < 11; plane++){ |
480 |
// |
481 |
if ( sec == 1 ) tstrip = fCALOlength + 96*2; |
482 |
// |
483 |
for (Int_t strip=0; strip < 96; strip++){ |
484 |
// |
485 |
chksum += (Int_t)fcalped[sec][plane][strip]; |
486 |
// |
487 |
// save value |
488 |
// |
489 |
if ( sec == 1 ){ |
490 |
tstrip -= 2; |
491 |
fDataCALO[tstrip] = (Int_t)fcalped[sec][plane][strip]; |
492 |
fDataCALO[tstrip+1] = (Int_t)fcalgood[sec][plane][strip]; |
493 |
} else { |
494 |
fDataCALO[fCALOlength] = (Int_t)fcalped[sec][plane][strip]; |
495 |
fDataCALO[fCALOlength+1] = (Int_t)fcalgood[sec][plane][strip]; |
496 |
}; |
497 |
fCALOlength +=2; |
498 |
}; |
499 |
// |
500 |
}; |
501 |
// |
502 |
fDataCALO[fCALOlength] = (UShort_t)chksum; |
503 |
fCALOlength++; |
504 |
fDataCALO[fCALOlength] = 0; |
505 |
fCALOlength++; |
506 |
fDataCALO[fCALOlength] = (UShort_t)((Int_t)(chksum >> 16)); |
507 |
fCALOlength++; |
508 |
// |
509 |
// Section XO is read in the opposite direction respect to the others |
510 |
// |
511 |
chksum = 0; |
512 |
// |
513 |
for (Int_t plane=0; plane < 11; plane++){ |
514 |
// |
515 |
if ( sec == 1 ) tstrip = fCALOlength+6*2; |
516 |
// |
517 |
for (Int_t strip=0; strip < 6; strip++){ |
518 |
// |
519 |
chksum += (Int_t)fcalthr[sec][plane][strip]; |
520 |
// |
521 |
// save value |
522 |
// |
523 |
if ( sec == 1 ){ |
524 |
tstrip -= 2; |
525 |
fDataCALO[tstrip] = 0; |
526 |
fDataCALO[tstrip+1] = (Int_t)fcalthr[sec][plane][strip]; |
527 |
} else { |
528 |
fDataCALO[fCALOlength] = 0; |
529 |
fDataCALO[fCALOlength+1] = (Int_t)fcalthr[sec][plane][strip]; |
530 |
}; |
531 |
fCALOlength +=2; |
532 |
}; |
533 |
// |
534 |
}; |
535 |
// |
536 |
fDataCALO[fCALOlength] = 0; |
537 |
fCALOlength++; |
538 |
fDataCALO[fCALOlength] = (UShort_t)chksum; |
539 |
fCALOlength++; |
540 |
fDataCALO[fCALOlength] = 0; |
541 |
fCALOlength++; |
542 |
fDataCALO[fCALOlength] = (UShort_t)((Int_t)(chksum >> 16)); |
543 |
fCALOlength++; |
544 |
// |
545 |
// Section XO is read in the opposite direction respect to the others |
546 |
// |
547 |
for (Int_t plane=0; plane < 11; plane++){ |
548 |
// |
549 |
if ( sec == 1 ) tstrip = fCALOlength+96*2; |
550 |
// |
551 |
for (Int_t strip=0; strip < 96; strip++){ |
552 |
// |
553 |
// save value |
554 |
// |
555 |
if ( sec == 1 ){ |
556 |
tstrip -= 2; |
557 |
fDataCALO[tstrip] = 0; |
558 |
fDataCALO[tstrip+1] = (Int_t)fcalrms[sec][plane][strip]; |
559 |
} else { |
560 |
fDataCALO[fCALOlength] = 0; |
561 |
fDataCALO[fCALOlength+1] = (Int_t)fcalrms[sec][plane][strip]; |
562 |
}; |
563 |
fCALOlength += 2; |
564 |
}; |
565 |
// |
566 |
}; |
567 |
// |
568 |
// Section XO is read in the opposite direction respect to the others |
569 |
// |
570 |
for (Int_t plane=0; plane < 11; plane++){ |
571 |
// |
572 |
if ( sec == 1 ) tstrip = fCALOlength+6*4; |
573 |
// |
574 |
for (Int_t strip=0; strip < 6; strip++){ |
575 |
// |
576 |
// save value |
577 |
// |
578 |
if ( sec == 1 ){ |
579 |
tstrip -= 4; |
580 |
fDataCALO[tstrip] = 0; |
581 |
fDataCALO[tstrip+1] = (Int_t)fcalbase[sec][plane][strip]; |
582 |
fDataCALO[tstrip+2] = 0; |
583 |
fDataCALO[tstrip+3] = (Int_t)fcalvar[sec][plane][strip]; |
584 |
} else { |
585 |
fDataCALO[fCALOlength] = 0; |
586 |
fDataCALO[fCALOlength+1] = (Int_t)fcalbase[sec][plane][strip]; |
587 |
fDataCALO[fCALOlength+2] = 0; |
588 |
fDataCALO[fCALOlength+3] = (Int_t)fcalvar[sec][plane][strip]; |
589 |
}; |
590 |
fCALOlength +=4; |
591 |
}; |
592 |
// |
593 |
}; |
594 |
// |
595 |
// |
596 |
// here we calculate and save the CRC |
597 |
// |
598 |
fDataCALO[fCALOlength] = 0; |
599 |
fCALOlength++; |
600 |
Short_t CRC = 0; |
601 |
for (UInt_t i=0; i<(fCALOlength-fSecPointer); i++){ |
602 |
CRC=crc(CRC,fDataCALO[i+fSecPointer]); |
603 |
}; |
604 |
fDataCALO[fCALOlength] = (UShort_t)CRC; |
605 |
fCALOlength++; |
606 |
// |
607 |
UInt_t length=fCALOlength*2; |
608 |
DigitizePSCU(length,0x18); |
609 |
// |
610 |
// Add padding to 64 bits |
611 |
// |
612 |
AddPadding(); |
613 |
// |
614 |
fOutputfile.write(reinterpret_cast<char*>(fDataPSCU),sizeof(UShort_t)*fPSCUbuffer); |
615 |
UShort_t temp[1000000]; |
616 |
memset(temp,0,sizeof(UShort_t)*1000000); |
617 |
swab(fDataCALO,temp,sizeof(UShort_t)*fCALOlength); // WE MUST SWAP THE BYTES!!! |
618 |
fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fCALOlength); |
619 |
// |
620 |
// padding to 64 bytes |
621 |
// |
622 |
if ( fPadding ){ |
623 |
fOutputfile.write(reinterpret_cast<char*>(fDataPadding),sizeof(UChar_t)*fPadding); |
624 |
}; |
625 |
// |
626 |
// |
627 |
}; |
628 |
// |
629 |
}; |
630 |
|
631 |
void Digitizer::CaloLoadCalib() { |
632 |
// |
633 |
fGivenCaloCalib = 0; // ####@@@@ should be given as input par @@@@#### |
634 |
// |
635 |
// first of all load the MIP to ADC conversion values |
636 |
// |
637 |
stringstream calfile; |
638 |
Int_t error = 0; |
639 |
GL_PARAM *glparam = new GL_PARAM(); |
640 |
// |
641 |
// determine where I can find calorimeter ADC to MIP conversion file |
642 |
// |
643 |
error = 0; |
644 |
error = glparam->Query_GL_PARAM(3,101,fDbc); |
645 |
// |
646 |
calfile.str(""); |
647 |
calfile << glparam->PATH.Data() << "/"; |
648 |
calfile << glparam->NAME.Data(); |
649 |
// |
650 |
printf("\n Using Calorimeter ADC to MIP conversion file: \n %s \n",calfile.str().c_str()); |
651 |
FILE *f; |
652 |
f = fopen(calfile.str().c_str(),"rb"); |
653 |
// |
654 |
memset(fCalomip,0,4224*sizeof(fCalomip[0][0][0])); |
655 |
// |
656 |
for (Int_t m = 0; m < 2 ; m++ ){ |
657 |
for (Int_t k = 0; k < 22; k++ ){ |
658 |
for (Int_t l = 0; l < 96; l++ ){ |
659 |
fread(&fCalomip[m][k][l],sizeof(fCalomip[m][k][l]),1,f); |
660 |
}; |
661 |
}; |
662 |
}; |
663 |
fclose(f); |
664 |
// |
665 |
// determine which calibration has to be used and load it for each section |
666 |
// |
667 |
GL_CALO_CALIB *glcalo = new GL_CALO_CALIB(); |
668 |
GL_ROOT *glroot = new GL_ROOT(); |
669 |
TString fcalname; |
670 |
UInt_t idcalib; |
671 |
UInt_t calibno; |
672 |
UInt_t utime = 0; |
673 |
// |
674 |
for (UInt_t s=0; s<4; s++){ |
675 |
// |
676 |
// clear calo calib variables for section s |
677 |
// |
678 |
ClearCaloCalib(s); |
679 |
// |
680 |
if ( fGivenCaloCalib ){ |
681 |
// |
682 |
// a time has been given as input on the command line so retrieve the calibration that preceed that time |
683 |
// |
684 |
glcalo->Query_GL_CALO_CALIB(fGivenCaloCalib,utime,s,fDbc); |
685 |
// |
686 |
calibno = glcalo->EV_ROOT; |
687 |
idcalib = glcalo->ID_ROOT_L0; |
688 |
// |
689 |
// determine path and name and entry of the calibration file |
690 |
// |
691 |
printf("\n"); |
692 |
printf(" ** SECTION %i **\n",s); |
693 |
// |
694 |
glroot->Query_GL_ROOT(idcalib,fDbc); |
695 |
// |
696 |
stringstream name; |
697 |
name.str(""); |
698 |
name << glroot->PATH.Data() << "/"; |
699 |
name << glroot->NAME.Data(); |
700 |
// |
701 |
fcalname = (TString)name.str().c_str(); |
702 |
// |
703 |
printf("\n Section %i : using file %s calibration at entry %i: \n",s,fcalname.Data(),calibno); |
704 |
// |
705 |
} else { |
706 |
error = 0; |
707 |
error = glparam->Query_GL_PARAM(1,104,fDbc); |
708 |
// |
709 |
calfile.str(""); |
710 |
calfile << glparam->PATH.Data() << "/"; |
711 |
calfile << glparam->NAME.Data(); |
712 |
// |
713 |
printf("\n Section %i : using default calorimeter calibration: \n %s \n",s,calfile.str().c_str()); |
714 |
// |
715 |
fcalname = (TString)calfile.str().c_str(); |
716 |
calibno = s; |
717 |
// |
718 |
}; |
719 |
// |
720 |
// load calibration variables in memory |
721 |
// |
722 |
CaloLoadCalib(s,fcalname,calibno); |
723 |
// |
724 |
}; |
725 |
// |
726 |
// at this point we have in memory the calorimeter calibration and we can save it to disk in the correct format and use it to digitize the data |
727 |
// |
728 |
delete glparam; |
729 |
delete glcalo; |
730 |
delete glroot; |
731 |
}; |
732 |
|
733 |
void Digitizer::DigitizeCALO() { |
734 |
// |
735 |
fModCalo = 0; // 0 is RAW, 1 is COMPRESS, 2 is FULL ####@@@@ should be given as input par @@@@#### |
736 |
// |
737 |
// |
738 |
// |
739 |
fCALOlength = 0; // reset total dimension of calo data |
740 |
// |
741 |
// gpamela variables to be used |
742 |
// |
743 |
fhBookTree->SetBranchStatus("Nthcali",1); |
744 |
fhBookTree->SetBranchStatus("Icaplane",1); |
745 |
fhBookTree->SetBranchStatus("Icastrip",1); |
746 |
fhBookTree->SetBranchStatus("Icamod",1); |
747 |
fhBookTree->SetBranchStatus("Enestrip",1); |
748 |
// |
749 |
// call different routines depending on the acq mode you want to simulate |
750 |
// |
751 |
switch ( fModCalo ){ |
752 |
case 0: |
753 |
this->DigitizeCALORAW(); |
754 |
break; |
755 |
case 1: |
756 |
this->DigitizeCALOCOMPRESS(); |
757 |
break; |
758 |
case 2: |
759 |
this->DigitizeCALOFULL(); |
760 |
break; |
761 |
}; |
762 |
// |
763 |
}; |
764 |
|
765 |
Float_t Digitizer::GetCALOen(Int_t sec, Int_t plane, Int_t strip){ |
766 |
// |
767 |
// determine plane and strip |
768 |
// |
769 |
Int_t mplane = 0; |
770 |
// |
771 |
// wrong! |
772 |
// |
773 |
// if ( sec == 0 || sec == 3 ) mplane = (plane * 4) + sec + 1; |
774 |
// if ( sec == 1 ) mplane = (plane * 4) + 2 + 1; |
775 |
// if ( sec == 2 ) mplane = (plane * 4) + 1 + 1; |
776 |
// |
777 |
if ( sec == 0 ) mplane = plane * 4 + 1; // it must be 0, 4, 8, ... (+1) from plane = 0, 11 |
778 |
if ( sec == 1 ) mplane = plane * 4 + 2 + 1; // it must be 2, 6, 10, ... (+1) from plane = 0, 11 |
779 |
if ( sec == 2 ) mplane = plane * 4 + 3 + 1; // it must be 3, 7, 11, ... (+1) from plane = 0, 11 |
780 |
if ( sec == 3 ) mplane = plane * 4 + 1 + 1; // it must be 1, 5, 9, ... (+1) from plane = 0, 11 |
781 |
// |
782 |
Int_t mstrip = strip + 1; |
783 |
// |
784 |
// search energy release in gpamela output |
785 |
// |
786 |
for (Int_t i=0; i<Nthcali;i++){ |
787 |
if ( Icaplane[i] == mplane && Icastrip[i] == mstrip ){ |
788 |
return (Enestrip[i]); |
789 |
}; |
790 |
}; |
791 |
// |
792 |
// if not found it means no energy release so return 0. |
793 |
// |
794 |
return(0.); |
795 |
}; |
796 |
|
797 |
void Digitizer::DigitizeCALORAW() { |
798 |
// |
799 |
// some variables |
800 |
// |
801 |
Float_t ens = 0.; |
802 |
UInt_t adcsig = 0; |
803 |
UInt_t adcbase = 0; |
804 |
UInt_t adc = 0; |
805 |
Int_t pre = 0; |
806 |
UInt_t l = 0; |
807 |
UInt_t lpl = 0; |
808 |
UInt_t tstrip = 0; |
809 |
UInt_t fSecPointer = 0; |
810 |
Double_t pedenoise; |
811 |
Float_t rms = 0.; |
812 |
Float_t pedestal = 0.; |
813 |
// |
814 |
// clean the data structure |
815 |
// |
816 |
memset(fDataCALO,0,sizeof(UShort_t)*fCALObuffer); |
817 |
// |
818 |
// Header of the four sections |
819 |
// |
820 |
fSecCalo[0] = 0xEA08; // XE |
821 |
fSecCalo[1] = 0xF108; // XO |
822 |
fSecCalo[2] = 0xF608; // YE |
823 |
fSecCalo[3] = 0xED08; // YO |
824 |
// |
825 |
// length of the data is 0x0428 in RAW mode |
826 |
// |
827 |
fSecCALOLength[0] = 0x0428; // XE |
828 |
fSecCALOLength[1] = 0x0428; // XO |
829 |
fSecCALOLength[2] = 0x0428; // YE |
830 |
fSecCALOLength[3] = 0x0428; // YO |
831 |
// |
832 |
// let's start |
833 |
// |
834 |
fCALOlength = 0; |
835 |
// |
836 |
for (Int_t sec=0; sec < 4; sec++){ |
837 |
// |
838 |
// sec = 0 -> XE 1 -> XO 2-> YE 3 -> YO |
839 |
// |
840 |
l = 0; // XE and XO are Y planes |
841 |
if ( sec < 2 ) l = 1; // while YE and YO are X planes |
842 |
// |
843 |
fSecPointer = fCALOlength; |
844 |
// |
845 |
// First of all we have section header and packet length |
846 |
// |
847 |
fDataCALO[fCALOlength] = fSecCalo[sec]; |
848 |
fCALOlength++; |
849 |
fDataCALO[fCALOlength] = fSecCALOLength[sec]; |
850 |
fCALOlength++; |
851 |
// |
852 |
// selftrigger coincidences - in the future we should add here some code to simulate timing response of pre-amplifiers |
853 |
// |
854 |
for (Int_t autoplane=0; autoplane < 7; autoplane++){ |
855 |
fDataCALO[fCALOlength] = 0x0000; |
856 |
fCALOlength++; |
857 |
}; |
858 |
// |
859 |
// |
860 |
// here comes data |
861 |
// |
862 |
// |
863 |
// Section XO is read in the opposite direction respect to the others |
864 |
// |
865 |
if ( sec == 1 ){ |
866 |
tstrip = 96*11 + fCALOlength; |
867 |
} else { |
868 |
tstrip = 0; |
869 |
}; |
870 |
// |
871 |
pre = -1; |
872 |
// |
873 |
for (Int_t strip=0; strip < 96; strip++){ |
874 |
// |
875 |
// which is the pre for this strip? |
876 |
// |
877 |
if (strip%16 == 0) { |
878 |
pre++; |
879 |
}; |
880 |
// |
881 |
if ( sec == 1 ) tstrip -= 11; |
882 |
// |
883 |
for (Int_t plane=0; plane < 11; plane++){ |
884 |
// |
885 |
// here is wrong!!!! |
886 |
// |
887 |
// |
888 |
// if ( plane%2 == 0 && sec%2 != 0){ |
889 |
// lpl = plane*2; |
890 |
// } else { |
891 |
// lpl = (plane*2) + 1; |
892 |
// }; |
893 |
// |
894 |
if ( sec == 0 || sec == 3 ) lpl = plane * 2; |
895 |
if ( sec == 1 || sec == 2 ) lpl = (plane * 2) + 1; |
896 |
// |
897 |
// get the energy in GeV from the simulation for that strip |
898 |
// |
899 |
ens = this->GetCALOen(sec,plane,strip); |
900 |
// |
901 |
// convert it into ADC channels |
902 |
// |
903 |
adcsig = int(ens*fCalomip[l][lpl][strip]/fCALOGeV2MIPratio); |
904 |
// |
905 |
// sum baselines |
906 |
// |
907 |
adcbase = (UInt_t)fcalbase[sec][plane][pre]; |
908 |
// |
909 |
// add noise and pedestals |
910 |
// |
911 |
pedestal = fcalped[sec][plane][strip]; |
912 |
rms = fcalrms[sec][plane][strip]/4.; |
913 |
// |
914 |
// Add random gaussian noise of RMS rms and Centered in the pedestal |
915 |
// |
916 |
pedenoise = gRandom->Gaus((Double_t)pedestal,(Double_t)rms); |
917 |
// |
918 |
// Sum all contribution |
919 |
// |
920 |
adc = adcsig + adcbase + (Int_t)round(pedenoise); |
921 |
// |
922 |
// Signal saturation |
923 |
// |
924 |
if ( adc > 0x7FFF ) adc = 0x7FFF; |
925 |
// |
926 |
// save value |
927 |
// |
928 |
if ( sec == 1 ){ |
929 |
fDataCALO[tstrip] = adc; |
930 |
tstrip++; |
931 |
} else { |
932 |
fDataCALO[fCALOlength] = adc; |
933 |
}; |
934 |
fCALOlength++; |
935 |
// |
936 |
}; |
937 |
// |
938 |
if ( sec == 1 ) tstrip -= 11; |
939 |
// |
940 |
}; |
941 |
// |
942 |
// here we calculate and save the CRC |
943 |
// |
944 |
Short_t CRC = 0; |
945 |
for (UInt_t i=0; i<(fCALOlength-fSecPointer); i++){ |
946 |
CRC=crc(CRC,fDataCALO[i+fSecPointer]); |
947 |
}; |
948 |
fDataCALO[fCALOlength] = (UShort_t)CRC; |
949 |
fCALOlength++; |
950 |
// |
951 |
}; |
952 |
// |
953 |
// for (Int_t i=0; i<fCALOlength; i++){ |
954 |
// printf(" WORD %i DIGIT %0x \n",i,fDataCALO[i]); |
955 |
// }; |
956 |
// |
957 |
}; |
958 |
|
959 |
void Digitizer::DigitizeCALOCOMPRESS() { |
960 |
// |
961 |
printf(" COMPRESS MODE STILL NOT IMPLEMENTED! \n"); |
962 |
// |
963 |
this->DigitizeCALORAW(); |
964 |
return; |
965 |
// |
966 |
// |
967 |
// |
968 |
fSecCalo[0] = 0xEA00; |
969 |
fSecCalo[1] = 0xF100; |
970 |
fSecCalo[2] = 0xF600; |
971 |
fSecCalo[3] = 0xED00; |
972 |
// |
973 |
// length of the data in DSP mode must be calculated on fly during digitization |
974 |
// |
975 |
memset(fSecCALOLength,0x0,4*sizeof(UShort_t)); |
976 |
// |
977 |
// here comes raw data |
978 |
// |
979 |
Int_t en = 0; |
980 |
// |
981 |
for (Int_t sec=0; sec < 4; sec++){ |
982 |
fDataCALO[en] = fSecCalo[sec]; |
983 |
en++; |
984 |
fDataCALO[en] = fSecCALOLength[sec]; |
985 |
en++; |
986 |
for (Int_t plane=0; plane < 11; plane++){ |
987 |
for (Int_t strip=0; strip < 11; strip++){ |
988 |
fDataCALO[en] = 0x0; |
989 |
en++; |
990 |
}; |
991 |
}; |
992 |
}; |
993 |
// |
994 |
}; |
995 |
|
996 |
void Digitizer::DigitizeCALOFULL() { |
997 |
// |
998 |
printf(" FULL MODE STILL NOT IMPLEMENTED! \n"); |
999 |
// |
1000 |
this->DigitizeCALORAW(); |
1001 |
return; |
1002 |
// |
1003 |
fSecCalo[0] = 0xEA00; |
1004 |
fSecCalo[1] = 0xF100; |
1005 |
fSecCalo[2] = 0xF600; |
1006 |
fSecCalo[3] = 0xED00; |
1007 |
// |
1008 |
// length of the data in DSP mode must be calculated on fly during digitization |
1009 |
// |
1010 |
memset(fSecCALOLength,0x0,4*sizeof(UShort_t)); |
1011 |
// |
1012 |
// here comes raw data |
1013 |
// |
1014 |
Int_t en = 0; |
1015 |
// |
1016 |
for (Int_t sec=0; sec < 4; sec++){ |
1017 |
fDataCALO[en] = fSecCalo[sec]; |
1018 |
en++; |
1019 |
fDataCALO[en] = fSecCALOLength[sec]; |
1020 |
en++; |
1021 |
for (Int_t plane=0; plane < 11; plane++){ |
1022 |
for (Int_t strip=0; strip < 11; strip++){ |
1023 |
fDataCALO[en] = 0x0; |
1024 |
en++; |
1025 |
}; |
1026 |
}; |
1027 |
}; |
1028 |
// |
1029 |
}; |
1030 |
|
1031 |
void Digitizer::DigitizeTRIGGER() { |
1032 |
//fDataTrigger: 153 bytes |
1033 |
for (Int_t j=0; j < 153; j++) |
1034 |
fDataTrigger[0]=0x00; |
1035 |
}; |
1036 |
|
1037 |
Int_t Digitizer::DigitizeTOF() { |
1038 |
//fDataTof: 12 x 23 bytes (=276 bytes) |
1039 |
UChar_t *pTof=fDataTof; |
1040 |
Bool_t DEBUG=false; |
1041 |
|
1042 |
// --- activate branches: |
1043 |
fhBookTree->SetBranchStatus("Nthtof",1); |
1044 |
fhBookTree->SetBranchStatus("Ipltof",1); |
1045 |
fhBookTree->SetBranchStatus("Ipaddle",1); |
1046 |
fhBookTree->SetBranchStatus("Xintof",1); |
1047 |
fhBookTree->SetBranchStatus("Yintof",1); |
1048 |
fhBookTree->SetBranchStatus("Xouttof",1); |
1049 |
fhBookTree->SetBranchStatus("Youttof",1); |
1050 |
fhBookTree->SetBranchStatus("Ereltof",1); |
1051 |
fhBookTree->SetBranchStatus("Timetof",1); |
1052 |
// not yet used: Zintof, Xouttof, Youttof, Zouttof |
1053 |
|
1054 |
// ------ evaluate energy in each pmt: ------ |
1055 |
// strip geometry (lenght/width) |
1056 |
Float_t dimel[6] = {33.0, 40.8 ,18.0, 15.0, 15.0, 18.0}; |
1057 |
//Float_t dimes[6] = {5.1, 5.5, 7.5, 9.0, 6.0, 5.0}; |
1058 |
|
1059 |
// S11 8 paddles 33.0 x 5.1 cm |
1060 |
// S12 6 paddles 40.8 x 5.5 cm |
1061 |
// S21 2 paddles 18.0 x 7.5 cm |
1062 |
// S22 2 paddles 15.0 x 9.0 cm |
1063 |
// S31 3 paddles 15.0 x 6.0 cm |
1064 |
// S32 3 paddles 18.0 x 5.0 cm |
1065 |
|
1066 |
// distance from the interaction point to the pmts (right,left) |
1067 |
Float_t xpath[2]={0., 0.}; /*path(cm) in X per S12,S21,S32 verso il pmt DX o SX*/ |
1068 |
Float_t ypath[2]={0., 0.}; /*path(cm) in Y per S11,S22,S31 verso il pmt DX o SX*/ |
1069 |
Float_t FGeo[2]={0., 0.}; /* fattore geometrico */ |
1070 |
|
1071 |
const Float_t Pho_keV = 10.; // photons per keV in scintillator |
1072 |
const Float_t echarge = 1.6e-19; // carica dell'elettrone |
1073 |
Float_t Npho=0.; |
1074 |
Float_t QevePmt_pC[48]; |
1075 |
Float_t QhitPad_pC[2]={0., 0.}; |
1076 |
Float_t QhitPmt_pC[2]={0., 0.}; |
1077 |
Float_t pmGain = 3.5e6; /* Gain: per il momento uguale per tutti */ |
1078 |
Float_t effi=0.21; /* Efficienza di fotocatodo */ |
1079 |
Float_t ADC_pC=1.666667; // ADC_ch/pC conversion = 0.6 pC/channel (+30 di offset) |
1080 |
Float_t ADCoffset=30.; |
1081 |
Int_t ADClast=4095; // no signal --> ADC ch=4095 |
1082 |
Int_t ADCtof[48]; |
1083 |
//Float_t ADCsat=3100; ci pensiamo in futuro ! |
1084 |
//Float_t pCsat=2500; |
1085 |
for(Int_t i=0; i<48; i++){ |
1086 |
QevePmt_pC[i] = 0; |
1087 |
ADCtof[i]=0; |
1088 |
} |
1089 |
|
1090 |
// ------ read calibration file (get A1, A2, lambda1, lambda2) |
1091 |
ifstream fileTriggerCalib; |
1092 |
TString ftrigname="TrigCalibParam.txt"; |
1093 |
fileTriggerCalib.open(ftrigname.Data()); |
1094 |
if ( !fileTriggerCalib ) { |
1095 |
printf("debug: no trigger calib file!\n"); |
1096 |
return(-117); //check output! |
1097 |
}; |
1098 |
Float_t atte1[48],atte2[48],lambda1[48],lambda2[48]; |
1099 |
Int_t temp=0; |
1100 |
// correct readout WM Oct '07 |
1101 |
for(Int_t i=0; i<48; i++){ |
1102 |
fileTriggerCalib >> temp; |
1103 |
fileTriggerCalib >> atte1[i]; |
1104 |
fileTriggerCalib >> lambda1[i]; |
1105 |
fileTriggerCalib >> atte2[i]; |
1106 |
fileTriggerCalib >> lambda2[i]; |
1107 |
fileTriggerCalib >> temp; |
1108 |
} |
1109 |
fileTriggerCalib.close(); |
1110 |
|
1111 |
// Read from file the 48*4 values of the attenuation fit function |
1112 |
// NB: lambda<0; x,y defined in gpamela (=0 in the centre of the cavity) |
1113 |
// Qhitpmt_pC = atte1 * exp(x/lambda1) + atte2 * exp(x/lambda2) |
1114 |
|
1115 |
// fine lettura dal file */ |
1116 |
|
1117 |
//const Int_t nmax=??; = Nthtof |
1118 |
Int_t ip, ipad; |
1119 |
//Int_t ipmt; |
1120 |
Int_t pmtleft=0, pmtright=0; |
1121 |
Int_t *pl, *pr; |
1122 |
pl = &pmtleft; |
1123 |
pr = &pmtright; |
1124 |
|
1125 |
// TDC variables: |
1126 |
Int_t TDClast=4095; // no signal --> ADC ch=4095 |
1127 |
Int_t TDCint[48]; |
1128 |
Float_t tdc[48],tdc1[48],tdcpmt[48]; |
1129 |
for(Int_t i=0; i<48; i++) |
1130 |
tdcpmt[i] = 1000.; |
1131 |
Float_t thresh=10.; // to be defined better... (Wolfgang) |
1132 |
|
1133 |
// === TDC: simulate timing for each paddle |
1134 |
Float_t dt1 = 285.e-12 ; // single PMT resolution |
1135 |
Float_t tdcres[50],c1_S[50],c2_S[50],c3_S[50]; |
1136 |
for(Int_t j=0;j<48;j++) tdcres[j] = 50.E-12; // TDC resolution 50 picosec |
1137 |
for(Int_t j=0;j<48;j++) c1_S[j] = 500.; // cable length in channels |
1138 |
for(Int_t j=0;j<48;j++) c2_S[j] = 0.; |
1139 |
for(Int_t j=0;j<48;j++) c3_S[j] = 1000.; |
1140 |
for(Int_t j=0;j<48;j++) c1_S[j] = c1_S[j]*tdcres[j]; // cable length in sec |
1141 |
for(Int_t j=0;j<48;j++) c2_S[j] = c2_S[j]*tdcres[j]; |
1142 |
// ih = 0 + i1; // not used?? (Silvio) |
1143 |
|
1144 |
/* ********************************** start loop over hits */ |
1145 |
|
1146 |
for(Int_t nh=0; nh<Nthtof; nh++){ |
1147 |
|
1148 |
for(Int_t j=0; j<2; j++) { // already done!! remove??? |
1149 |
xpath[j]=0.; |
1150 |
ypath[j]=0.; |
1151 |
FGeo[j]=0.; |
1152 |
} |
1153 |
|
1154 |
Float_t s_l_g[6] = {8.0, 8.0, 20.9, 22.0, 9.8, 8.3 }; // length of the lightguide |
1155 |
Float_t t1,t2,veff,veff1,veff0 ; |
1156 |
veff0 = 100.*1.0e8 ; // light velocity in the scintillator in m/sec |
1157 |
veff1 = 100.*1.5e8; // light velocity in the lightguide in m/sec |
1158 |
veff=veff0; // signal velocity in the paddle |
1159 |
|
1160 |
t1 = Timetof[nh] ; // Start |
1161 |
t2 = Timetof[nh] ; |
1162 |
|
1163 |
// Donatella: redefinition plane and pad for vectors in C |
1164 |
ip = Ipltof[nh]-1; |
1165 |
ipad = Ipaddle[nh]-1; |
1166 |
pmtleft=0; |
1167 |
pmtright=0; |
1168 |
|
1169 |
if (ip<6) { |
1170 |
Paddle2Pmt(ip, ipad, &pmtleft, &pmtright); |
1171 |
|
1172 |
// per avere anche la corrispondenza pmt --> half board e canale |
1173 |
// metodo GetPMTIndex(Int_t ipmt, Int_t &hb, Int_t &ch) // non lo usiamo x ora |
1174 |
|
1175 |
// evaluates mean position and path inside the paddle |
1176 |
|
1177 |
Float_t tpos=0.; |
1178 |
Float_t path[2] = {0., 0.}; |
1179 |
//--- Strip in Y = S11,S22,S31 ------ |
1180 |
if(ip==0 || ip==3 || ip==4) |
1181 |
tpos = (Yintof[nh]+Youttof[nh])/2.; |
1182 |
else |
1183 |
if(ip==1 || ip==2 || ip==5) //--- Strip in X per S12,S21,S32 |
1184 |
tpos = (Xintof[nh]+Xouttof[nh])/2.; |
1185 |
else //if (ip!=6) |
1186 |
printf("*** WARNING TOF: this option should never occur! (ip=%2i, nh=%2i)\n",ip,nh); |
1187 |
path[0]= tpos + dimel[ip]/2.; |
1188 |
path[1]= dimel[ip]/2.- tpos; |
1189 |
|
1190 |
// cout <<"Strip N. ="<< ipaddle <<" piano n.= "<< iplane <<" POSIZ = "<< tpos <<"\n"; |
1191 |
|
1192 |
if (DEBUG) { |
1193 |
cout <<" plane "<<ip<<" strip # ="<< ipad <<" tpos "<< tpos <<"\n"; |
1194 |
cout <<"pmtleft, pmtright "<<pmtleft<<" "<<pmtright<<endl; |
1195 |
} |
1196 |
|
1197 |
// constant geometric factor, for the moment |
1198 |
FGeo[0] =0.5; |
1199 |
FGeo[1] =0.5; |
1200 |
// FGeo[1] = atan(path[1]/dimes[ip])/6.28318; // frazione fotoni verso SX |
1201 |
// FGeo[2] = atan(path[2]/dimes[ip])/6.28318; // e verso DX |
1202 |
|
1203 |
/* rimando la fluttuazione poissoniana sui fotoni prodotti |
1204 |
sto studiando come funziona la funzione: |
1205 |
long int i = sto.Poisson(double x); */ |
1206 |
// Npho = Poisson(ERELTOF[nh])*Pho_keV*1e6 Eloss in GeV ? |
1207 |
Npho = Ereltof[nh]*Pho_keV*1.0e6; // Eloss in GeV ? |
1208 |
|
1209 |
Float_t knorm[2]={0., 0.}; // Donatella |
1210 |
Float_t Atten[2]={0., 0.}; // Donatella |
1211 |
for(Int_t j=0; j<2; j++){ |
1212 |
QhitPad_pC[j]= Npho*FGeo[j]*effi*pmGain*echarge*1.E12; // corrected WM |
1213 |
/* knorm[j]=QhitPad_pC[j]/(atte1[pmtleft+j]*exp((dimel[ip]/2.*pow(-1,j+1))/lambda1[pmtleft+j]) + |
1214 |
atte2[pmtleft+j]*exp((dimel[ip]/2.*pow(-1,j+1))/lambda2[pmtleft+j])); |
1215 |
Atten[j]=knorm[j]*(atte1[pmtleft+j]*exp(tpos/lambda1[pmtleft+j]) + |
1216 |
atte2[pmtleft+j]*exp(tpos/lambda2[pmtleft+j])); |
1217 |
QhitPmt_pC[j]= QhitPad_pC[j]*Atten[j]; |
1218 |
*/ |
1219 |
// WM |
1220 |
knorm[j]=atte1[pmtleft+j]*exp(lambda1[pmtleft+j]*dimel[ip]/2.*pow(-1,j+1)) + |
1221 |
atte2[pmtleft+j]*exp(lambda2[pmtleft+j]*dimel[ip]/2.*pow(-1,j+1)); |
1222 |
Atten[j]=atte1[pmtleft+j]*exp(tpos*lambda1[pmtleft+j]) + |
1223 |
atte2[pmtleft+j]*exp(tpos*lambda2[pmtleft+j]) ; |
1224 |
QhitPmt_pC[j]= QhitPad_pC[j]*Atten[j]/knorm[j]; |
1225 |
if (DEBUG) { |
1226 |
cout<<"pmtleft "<<pmtleft<<" j "<<j<<endl; |
1227 |
cout<<" atte1 "<<atte1[pmtleft+j]<<"lambda1 "<<lambda1[pmtleft+j]<<" atte2 "<<atte2[pmtleft+j]<<"lambda2 "<<lambda2[pmtleft+j] <<endl; |
1228 |
cout<<j<<" tpos "<<tpos<<" knorm "<<knorm[j]<<" "<<Atten[j]<<" "<<"QhitPmt_pC "<<QhitPmt_pC[j]<<endl; |
1229 |
} |
1230 |
} |
1231 |
|
1232 |
if (DEBUG) |
1233 |
cout<<"Npho "<<Npho<<" QhitPmt_pC "<<QhitPmt_pC[0]<<" "<<QhitPmt_pC[1]<<endl; |
1234 |
|
1235 |
QevePmt_pC[pmtleft] += QhitPmt_pC[0]; |
1236 |
QevePmt_pC[pmtright] += QhitPmt_pC[1]; |
1237 |
|
1238 |
// TDC |
1239 |
t2 = t2 + fabs(path[0]/veff) + s_l_g[ip]/veff1 ; // Signal reaches PMT |
1240 |
t1 = t1 + fabs(path[1]/veff) + s_l_g[ip]/veff1; |
1241 |
|
1242 |
TRandom r; |
1243 |
t1 = r.Gaus(t1,dt1); //apply gaussian error dt |
1244 |
t2 = r.Gaus(t2,dt1); //apply gaussian error dt |
1245 |
|
1246 |
t1 = t1 + c1_S[pmtleft] ; // Signal reaches Discriminator ,TDC starts to run |
1247 |
t2 = t2 + c1_S[pmtright] ; |
1248 |
|
1249 |
// check if signal is above threshold |
1250 |
// then check if tdcpmt is already filled by another hit... |
1251 |
// only re-fill if time is smaller |
1252 |
|
1253 |
if (QhitPmt_pC[0] > thresh) { |
1254 |
if (tdcpmt[pmtleft] == 1000.) { // fill for the first time |
1255 |
tdcpmt[pmtleft] = t1; |
1256 |
tdc[pmtleft] = t1 + c2_S[pmtleft] ; // Signal reaches Coincidence |
1257 |
} |
1258 |
if (tdcpmt[pmtleft] < 1000.) // is already filled! |
1259 |
if (t1 < tdcpmt[pmtleft]) { |
1260 |
tdcpmt[pmtleft] = t1; |
1261 |
t1 = t1 + c2_S[pmtleft] ; // Signal reaches Coincidence |
1262 |
tdc[pmtleft] = t1; |
1263 |
} |
1264 |
} |
1265 |
if (QhitPmt_pC[1] > thresh) { |
1266 |
if (tdcpmt[pmtright] == 1000.) { // fill for the first time |
1267 |
tdcpmt[pmtright] = t2; |
1268 |
tdc[pmtright] = t2 + c2_S[pmtright] ; // Signal reaches Coincidence |
1269 |
} |
1270 |
if (tdcpmt[pmtright] < 1000.) // is already filled! |
1271 |
if (t2 < tdcpmt[pmtright]) { |
1272 |
tdcpmt[pmtright] = t2; |
1273 |
t2 = t2 + c2_S[pmtright] ; |
1274 |
tdc[pmtright] = t2; |
1275 |
} |
1276 |
} |
1277 |
|
1278 |
if (DEBUG) |
1279 |
cout<<nh<<" "<<Timetof[nh]<<" "<<t1<<" "<<t2<<endl; |
1280 |
|
1281 |
} // ip < 6 |
1282 |
|
1283 |
}; // **************************************** end loop over hits |
1284 |
|
1285 |
// ====== ADC ====== |
1286 |
for(Int_t i=0; i<48; i++){ |
1287 |
if(QevePmt_pC[i] != 0.){ |
1288 |
ADCtof[i]= (Int_t)(ADC_pC*QevePmt_pC[i] + ADCoffset); |
1289 |
if(ADCtof[i]> ADClast) ADCtof[i]=ADClast; |
1290 |
} else |
1291 |
ADCtof[i]= ADClast; |
1292 |
} |
1293 |
|
1294 |
|
1295 |
// ====== build TDC coincidence ====== |
1296 |
|
1297 |
Float_t t_coinc = 0; |
1298 |
Int_t ilast = 100; |
1299 |
for (Int_t ii=0; ii<48;ii++) |
1300 |
if (tdc[ii] > t_coinc) { |
1301 |
t_coinc = tdc[ii]; |
1302 |
ilast = ii; |
1303 |
} |
1304 |
|
1305 |
// cout<<ilast<<" "<<t_coinc<<endl; |
1306 |
// At t_coinc trigger condition is fulfilled |
1307 |
|
1308 |
for (Int_t ii=0; ii<48;ii++){ |
1309 |
// if (tdc[ii] != 0) tdc1[ii] = t_coinc - tdc[ii]; // test 1 |
1310 |
if (tdc[ii] != 0) tdc1[ii] = t_coinc - tdcpmt[ii]; // test 2 |
1311 |
tdc1[ii] = tdc1[ii]/tdcres[ii]; // divide by TDC resolution |
1312 |
if (tdc[ii] != 0) tdc1[ii] = tdc1[ii] + c3_S[ii]; // add cable length c3 |
1313 |
|
1314 |
} // missing parenthesis inserted! (Silvio) |
1315 |
|
1316 |
for(Int_t i=0; i<48; i++){ |
1317 |
if(tdc1[i] != 0.){ |
1318 |
TDCint[i]=(Int_t)tdc1[i]; |
1319 |
if (DEBUG) |
1320 |
cout<<i<<" "<<TDCint[i]<<endl; |
1321 |
//ADC[i]= ADC_pC * QevePmt_pC[i] + ADCoffset; |
1322 |
//if(ADC[i]> ADClast) ADC[i]=ADClast; |
1323 |
} else |
1324 |
TDCint[i]= TDClast; |
1325 |
} |
1326 |
|
1327 |
if (DEBUG) |
1328 |
cout<<"-----------"<<endl; |
1329 |
|
1330 |
// ====== write fDataTof ======= |
1331 |
UChar_t tofBin; |
1332 |
for (Int_t j=0; j < 12; j++){ |
1333 |
Int_t j12=j*12; |
1334 |
fDataTof[j12+0]=0x00; // TDC_ID |
1335 |
fDataTof[j12+1]=0x00; // EV_COUNT |
1336 |
fDataTof[j12+2]=0x00; // TDC_MASK (1) |
1337 |
fDataTof[j12+3]=0x00; // TDC_MASK (2) |
1338 |
for (Int_t k=0; k < 4; k++){ |
1339 |
Int_t jk12=j12+k; |
1340 |
tofBin=(UChar_t)(ADCtof[k+4*j]/256); // ADC# (msb) (#=1+k+4*j) |
1341 |
fDataTof[jk12+4] = Bin2GrayTof(tofBin,fDataTof[jk12+4]); |
1342 |
tofBin=(UChar_t)(ADCtof[k+4*j]%256); // ADC# (lsb) |
1343 |
fDataTof[jk12+5] = Bin2GrayTof(tofBin,fDataTof[jk12+5]); |
1344 |
tofBin=(UChar_t)(TDCint[k+4*j]/256); // TDC# (msb) |
1345 |
fDataTof[jk12+6]=Bin2GrayTof(tofBin,fDataTof[jk12+6]); |
1346 |
tofBin=(UChar_t)(TDCint[k+4*j]%256); // TDC# (lsb) |
1347 |
fDataTof[jk12+7]=Bin2GrayTof(tofBin,fDataTof[jk12+7]); |
1348 |
}; |
1349 |
fDataTof[j12+20]=0x00; // TEMP1 |
1350 |
fDataTof[j12+21]=0x00; // TEMP2 |
1351 |
fDataTof[j12+22]= EvaluateCrcTof(pTof); // CRC |
1352 |
pTof+=23; |
1353 |
}; |
1354 |
return(0); |
1355 |
}; |
1356 |
|
1357 |
UChar_t Digitizer::Bin2GrayTof(UChar_t binaTOF,UChar_t grayTOF){ |
1358 |
union graytof_data { |
1359 |
UChar_t word; |
1360 |
struct bit_field { |
1361 |
unsigned b0:1; |
1362 |
unsigned b1:1; |
1363 |
unsigned b2:1; |
1364 |
unsigned b3:1; |
1365 |
unsigned b4:1; |
1366 |
unsigned b5:1; |
1367 |
unsigned b6:1; |
1368 |
unsigned b7:1; |
1369 |
} bit; |
1370 |
} bi,gr; |
1371 |
// |
1372 |
bi.word = binaTOF; |
1373 |
gr.word = grayTOF; |
1374 |
// |
1375 |
gr.bit.b0 = bi.bit.b1 ^ bi.bit.b0; |
1376 |
gr.bit.b1 = bi.bit.b2 ^ bi.bit.b1; |
1377 |
gr.bit.b2 = bi.bit.b3 ^ bi.bit.b2; |
1378 |
gr.bit.b3 = bi.bit.b3; |
1379 |
// |
1380 |
/* bin to gray conversion 4 bit per time*/ |
1381 |
// |
1382 |
gr.bit.b4 = bi.bit.b5 ^ bi.bit.b4; |
1383 |
gr.bit.b5 = bi.bit.b6 ^ bi.bit.b5; |
1384 |
gr.bit.b6 = bi.bit.b7 ^ bi.bit.b6; |
1385 |
gr.bit.b7 = bi.bit.b7; |
1386 |
// |
1387 |
return(gr.word); |
1388 |
} |
1389 |
|
1390 |
UChar_t Digitizer::EvaluateCrcTof(UChar_t *pTof) { |
1391 |
// UChar_t crcTof=0x00; |
1392 |
// for (Int_t jp=0; jp < 23; jp++){ |
1393 |
// crcTof = crc8(...) |
1394 |
// } |
1395 |
return(0x00); |
1396 |
}; |
1397 |
|
1398 |
//void Digitizer::Paddle2Pmt(Int_t plane, Int_t paddle, Int_t* &pmtleft, Int_t* &pmtright){ |
1399 |
void Digitizer::Paddle2Pmt(Int_t plane, Int_t paddle, Int_t *pl, Int_t *pr){ |
1400 |
//* @param plane (0 - 5) |
1401 |
//* @param paddle (plane=0, paddle = 0,...5) |
1402 |
//* @param padid (0 - 23) |
1403 |
// |
1404 |
Int_t padid=-1; |
1405 |
Int_t pads[6]={8,6,2,2,3,3}; |
1406 |
// |
1407 |
Int_t somma=0; |
1408 |
Int_t np=plane; |
1409 |
for(Int_t j=0; j<np; j++) |
1410 |
somma+=pads[j]; |
1411 |
padid=paddle+somma; |
1412 |
*pl = padid*2; |
1413 |
// *pr = *pr + 1; |
1414 |
*pr = *pl + 1; // WM |
1415 |
}; |
1416 |
|
1417 |
void Digitizer::DigitizeAC() { |
1418 |
// created: J. Conrad, KTH |
1419 |
// modified: S. Orsi, INFN Roma2 |
1420 |
// fDataAC[0-63]: main AC board |
1421 |
// fDataAC[64-127]: extra AC board |
1422 |
|
1423 |
fDataAC[0] = 0xACAC; |
1424 |
fDataAC[64]= 0xACAC; |
1425 |
fDataAC[1] = 0xAC11; |
1426 |
fDataAC[65] = 0xAC22; |
1427 |
|
1428 |
// the third word is a status word (dummy: "no errors are present in the AC boards") |
1429 |
fDataAC[2] = 0xFFFF; //FFEF? |
1430 |
fDataAC[66] = 0xFFFF; |
1431 |
|
1432 |
const UInt_t nReg = 6; |
1433 |
|
1434 |
// FPGA Registers (dummy) |
1435 |
for (UInt_t i=0; i<=nReg; i++){ |
1436 |
fDataAC[i+4] = 0xFFFF; |
1437 |
fDataAC[i+68] = 0xFFFF; |
1438 |
} |
1439 |
|
1440 |
// the last word is a CRC |
1441 |
// Dummy for the time being, but it might need to be calculated in the end |
1442 |
fDataAC[63] = 0xABCD; |
1443 |
fDataAC[127] = 0xABCD; |
1444 |
|
1445 |
// shift registers (moved to the end of the routine) |
1446 |
|
1447 |
Int_t evntLSB=Ievnt%65536; |
1448 |
Int_t evntMSB=(Int_t)(Ievnt/65536); |
1449 |
|
1450 |
// singles counters are dummy |
1451 |
for (UInt_t i=0; i<=15; i++){ //SO Oct '07: // for (UInt_t i=0; i<=16; i++){ |
1452 |
// fDataAC[i+26] = 0x0000; |
1453 |
// fDataAC[i+90] = 0x0000; |
1454 |
fDataAC[i+26] = evntLSB; |
1455 |
fDataAC[i+90] = evntLSB; |
1456 |
}; |
1457 |
|
1458 |
// coincidences are dummy (increment by 1 at each event) |
1459 |
// for (UInt_t i=0; i<=7; i++){ |
1460 |
// fDataAC[i+42] = 0x0000; |
1461 |
// fDataAC[i+106] = 0x0000; |
1462 |
// } |
1463 |
for (UInt_t i=0; i<=7; i++){ |
1464 |
fDataAC[i+42] = evntLSB; |
1465 |
fDataAC[i+106] = evntLSB; |
1466 |
}; |
1467 |
|
1468 |
// increments for every trigger might be needed at some point. |
1469 |
// dummy for now |
1470 |
fDataAC[50] = 0x0000; |
1471 |
fDataAC[114] = 0x0000; |
1472 |
|
1473 |
// dummy FPGA clock (increment by 1 at each event) |
1474 |
/* |
1475 |
fDataAC[51] = 0x006C; |
1476 |
fDataAC[52] = 0x6C6C; |
1477 |
fDataAC[115] = 0x006C; |
1478 |
fDataAC[116] = 0x6C6C; |
1479 |
*/ |
1480 |
if (Ievnt<=0xFFFF) { |
1481 |
fDataAC[51] = 0x0000; |
1482 |
fDataAC[52] = Ievnt; |
1483 |
fDataAC[115] = 0x0000; |
1484 |
fDataAC[116] = Ievnt; |
1485 |
} else { |
1486 |
fDataAC[51] = evntMSB; |
1487 |
fDataAC[52] = evntLSB; |
1488 |
fDataAC[115] = fDataAC[51]; |
1489 |
fDataAC[116] = fDataAC[52]; |
1490 |
} |
1491 |
|
1492 |
// dummy temperatures |
1493 |
fDataAC[53] = 0x0000; |
1494 |
fDataAC[54] = 0x0000; |
1495 |
fDataAC[117] = 0x0000; |
1496 |
fDataAC[118] = 0x0000; |
1497 |
|
1498 |
|
1499 |
// dummy DAC thresholds |
1500 |
for (UInt_t i=0; i<=7; i++){ |
1501 |
fDataAC[i+55] = 0x1A13; |
1502 |
fDataAC[i+119] = 0x1A13; |
1503 |
} |
1504 |
|
1505 |
// We activate all branches. Once the digitization algorithm is determined |
1506 |
// only the branches that involve needed information will be activated |
1507 |
|
1508 |
fhBookTree->SetBranchAddress("Ievnt",&Ievnt); |
1509 |
fhBookTree->SetBranchStatus("Nthcat",1); |
1510 |
fhBookTree->SetBranchStatus("Iparcat",1); |
1511 |
fhBookTree->SetBranchStatus("Icat",1); |
1512 |
fhBookTree->SetBranchStatus("Xincat",1); |
1513 |
fhBookTree->SetBranchStatus("Yincat",1); |
1514 |
fhBookTree->SetBranchStatus("Zincat",1); |
1515 |
fhBookTree->SetBranchStatus("Xoutcat",1); |
1516 |
fhBookTree->SetBranchStatus("Youtcat",1); |
1517 |
fhBookTree->SetBranchStatus("Zoutcat",1); |
1518 |
fhBookTree->SetBranchStatus("Erelcat",1); |
1519 |
fhBookTree->SetBranchStatus("Timecat",1); |
1520 |
fhBookTree->SetBranchStatus("Pathcat",1); |
1521 |
fhBookTree->SetBranchStatus("P0cat",1); |
1522 |
fhBookTree->SetBranchStatus("Nthcas",1); |
1523 |
fhBookTree->SetBranchStatus("Iparcas",1); |
1524 |
fhBookTree->SetBranchStatus("Icas",1); |
1525 |
fhBookTree->SetBranchStatus("Xincas",1); |
1526 |
fhBookTree->SetBranchStatus("Yincas",1); |
1527 |
fhBookTree->SetBranchStatus("Zincas",1); |
1528 |
fhBookTree->SetBranchStatus("Xoutcas",1); |
1529 |
fhBookTree->SetBranchStatus("Youtcas",1); |
1530 |
fhBookTree->SetBranchStatus("Zoutcas",1); |
1531 |
fhBookTree->SetBranchStatus("Erelcas",1); |
1532 |
fhBookTree->SetBranchStatus("Timecas",1); |
1533 |
fhBookTree->SetBranchStatus("Pathcas",1); |
1534 |
fhBookTree->SetBranchStatus("P0cas",1); |
1535 |
fhBookTree->SetBranchStatus("Nthcard",1); |
1536 |
fhBookTree->SetBranchStatus("Iparcard",1); |
1537 |
fhBookTree->SetBranchStatus("Icard",1); |
1538 |
fhBookTree->SetBranchStatus("Xincard",1); |
1539 |
fhBookTree->SetBranchStatus("Yincard",1); |
1540 |
fhBookTree->SetBranchStatus("Zincard",1); |
1541 |
fhBookTree->SetBranchStatus("Xoutcard",1); |
1542 |
fhBookTree->SetBranchStatus("Youtcard",1); |
1543 |
fhBookTree->SetBranchStatus("Zoutcard",1); |
1544 |
fhBookTree->SetBranchStatus("Erelcard",1); |
1545 |
fhBookTree->SetBranchStatus("Timecard",1); |
1546 |
fhBookTree->SetBranchStatus("Pathcard",1); |
1547 |
fhBookTree->SetBranchStatus("P0card",1); |
1548 |
|
1549 |
// In this simpliefied approach we will assume that once |
1550 |
// a particle releases > 0.5 mip in one of the 12 AC detectors it |
1551 |
// will fire. We will furthermore assume that both cards read out |
1552 |
// identical data. |
1553 |
|
1554 |
// If you develop your digitization algorithm, you should start by |
1555 |
// identifying the information present in level2 (post-darth-vader) |
1556 |
// data. |
1557 |
|
1558 |
Float_t SumEcat[5]; |
1559 |
Float_t SumEcas[5]; |
1560 |
Float_t SumEcard[5]; |
1561 |
for (Int_t k= 0;k<5;k++){ |
1562 |
SumEcat[k]=0.; |
1563 |
SumEcas[k]=0.; |
1564 |
SumEcard[k]=0.; |
1565 |
}; |
1566 |
|
1567 |
if (Nthcat>50 || Nthcas>50 || Nthcard>50) |
1568 |
printf("*** ERROR AC! NthAC out of range!\n\n"); |
1569 |
|
1570 |
// energy dependence on position (see file AcFitOutputDistancePmt.C by S.Orsi) |
1571 |
// based on J.Lundquist's calculations (PhD thesis, page 94) |
1572 |
// function: [0]+[1]*atan([2]/(x+1)), where the 3 parameters are: |
1573 |
// 8.25470e-01 +- 1.79489e-02 |
1574 |
// 6.41609e-01 +- 2.65846e-02 |
1575 |
// 9.81177e+00 +- 1.21284e+00 |
1576 |
// hp: 1 minimum ionising particle at 35cm from the PMT releases 1mip |
1577 |
// |
1578 |
// NB: the PMT positions are needed! |
1579 |
|
1580 |
// look in CAT |
1581 |
// for (UInt_t k= 0;k<50;k++){ |
1582 |
for (Int_t k= 0;k<Nthcat;k++){ |
1583 |
if (Erelcat[k] > 0) |
1584 |
SumEcat[Icat[k]] += Erelcat[k]; |
1585 |
}; |
1586 |
|
1587 |
// look in CAS |
1588 |
for (Int_t k= 0;k<Nthcas;k++){ |
1589 |
if (Erelcas[k] >0) |
1590 |
SumEcas[Icas[k]] += Erelcas[k]; |
1591 |
}; |
1592 |
|
1593 |
// look in CARD |
1594 |
for (Int_t k= 0;k<Nthcard;k++){ |
1595 |
if (Erelcard[k] >0) |
1596 |
SumEcard[Icard[k]] += Erelcard[k]; |
1597 |
}; |
1598 |
|
1599 |
// channel mapping Hit Map |
1600 |
// 1 CARD4 0 LSB |
1601 |
// 2 CAT2 0 |
1602 |
// 3 CAS1 0 |
1603 |
// 4 NC 0 |
1604 |
// 5 CARD2 0 |
1605 |
// 6 CAT4 1 |
1606 |
// 7 CAS4 0 |
1607 |
// 8 NC 0 |
1608 |
// 9 CARD3 0 |
1609 |
// 10 CAT3 0 |
1610 |
// 11 CAS3 0 |
1611 |
// 12 NC 0 |
1612 |
// 13 CARD1 0 |
1613 |
// 14 CAT1 0 |
1614 |
// 15 CAS2 0 |
1615 |
// 16 NC 0 MSB |
1616 |
|
1617 |
// In the first version only the hit-map is filled, not the SR. |
1618 |
|
1619 |
// Threshold: 0.8 MeV. |
1620 |
|
1621 |
Float_t thr = 8e-4; |
1622 |
|
1623 |
fDataAC[3] = 0x0000; |
1624 |
|
1625 |
if (SumEcas[0] > thr) fDataAC[3] = 0x0004; |
1626 |
if (SumEcas[1] > thr) fDataAC[3] += 0x4000; |
1627 |
if (SumEcas[2] > thr) fDataAC[3] += 0x0400; |
1628 |
if (SumEcas[3] > thr) fDataAC[3] += 0x0040; |
1629 |
|
1630 |
if (SumEcat[0] > thr) fDataAC[3] += 0x2000; |
1631 |
if (SumEcat[1] > thr) fDataAC[3] += 0x0002; |
1632 |
if (SumEcat[2] > thr) fDataAC[3] += 0x0200; |
1633 |
if (SumEcat[3] > thr) fDataAC[3] += 0x0020; |
1634 |
|
1635 |
if (SumEcard[0] > thr) fDataAC[3] += 0x1000; |
1636 |
if (SumEcard[1] > thr) fDataAC[3] += 0x0010; |
1637 |
if (SumEcard[2] > thr) fDataAC[3] += 0x0100; |
1638 |
if (SumEcard[3] > thr) fDataAC[3] += 0x0001; |
1639 |
|
1640 |
fDataAC[67] = fDataAC[3]; |
1641 |
|
1642 |
// shift registers |
1643 |
// the central bin is equal to the hitmap, all other bins in the shift register are 0 |
1644 |
for (UInt_t i=0; i<=15; i++){ |
1645 |
fDataAC[i+11] = 0x0000; |
1646 |
fDataAC[i+75] = 0x0000; |
1647 |
} |
1648 |
fDataAC[18] = fDataAC[3]; |
1649 |
fDataAC[82] = fDataAC[3]; |
1650 |
|
1651 |
// for (Int_t i=0; i<fACbuffer; i++){ |
1652 |
// printf("%0x ",fDataAC[i]); |
1653 |
// if ((i+1)%8 ==0) cout << endl; |
1654 |
// } |
1655 |
}; |
1656 |
|
1657 |
|
1658 |
void Digitizer::DigitizeS4(){ |
1659 |
Int_t DEBUG=0; |
1660 |
// creato: S. Borisov, INFN Roma2 e MEPHI, Sett 2007 |
1661 |
TString ciao,modo="ns"; |
1662 |
Int_t i,j,t,NdF,pmt,NdFT,S4,S4v=0,S4p=32; |
1663 |
Float_t E0,E1=1e-6,Ert,X,Y,Z,x,y,z,V[3],Xs[2],Ys[2],Zs[2],Yp[6],q,w,p=0.1,l,l0=500; |
1664 |
Xs[0]=-24.1; |
1665 |
Xs[1]=24.1; |
1666 |
Ys[0]=-24.1; |
1667 |
Ys[1]=24.1; |
1668 |
Zs[0]=-0.5; |
1669 |
Zs[1]=0.5; |
1670 |
Yp[0]=-20.; |
1671 |
Yp[2]=-1.; |
1672 |
Yp[4]=17.; |
1673 |
for(i=0;i<3;i++) |
1674 |
Yp[2*i+1]=Yp[2*i]+3; |
1675 |
srand(time(NULL)); |
1676 |
// --- activate branches: |
1677 |
fhBookTree->SetBranchStatus("Nthtof",1); |
1678 |
fhBookTree->SetBranchStatus("Ipltof",1); |
1679 |
fhBookTree->SetBranchStatus("Ipaddle",1); |
1680 |
|
1681 |
fhBookTree->SetBranchStatus("Xintof",1); |
1682 |
fhBookTree->SetBranchStatus("Yintof",1); |
1683 |
fhBookTree->SetBranchStatus("Xouttof",1); |
1684 |
fhBookTree->SetBranchStatus("Youttof",1); |
1685 |
|
1686 |
fhBookTree->SetBranchStatus("Ereltof",1); |
1687 |
fhBookTree->SetBranchStatus("Timetof",1); |
1688 |
NdFT=0; |
1689 |
Ert=0; |
1690 |
for(i=0;i<Nthtof;i++){ |
1691 |
if(Ipltof[i]!=6) continue; |
1692 |
Ert+=Ereltof[i]; |
1693 |
|
1694 |
if(modo=="ns") continue; |
1695 |
NdF=Int_t(Ereltof[i]/E1); |
1696 |
NdFT=0; |
1697 |
X=Xintof[i]; |
1698 |
Y=Yintof[i]; |
1699 |
Z=(Float_t)(random())/(Float_t)(0x7fffffff)-0.5; |
1700 |
//cout<<"XYZ "<<X<<" "<<Y<<" "<<Z<<endl; |
1701 |
for(j=0;j<NdF;j++){ |
1702 |
q=(Float_t)random()/(Float_t)0x7fffffff; |
1703 |
w=(Float_t)random()/(Float_t)0x7fffffff; |
1704 |
// cout<<"qw "<<q<<" "<<w<<endl; |
1705 |
V[0]=p*cos(6.28318*q); |
1706 |
V[1]=p*sin(6.28318*q); |
1707 |
V[2]=p*(2.*w-1.); |
1708 |
pmt=0; |
1709 |
x=X; |
1710 |
y=Y; |
1711 |
z=Z; |
1712 |
while(pmt==0 && (x>Xs[0] && x<Xs[1])&&(y>Ys[0] && y<Ys[1])&&(z>Zs[0] && z<Zs[1])){ |
1713 |
l=0; |
1714 |
while(pmt==0 && (x>Xs[0] && x<Xs[1])&&(y>Ys[0] && y<Ys[1])&&(z>Zs[0] && z<Zs[1])){ |
1715 |
x+=V[0]; |
1716 |
y+=V[1]; |
1717 |
z+=V[2]; |
1718 |
l+=p; |
1719 |
//cout<<x<<" "<<y<<" "<<z<<" "<<l<<endl; |
1720 |
//cin>>ciao; |
1721 |
} |
1722 |
if((x<Xs[0]+p || x>Xs[1]-p)&&(y>Ys[0]+p && y<Ys[1]-p)&&(z>Zs[0]+p && z<Zs[1]-p)){ |
1723 |
for(t=0;t<3;t++){ |
1724 |
if(y>=Yp[2*t] && y<Yp[2*t+1]){ |
1725 |
if(pmt==0)NdFT++; |
1726 |
pmt=1; |
1727 |
//cout<<NdFT<<endl; |
1728 |
break; |
1729 |
} |
1730 |
} |
1731 |
if(pmt==1)break; |
1732 |
V[0]=-V[0]; |
1733 |
} |
1734 |
q=(Float_t)random()/(Float_t)0x7fffffff; |
1735 |
w=1-exp(-l/l0); |
1736 |
if(q<w)break; |
1737 |
q=(Float_t)random()/(Float_t)0x7fffffff; |
1738 |
w=0.5; |
1739 |
if(q<w)break; |
1740 |
if((x>Xs[0]+p && x<Xs[1]-p)&&(y<Ys[0]+p || y>Ys[1]-p)&&(z>Zs[0]+p && z<Zs[1]-p))V[1]=-V[1]; |
1741 |
if((x>Xs[0]+p && x<Xs[1]-p)&&(y>Ys[0]+p && y<Ys[1]-p)&&(z<Zs[0]+p || z>Zs[1]-p))V[2]=-V[2]; |
1742 |
x+=V[0]; |
1743 |
y+=V[1]; |
1744 |
z+=V[2]; |
1745 |
l=0; |
1746 |
//cout<<x<<" "<<y<<" "<<z<<" "<<l<<endl; |
1747 |
//cin>>ciao; |
1748 |
} |
1749 |
} |
1750 |
} |
1751 |
Ert=Ert/0.002; |
1752 |
q=(Float_t)(random())/(Float_t)0x7fffffff; |
1753 |
w=0.7; |
1754 |
//E0=(Float_t)(4064./7.); |
1755 |
E0=4064./7.; |
1756 |
if(Ert<1) S4=0; |
1757 |
else S4=(Int_t)(4064.*(1.-exp(-(Ert-1.)/E0))); |
1758 |
i=S4/4; |
1759 |
if(S4%4==0) |
1760 |
S4v=S4+S4p; |
1761 |
else if(S4%4==1){ |
1762 |
if(q<w) S4v=S4-1+S4p; |
1763 |
else S4v=S4+1+S4p; |
1764 |
} else if(S4%4==2) S4v=S4+S4p; |
1765 |
else if(S4%4==3){ |
1766 |
if(q<w) S4v=S4+1+S4p; |
1767 |
else S4v=S4-1+S4p; |
1768 |
} |
1769 |
if (DEBUG) |
1770 |
cout<<"Ert_S4 = " << Ert << " --- S4v = " << S4v << endl; |
1771 |
fDataS4[0]=S4v;//0xf028; |
1772 |
fDataS4[1]=0xd800; |
1773 |
fDataS4[2]=0x0300; |
1774 |
//cout<<" PMT "<<NdFT<<" "<<NdF<<endl; |
1775 |
//cin>>ciao; |
1776 |
} |
1777 |
|
1778 |
|
1779 |
|
1780 |
void Digitizer::DigitizeND(){ |
1781 |
// creato: S. Borisov, INFN Roma2 e MEPHI, Sett 2007 |
1782 |
Int_t i=0; |
1783 |
UShort_t NdN=0; |
1784 |
fhBookTree->SetBranchStatus("Nthnd",1); |
1785 |
fhBookTree->SetBranchStatus("Itubend",1); |
1786 |
fhBookTree->SetBranchStatus("Iparnd",1); |
1787 |
fhBookTree->SetBranchStatus("Xinnd",1); |
1788 |
fhBookTree->SetBranchStatus("Yinnd",1); |
1789 |
fhBookTree->SetBranchStatus("Zinnd",1); |
1790 |
fhBookTree->SetBranchStatus("Xoutnd",1); |
1791 |
fhBookTree->SetBranchStatus("Youtnd",1); |
1792 |
fhBookTree->SetBranchStatus("Zoutnd",1); |
1793 |
fhBookTree->SetBranchStatus("Erelnd",1); |
1794 |
fhBookTree->SetBranchStatus("Timend",1); |
1795 |
fhBookTree->SetBranchStatus("Pathnd",1); |
1796 |
fhBookTree->SetBranchStatus("P0nd",1); |
1797 |
//cout<<"n="<<Nthnd<<" "<<NdN<<"\n"; |
1798 |
for(i=0;i<Nthnd;i++){ |
1799 |
if(Iparnd[i]==13){ |
1800 |
NdN++; |
1801 |
} |
1802 |
} |
1803 |
//NdN=100; //only for debug |
1804 |
|
1805 |
for(i=0;i<3;i++){ |
1806 |
fDataND[2*i]=0x0000; |
1807 |
fDataND[2*i+1]=0x010F; |
1808 |
} |
1809 |
fDataND[0]=0xFF00 & (256*NdN); |
1810 |
} |
1811 |
|
1812 |
|
1813 |
void Digitizer::DigitizeDummy() { |
1814 |
|
1815 |
fhBookTree->SetBranchStatus("Enestrip",1); |
1816 |
|
1817 |
// dumy header |
1818 |
fDataDummy[0] = 0xCAAA; |
1819 |
|
1820 |
for (Int_t i=1; i<fDummybuffer; i++){ |
1821 |
fDataDummy[i] = 0xFFFF; |
1822 |
// printf("%0x ",fDataDummy[i]); |
1823 |
//if ((i+1)%8 ==0) cout << endl; |
1824 |
} |
1825 |
}; |
1826 |
|
1827 |
|
1828 |
void Digitizer::WriteData(){ |
1829 |
|
1830 |
// Routine that writes the data to a binary file |
1831 |
// PSCU data are already swapped |
1832 |
fOutputfile.write(reinterpret_cast<char*>(fDataPSCU),sizeof(UShort_t)*fPSCUbuffer); |
1833 |
// TRG |
1834 |
fOutputfile.write(reinterpret_cast<char*>(fDataTrigger),sizeof(UChar_t)*153); |
1835 |
// TOF |
1836 |
fOutputfile.write(reinterpret_cast<char*>(fDataTof),sizeof(UChar_t)*276); |
1837 |
// AC |
1838 |
UShort_t temp[1000000]; |
1839 |
memset(temp,0,sizeof(UShort_t)*1000000); |
1840 |
swab(fDataAC,temp,sizeof(UShort_t)*fACbuffer); // WE MUST SWAP THE BYTES!!! |
1841 |
fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fACbuffer); |
1842 |
// CALO |
1843 |
memset(temp,0,sizeof(UShort_t)*1000000); |
1844 |
swab(fDataCALO,temp,sizeof(UShort_t)*fCALOlength); // WE MUST SWAP THE BYTES!!! |
1845 |
fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fCALOlength); |
1846 |
// TRK |
1847 |
memset(temp,0,sizeof(UShort_t)*1000000); |
1848 |
swab(fDataTrack,temp,sizeof(UShort_t)*fTracklength); // WE MUST SWAP THE BYTES!!! |
1849 |
fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fTracklength); |
1850 |
fTracklength=0; |
1851 |
// padding to 64 bytes |
1852 |
// |
1853 |
if ( fPadding ){ |
1854 |
fOutputfile.write(reinterpret_cast<char*>(fDataPadding),sizeof(UChar_t)*fPadding); |
1855 |
}; |
1856 |
// S4 |
1857 |
memset(temp,0,sizeof(UShort_t)*1000000); |
1858 |
swab(fDataS4,temp,sizeof(UShort_t)*fS4buffer); // WE MUST SWAP THE BYTES!!! |
1859 |
fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fS4buffer); |
1860 |
// ND |
1861 |
memset(temp,0,sizeof(UShort_t)*1000000); |
1862 |
swab(fDataND,temp,sizeof(UShort_t)*fNDbuffer); // WE MUST SWAP THE BYTES!!! |
1863 |
fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fNDbuffer); |
1864 |
}; |
1865 |
|
1866 |
|
1867 |
void Digitizer::ReadData(){ |
1868 |
|
1869 |
UShort_t InData[64]; |
1870 |
|
1871 |
// for debuggigng purposes only, write your own routine if you like (many |
1872 |
// hardwired things. |
1873 |
|
1874 |
ifstream InputFile; |
1875 |
|
1876 |
// if (!InputFile) { |
1877 |
|
1878 |
// std::cout << "ERROR" << endl; |
1879 |
// // An error occurred! |
1880 |
// // myFile.gcount() returns the number of bytes read. |
1881 |
// // calling myFile.clear() will reset the stream state |
1882 |
// // so it is usable again. |
1883 |
// }; |
1884 |
|
1885 |
|
1886 |
|
1887 |
//InputFile.seekg(0); |
1888 |
|
1889 |
InputFile.open(fFilename, ios::in | ios::binary); |
1890 |
// fOutputfile.seekg(0); |
1891 |
if (!InputFile.is_open()) std::cout << "ERROR" << endl; |
1892 |
|
1893 |
InputFile.seekg(0); |
1894 |
|
1895 |
for (Int_t k=0; k<=1000; k++){ |
1896 |
InputFile.read(reinterpret_cast<char*>(InData),384*sizeof(UShort_t)); |
1897 |
|
1898 |
std::cout << "Read back: " << endl << endl; |
1899 |
|
1900 |
for (Int_t i=0; i<=384; i++){ |
1901 |
printf("%4x ", InData[i]); |
1902 |
if ((i+1)%8 ==0) cout << endl; |
1903 |
} |
1904 |
|
1905 |
} |
1906 |
cout << endl; |
1907 |
InputFile.close(); |
1908 |
|
1909 |
}; |
1910 |
|
1911 |
|
1912 |
|
1913 |
void Digitizer::DigitizeTrack() { |
1914 |
//std:: cout << "Entering DigitizeTrack " << endl; |
1915 |
Float_t AdcTrack[fNviews][fNstrips_view]; // Vector of strips to be compressed |
1916 |
|
1917 |
Int_t Iview; |
1918 |
Int_t Nstrip; |
1919 |
|
1920 |
for (Int_t j=0; j<fNviews;j++) { |
1921 |
|
1922 |
for (Int_t i=0; i<fNladder;i++) { |
1923 |
|
1924 |
Float_t commonN1=gRandom->Gaus(0.,fSigmaCommon); |
1925 |
Float_t commonN2=gRandom->Gaus(0.,fSigmaCommon); |
1926 |
for (Int_t k=0; k<fNstrips_ladder;k++) { |
1927 |
Nstrip=i*fNstrips_ladder+k; |
1928 |
AdcTrack[j][Nstrip]=gRandom->Gaus(fPedeTrack[j][Nstrip],fSigmaTrack[j][Nstrip]); |
1929 |
if(k<4*128) {AdcTrack[j][Nstrip] += commonN1;} // full correlation of 4 VA1 Com. Noise |
1930 |
else {AdcTrack[j][Nstrip] += commonN2;} // full correlation of 4 VA1 Com. Noise |
1931 |
|
1932 |
}; |
1933 |
|
1934 |
|
1935 |
}; |
1936 |
|
1937 |
|
1938 |
}; |
1939 |
|
1940 |
|
1941 |
fhBookTree->SetBranchStatus("Nstrpx",1); |
1942 |
fhBookTree->SetBranchStatus("Npstripx",1); |
1943 |
fhBookTree->SetBranchStatus("Ntstripx",1); |
1944 |
fhBookTree->SetBranchStatus("Istripx",1); |
1945 |
fhBookTree->SetBranchStatus("Qstripx",1); |
1946 |
fhBookTree->SetBranchStatus("Xstripx",1); |
1947 |
fhBookTree->SetBranchStatus("Nstrpy",1); |
1948 |
fhBookTree->SetBranchStatus("Npstripy",1); |
1949 |
fhBookTree->SetBranchStatus("Ntstripy",1); |
1950 |
fhBookTree->SetBranchStatus("Istripy",1); |
1951 |
fhBookTree->SetBranchStatus("Qstripy",1); |
1952 |
fhBookTree->SetBranchStatus("Ystripy",1); |
1953 |
|
1954 |
|
1955 |
|
1956 |
Float_t ADCfull; |
1957 |
Int_t iladd=0; |
1958 |
for (Int_t ix=0; ix<Nstrpx;ix++) { |
1959 |
Iview=Npstripx[ix]*2-1; |
1960 |
Nstrip=(Int_t)Istripx[ix]-1; |
1961 |
if(Nstrip<fNstrips_ladder) iladd=0; |
1962 |
if((Nstrip>=fNstrips_ladder)&&(Nstrip<2*fNstrips_ladder)) iladd=1; |
1963 |
if((Nstrip>=2*fNstrips_ladder)&&(Nstrip<3*fNstrips_ladder)) iladd=2; |
1964 |
ADCfull=AdcTrack[Iview][Nstrip] += Qstripx[ix]*fMipCor[iladd][Iview]; |
1965 |
AdcTrack[Iview][Nstrip] *= SaturationTrack(ADCfull); |
1966 |
|
1967 |
}; |
1968 |
|
1969 |
|
1970 |
for (Int_t iy=0; iy<Nstrpy;iy++) { |
1971 |
Iview=Npstripy[iy]*2-2; |
1972 |
Nstrip=(Int_t)Istripy[iy]-1; |
1973 |
if(Nstrip<fNstrips_ladder) iladd=0; |
1974 |
if((Nstrip>=fNstrips_ladder)&&(Nstrip<2*fNstrips_ladder)) iladd=1; |
1975 |
if((Nstrip>=2*fNstrips_ladder)&&(Nstrip<3*fNstrips_ladder)) iladd=2; |
1976 |
ADCfull=AdcTrack[Iview][Nstrip] -= Qstripy[iy]*fMipCor[iladd][Iview]; |
1977 |
AdcTrack[Iview][Nstrip] *= SaturationTrack(ADCfull); |
1978 |
|
1979 |
}; |
1980 |
|
1981 |
CompressTrackData(AdcTrack); // Compress and Digitize data of one Ladder in turn for all ladders |
1982 |
|
1983 |
}; |
1984 |
|
1985 |
|
1986 |
|
1987 |
void Digitizer::DigitizeTrackCalib(Int_t ii) { |
1988 |
|
1989 |
std:: cout << "Entering DigitizeTrackCalib " << ii << endl; |
1990 |
if( (ii!=1)&&(ii!=2) ) { |
1991 |
std:: cout << "error wrong DigitizeTrackCalib argument" << endl; |
1992 |
return; |
1993 |
}; |
1994 |
|
1995 |
memset(fDataTrack,0,sizeof(UShort_t)*fTRACKbuffer); |
1996 |
fTracklength=0; |
1997 |
|
1998 |
UShort_t Dato; |
1999 |
|
2000 |
Float_t dato1; |
2001 |
Float_t dato2; |
2002 |
Float_t dato3; |
2003 |
Float_t dato4; |
2004 |
|
2005 |
UShort_t DatoDec; |
2006 |
UShort_t DatoDec1; |
2007 |
UShort_t DatoDec2; |
2008 |
UShort_t DatoDec3; |
2009 |
UShort_t DatoDec4; |
2010 |
|
2011 |
UShort_t EVENT_CAL; |
2012 |
UShort_t PED_L1; |
2013 |
UShort_t ReLength; |
2014 |
UShort_t OveCheckCode; |
2015 |
//UShort_t PED_L2; |
2016 |
//UShort_t PED_L3HI; |
2017 |
//UShort_t PED_L3LO; |
2018 |
//UShort_t SIG_L1HI; |
2019 |
//UShort_t SIG_L1LO; |
2020 |
//UShort_t SIG_L2HI; |
2021 |
//UShort_t SIG_L2LO; |
2022 |
//UShort_t SIG_L3; |
2023 |
//UShort_t BAD_L1; |
2024 |
//UShort_t BAD_L2LO; |
2025 |
//UShort_t BAD_L3HI; |
2026 |
//UShort_t BAD_L3LO; |
2027 |
//UShort_t FLAG; |
2028 |
|
2029 |
|
2030 |
Int_t DSPpos; |
2031 |
for (Int_t j=ii-1; j<fNviews;j+=2) { |
2032 |
UShort_t CkSum=0; |
2033 |
// here skip the dsp header and his trailer , to be written later |
2034 |
DSPpos=fTracklength; |
2035 |
fTracklength=fTracklength+13+3; |
2036 |
|
2037 |
|
2038 |
for (Int_t i=0; i<fNladder;i++) { |
2039 |
for (Int_t k=0; k<fNstrips_ladder;k++) { |
2040 |
// write in buffer the current LADDER |
2041 |
Dato=(UShort_t)fPedeTrack[j][i*fNstrips_ladder+k]; |
2042 |
dato1=fPedeTrack[j][i*fNstrips_ladder+k]-Dato; |
2043 |
|
2044 |
DatoDec1=(UShort_t)(dato1*2); |
2045 |
dato2=dato1*2-DatoDec1; |
2046 |
|
2047 |
DatoDec2=(UShort_t)(dato2*2); |
2048 |
dato3=dato2*2-DatoDec2; |
2049 |
|
2050 |
DatoDec3=(UShort_t)(dato3*2); |
2051 |
dato4=dato3*2-DatoDec3; |
2052 |
|
2053 |
DatoDec4=(UShort_t)(dato4*2); |
2054 |
|
2055 |
DatoDec=DatoDec1*0x0008+DatoDec2*0x0004+DatoDec3*0x0002+DatoDec4*0x0001; |
2056 |
fDataTrack[fTracklength]=( (Dato << 4) | (DatoDec & 0x000F) ); |
2057 |
CkSum=CkSum^fDataTrack[fTracklength]; |
2058 |
fTracklength++; |
2059 |
}; |
2060 |
|
2061 |
for (Int_t k=0; k<fNstrips_ladder;k++) { |
2062 |
// write in buffer the current LADDER |
2063 |
Dato=(UShort_t)fSigmaTrack[j][i*fNstrips_ladder+k]; |
2064 |
dato1=fSigmaTrack[j][i*fNstrips_ladder+k]-Dato; |
2065 |
|
2066 |
DatoDec1=(UShort_t)(dato1*2); |
2067 |
dato2=dato1*2-DatoDec1; |
2068 |
|
2069 |
DatoDec2=(UShort_t)(dato2*2); |
2070 |
dato3=dato2*2-DatoDec2; |
2071 |
|
2072 |
DatoDec3=(UShort_t)(dato3*2); |
2073 |
dato4=dato3*2-DatoDec3; |
2074 |
|
2075 |
DatoDec4=(UShort_t)(dato4*2); |
2076 |
|
2077 |
DatoDec=DatoDec1*0x0008+DatoDec2*0x0004+DatoDec3*0x0002+DatoDec4*0x0001; |
2078 |
|
2079 |
fDataTrack[fTracklength]=( (Dato << 4) | (DatoDec & 0x000F) ); |
2080 |
CkSum=CkSum^fDataTrack[fTracklength]; |
2081 |
fTracklength++; |
2082 |
}; |
2083 |
|
2084 |
for (Int_t k=0; k<64;k++) { |
2085 |
fDataTrack[fTracklength]=0x0000; |
2086 |
CkSum=CkSum^fDataTrack[fTracklength]; |
2087 |
fTracklength++; |
2088 |
|
2089 |
}; |
2090 |
// end ladder |
2091 |
|
2092 |
// write in buffer the end ladder word |
2093 |
if(i==0) fDataTrack[fTracklength]=0x1807; |
2094 |
if(i==1) fDataTrack[fTracklength]=0x1808; |
2095 |
if(i==2) fDataTrack[fTracklength]=0x1809; |
2096 |
CkSum=CkSum^fDataTrack[fTracklength]; |
2097 |
fTracklength++; |
2098 |
|
2099 |
// write in buffer the TRAILER |
2100 |
ReLength=(UShort_t)((fNstrips_ladder*2+64+1)*2+3); |
2101 |
OveCheckCode=0x0000; |
2102 |
|
2103 |
fDataTrack[fTracklength]=0x0000; |
2104 |
fTracklength++; |
2105 |
|
2106 |
fDataTrack[fTracklength]=(ReLength >> 8); |
2107 |
fTracklength++; |
2108 |
|
2109 |
fDataTrack[fTracklength]=( (ReLength << 8) | (OveCheckCode & 0x00FF) ); |
2110 |
fTracklength++; |
2111 |
|
2112 |
// end TRAILER |
2113 |
}; |
2114 |
|
2115 |
// write in buffer the DSP header |
2116 |
|
2117 |
fDataTrack[DSPpos]=(0xE800 | ( ((j+1) << 3) | 0x0005) ); |
2118 |
|
2119 |
fDataTrack[DSPpos+1]=0x01A9; |
2120 |
|
2121 |
fDataTrack[DSPpos+2]=0x8740; |
2122 |
|
2123 |
EVENT_CAL=0; |
2124 |
fDataTrack[DSPpos+3]=(0x1A00 | ( (0x03FF & EVENT_CAL)>> 1) ); |
2125 |
|
2126 |
PED_L1=0; |
2127 |
fDataTrack[DSPpos+4]=( ((EVENT_CAL << 15) | 0x5002 ) | ((0x03FF & PED_L1) << 2) ); |
2128 |
|
2129 |
// FROM HERE WE WRITE AS ALL VARIABLE apart CkSum are =0 |
2130 |
|
2131 |
fDataTrack[DSPpos+5]=0x8014; |
2132 |
|
2133 |
fDataTrack[DSPpos+6]=0x00A0; |
2134 |
|
2135 |
fDataTrack[DSPpos+7]=0x0500; |
2136 |
|
2137 |
fDataTrack[DSPpos+8]=0x2801; |
2138 |
|
2139 |
fDataTrack[DSPpos+9]=0x400A; |
2140 |
|
2141 |
fDataTrack[DSPpos+10]=0x0050; |
2142 |
|
2143 |
CkSum=(CkSum >> 8)^(CkSum&0x00FF); |
2144 |
fDataTrack[DSPpos+11]=(0x0280 | (CkSum >> 3)); |
2145 |
|
2146 |
fDataTrack[DSPpos+12]=(0x1FFF | (CkSum << 13) ); |
2147 |
|
2148 |
// end dsp header |
2149 |
|
2150 |
// write in buffer the TRAILER |
2151 |
|
2152 |
ReLength=(UShort_t)((13*2)+3); |
2153 |
OveCheckCode=0x0000; |
2154 |
fDataTrack[DSPpos+13]=0x0000; |
2155 |
|
2156 |
fDataTrack[DSPpos+14]=(ReLength >> 8); |
2157 |
|
2158 |
fDataTrack[DSPpos+15]=( (ReLength << 8) | (OveCheckCode & 0x00FF) ); |
2159 |
|
2160 |
// end TRAILER |
2161 |
|
2162 |
|
2163 |
|
2164 |
|
2165 |
// end DSP |
2166 |
}; |
2167 |
|
2168 |
|
2169 |
|
2170 |
}; |
2171 |
|
2172 |
void Digitizer::WriteTrackCalib() { |
2173 |
|
2174 |
|
2175 |
std:: cout << " Entering WriteTrackCalib " << endl; |
2176 |
|
2177 |
fOutputfile.write(reinterpret_cast<char*>(fDataPSCU),sizeof(UShort_t)*fPSCUbuffer); |
2178 |
|
2179 |
UShort_t temp[1000000]; |
2180 |
memset(temp,0,sizeof(UShort_t)*1000000); |
2181 |
swab(fDataTrack,temp,sizeof(UShort_t)*fTracklength); // WE MUST SWAP THE BYTES!!! |
2182 |
fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fTracklength); |
2183 |
fTracklength=0; |
2184 |
if ( fPadding ){ |
2185 |
fOutputfile.write(reinterpret_cast<char*>(fDataPadding),sizeof(UChar_t)*fPadding); |
2186 |
}; |
2187 |
|
2188 |
}; |
2189 |
|
2190 |
|
2191 |
void Digitizer::ClearTrackCalib() { |
2192 |
|
2193 |
std:: cout << "Entering ClearTrackCalib " << endl; |
2194 |
|
2195 |
|
2196 |
}; |
2197 |
|
2198 |
|
2199 |
void Digitizer::LoadTrackCalib() { |
2200 |
std:: cout << "Entering LoadTrackCalib " << endl; |
2201 |
|
2202 |
// Generate the pedestals and sigmas according to parametrization |
2203 |
for (Int_t j=0; j<fNviews;j++) { |
2204 |
for (Int_t i=0; i<fNstrips_view;i++) { |
2205 |
|
2206 |
if((j+1)%2==0) { |
2207 |
fPedeTrack[j][i]=gRandom->Gaus(fAvePedex,fSigmaPedex); |
2208 |
fSigmaTrack[j][i]=gRandom->Gaus(fAveSigmax,fSigmaSigmax); |
2209 |
}; |
2210 |
if((j+1)%2==1) { |
2211 |
fPedeTrack[j][i]=gRandom->Gaus(fAvePedey,fSigmaPedey); |
2212 |
fSigmaTrack[j][i]=gRandom->Gaus(fAveSigmay,fSigmaSigmay); |
2213 |
}; |
2214 |
|
2215 |
}; |
2216 |
}; |
2217 |
|
2218 |
|
2219 |
|
2220 |
}; |
2221 |
|
2222 |
void Digitizer::LoadMipCor() { |
2223 |
std:: cout << "Entering LoadMipCor" << endl; |
2224 |
Float_t xfactor=1./151.6*1.04; |
2225 |
Float_t yfactor=1./152.1; |
2226 |
|
2227 |
fMipCor[0][0]=140.02*yfactor; |
2228 |
fMipCor[0][1]=140.99*xfactor; |
2229 |
fMipCor[0][2]=134.48*yfactor; |
2230 |
fMipCor[0][3]=144.41*xfactor; |
2231 |
fMipCor[0][4]=140.74*yfactor; |
2232 |
fMipCor[0][5]=142.28*xfactor; |
2233 |
fMipCor[0][6]=134.53*yfactor; |
2234 |
fMipCor[0][7]=140.63*xfactor; |
2235 |
fMipCor[0][8]=135.55*yfactor; |
2236 |
fMipCor[0][9]=138.00*xfactor; |
2237 |
fMipCor[0][10]=154.95*yfactor; |
2238 |
fMipCor[0][11]=158.44*xfactor; |
2239 |
|
2240 |
|
2241 |
fMipCor[1][0]=136.07*yfactor; |
2242 |
fMipCor[1][1]=135.59*xfactor; |
2243 |
fMipCor[1][2]=142.69*yfactor; |
2244 |
fMipCor[1][3]=138.19*xfactor; |
2245 |
fMipCor[1][4]=137.35*yfactor; |
2246 |
fMipCor[1][5]=140.23*xfactor; |
2247 |
fMipCor[1][6]=153.15*yfactor; |
2248 |
fMipCor[1][7]=151.42*xfactor; |
2249 |
fMipCor[1][8]=129.76*yfactor; |
2250 |
fMipCor[1][9]=140.63*xfactor; |
2251 |
fMipCor[1][10]=157.87*yfactor; |
2252 |
fMipCor[1][11]=153.64*xfactor; |
2253 |
|
2254 |
fMipCor[2][0]=134.98*yfactor; |
2255 |
fMipCor[2][1]=143.95*xfactor; |
2256 |
fMipCor[2][2]=140.23*yfactor; |
2257 |
fMipCor[2][3]=138.88*xfactor; |
2258 |
fMipCor[2][4]=137.95*yfactor; |
2259 |
fMipCor[2][5]=134.87*xfactor; |
2260 |
fMipCor[2][6]=157.56*yfactor; |
2261 |
fMipCor[2][7]=157.31*xfactor; |
2262 |
fMipCor[2][8]=141.37*yfactor; |
2263 |
fMipCor[2][9]=143.39*xfactor; |
2264 |
fMipCor[2][10]=156.15*yfactor; |
2265 |
fMipCor[2][11]=158.79*xfactor; |
2266 |
|
2267 |
/* |
2268 |
for (Int_t j=0; j<fNviews;j++) { |
2269 |
for (Int_t i=0; i<fNstrips_view;i++) { |
2270 |
fMipCor[j][i]=1.; |
2271 |
}; |
2272 |
}; |
2273 |
|
2274 |
|
2275 |
*/ |
2276 |
}; |
2277 |
|
2278 |
void Digitizer::CompressTrackData(Float_t AdcTrack[fNviews][fNstrips_view]) { |
2279 |
// copy of the corresponding compression fortran routine + new digitization |
2280 |
// std:: cout << "Entering CompressTrackData " << endl; |
2281 |
Int_t oldval=0; |
2282 |
Int_t newval=0; |
2283 |
Int_t trasmesso=0; |
2284 |
Int_t ntrastot=0; |
2285 |
Float_t real; |
2286 |
Float_t inte; |
2287 |
Int_t cercacluster=0; |
2288 |
Int_t kt=0; |
2289 |
static const int DSPbufferSize = 4000; // 13 bit buffer to be rearranged in 16 bit Track buffer |
2290 |
UShort_t DataDSP[DSPbufferSize]; // 13 bit buffer to be rearranged in 16 bit Track buffer |
2291 |
UShort_t DSPlength; // 13 bit buffer to be rearranged in 16 bit Track buffer |
2292 |
|
2293 |
memset(fDataTrack,0,sizeof(UShort_t)*fTRACKbuffer); // probably not necessary becouse already done ? |
2294 |
fTracklength=0; |
2295 |
|
2296 |
for (Int_t iv=0; iv<fNviews;iv++) { |
2297 |
memset(DataDSP,0,sizeof(UShort_t)*DSPbufferSize); |
2298 |
DSPlength=16; // skip the header, to be written later |
2299 |
UShort_t CheckSum=0; |
2300 |
// write dsp header on buffer |
2301 |
|
2302 |
// fDataTrack[fTracklength]=0xE805; |
2303 |
// fTracklength++; |
2304 |
|
2305 |
// fDataTrack[fTracklength]=0x01A9; |
2306 |
// fTracklength++; |
2307 |
|
2308 |
// end dsp header |
2309 |
|
2310 |
// |
2311 |
// INIZIO VISTA IV - TAKE PROPER ACTION |
2312 |
// |
2313 |
|
2314 |
|
2315 |
|
2316 |
for (Int_t ladder=0; ladder<fNladder;ladder++) { |
2317 |
Int_t k=0; |
2318 |
while (k<fNstrips_ladder) { |
2319 |
// compress write in buffer the current LADDER |
2320 |
if ( k == 0) { |
2321 |
real=modff(AdcTrack[iv][ladder*fNstrips_ladder+k],&inte); |
2322 |
if (real > 0.5) inte=inte+1; |
2323 |
newval=(Int_t)inte -(Int_t)fPedeTrack[iv][ladder*fNstrips_ladder+k]; |
2324 |
// first strip of ladder is transmitted |
2325 |
// DC_TOT first " << AdcTrack[iv][ladder*fNstrips_ladder+k] << endl; |
2326 |
DataDSP[DSPlength]=( ((UShort_t)inte) & 0x0FFF); |
2327 |
DSPlength++; |
2328 |
ntrastot++; |
2329 |
trasmesso=1; |
2330 |
oldval=newval; |
2331 |
kt=k; |
2332 |
k++; |
2333 |
continue; |
2334 |
}; |
2335 |
real=modff(AdcTrack[iv][ladder*fNstrips_ladder+k],&inte); |
2336 |
if (real > 0.5) inte=inte+1; |
2337 |
newval=(Int_t)inte -(Int_t)(fPedeTrack[iv][ladder*fNstrips_ladder+k]); |
2338 |
cercacluster=1; // ????????? |
2339 |
if (cercacluster==1) { |
2340 |
|
2341 |
// controlla l'ordine di tutti queste strip ladder e DSP !!!!!!! |
2342 |
Int_t diff=0; |
2343 |
|
2344 |
|
2345 |
switch ((iv+1)%2) { |
2346 |
case 0: diff=newval-oldval; |
2347 |
break; |
2348 |
case 1: diff=oldval-newval; |
2349 |
break; |
2350 |
}; |
2351 |
|
2352 |
if (diff>fCutclu*(Int_t)fSigmaTrack[iv][ladder*fNstrips_ladder+k]) { |
2353 |
Int_t clval=newval; |
2354 |
Int_t klp=k; // go on to search for maximum |
2355 |
klp++; |
2356 |
|
2357 |
while(klp<fNstrips_ladder) { |
2358 |
real=modff(AdcTrack[iv][ladder*fNstrips_ladder+klp],&inte); |
2359 |
if (real > 0.5) inte=inte+1; |
2360 |
Int_t clvalp=(Int_t)inte -(Int_t)fPedeTrack[iv][ladder*fNstrips_ladder+klp]; |
2361 |
if((iv+1)%2==0) { |
2362 |
|
2363 |
if(clvalp>clval) { |
2364 |
clval=clvalp; |
2365 |
k=klp;} |
2366 |
else break; // max of cluster found |
2367 |
|
2368 |
} else { |
2369 |
|
2370 |
if(clvalp<clval) { |
2371 |
clval=clvalp; |
2372 |
k=klp;} |
2373 |
else break; // max of cluster found |
2374 |
|
2375 |
}; |
2376 |
|
2377 |
klp++; |
2378 |
}; |
2379 |
|
2380 |
Int_t kl1=k-fNclst; // max of cluster (or end of ladder ?) |
2381 |
trasmesso=0; |
2382 |
if(kl1<0) kl1=0; |
2383 |
|
2384 |
if(kt>=kl1) kl1=kt+1; |
2385 |
if( (kt+1)==kl1 ) trasmesso=1; |
2386 |
|
2387 |
|
2388 |
|
2389 |
Int_t kl2=k+fNclst; |
2390 |
if(kl2>=fNstrips_ladder) kl2=fNstrips_ladder-1; |
2391 |
|
2392 |
for(Int_t klt=kl1 ; klt<=kl2 ; klt++) { |
2393 |
if(trasmesso==0) { |
2394 |
// std:: cout << "STRIP " << klt << endl; |
2395 |
// std:: cout << "ADC_TOT " <<AdcTrack[iv][ladder*fNstrips_ladder+klt] << endl; |
2396 |
|
2397 |
DataDSP[DSPlength]=( ((UShort_t)klt) | 0x1000); |
2398 |
DSPlength++; |
2399 |
ntrastot++; |
2400 |
|
2401 |
|
2402 |
real=modff(AdcTrack[iv][ladder*fNstrips_ladder+klt],&inte); |
2403 |
if (real > 0.5) inte=inte+1; |
2404 |
DataDSP[DSPlength]=( ((UShort_t)inte) & 0x0FFF); |
2405 |
DSPlength++; |
2406 |
ntrastot++; |
2407 |
|
2408 |
} |
2409 |
else { |
2410 |
// std:: cout << "ADC_TOT " <<AdcTrack[iv][ladder*fNstrips_ladder+klt] << endl; |
2411 |
real=modff(AdcTrack[iv][ladder*fNstrips_ladder+klt],&inte); |
2412 |
if (real > 0.5) inte=inte+1; |
2413 |
DataDSP[DSPlength]=( ((UShort_t)inte) & 0x0FFF); |
2414 |
DSPlength++; |
2415 |
ntrastot++; |
2416 |
}; |
2417 |
trasmesso=1; |
2418 |
}; // end trasmission |
2419 |
kt=kl2; |
2420 |
k=kl2; |
2421 |
real=modff(AdcTrack[iv][ladder*fNstrips_ladder+kt],&inte); |
2422 |
if (real > 0.5) inte=inte+1; |
2423 |
oldval=(Int_t)inte -(Int_t)fPedeTrack[iv][ladder*fNstrips_ladder+kt]; |
2424 |
k++; |
2425 |
continue; |
2426 |
|
2427 |
|
2428 |
}; // end cercacluster |
2429 |
}; // end cercacluster |
2430 |
|
2431 |
// start ZOP check for strips no |
2432 |
|
2433 |
if(abs(newval-oldval)>=fCutzop*(Int_t)fSigmaTrack[iv][ladder*fNstrips_ladder+k]) { |
2434 |
|
2435 |
if(trasmesso==0) { |
2436 |
// std:: cout << "STRIP " << k << endl; |
2437 |
// std:: cout << "ADC_TOT " << AdcTrack[iv][ladder*fNstrips_ladder+k] << endl; |
2438 |
|
2439 |
DataDSP[DSPlength]=( ((UShort_t)k) | 0x1000); |
2440 |
DSPlength++; |
2441 |
ntrastot++; |
2442 |
|
2443 |
|
2444 |
real=modff(AdcTrack[iv][ladder*fNstrips_ladder+k],&inte); |
2445 |
if (real > 0.5) inte=inte+1; |
2446 |
DataDSP[DSPlength]=( ((UShort_t)inte) & 0x0FFF); |
2447 |
DSPlength++; |
2448 |
ntrastot++; |
2449 |
|
2450 |
} |
2451 |
else { |
2452 |
// std:: cout << "ADC_TOT " << AdcTrack[iv][ladder*fNstrips_ladder+k] << endl; |
2453 |
real=modff(AdcTrack[iv][ladder*fNstrips_ladder+k],&inte); |
2454 |
if (real > 0.5) inte=inte+1; |
2455 |
DataDSP[DSPlength]=( ((UShort_t)inte) & 0x0FFF); |
2456 |
DSPlength++; |
2457 |
ntrastot++; |
2458 |
}; |
2459 |
trasmesso=1; |
2460 |
oldval=newval; |
2461 |
kt=k; |
2462 |
|
2463 |
} |
2464 |
else trasmesso=0; |
2465 |
// end zop |
2466 |
|
2467 |
k++; |
2468 |
}; // end cycle inside ladder |
2469 |
// write here the end ladder bytes |
2470 |
// std:: cout << "FINE LADDER " << ladder+1 << endl; |
2471 |
|
2472 |
DataDSP[DSPlength]=( ((UShort_t)(ladder+1)) | 0x1800); |
2473 |
DSPlength++; |
2474 |
ntrastot++; |
2475 |
trasmesso=0; |
2476 |
|
2477 |
}; //end cycle inside dsp |
2478 |
// std:: cout << "FINE DSP " << iv+1 << endl; |
2479 |
// here put DSP header |
2480 |
DataDSP[0]=(0x1CA0 | ((UShort_t)(iv+1)) ); |
2481 |
UShort_t Nword=(DSPlength*13)/16; |
2482 |
if( ((DSPlength*13)%16)!=0) Nword++; |
2483 |
DataDSP[1]=(0x1400 | ( Nword >> 10)); |
2484 |
DataDSP[2]=(0x1400 | ( Nword & 0x03FF) ); |
2485 |
DataDSP[3]=(0x1400 | (( (UShort_t)(fCounter >> 10) ) & 0x03FF) ); |
2486 |
DataDSP[4]=(0x1400 | (( (UShort_t)(fCounter) ) & 0x03FF) ); |
2487 |
DataDSP[5]=(0x1400 | ( (UShort_t)(fNclst << 7) ) | ( (UShort_t)(fCutzop << 4) ) |
2488 |
| ( (UShort_t)fCutzop ) ); |
2489 |
DataDSP[6]=0x1400; |
2490 |
DataDSP[7]=0x1400; |
2491 |
DataDSP[8]=0x1400; |
2492 |
DataDSP[9]=0x1400; |
2493 |
DataDSP[10]=0x1400; |
2494 |
DataDSP[11]=0x1400; |
2495 |
DataDSP[12]=0x1400; |
2496 |
DataDSP[13]=0x1400; |
2497 |
DataDSP[14]=(0x1400 | (CheckSum & 0x00FF) ); |
2498 |
DataDSP[15]=0x1C00; |
2499 |
// end DSP header |
2500 |
|
2501 |
|
2502 |
// write 13 bit DataDSP bufer inside 16 bit fDataTrack buffer |
2503 |
Int_t Bit16free=16; |
2504 |
UShort_t Dato; |
2505 |
for (Int_t NDSP=0; NDSP<DSPlength;NDSP++) { |
2506 |
Int_t Bit13ToWrite=13; |
2507 |
while(Bit13ToWrite>0) { |
2508 |
if(Bit13ToWrite<=Bit16free) { |
2509 |
Dato=((DataDSP[NDSP]&(0xFFFF >> (16-Bit13ToWrite)))<<(Bit16free-Bit13ToWrite)); |
2510 |
fDataTrack[fTracklength]=fDataTrack[fTracklength] | Dato ; |
2511 |
Bit16free=Bit16free-Bit13ToWrite; |
2512 |
Bit13ToWrite=0; |
2513 |
if(Bit16free==0) { |
2514 |
if(NDSP>15) CheckSum=CheckSum^fDataTrack[fTracklength]; |
2515 |
fTracklength++; |
2516 |
Bit16free=16; |
2517 |
}; |
2518 |
} |
2519 |
else if(Bit13ToWrite>Bit16free) { |
2520 |
Dato=( (DataDSP[NDSP]&(0xFFFF >> (16-Bit13ToWrite) ) ) >> (Bit13ToWrite-Bit16free) ); |
2521 |
fDataTrack[fTracklength]=fDataTrack[fTracklength] | Dato ; |
2522 |
if(NDSP>15) CheckSum=CheckSum^fDataTrack[fTracklength]; |
2523 |
fTracklength++; |
2524 |
Bit13ToWrite=Bit13ToWrite-Bit16free; |
2525 |
Bit16free=16; |
2526 |
}; |
2527 |
|
2528 |
}; // end cycle while(Bit13ToWrite>0) |
2529 |
|
2530 |
}; // end cycle DataDSP |
2531 |
if(Bit16free!=16) { fTracklength++; CheckSum=CheckSum^fDataTrack[fTracklength]; }; |
2532 |
CheckSum=(CheckSum >> 8)^(CheckSum&0x00FF); |
2533 |
fDataTrack[fTracklength-Nword+11]=(0x0280 | (CheckSum >> 3)); |
2534 |
fDataTrack[fTracklength-Nword+12]=(0x1C00 | (CheckSum << 13) ); |
2535 |
|
2536 |
// end write 13 bit DataDSP bufer inside 16 bit fDataTrack buffer |
2537 |
|
2538 |
//write trailer on buffer |
2539 |
UShort_t ReLength=(UShort_t)((Nword+13)*2+3); |
2540 |
UShort_t OveCheckCode=0x0000; |
2541 |
|
2542 |
fDataTrack[fTracklength]=0x0000; |
2543 |
fTracklength++; |
2544 |
|
2545 |
fDataTrack[fTracklength]=(ReLength >> 8); |
2546 |
fTracklength++; |
2547 |
|
2548 |
fDataTrack[fTracklength]=( (ReLength << 8) | (OveCheckCode & 0x00FF) ); |
2549 |
fTracklength++; |
2550 |
// end trailer |
2551 |
// std:: cout << "DSPlength " <<DSPlength << endl; |
2552 |
// std:: cout << "Nword " << Nword << endl; |
2553 |
// std:: cout << "ReLength " << ReLength << endl; |
2554 |
}; |
2555 |
// std:: cout << "ntrastot " << ntrastot << endl; |
2556 |
|
2557 |
}; |
2558 |
|
2559 |
|
2560 |
Float_t Digitizer::SaturationTrack(Float_t ADC) { |
2561 |
Float_t SatFact=1.; |
2562 |
if(ADC<70.) { SatFact=80./ADC; }; |
2563 |
if(ADC>3000.) { SatFact=3000./ADC; }; |
2564 |
return SatFact; |
2565 |
}; |
2566 |
|
2567 |
|
2568 |
|
2569 |
|
2570 |
|
2571 |
|