1 |
// |
2 |
#include <sstream> |
3 |
#include <fstream> |
4 |
#include <stdlib.h> |
5 |
#include <string.h> |
6 |
#include <ctype.h> |
7 |
#include "Riostream.h" |
8 |
#include "TFile.h" |
9 |
#include "TDirectory.h" |
10 |
#include "TTree.h" |
11 |
#include "TLeafI.h" |
12 |
#include "TH1.h" |
13 |
#include "TH2.h" |
14 |
#include "TMath.h" |
15 |
#include "TRandom.h" |
16 |
#include "TSQLServer.h" |
17 |
#include "TSystem.h" |
18 |
// |
19 |
#include "Digitizer.h" |
20 |
#include "CRC.h" |
21 |
// |
22 |
#include <PamelaRun.h> |
23 |
#include <physics/calorimeter/CalorimeterEvent.h> |
24 |
#include <CalibCalPedEvent.h> |
25 |
#include "GLTables.h" |
26 |
// |
27 |
extern "C"{ |
28 |
short crc(short, short); |
29 |
}; |
30 |
// |
31 |
|
32 |
Digitizer::Digitizer(TTree* tree, char* &file_raw){ |
33 |
fhBookTree = tree; |
34 |
fFilename = file_raw; |
35 |
fCounter = 0; |
36 |
fOBT = 0; |
37 |
|
38 |
// |
39 |
// DB connections |
40 |
// |
41 |
TString host = "mysql://localhost/pamelaprod"; |
42 |
TString user = "anonymous"; |
43 |
TString psw = ""; |
44 |
// |
45 |
const char *pamdbhost=gSystem->Getenv("PAM_DBHOST"); |
46 |
const char *pamdbuser=gSystem->Getenv("PAM_DBUSER"); |
47 |
const char *pamdbpsw=gSystem->Getenv("PAM_DBPSW"); |
48 |
if ( !pamdbhost ) pamdbhost = ""; |
49 |
if ( !pamdbuser ) pamdbuser = ""; |
50 |
if ( !pamdbpsw ) pamdbpsw = ""; |
51 |
if ( strcmp(pamdbhost,"") ) host = pamdbhost; |
52 |
if ( strcmp(pamdbuser,"") ) user = pamdbuser; |
53 |
if ( strcmp(pamdbpsw,"") ) psw = pamdbpsw; |
54 |
fDbc = TSQLServer::Connect(host.Data(),user.Data(),psw.Data()); |
55 |
// |
56 |
GL_TABLES *glt = new GL_TABLES(host,user,psw); |
57 |
if ( glt->IsConnected(fDbc) ) printf("\n DB INFORMATION:\n SQL: %s Version: %s Host %s Port %i \n\n",fDbc->GetDBMS(),fDbc->ServerInfo(),fDbc->GetHost(),fDbc->GetPort()); |
58 |
// |
59 |
// Use UTC in the DB and make timeout bigger |
60 |
// |
61 |
stringstream myquery; |
62 |
myquery.str(""); |
63 |
myquery << "SET time_zone='+0:00'"; |
64 |
fDbc->Query(myquery.str().c_str()); |
65 |
myquery.str(""); |
66 |
myquery << "SET wait_timeout=173000;"; |
67 |
fDbc->Query(myquery.str().c_str()); |
68 |
// |
69 |
|
70 |
std:: cout << "preparing tree" << endl; |
71 |
|
72 |
// prepare tree |
73 |
fhBookTree->SetBranchAddress("Irun",&Irun); |
74 |
fhBookTree->SetBranchAddress("Ievnt",&Ievnt); |
75 |
fhBookTree->SetBranchAddress("Ipa",&Ipa); |
76 |
fhBookTree->SetBranchAddress("X0",&X0); |
77 |
fhBookTree->SetBranchAddress("Y0",&Y0); |
78 |
fhBookTree->SetBranchAddress("Z0",&Z0); |
79 |
fhBookTree->SetBranchAddress("Theta",&Theta); |
80 |
fhBookTree->SetBranchAddress("Phi",&Phi); |
81 |
fhBookTree->SetBranchAddress("P0",&P0); |
82 |
fhBookTree->SetBranchAddress("Nthtof",&Nthtof); |
83 |
fhBookTree->SetBranchAddress("Ipltof",Ipltof); |
84 |
fhBookTree->SetBranchAddress("Ipaddle",Ipaddle); |
85 |
fhBookTree->SetBranchAddress("Ipartof",Ipartof); |
86 |
fhBookTree->SetBranchAddress("Xintof",Xintof); |
87 |
fhBookTree->SetBranchAddress("Yintof",Yintof); |
88 |
fhBookTree->SetBranchAddress("Zintof",Zintof); |
89 |
fhBookTree->SetBranchAddress("Xouttof",Xouttof); |
90 |
fhBookTree->SetBranchAddress("Youttof",Youttof); |
91 |
fhBookTree->SetBranchAddress("Zouttof",Zouttof); |
92 |
fhBookTree->SetBranchAddress("Ereltof",Ereltof); |
93 |
fhBookTree->SetBranchAddress("Timetof",Timetof); |
94 |
fhBookTree->SetBranchAddress("Pathtof",Pathtof); |
95 |
fhBookTree->SetBranchAddress("P0tof",P0tof); |
96 |
fhBookTree->SetBranchAddress("Nthcat",&Nthcat); |
97 |
fhBookTree->SetBranchAddress("Iparcat",Iparcat); |
98 |
fhBookTree->SetBranchAddress("Icat",Icat); |
99 |
fhBookTree->SetBranchAddress("Xincat",Xincat); |
100 |
fhBookTree->SetBranchAddress("Yincat",Yincat); |
101 |
fhBookTree->SetBranchAddress("Zincat",Zincat); |
102 |
fhBookTree->SetBranchAddress("Xoutcat",Xoutcat); |
103 |
fhBookTree->SetBranchAddress("Youtcat",Youtcat); |
104 |
fhBookTree->SetBranchAddress("Zoutcat",Zoutcat); |
105 |
fhBookTree->SetBranchAddress("Erelcat",Erelcat); |
106 |
fhBookTree->SetBranchAddress("Timecat",Timecat); |
107 |
fhBookTree->SetBranchAddress("Pathcat",Pathcat); |
108 |
fhBookTree->SetBranchAddress("P0cat",P0cat); |
109 |
fhBookTree->SetBranchAddress("Nthcas",&Nthcas); |
110 |
fhBookTree->SetBranchAddress("Iparcas",Iparcas); |
111 |
fhBookTree->SetBranchAddress("Icas",Icas); |
112 |
fhBookTree->SetBranchAddress("Xincas",Xincas); |
113 |
fhBookTree->SetBranchAddress("Yincas",Yincas); |
114 |
fhBookTree->SetBranchAddress("Zincas",Zincas); |
115 |
fhBookTree->SetBranchAddress("Xoutcas",Xoutcas); |
116 |
fhBookTree->SetBranchAddress("Youtcas",Youtcas); |
117 |
fhBookTree->SetBranchAddress("Zoutcas",Zoutcas); |
118 |
fhBookTree->SetBranchAddress("Erelcas",Erelcas); |
119 |
fhBookTree->SetBranchAddress("Timecas",Timecas); |
120 |
fhBookTree->SetBranchAddress("Pathcas",Pathcas); |
121 |
fhBookTree->SetBranchAddress("P0cas",P0cas); |
122 |
fhBookTree->SetBranchAddress("Nthspe",&Nthspe); |
123 |
fhBookTree->SetBranchAddress("Iparspe",Iparspe); |
124 |
fhBookTree->SetBranchAddress("Itrpb",Itrpb); |
125 |
fhBookTree->SetBranchAddress("Itrsl",Itrsl); |
126 |
fhBookTree->SetBranchAddress("Itspa",Itspa); |
127 |
fhBookTree->SetBranchAddress("Xinspe",Xinspe); |
128 |
fhBookTree->SetBranchAddress("Yinspe",Yinspe); |
129 |
fhBookTree->SetBranchAddress("Zinspe",Zinspe); |
130 |
fhBookTree->SetBranchAddress("Xoutspe",Xoutspe); |
131 |
fhBookTree->SetBranchAddress("Youtspe",Youtspe); |
132 |
fhBookTree->SetBranchAddress("Zoutspe",Zoutspe); |
133 |
fhBookTree->SetBranchAddress("Xavspe",Xavspe); |
134 |
fhBookTree->SetBranchAddress("Yavspe",Yavspe); |
135 |
fhBookTree->SetBranchAddress("Zavspe",Zavspe); |
136 |
fhBookTree->SetBranchAddress("Erelspe",Erelspe); |
137 |
fhBookTree->SetBranchAddress("Pathspe",Pathspe); |
138 |
fhBookTree->SetBranchAddress("P0spe",P0spe); |
139 |
fhBookTree->SetBranchAddress("Nxmult",Nxmult); |
140 |
fhBookTree->SetBranchAddress("Nymult",Nymult); |
141 |
fhBookTree->SetBranchAddress("Nstrpx",&Nstrpx); |
142 |
fhBookTree->SetBranchAddress("Npstripx",Npstripx); |
143 |
fhBookTree->SetBranchAddress("Ntstripx",Ntstripx); |
144 |
fhBookTree->SetBranchAddress("Istripx",Istripx); |
145 |
fhBookTree->SetBranchAddress("Qstripx",Qstripx); |
146 |
fhBookTree->SetBranchAddress("Xstripx",Xstripx); |
147 |
fhBookTree->SetBranchAddress("Nstrpy",&Nstrpy); |
148 |
fhBookTree->SetBranchAddress("Npstripy",Npstripy); |
149 |
fhBookTree->SetBranchAddress("Ntstripy",Ntstripy); |
150 |
fhBookTree->SetBranchAddress("Istripy",Istripy); |
151 |
fhBookTree->SetBranchAddress("Qstripy",Qstripy); |
152 |
fhBookTree->SetBranchAddress("Ystripy",Ystripy); |
153 |
fhBookTree->SetBranchAddress("Nthcali",&Nthcali); |
154 |
fhBookTree->SetBranchAddress("Icaplane",Icaplane); |
155 |
fhBookTree->SetBranchAddress("Icastrip",Icastrip); |
156 |
fhBookTree->SetBranchAddress("Icamod",Icamod); |
157 |
fhBookTree->SetBranchAddress("Enestrip",Enestrip); |
158 |
fhBookTree->SetBranchAddress("Nthcal",&Nthcal); |
159 |
fhBookTree->SetBranchAddress("Icapl",Icapl); |
160 |
fhBookTree->SetBranchAddress("Icasi",Icasi); |
161 |
fhBookTree->SetBranchAddress("Icast",Icast); |
162 |
fhBookTree->SetBranchAddress("Xincal",Xincal); |
163 |
fhBookTree->SetBranchAddress("Yincal",Yincal); |
164 |
fhBookTree->SetBranchAddress("Zincal",Zincal); |
165 |
fhBookTree->SetBranchAddress("Erelcal",Erelcal); |
166 |
fhBookTree->SetBranchAddress("Nthnd",&Nthnd); |
167 |
fhBookTree->SetBranchAddress("Itubend",Itubend); |
168 |
fhBookTree->SetBranchAddress("Iparnd",Iparnd); |
169 |
fhBookTree->SetBranchAddress("Xinnd",Xinnd); |
170 |
fhBookTree->SetBranchAddress("Yinnd",Yinnd); |
171 |
fhBookTree->SetBranchAddress("Zinnd",Zinnd); |
172 |
fhBookTree->SetBranchAddress("Xoutnd",Xoutnd); |
173 |
fhBookTree->SetBranchAddress("Youtnd",Youtnd); |
174 |
fhBookTree->SetBranchAddress("Zoutnd",Zoutnd); |
175 |
fhBookTree->SetBranchAddress("Erelnd",Erelnd); |
176 |
fhBookTree->SetBranchAddress("Timend",Timend); |
177 |
fhBookTree->SetBranchAddress("Pathnd",Pathnd); |
178 |
fhBookTree->SetBranchAddress("P0nd",P0nd); |
179 |
fhBookTree->SetBranchAddress("Nthcard",&Nthcard); |
180 |
fhBookTree->SetBranchAddress("Iparcard",Iparcard); |
181 |
fhBookTree->SetBranchAddress("Icard",Icard); |
182 |
fhBookTree->SetBranchAddress("Xincard",Xincard); |
183 |
fhBookTree->SetBranchAddress("Yincard",Yincard); |
184 |
fhBookTree->SetBranchAddress("Zincard",Zincard); |
185 |
fhBookTree->SetBranchAddress("Xoutcard",Xoutcard); |
186 |
fhBookTree->SetBranchAddress("Youtcard",Youtcard); |
187 |
fhBookTree->SetBranchAddress("Zoutcard",Zoutcard); |
188 |
fhBookTree->SetBranchAddress("Erelcard",Erelcard); |
189 |
fhBookTree->SetBranchAddress("Timecard",Timecard); |
190 |
fhBookTree->SetBranchAddress("Pathcard",Pathcard); |
191 |
fhBookTree->SetBranchAddress("P0card",P0card); |
192 |
|
193 |
fhBookTree->SetBranchStatus("*",0); |
194 |
|
195 |
}; |
196 |
|
197 |
|
198 |
|
199 |
void Digitizer::Close(){ |
200 |
|
201 |
delete fhBookTree; |
202 |
|
203 |
}; |
204 |
|
205 |
|
206 |
|
207 |
|
208 |
void Digitizer::Loop() { |
209 |
// |
210 |
// opens the raw output file and loops over the events |
211 |
// |
212 |
fOutputfile.open(fFilename, ios::out | ios::binary); |
213 |
//fOutputfile.open(Form("Output%s",fFilename), ios::out | ios::binary); |
214 |
// |
215 |
// Load in memory and save at the beginning of file the calorimeter calibration |
216 |
// |
217 |
CaloLoadCalib(); |
218 |
DigitizeCALOCALIB(); |
219 |
|
220 |
// load, digitize and write tracker calibration |
221 |
LoadTrackCalib(); |
222 |
|
223 |
DigitizeTrackCalib(1); |
224 |
UInt_t length=fTracklength*2; |
225 |
DigitizePSCU(length,0x12); |
226 |
AddPadding(); |
227 |
WriteTrackCalib(); |
228 |
|
229 |
DigitizeTrackCalib(2); |
230 |
length=fTracklength*2; |
231 |
DigitizePSCU(length,0x13); |
232 |
AddPadding(); |
233 |
WriteTrackCalib(); |
234 |
|
235 |
LoadMipCor(); // some initialization of parameters -not used now- |
236 |
// end loading, digitizing and writing tracker calibration |
237 |
|
238 |
// |
239 |
// loops over the events |
240 |
// |
241 |
|
242 |
Int_t nentries = fhBookTree->GetEntriesFast(); |
243 |
Long64_t nbytes = 0; |
244 |
for (Int_t i=0; i<nentries;i++) { |
245 |
// |
246 |
nbytes += fhBookTree->GetEntry(i); |
247 |
// read detectors sequentially: |
248 |
// http://www.ts.infn.it/fileadmin/documents/physics/experiments/wizard/cpu/gen_arch/RM_Acquisition.pdf |
249 |
// on pamelatov: |
250 |
// /cvs/yoda/techmodel/physics/NeutronDetectorReader.cpp |
251 |
DigitizeTRIGGER(); |
252 |
DigitizeTOF(); |
253 |
DigitizeAC(); |
254 |
DigitizeCALO(); |
255 |
DigitizeTrack(); |
256 |
//DigitizeS4(); |
257 |
DigitizeND(); |
258 |
// |
259 |
// Create CPU header, we need packet type (0x10 = physics data) and packet length. |
260 |
// |
261 |
UInt_t length = (fCALOlength + fACbuffer + fTracklength)*2; |
262 |
DigitizePSCU(length,0x10); |
263 |
// |
264 |
// Add padding to 64 bits |
265 |
// |
266 |
AddPadding(); |
267 |
// |
268 |
if ( !i%100 ) std::cout << "writing event " << i << endl; |
269 |
WriteData(); |
270 |
}; |
271 |
|
272 |
fOutputfile.close(); |
273 |
std::cout << "files closed" << endl << flush; |
274 |
|
275 |
}; |
276 |
|
277 |
void Digitizer::AddPadding(){ |
278 |
// |
279 |
Float_t pd0 = (fLen+16)/64.; |
280 |
Float_t pd1 = pd0 - (Float_t)int(pd0); |
281 |
Float_t padfrac = 64. - pd1 * 64.; |
282 |
// |
283 |
UInt_t padbytes = (UInt_t)padfrac; |
284 |
if ( padbytes > 0 && padbytes < 64 ){ |
285 |
// |
286 |
// here the padding length |
287 |
// |
288 |
fPadding = padbytes+64; |
289 |
// |
290 |
// random padding bytes |
291 |
// |
292 |
for (Int_t ur=0; ur<32; ur++){ |
293 |
fDataPadding[ur] = (UShort_t)rand(); |
294 |
}; |
295 |
}; |
296 |
}; |
297 |
|
298 |
|
299 |
void Digitizer::DigitizePSCU(UInt_t length, UChar_t type) { |
300 |
// |
301 |
UChar_t buff[16]; |
302 |
// |
303 |
// CPU signature |
304 |
// |
305 |
buff[0] = 0xFA; |
306 |
buff[1] = 0xFE; |
307 |
buff[2] = 0xDE; |
308 |
// |
309 |
// packet type (twice) |
310 |
// |
311 |
buff[3] = type; |
312 |
buff[4] = type; |
313 |
// |
314 |
// counter |
315 |
// |
316 |
fCounter++; |
317 |
while ( fCounter > 16777215 ){ |
318 |
fCounter -= 16777215; |
319 |
}; |
320 |
// |
321 |
buff[5] = (UChar_t)(fCounter >> 16); |
322 |
buff[6] = (UChar_t)(fCounter >> 8); |
323 |
buff[7] = (UChar_t)fCounter; |
324 |
// |
325 |
// on board time |
326 |
// |
327 |
ULong64_t obt = fOBT + 30LL; |
328 |
// |
329 |
while ( obt > 4294967295LL ){ |
330 |
obt -= 4294967295LL; |
331 |
}; |
332 |
fOBT = (UInt_t)obt; |
333 |
// |
334 |
buff[8] = (UChar_t)(fOBT >> 24); |
335 |
buff[9] = (UChar_t)(fOBT >> 16); |
336 |
buff[10] = (UChar_t)(fOBT >> 8); |
337 |
buff[11] = (UChar_t)fOBT; |
338 |
// |
339 |
// Packet length |
340 |
// |
341 |
fLen = length; |
342 |
// |
343 |
buff[12] = (UChar_t)(fLen >> 16); |
344 |
buff[13] = (UChar_t)(fLen >> 8); |
345 |
buff[14] = (UChar_t)fLen; |
346 |
// |
347 |
// CPU header CRC |
348 |
// |
349 |
buff[15] = (BYTE)CM_Compute_CRC16((UINT16)0, (BYTE*)&buff, (UINT32)15); |
350 |
// |
351 |
memcpy(fDataPSCU,buff,16*sizeof(UChar_t)); |
352 |
// |
353 |
}; |
354 |
|
355 |
void Digitizer::ClearCaloCalib(Int_t s){ |
356 |
// |
357 |
fcstwerr[s] = 0; |
358 |
fcperror[s] = 0.; |
359 |
for ( Int_t d=0 ; d<11 ;d++ ){ |
360 |
Int_t pre = -1; |
361 |
for ( Int_t j=0; j<96 ;j++){ |
362 |
if ( j%16 == 0 ) pre++; |
363 |
fcalped[s][d][j] = 0.; |
364 |
fcstwerr[s] = 0.; |
365 |
fcperror[s] = 0.; |
366 |
fcalgood[s][d][j] = 0.; |
367 |
fcalthr[s][d][pre] = 0.; |
368 |
fcalrms[s][d][j] = 0.; |
369 |
fcalbase[s][d][pre] = 0.; |
370 |
fcalvar[s][d][pre] = 0.; |
371 |
}; |
372 |
}; |
373 |
return; |
374 |
} |
375 |
|
376 |
Int_t Digitizer::CaloLoadCalib(Int_t s,TString fcalname, UInt_t calibno){ |
377 |
// |
378 |
// |
379 |
UInt_t e = 0; |
380 |
if ( s == 0 ) e = 0; |
381 |
if ( s == 1 ) e = 2; |
382 |
if ( s == 2 ) e = 3; |
383 |
if ( s == 3 ) e = 1; |
384 |
// |
385 |
ifstream myfile; |
386 |
myfile.open(fcalname.Data()); |
387 |
if ( !myfile ){ |
388 |
return(-107); |
389 |
}; |
390 |
myfile.close(); |
391 |
// |
392 |
TFile *File = new TFile(fcalname.Data()); |
393 |
if ( !File ) return(-108); |
394 |
TTree *tr = (TTree*)File->Get("CalibCalPed"); |
395 |
if ( !tr ) return(-109); |
396 |
// |
397 |
TBranch *calo = tr->GetBranch("CalibCalPed"); |
398 |
// |
399 |
pamela::CalibCalPedEvent *ce = 0; |
400 |
tr->SetBranchAddress("CalibCalPed", &ce); |
401 |
// |
402 |
Long64_t ncalibs = calo->GetEntries(); |
403 |
// |
404 |
if ( !ncalibs ) return(-110); |
405 |
// |
406 |
calo->GetEntry(calibno); |
407 |
// |
408 |
if (ce->cstwerr[s] != 0 && ce->cperror[s] == 0 ) { |
409 |
fcstwerr[s] = ce->cstwerr[s]; |
410 |
fcperror[s] = ce->cperror[s]; |
411 |
for ( Int_t d=0 ; d<11 ;d++ ){ |
412 |
Int_t pre = -1; |
413 |
for ( Int_t j=0; j<96 ;j++){ |
414 |
if ( j%16 == 0 ) pre++; |
415 |
fcalped[s][d][j] = ce->calped[e][d][j]; |
416 |
fcalgood[s][d][j] = ce->calgood[e][d][j]; |
417 |
fcalthr[s][d][pre] = ce->calthr[e][d][pre]; |
418 |
fcalrms[s][d][j] = ce->calrms[e][d][j]; |
419 |
fcalbase[s][d][pre] = ce->calbase[e][d][pre]; |
420 |
fcalvar[s][d][pre] = ce->calvar[e][d][pre]; |
421 |
}; |
422 |
}; |
423 |
} else { |
424 |
printf(" CALORIMETER - ERROR: problems finding a good calibration in this file! \n\n "); |
425 |
File->Close(); |
426 |
return(-111); |
427 |
}; |
428 |
File->Close(); |
429 |
return(0); |
430 |
} |
431 |
|
432 |
|
433 |
void Digitizer::DigitizeCALOCALIB() { |
434 |
// |
435 |
// Header of the four sections |
436 |
// |
437 |
fSecCalo[0] = 0xAA00; // XE |
438 |
fSecCalo[1] = 0xB100; // XO |
439 |
fSecCalo[2] = 0xB600; // YE |
440 |
fSecCalo[3] = 0xAD00; // YO |
441 |
// |
442 |
// length of the data is 0x1215 |
443 |
// |
444 |
fSecCALOLength[0] = 0x1215; // XE |
445 |
fSecCALOLength[1] = 0x1215; // XO |
446 |
fSecCALOLength[2] = 0x1215; // YE |
447 |
fSecCALOLength[3] = 0x1215; // YO |
448 |
// |
449 |
Int_t chksum = 0; |
450 |
UInt_t tstrip = 0; |
451 |
UInt_t fSecPointer = 0; |
452 |
// |
453 |
for (Int_t sec=0; sec < 4; sec++){ |
454 |
// |
455 |
// sec = 0 -> XE 1 -> XO 2-> YE 3 -> YO |
456 |
// |
457 |
fCALOlength = 0; |
458 |
memset(fDataCALO,0,sizeof(UShort_t)*fCALObuffer); |
459 |
fSecPointer = fCALOlength; |
460 |
// |
461 |
// First of all we have section header and packet length |
462 |
// |
463 |
fDataCALO[fCALOlength] = fSecCalo[sec]; |
464 |
fCALOlength++; |
465 |
fDataCALO[fCALOlength] = fSecCALOLength[sec]; |
466 |
fCALOlength++; |
467 |
// |
468 |
// Section XO is read in the opposite direction respect to the others |
469 |
// |
470 |
chksum = 0; |
471 |
// |
472 |
for (Int_t plane=0; plane < 11; plane++){ |
473 |
// |
474 |
if ( sec == 1 ) tstrip = fCALOlength + 96*2; |
475 |
// |
476 |
for (Int_t strip=0; strip < 96; strip++){ |
477 |
// |
478 |
chksum += (Int_t)fcalped[sec][plane][strip]; |
479 |
// |
480 |
// save value |
481 |
// |
482 |
if ( sec == 1 ){ |
483 |
tstrip -= 2; |
484 |
fDataCALO[tstrip] = (Int_t)fcalped[sec][plane][strip]; |
485 |
fDataCALO[tstrip+1] = (Int_t)fcalgood[sec][plane][strip]; |
486 |
} else { |
487 |
fDataCALO[fCALOlength] = (Int_t)fcalped[sec][plane][strip]; |
488 |
fDataCALO[fCALOlength+1] = (Int_t)fcalgood[sec][plane][strip]; |
489 |
}; |
490 |
fCALOlength +=2; |
491 |
}; |
492 |
// |
493 |
}; |
494 |
// |
495 |
fDataCALO[fCALOlength] = (UShort_t)chksum; |
496 |
fCALOlength++; |
497 |
fDataCALO[fCALOlength] = 0; |
498 |
fCALOlength++; |
499 |
fDataCALO[fCALOlength] = (UShort_t)((Int_t)(chksum >> 16)); |
500 |
fCALOlength++; |
501 |
// |
502 |
// Section XO is read in the opposite direction respect to the others |
503 |
// |
504 |
chksum = 0; |
505 |
// |
506 |
for (Int_t plane=0; plane < 11; plane++){ |
507 |
// |
508 |
if ( sec == 1 ) tstrip = fCALOlength+6*2; |
509 |
// |
510 |
for (Int_t strip=0; strip < 6; strip++){ |
511 |
// |
512 |
chksum += (Int_t)fcalthr[sec][plane][strip]; |
513 |
// |
514 |
// save value |
515 |
// |
516 |
if ( sec == 1 ){ |
517 |
tstrip -= 2; |
518 |
fDataCALO[tstrip] = 0; |
519 |
fDataCALO[tstrip+1] = (Int_t)fcalthr[sec][plane][strip]; |
520 |
} else { |
521 |
fDataCALO[fCALOlength] = 0; |
522 |
fDataCALO[fCALOlength+1] = (Int_t)fcalthr[sec][plane][strip]; |
523 |
}; |
524 |
fCALOlength +=2; |
525 |
}; |
526 |
// |
527 |
}; |
528 |
// |
529 |
fDataCALO[fCALOlength] = 0; |
530 |
fCALOlength++; |
531 |
fDataCALO[fCALOlength] = (UShort_t)chksum; |
532 |
fCALOlength++; |
533 |
fDataCALO[fCALOlength] = 0; |
534 |
fCALOlength++; |
535 |
fDataCALO[fCALOlength] = (UShort_t)((Int_t)(chksum >> 16)); |
536 |
fCALOlength++; |
537 |
// |
538 |
// Section XO is read in the opposite direction respect to the others |
539 |
// |
540 |
for (Int_t plane=0; plane < 11; plane++){ |
541 |
// |
542 |
if ( sec == 1 ) tstrip = fCALOlength+96*2; |
543 |
// |
544 |
for (Int_t strip=0; strip < 96; strip++){ |
545 |
// |
546 |
// save value |
547 |
// |
548 |
if ( sec == 1 ){ |
549 |
tstrip -= 2; |
550 |
fDataCALO[tstrip] = 0; |
551 |
fDataCALO[tstrip+1] = (Int_t)fcalrms[sec][plane][strip]; |
552 |
} else { |
553 |
fDataCALO[fCALOlength] = 0; |
554 |
fDataCALO[fCALOlength+1] = (Int_t)fcalrms[sec][plane][strip]; |
555 |
}; |
556 |
fCALOlength += 2; |
557 |
}; |
558 |
// |
559 |
}; |
560 |
// |
561 |
// Section XO is read in the opposite direction respect to the others |
562 |
// |
563 |
for (Int_t plane=0; plane < 11; plane++){ |
564 |
// |
565 |
if ( sec == 1 ) tstrip = fCALOlength+6*4; |
566 |
// |
567 |
for (Int_t strip=0; strip < 6; strip++){ |
568 |
// |
569 |
// save value |
570 |
// |
571 |
if ( sec == 1 ){ |
572 |
tstrip -= 4; |
573 |
fDataCALO[tstrip] = 0; |
574 |
fDataCALO[tstrip+1] = (Int_t)fcalbase[sec][plane][strip]; |
575 |
fDataCALO[tstrip+2] = 0; |
576 |
fDataCALO[tstrip+3] = (Int_t)fcalvar[sec][plane][strip]; |
577 |
} else { |
578 |
fDataCALO[fCALOlength] = 0; |
579 |
fDataCALO[fCALOlength+1] = (Int_t)fcalbase[sec][plane][strip]; |
580 |
fDataCALO[fCALOlength+2] = 0; |
581 |
fDataCALO[fCALOlength+3] = (Int_t)fcalvar[sec][plane][strip]; |
582 |
}; |
583 |
fCALOlength +=4; |
584 |
}; |
585 |
// |
586 |
}; |
587 |
// |
588 |
// |
589 |
// here we calculate and save the CRC |
590 |
// |
591 |
fDataCALO[fCALOlength] = 0; |
592 |
fCALOlength++; |
593 |
Short_t CRC = 0; |
594 |
for (UInt_t i=0; i<(fCALOlength-fSecPointer); i++){ |
595 |
CRC=crc(CRC,fDataCALO[i+fSecPointer]); |
596 |
}; |
597 |
fDataCALO[fCALOlength] = (UShort_t)CRC; |
598 |
fCALOlength++; |
599 |
// |
600 |
UInt_t length=fCALOlength*2; |
601 |
DigitizePSCU(length,0x18); |
602 |
// |
603 |
// Add padding to 64 bits |
604 |
// |
605 |
AddPadding(); |
606 |
// |
607 |
fOutputfile.write(reinterpret_cast<char*>(fDataPSCU),sizeof(UShort_t)*fPSCUbuffer); |
608 |
UShort_t temp[1000000]; |
609 |
memset(temp,0,sizeof(UShort_t)*1000000); |
610 |
swab(fDataCALO,temp,sizeof(UShort_t)*fCALOlength); // WE MUST SWAP THE BYTES!!! |
611 |
fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fCALOlength); |
612 |
// |
613 |
// padding to 64 bytes |
614 |
// |
615 |
if ( fPadding ){ |
616 |
fOutputfile.write(reinterpret_cast<char*>(fDataPadding),sizeof(UChar_t)*fPadding); |
617 |
}; |
618 |
// |
619 |
// |
620 |
}; |
621 |
// |
622 |
}; |
623 |
|
624 |
void Digitizer::CaloLoadCalib() { |
625 |
// |
626 |
fGivenCaloCalib = 0; // ####@@@@ should be given as input par @@@@#### |
627 |
// |
628 |
// first of all load the MIP to ADC conversion values |
629 |
// |
630 |
stringstream calfile; |
631 |
Int_t error = 0; |
632 |
GL_PARAM *glparam = new GL_PARAM(); |
633 |
// |
634 |
// determine where I can find calorimeter ADC to MIP conversion file |
635 |
// |
636 |
error = 0; |
637 |
error = glparam->Query_GL_PARAM(3,101,fDbc); |
638 |
// |
639 |
calfile.str(""); |
640 |
calfile << glparam->PATH.Data() << "/"; |
641 |
calfile << glparam->NAME.Data(); |
642 |
// |
643 |
printf("\n Using Calorimeter ADC to MIP conversion file: \n %s \n",calfile.str().c_str()); |
644 |
FILE *f; |
645 |
f = fopen(calfile.str().c_str(),"rb"); |
646 |
// |
647 |
memset(fCalomip,0,4224*sizeof(fCalomip[0][0][0])); |
648 |
// |
649 |
for (Int_t m = 0; m < 2 ; m++ ){ |
650 |
for (Int_t k = 0; k < 22; k++ ){ |
651 |
for (Int_t l = 0; l < 96; l++ ){ |
652 |
fread(&fCalomip[m][k][l],sizeof(fCalomip[m][k][l]),1,f); |
653 |
}; |
654 |
}; |
655 |
}; |
656 |
fclose(f); |
657 |
// |
658 |
// determine which calibration has to be used and load it for each section |
659 |
// |
660 |
GL_CALO_CALIB *glcalo = new GL_CALO_CALIB(); |
661 |
GL_ROOT *glroot = new GL_ROOT(); |
662 |
TString fcalname; |
663 |
UInt_t idcalib; |
664 |
UInt_t calibno; |
665 |
UInt_t utime = 0; |
666 |
// |
667 |
for (UInt_t s=0; s<4; s++){ |
668 |
// |
669 |
// clear calo calib variables for section s |
670 |
// |
671 |
ClearCaloCalib(s); |
672 |
// |
673 |
if ( fGivenCaloCalib ){ |
674 |
// |
675 |
// a time has been given as input on the command line so retrieve the calibration that preceed that time |
676 |
// |
677 |
glcalo->Query_GL_CALO_CALIB(fGivenCaloCalib,utime,s,fDbc); |
678 |
// |
679 |
calibno = glcalo->EV_ROOT; |
680 |
idcalib = glcalo->ID_ROOT_L0; |
681 |
// |
682 |
// determine path and name and entry of the calibration file |
683 |
// |
684 |
printf("\n"); |
685 |
printf(" ** SECTION %i **\n",s); |
686 |
// |
687 |
glroot->Query_GL_ROOT(idcalib,fDbc); |
688 |
// |
689 |
stringstream name; |
690 |
name.str(""); |
691 |
name << glroot->PATH.Data() << "/"; |
692 |
name << glroot->NAME.Data(); |
693 |
// |
694 |
fcalname = (TString)name.str().c_str(); |
695 |
// |
696 |
printf("\n Section %i : using file %s calibration at entry %i: \n",s,fcalname.Data(),calibno); |
697 |
// |
698 |
} else { |
699 |
error = 0; |
700 |
error = glparam->Query_GL_PARAM(1,104,fDbc); |
701 |
// |
702 |
calfile.str(""); |
703 |
calfile << glparam->PATH.Data() << "/"; |
704 |
calfile << glparam->NAME.Data(); |
705 |
// |
706 |
printf("\n Section %i : using default calorimeter calibration: \n %s \n",s,calfile.str().c_str()); |
707 |
// |
708 |
fcalname = (TString)calfile.str().c_str(); |
709 |
calibno = s; |
710 |
// |
711 |
}; |
712 |
// |
713 |
// load calibration variables in memory |
714 |
// |
715 |
CaloLoadCalib(s,fcalname,calibno); |
716 |
// |
717 |
}; |
718 |
// |
719 |
// at this point we have in memory the calorimeter calibration and we can save it to disk in the correct format and use it to digitize the data |
720 |
// |
721 |
delete glparam; |
722 |
delete glcalo; |
723 |
delete glroot; |
724 |
}; |
725 |
|
726 |
void Digitizer::DigitizeCALO() { |
727 |
// |
728 |
fModCalo = 0; // 0 is RAW, 1 is COMPRESS, 2 is FULL ####@@@@ should be given as input par @@@@#### |
729 |
// |
730 |
// |
731 |
// |
732 |
fCALOlength = 0; // reset total dimension of calo data |
733 |
// |
734 |
// gpamela variables to be used |
735 |
// |
736 |
fhBookTree->SetBranchStatus("Nthcali",1); |
737 |
fhBookTree->SetBranchStatus("Icaplane",1); |
738 |
fhBookTree->SetBranchStatus("Icastrip",1); |
739 |
fhBookTree->SetBranchStatus("Icamod",1); |
740 |
fhBookTree->SetBranchStatus("Enestrip",1); |
741 |
// |
742 |
// call different routines depending on the acq mode you want to simulate |
743 |
// |
744 |
switch ( fModCalo ){ |
745 |
case 0: |
746 |
this->DigitizeCALORAW(); |
747 |
break; |
748 |
case 1: |
749 |
this->DigitizeCALOCOMPRESS(); |
750 |
break; |
751 |
case 2: |
752 |
this->DigitizeCALOFULL(); |
753 |
break; |
754 |
}; |
755 |
// |
756 |
}; |
757 |
|
758 |
Float_t Digitizer::GetCALOen(Int_t sec, Int_t plane, Int_t strip){ |
759 |
// |
760 |
// determine plane and strip |
761 |
// |
762 |
Int_t mplane = 0; |
763 |
// |
764 |
// wrong! |
765 |
// |
766 |
// if ( sec == 0 || sec == 3 ) mplane = (plane * 4) + sec + 1; |
767 |
// if ( sec == 1 ) mplane = (plane * 4) + 2 + 1; |
768 |
// if ( sec == 2 ) mplane = (plane * 4) + 1 + 1; |
769 |
// |
770 |
if ( sec == 0 ) mplane = plane * 4 + 1; // it must be 0, 4, 8, ... (+1) from plane = 0, 11 |
771 |
if ( sec == 1 ) mplane = plane * 4 + 2 + 1; // it must be 2, 6, 10, ... (+1) from plane = 0, 11 |
772 |
if ( sec == 2 ) mplane = plane * 4 + 3 + 1; // it must be 3, 7, 11, ... (+1) from plane = 0, 11 |
773 |
if ( sec == 3 ) mplane = plane * 4 + 1 + 1; // it must be 1, 5, 9, ... (+1) from plane = 0, 11 |
774 |
// |
775 |
Int_t mstrip = strip + 1; |
776 |
// |
777 |
// search energy release in gpamela output |
778 |
// |
779 |
for (Int_t i=0; i<Nthcali;i++){ |
780 |
if ( Icaplane[i] == mplane && Icastrip[i] == mstrip ){ |
781 |
return (Enestrip[i]); |
782 |
}; |
783 |
}; |
784 |
// |
785 |
// if not found it means no energy release so return 0. |
786 |
// |
787 |
return(0.); |
788 |
}; |
789 |
|
790 |
void Digitizer::DigitizeCALORAW() { |
791 |
// |
792 |
// some variables |
793 |
// |
794 |
Float_t ens = 0.; |
795 |
UInt_t adcsig = 0; |
796 |
UInt_t adcbase = 0; |
797 |
UInt_t adc = 0; |
798 |
Int_t pre = 0; |
799 |
UInt_t l = 0; |
800 |
UInt_t lpl = 0; |
801 |
UInt_t tstrip = 0; |
802 |
UInt_t fSecPointer = 0; |
803 |
Double_t pedenoise; |
804 |
Float_t rms = 0.; |
805 |
Float_t pedestal = 0.; |
806 |
// |
807 |
// clean the data structure |
808 |
// |
809 |
memset(fDataCALO,0,sizeof(UShort_t)*fCALObuffer); |
810 |
// |
811 |
// Header of the four sections |
812 |
// |
813 |
fSecCalo[0] = 0xEA08; // XE |
814 |
fSecCalo[1] = 0xF108; // XO |
815 |
fSecCalo[2] = 0xF608; // YE |
816 |
fSecCalo[3] = 0xED08; // YO |
817 |
// |
818 |
// length of the data is 0x0428 in RAW mode |
819 |
// |
820 |
fSecCALOLength[0] = 0x0428; // XE |
821 |
fSecCALOLength[1] = 0x0428; // XO |
822 |
fSecCALOLength[2] = 0x0428; // YE |
823 |
fSecCALOLength[3] = 0x0428; // YO |
824 |
// |
825 |
// let's start |
826 |
// |
827 |
fCALOlength = 0; |
828 |
// |
829 |
for (Int_t sec=0; sec < 4; sec++){ |
830 |
// |
831 |
// sec = 0 -> XE 1 -> XO 2-> YE 3 -> YO |
832 |
// |
833 |
l = 0; // XE and XO are Y planes |
834 |
if ( sec < 2 ) l = 1; // while YE and YO are X planes |
835 |
// |
836 |
fSecPointer = fCALOlength; |
837 |
// |
838 |
// First of all we have section header and packet length |
839 |
// |
840 |
fDataCALO[fCALOlength] = fSecCalo[sec]; |
841 |
fCALOlength++; |
842 |
fDataCALO[fCALOlength] = fSecCALOLength[sec]; |
843 |
fCALOlength++; |
844 |
// |
845 |
// selftrigger coincidences - in the future we should add here some code to simulate timing response of pre-amplifiers |
846 |
// |
847 |
for (Int_t autoplane=0; autoplane < 7; autoplane++){ |
848 |
fDataCALO[fCALOlength] = 0x0000; |
849 |
fCALOlength++; |
850 |
}; |
851 |
// |
852 |
// |
853 |
// here comes data |
854 |
// |
855 |
// |
856 |
// Section XO is read in the opposite direction respect to the others |
857 |
// |
858 |
if ( sec == 1 ){ |
859 |
tstrip = 96*11 + fCALOlength; |
860 |
} else { |
861 |
tstrip = 0; |
862 |
}; |
863 |
// |
864 |
pre = -1; |
865 |
// |
866 |
for (Int_t strip=0; strip < 96; strip++){ |
867 |
// |
868 |
// which is the pre for this strip? |
869 |
// |
870 |
if (strip%16 == 0) { |
871 |
pre++; |
872 |
}; |
873 |
// |
874 |
if ( sec == 1 ) tstrip -= 11; |
875 |
// |
876 |
for (Int_t plane=0; plane < 11; plane++){ |
877 |
// |
878 |
// here is wrong!!!! |
879 |
// |
880 |
// |
881 |
// if ( plane%2 == 0 && sec%2 != 0){ |
882 |
// lpl = plane*2; |
883 |
// } else { |
884 |
// lpl = (plane*2) + 1; |
885 |
// }; |
886 |
// |
887 |
if ( sec == 0 || sec == 3 ) lpl = plane * 2; |
888 |
if ( sec == 1 || sec == 2 ) lpl = (plane * 2) + 1; |
889 |
// |
890 |
// get the energy in GeV from the simulation for that strip |
891 |
// |
892 |
ens = this->GetCALOen(sec,plane,strip); |
893 |
// |
894 |
// convert it into ADC channels |
895 |
// |
896 |
adcsig = int(ens*fCalomip[l][lpl][strip]/fCALOGeV2MIPratio); |
897 |
// |
898 |
// sum baselines |
899 |
// |
900 |
adcbase = (UInt_t)fcalbase[sec][plane][pre]; |
901 |
// |
902 |
// add noise and pedestals |
903 |
// |
904 |
pedestal = fcalped[sec][plane][strip]; |
905 |
rms = fcalrms[sec][plane][strip]/4.; |
906 |
// |
907 |
// Add random gaussian noise of RMS rms and Centered in the pedestal |
908 |
// |
909 |
pedenoise = gRandom->Gaus((Double_t)pedestal,(Double_t)rms); |
910 |
// |
911 |
// Sum all contribution |
912 |
// |
913 |
adc = adcsig + adcbase + (Int_t)round(pedenoise); |
914 |
// |
915 |
// Signal saturation |
916 |
// |
917 |
if ( adc > 0x7FFF ) adc = 0x7FFF; |
918 |
// |
919 |
// save value |
920 |
// |
921 |
if ( sec == 1 ){ |
922 |
fDataCALO[tstrip] = adc; |
923 |
tstrip++; |
924 |
} else { |
925 |
fDataCALO[fCALOlength] = adc; |
926 |
}; |
927 |
fCALOlength++; |
928 |
// |
929 |
}; |
930 |
// |
931 |
if ( sec == 1 ) tstrip -= 11; |
932 |
// |
933 |
}; |
934 |
// |
935 |
// here we calculate and save the CRC |
936 |
// |
937 |
Short_t CRC = 0; |
938 |
for (UInt_t i=0; i<(fCALOlength-fSecPointer); i++){ |
939 |
CRC=crc(CRC,fDataCALO[i+fSecPointer]); |
940 |
}; |
941 |
fDataCALO[fCALOlength] = (UShort_t)CRC; |
942 |
fCALOlength++; |
943 |
// |
944 |
}; |
945 |
// |
946 |
// for (Int_t i=0; i<fCALOlength; i++){ |
947 |
// printf(" WORD %i DIGIT %0x \n",i,fDataCALO[i]); |
948 |
// }; |
949 |
// |
950 |
}; |
951 |
|
952 |
void Digitizer::DigitizeCALOCOMPRESS() { |
953 |
// |
954 |
printf(" COMPRESS MODE STILL NOT IMPLEMENTED! \n"); |
955 |
// |
956 |
this->DigitizeCALORAW(); |
957 |
return; |
958 |
// |
959 |
// |
960 |
// |
961 |
fSecCalo[0] = 0xEA00; |
962 |
fSecCalo[1] = 0xF100; |
963 |
fSecCalo[2] = 0xF600; |
964 |
fSecCalo[3] = 0xED00; |
965 |
// |
966 |
// length of the data in DSP mode must be calculated on fly during digitization |
967 |
// |
968 |
memset(fSecCALOLength,0x0,4*sizeof(UShort_t)); |
969 |
// |
970 |
// here comes raw data |
971 |
// |
972 |
Int_t en = 0; |
973 |
// |
974 |
for (Int_t sec=0; sec < 4; sec++){ |
975 |
fDataCALO[en] = fSecCalo[sec]; |
976 |
en++; |
977 |
fDataCALO[en] = fSecCALOLength[sec]; |
978 |
en++; |
979 |
for (Int_t plane=0; plane < 11; plane++){ |
980 |
for (Int_t strip=0; strip < 11; strip++){ |
981 |
fDataCALO[en] = 0x0; |
982 |
en++; |
983 |
}; |
984 |
}; |
985 |
}; |
986 |
// |
987 |
}; |
988 |
|
989 |
void Digitizer::DigitizeCALOFULL() { |
990 |
// |
991 |
printf(" FULL MODE STILL NOT IMPLEMENTED! \n"); |
992 |
// |
993 |
this->DigitizeCALORAW(); |
994 |
return; |
995 |
// |
996 |
fSecCalo[0] = 0xEA00; |
997 |
fSecCalo[1] = 0xF100; |
998 |
fSecCalo[2] = 0xF600; |
999 |
fSecCalo[3] = 0xED00; |
1000 |
// |
1001 |
// length of the data in DSP mode must be calculated on fly during digitization |
1002 |
// |
1003 |
memset(fSecCALOLength,0x0,4*sizeof(UShort_t)); |
1004 |
// |
1005 |
// here comes raw data |
1006 |
// |
1007 |
Int_t en = 0; |
1008 |
// |
1009 |
for (Int_t sec=0; sec < 4; sec++){ |
1010 |
fDataCALO[en] = fSecCalo[sec]; |
1011 |
en++; |
1012 |
fDataCALO[en] = fSecCALOLength[sec]; |
1013 |
en++; |
1014 |
for (Int_t plane=0; plane < 11; plane++){ |
1015 |
for (Int_t strip=0; strip < 11; strip++){ |
1016 |
fDataCALO[en] = 0x0; |
1017 |
en++; |
1018 |
}; |
1019 |
}; |
1020 |
}; |
1021 |
// |
1022 |
}; |
1023 |
|
1024 |
void Digitizer::DigitizeTRIGGER() { |
1025 |
//fDataTrigger: 153 bytes |
1026 |
for (Int_t j=0; j < 153; j++) |
1027 |
fDataTrigger[0]=0x00; |
1028 |
}; |
1029 |
|
1030 |
Int_t Digitizer::DigitizeTOF() { |
1031 |
//fDataTof: 12 x 23 bytes (=276 bytes) |
1032 |
UChar_t *pTof=fDataTof; |
1033 |
|
1034 |
// --- activate branches: |
1035 |
fhBookTree->SetBranchStatus("Nthtof",1); |
1036 |
fhBookTree->SetBranchStatus("Ipltof",1); |
1037 |
fhBookTree->SetBranchStatus("Ipaddle",1); |
1038 |
fhBookTree->SetBranchStatus("Xintof",1); |
1039 |
fhBookTree->SetBranchStatus("Yintof",1); |
1040 |
fhBookTree->SetBranchStatus("Xouttof",1); |
1041 |
fhBookTree->SetBranchStatus("Youttof",1); |
1042 |
fhBookTree->SetBranchStatus("Ereltof",1); |
1043 |
fhBookTree->SetBranchStatus("Timetof",1); |
1044 |
// not yet used: Zintof, Xouttof, Youttof, Zouttof |
1045 |
|
1046 |
// ------ evaluate energy in each pmt: ------ |
1047 |
// strip geometry (lenght/width) |
1048 |
Float_t dimel[6] = {33.0, 40.8 ,18.0, 15.0, 15.0, 18.0}; |
1049 |
Float_t dimes[6] = {5.1, 5.5, 7.5, 9.0, 6.0, 5.0}; |
1050 |
|
1051 |
// S11 8 paddles 33.0 x 5.1 cm |
1052 |
// S12 6 paddles 40.8 x 5.5 cm |
1053 |
// S21 2 paddles 18.0 x 7.5 cm |
1054 |
// S22 2 paddles 15.0 x 9.0 cm |
1055 |
// S31 3 paddles 15.0 x 6.0 cm |
1056 |
// S32 3 paddles 18.0 x 5.0 cm |
1057 |
|
1058 |
// distance from the interaction point to the pmts (right,left) |
1059 |
Float_t xpath[2]={0., 0.}; /*path(cm) in X per S12,S21,S32 verso il pmt DX o SX*/ |
1060 |
Float_t ypath[2]={0., 0.}; /*path(cm) in Y per S11,S22,S31 verso il pmt DX o SX*/ |
1061 |
Float_t FGeo[2]={0., 0.}; /* fattore geometrico */ |
1062 |
|
1063 |
const Float_t Pho_keV = 10.; // photons per keV in scintillator |
1064 |
const Float_t echarge = 1.6e-19; // carica dell'elettrone |
1065 |
Float_t Npho=0.; |
1066 |
Float_t QevePmt_pC[48]; |
1067 |
Float_t QhitPad_pC[2]={0., 0.}; |
1068 |
Float_t QhitPmt_pC[2]={0., 0.}; |
1069 |
Float_t pmGain = 3.5e6; /* Gain: per il momento uguale per tutti */ |
1070 |
Float_t effi=0.21; /* Efficienza di fotocatodo */ |
1071 |
Float_t ADC_pC=1.666667; // ADC_ch/pC conversion = 0.6 pC/channel (+30 di offset) |
1072 |
Float_t ADCoffset=30.; |
1073 |
Int_t ADClast=4095; // no signal --> ADC ch=4095 |
1074 |
Int_t ADCtof[48]; |
1075 |
//Float_t ADCsat=3100; ci pensiamo in futuro ! |
1076 |
//Float_t pCsat=2500; |
1077 |
for(Int_t i=0; i<48; i++){ |
1078 |
QevePmt_pC[i] = 0; |
1079 |
ADCtof[i]=0; |
1080 |
} |
1081 |
|
1082 |
// ------ read calibration file (get A1, A2, lambda1, lambda2) |
1083 |
ifstream fileTriggerCalib; |
1084 |
TString ftrigname="TrigCalibParam.txt"; |
1085 |
fileTriggerCalib.open(ftrigname.Data()); |
1086 |
if ( !fileTriggerCalib ) { |
1087 |
printf("debug: no trigger calib file!\n"); |
1088 |
return(-117); //check output! |
1089 |
}; |
1090 |
Float_t atte1[48],atte2[48],lambda1[48],lambda2[48]; |
1091 |
Int_t temp=0; |
1092 |
for(Int_t i=0; i<48; i++){ |
1093 |
fileTriggerCalib >> temp; |
1094 |
fileTriggerCalib >> atte1[i]; |
1095 |
fileTriggerCalib >> atte2[i]; |
1096 |
fileTriggerCalib >> lambda1[i]; |
1097 |
fileTriggerCalib >> lambda2[i]; |
1098 |
fileTriggerCalib >> temp; |
1099 |
} |
1100 |
fileTriggerCalib.close(); |
1101 |
|
1102 |
// Read from file the 48*4 values of the attenuation fit function |
1103 |
// NB: lambda<0; x,y defined in gpamela (=0 in the centre of the cavity) |
1104 |
// Qhitpmt_pC = atte1 * exp(x/lambda1) + atte2 * exp(x/lambda2) |
1105 |
|
1106 |
// fine lettura dal file */ |
1107 |
|
1108 |
//const Int_t nmax=??; = Nthtof |
1109 |
Int_t nh, ip, ipad, ipmt; |
1110 |
Int_t pmtleft=0, pmtright=0; |
1111 |
Int_t *pl, *pr; |
1112 |
pl = &pmtleft; |
1113 |
pr = &pmtright; |
1114 |
|
1115 |
/* ********************************** inizio loop sugli hit */ |
1116 |
|
1117 |
for(Int_t nh=0; nh<Nthtof; nh++){ |
1118 |
|
1119 |
for(Int_t j=0; j<2; j++) { // already done!! remove??? |
1120 |
xpath[j]=0.; |
1121 |
ypath[j]=0.; |
1122 |
FGeo[j]=0.; |
1123 |
} |
1124 |
|
1125 |
// ridefiniz. piano e pad per i vettori in C |
1126 |
ip = Ipltof[nh]-1; |
1127 |
ipad = Ipaddle[nh]-1; |
1128 |
pmtleft=0; |
1129 |
pmtright=0; |
1130 |
|
1131 |
//Paddle2Pmt((Int_t)ip, (Int_t) ipad, (Int_t*) &pmtleft, (Int_t*) &pmtright); |
1132 |
Paddle2Pmt(ip, ipad, &pmtleft, &pmtright); |
1133 |
//Paddle2Pmt(ip, ipad, pl, pr); |
1134 |
|
1135 |
// per avere anche la corrispondenza pmt --> half board e canale |
1136 |
// metodo GetPMTIndex(Int_t ipmt, Int_t &hb, Int_t &ch) // non lo usiamo x ora |
1137 |
|
1138 |
/*calcola la pos media e il path all'interno della paddle */ |
1139 |
|
1140 |
Float_t tpos=0.; |
1141 |
Float_t path[2] = {0., 0.}; |
1142 |
//--- Strip in Y = S11,S22,S31 ------ |
1143 |
if(ip==0 || ip==3 || ip==4) |
1144 |
tpos = (Yintof[nh]+Youttof[nh])/2.; |
1145 |
else |
1146 |
if(ip==1 || ip==2 || ip==5) //--- Strip in X per S12,S21,S32 |
1147 |
tpos = (Xintof[nh]+Xouttof[nh])/2.; |
1148 |
else if (ip!=6) |
1149 |
printf("*** Warning: this option should never occur! (ip=%2i, nh=%2i)\n",ip,nh); |
1150 |
path[0]= tpos + dimel[ip]/2.; |
1151 |
path[1]= dimel[ip]/2.- tpos; |
1152 |
|
1153 |
// cout <<"Strip N. ="<< ipaddle <<" piano n.= "<< iplane <<" POSIZ = "<< tpos <<"\n"; |
1154 |
|
1155 |
/* per il momento metto un fattore geometrico costante*/ |
1156 |
FGeo[0] =0.5; |
1157 |
FGeo[1] =0.5; |
1158 |
// FGeo[1] = atan(path[1]/dimes[ip])/6.28318; // frazione fotoni verso SX |
1159 |
// FGeo[2] = atan(path[2]/dimes[ip])/6.28318; // e verso DX |
1160 |
|
1161 |
/* rimando la fluttuazione poissoniana sui fotoni prodotti |
1162 |
sto studiando come funziona la funzione: |
1163 |
long int i = sto.Poisson(double x); */ |
1164 |
// Npho = Poisson(ERELTOF[nh])*Pho_keV*1e6 Eloss in GeV ? |
1165 |
Npho = Ereltof[nh]*Pho_keV*10.0e6; // Eloss in GeV ? |
1166 |
|
1167 |
Float_t knorm[2]={0., 0.}; // Donatella |
1168 |
Float_t Atten[2]={0., 0.}; // Donatella |
1169 |
for(Int_t j=0; j<2; j++){ |
1170 |
QhitPad_pC[j]= Npho*FGeo[j]*effi*pmGain*echarge; |
1171 |
knorm[j]=QhitPad_pC[j]/(atte1[pmtleft+j]*exp((dimel[ip]/2.*pow(-1,j+1))/lambda1[pmtleft+j]) + |
1172 |
atte2[pmtleft+j]*exp((dimel[ip]/2.*pow(-1,j+1))/lambda2[pmtleft+j])); |
1173 |
|
1174 |
Atten[j]=knorm[j]*(atte1[pmtleft+j]*exp(tpos/lambda1[pmtleft+j]) + |
1175 |
atte2[pmtleft+j]*exp(tpos/lambda2[pmtleft+j])); |
1176 |
|
1177 |
QhitPmt_pC[j]= QhitPad_pC[j]*Atten[j]; |
1178 |
} |
1179 |
|
1180 |
QevePmt_pC[pmtleft] += QhitPmt_pC[0]; |
1181 |
QevePmt_pC[pmtright] += QhitPmt_pC[1]; |
1182 |
|
1183 |
} // **************************************** fine loop sugli hit |
1184 |
|
1185 |
for(Int_t i=0; i<48; i++){ |
1186 |
if(QevePmt_pC[i] != 0.){ |
1187 |
ADCtof[i]= (Int_t)(ADC_pC*QevePmt_pC[i] + ADCoffset); |
1188 |
if(ADCtof[i]> ADClast) ADCtof[i]=ADClast; |
1189 |
} else |
1190 |
ADCtof[i]= ADClast; |
1191 |
}; |
1192 |
|
1193 |
UChar_t tofBin; |
1194 |
// --- write fDataTof: |
1195 |
for (Int_t j=0; j < 12; j++){ |
1196 |
Int_t j12=j*12; |
1197 |
fDataTof[j12+0]=0x00; // TDC_ID |
1198 |
fDataTof[j12+1]=0x00; // EV_COUNT |
1199 |
fDataTof[j12+2]=0x00; // TDC_MASK (1) |
1200 |
fDataTof[j12+3]=0x00; // TDC_MASK (2) |
1201 |
for (Int_t k=0; k < 4; k++){ |
1202 |
Int_t jk12=j12+k; |
1203 |
tofBin=(UChar_t)(ADCtof[k+4*j]/256); // ADC# (msb) (#=1+k+4*j) |
1204 |
fDataTof[jk12+4] = Bin2GrayTof(tofBin,fDataTof[jk12+4]); |
1205 |
tofBin=(UChar_t)(ADCtof[k+4*j]%256); // ADC# (lsb) |
1206 |
fDataTof[jk12+5] = Bin2GrayTof(tofBin,fDataTof[jk12+5]); |
1207 |
fDataTof[jk12+6]=0x00; // TDC# (msb) -- Wolfgang |
1208 |
fDataTof[jk12+7]=0x00; // TDC# (lsb) -- Wolfgang |
1209 |
}; |
1210 |
fDataTof[j12+20]=0x00; // TEMP1 |
1211 |
fDataTof[j12+21]=0x00; // TEMP2 |
1212 |
fDataTof[j12+22]= EvaluateCrcTof(pTof); // CRC |
1213 |
pTof+=23; |
1214 |
}; |
1215 |
return(0); |
1216 |
}; |
1217 |
|
1218 |
UChar_t Digitizer::Bin2GrayTof(UChar_t binaTOF,UChar_t grayTOF){ |
1219 |
union graytof_data { |
1220 |
UChar_t word; |
1221 |
struct bit_field { |
1222 |
unsigned b0:1; |
1223 |
unsigned b1:1; |
1224 |
unsigned b2:1; |
1225 |
unsigned b3:1; |
1226 |
unsigned b4:1; |
1227 |
unsigned b5:1; |
1228 |
unsigned b6:1; |
1229 |
unsigned b7:1; |
1230 |
} bit; |
1231 |
} bi,gr; |
1232 |
// |
1233 |
bi.word = binaTOF; |
1234 |
gr.word = grayTOF; |
1235 |
// |
1236 |
gr.bit.b0 = bi.bit.b1 ^ bi.bit.b0; |
1237 |
gr.bit.b1 = bi.bit.b2 ^ bi.bit.b1; |
1238 |
gr.bit.b2 = bi.bit.b3 ^ bi.bit.b2; |
1239 |
gr.bit.b3 = bi.bit.b3; |
1240 |
// |
1241 |
/* bin to gray conversion 4 bit per time*/ |
1242 |
// |
1243 |
gr.bit.b4 = bi.bit.b5 ^ bi.bit.b4; |
1244 |
gr.bit.b5 = bi.bit.b6 ^ bi.bit.b5; |
1245 |
gr.bit.b6 = bi.bit.b7 ^ bi.bit.b6; |
1246 |
gr.bit.b7 = bi.bit.b7; |
1247 |
// |
1248 |
return(gr.word); |
1249 |
} |
1250 |
|
1251 |
UChar_t Digitizer::EvaluateCrcTof(UChar_t *pTof) { |
1252 |
// UChar_t crcTof=0x00; |
1253 |
// for (Int_t jp=0; jp < 23; jp++){ |
1254 |
// crcTof = crc8(...) |
1255 |
// } |
1256 |
return(0x00); |
1257 |
}; |
1258 |
|
1259 |
//void Digitizer::Paddle2Pmt(Int_t plane, Int_t paddle, Int_t* &pmtleft, Int_t* &pmtright){ |
1260 |
void Digitizer::Paddle2Pmt(Int_t plane, Int_t paddle, Int_t *pl, Int_t *pr){ |
1261 |
//* @param plane (0 - 5) |
1262 |
//* @param paddle (plane=0, paddle = 0,...5) |
1263 |
//* @param padid (0 - 23) |
1264 |
// |
1265 |
Int_t padid=-1; |
1266 |
Int_t pads[6]={8,6,2,2,3,3}; |
1267 |
// |
1268 |
Int_t somma=0; |
1269 |
Int_t np=plane; |
1270 |
for(Int_t j=0; j<np; j++) |
1271 |
somma+=pads[j]; |
1272 |
padid=paddle+somma; |
1273 |
*pl = padid*2; |
1274 |
*pr = *pr + 1; |
1275 |
}; |
1276 |
|
1277 |
void Digitizer::DigitizeAC() { |
1278 |
// created: J. Conrad, KTH |
1279 |
// modified: S. Orsi, INFN Roma2 |
1280 |
|
1281 |
fDataAC[0] = 0xACAC; |
1282 |
fDataAC[64]= 0xACAC; |
1283 |
fDataAC[1] = 0xAC11; // main card |
1284 |
fDataAC[65] = 0xAC22; // extra card |
1285 |
|
1286 |
// the third word is a status word (dummy) |
1287 |
fDataAC[2] = 0xFFFF; //FFEF? |
1288 |
fDataAC[66] = 0xFFFF; |
1289 |
|
1290 |
const UInt_t nReg = 6; |
1291 |
|
1292 |
// Registers (dummy) |
1293 |
for (UInt_t i=0; i<=nReg; i++){ |
1294 |
fDataAC[i+4] = 0xFFFF; |
1295 |
fDataAC[i+68] = 0xFFFF; |
1296 |
} |
1297 |
|
1298 |
// the last word is a CRC |
1299 |
// Dummy for the time being, but it might need to be calculated in the end |
1300 |
fDataAC[63] = 0xABCD; |
1301 |
fDataAC[127] = 0xABCD; |
1302 |
|
1303 |
// shift registers, which one is with respect to PMT, where in |
1304 |
// shift registers is a question of time relative trigger |
1305 |
// In level2: hitmap, hitmap-status (synchronised with a trigger), |
1306 |
// status |
1307 |
|
1308 |
for (UInt_t i=0; i<=15; i++){ |
1309 |
fDataAC[i+11] = 0x0000; |
1310 |
fDataAC[i+75] = 0x0000; |
1311 |
} |
1312 |
|
1313 |
// singles counters are dummy |
1314 |
|
1315 |
for (UInt_t i=0; i<=16; i++){ |
1316 |
fDataAC[i+26] = 0x0000; |
1317 |
fDataAC[i+90] = 0x0000; |
1318 |
} |
1319 |
|
1320 |
// coincidences are dummy |
1321 |
|
1322 |
for (UInt_t i=0; i<=7; i++){ |
1323 |
fDataAC[i+42] = 0x0000; |
1324 |
fDataAC[i+106] = 0x0000; |
1325 |
} |
1326 |
|
1327 |
// increments for every trigger might be needed at some point. |
1328 |
// dummy for now |
1329 |
fDataAC[50] = 0x0000; |
1330 |
fDataAC[114] = 0x0000; |
1331 |
|
1332 |
// dummy FPGA clock |
1333 |
|
1334 |
fDataAC[51] = 0x006C; |
1335 |
fDataAC[52] = 0x6C6C; |
1336 |
fDataAC[115] = 0x006C; |
1337 |
fDataAC[116] = 0x6C6C; |
1338 |
|
1339 |
|
1340 |
// dummy temperatures |
1341 |
fDataAC[53] = 0x0000; |
1342 |
fDataAC[54] = 0x0000; |
1343 |
fDataAC[117] = 0x0000; |
1344 |
fDataAC[118] = 0x0000; |
1345 |
|
1346 |
|
1347 |
// dummy DAC thresholds |
1348 |
for (UInt_t i=0; i<=7; i++){ |
1349 |
fDataAC[i+55] = 0x1A13; |
1350 |
fDataAC[i+119] = 0x1A13; |
1351 |
} |
1352 |
|
1353 |
// We activate all branches. Once the digitization algorithm |
1354 |
// is determined only the branches need to activated which involve needed |
1355 |
// information |
1356 |
|
1357 |
fhBookTree->SetBranchStatus("Nthcat",1); |
1358 |
fhBookTree->SetBranchStatus("Iparcat",1); |
1359 |
fhBookTree->SetBranchStatus("Icat",1); |
1360 |
fhBookTree->SetBranchStatus("Xincat",1); |
1361 |
fhBookTree->SetBranchStatus("Yincat",1); |
1362 |
fhBookTree->SetBranchStatus("Zincat",1); |
1363 |
fhBookTree->SetBranchStatus("Xoutcat",1); |
1364 |
fhBookTree->SetBranchStatus("Youtcat",1); |
1365 |
fhBookTree->SetBranchStatus("Zoutcat",1); |
1366 |
fhBookTree->SetBranchStatus("Erelcat",1); |
1367 |
fhBookTree->SetBranchStatus("Timecat",1); |
1368 |
fhBookTree->SetBranchStatus("Pathcat",1); |
1369 |
fhBookTree->SetBranchStatus("P0cat",1); |
1370 |
fhBookTree->SetBranchStatus("Nthcas",1); |
1371 |
fhBookTree->SetBranchStatus("Iparcas",1); |
1372 |
fhBookTree->SetBranchStatus("Icas",1); |
1373 |
fhBookTree->SetBranchStatus("Xincas",1); |
1374 |
fhBookTree->SetBranchStatus("Yincas",1); |
1375 |
fhBookTree->SetBranchStatus("Zincas",1); |
1376 |
fhBookTree->SetBranchStatus("Xoutcas",1); |
1377 |
fhBookTree->SetBranchStatus("Youtcas",1); |
1378 |
fhBookTree->SetBranchStatus("Zoutcas",1); |
1379 |
fhBookTree->SetBranchStatus("Erelcas",1); |
1380 |
fhBookTree->SetBranchStatus("Timecas",1); |
1381 |
fhBookTree->SetBranchStatus("Pathcas",1); |
1382 |
fhBookTree->SetBranchStatus("P0cas",1); |
1383 |
fhBookTree->SetBranchStatus("Nthcard",1); |
1384 |
fhBookTree->SetBranchStatus("Iparcard",1); |
1385 |
fhBookTree->SetBranchStatus("Icard",1); |
1386 |
fhBookTree->SetBranchStatus("Xincard",1); |
1387 |
fhBookTree->SetBranchStatus("Yincard",1); |
1388 |
fhBookTree->SetBranchStatus("Zincard",1); |
1389 |
fhBookTree->SetBranchStatus("Xoutcard",1); |
1390 |
fhBookTree->SetBranchStatus("Youtcard",1); |
1391 |
fhBookTree->SetBranchStatus("Zoutcard",1); |
1392 |
fhBookTree->SetBranchStatus("Erelcard",1); |
1393 |
fhBookTree->SetBranchStatus("Timecard",1); |
1394 |
fhBookTree->SetBranchStatus("Pathcard",1); |
1395 |
fhBookTree->SetBranchStatus("P0card",1); |
1396 |
|
1397 |
// In this simpliefied approach we will assume that once |
1398 |
// a particle releases > 0.5 mip in one of the 12 AC detectors it |
1399 |
// will fire. We will furthermore assume that both cards read out |
1400 |
// identical data. |
1401 |
|
1402 |
// If you develop you digitization algorithm, you should start by |
1403 |
// identifying the information present in level2 (post-darth-vader) |
1404 |
// data. |
1405 |
|
1406 |
Float_t SumEcat[5]; |
1407 |
Float_t SumEcas[5]; |
1408 |
Float_t SumEcard[5]; |
1409 |
for (Int_t k= 0;k<5;k++){ |
1410 |
SumEcat[k]=0.; |
1411 |
SumEcas[k]=0.; |
1412 |
SumEcard[k]=0.; |
1413 |
}; |
1414 |
|
1415 |
if (Nthcat>50 || Nthcas>50 || Nthcard>50) |
1416 |
printf("Error! NthAC out of range!\n\n"); |
1417 |
|
1418 |
// look in CAT |
1419 |
// for (UInt_t k= 0;k<50;k++){ |
1420 |
for (Int_t k= 0;k<Nthcat;k++){ |
1421 |
if (Erelcat[k] > 0) |
1422 |
SumEcat[Icat[k]] += Erelcat[k]; |
1423 |
}; |
1424 |
|
1425 |
// look in CAS |
1426 |
for (Int_t k= 0;k<Nthcas;k++){ |
1427 |
if (Erelcas[k] >0) |
1428 |
SumEcas[Icas[k]] += Erelcas[k]; |
1429 |
}; |
1430 |
|
1431 |
// look in CARD |
1432 |
for (Int_t k= 0;k<Nthcard;k++){ |
1433 |
if (Erelcard[k] >0) |
1434 |
SumEcard[Icard[k]] += Erelcard[k]; |
1435 |
}; |
1436 |
|
1437 |
// channel mapping Hit Map |
1438 |
// 1 CARD4 0 LSB |
1439 |
// 2 CAT2 0 |
1440 |
// 3 CAS1 0 |
1441 |
// 4 NC 0 |
1442 |
// 5 CARD2 0 |
1443 |
// 6 CAT4 1 |
1444 |
// 7 CAS4 0 |
1445 |
// 8 NC 0 |
1446 |
// 9 CARD3 0 |
1447 |
// 10 CAT3 0 |
1448 |
// 11 CAS3 0 |
1449 |
// 12 NC 0 |
1450 |
// 13 CARD1 0 |
1451 |
// 14 CAT1 0 |
1452 |
// 15 CAS2 0 |
1453 |
// 16 NC 0 MSB |
1454 |
|
1455 |
// In the first version only the hit-map is filled, not the SR. |
1456 |
|
1457 |
// Threshold: 0.8 MeV. |
1458 |
|
1459 |
Float_t thr = 8e-4; |
1460 |
|
1461 |
fDataAC[3] = 0x0000; |
1462 |
|
1463 |
if (SumEcas[0] > thr) fDataAC[3] = 0x0004; |
1464 |
if (SumEcas[1] > thr) fDataAC[3] += 0x4000; |
1465 |
if (SumEcas[2] > thr) fDataAC[3] += 0x0400; |
1466 |
if (SumEcas[3] > thr) fDataAC[3] += 0x0040; |
1467 |
|
1468 |
if (SumEcat[0] > thr) fDataAC[3] += 0x2000; |
1469 |
if (SumEcat[1] > thr) fDataAC[3] += 0x0002; |
1470 |
if (SumEcat[2] > thr) fDataAC[3] += 0x0200; |
1471 |
if (SumEcat[3] > thr) fDataAC[3] += 0x0020; |
1472 |
|
1473 |
if (SumEcard[0] > thr) fDataAC[3] += 0x1000; |
1474 |
if (SumEcard[1] > thr) fDataAC[3] += 0x0010; |
1475 |
if (SumEcard[2] > thr) fDataAC[3] += 0x0100; |
1476 |
if (SumEcard[3] > thr) fDataAC[3] += 0x0001; |
1477 |
|
1478 |
fDataAC[67] = fDataAC[3]; |
1479 |
|
1480 |
// for (Int_t i=0; i<fACbuffer; i++){ |
1481 |
// printf("%0x ",fDataAC[i]); |
1482 |
// if ((i+1)%8 ==0) cout << endl; |
1483 |
// } |
1484 |
}; |
1485 |
|
1486 |
|
1487 |
void Digitizer::DigitizeND(){ |
1488 |
// creato: S. Borisov, INFN Roma2 e MEPHI, Sept 2007 |
1489 |
// 4 bytes: 16bit header, 8bit trigPhysics, 16bit up&low background |
1490 |
|
1491 |
// ND header |
1492 |
fDataND[0] = 0x0000; |
1493 |
fDataND[1] = 0x000F; |
1494 |
|
1495 |
fhBookTree->SetBranchStatus("Nthnd",1); |
1496 |
fhBookTree->SetBranchStatus("Itubend",1); |
1497 |
fhBookTree->SetBranchStatus("Iparnd",1); |
1498 |
fhBookTree->SetBranchStatus("Xinnd",1); |
1499 |
fhBookTree->SetBranchStatus("Yinnd",1); |
1500 |
fhBookTree->SetBranchStatus("Zinnd",1); |
1501 |
fhBookTree->SetBranchStatus("Xoutnd",1); |
1502 |
fhBookTree->SetBranchStatus("Youtnd",1); |
1503 |
fhBookTree->SetBranchStatus("Zoutnd",1); |
1504 |
fhBookTree->SetBranchStatus("Erelnd",1); |
1505 |
fhBookTree->SetBranchStatus("Timend",1); |
1506 |
fhBookTree->SetBranchStatus("Pathnd",1); |
1507 |
fhBookTree->SetBranchStatus("P0nd",1); |
1508 |
|
1509 |
UShort_t NdN=0; |
1510 |
for(Int_t i=0;i<Nthnd;i++) |
1511 |
if(Iparnd[i]==13) |
1512 |
NdN++; |
1513 |
|
1514 |
NdN=10; // test! |
1515 |
fDataND[2]=0x0F00 & (NdN*256); |
1516 |
//fDataND[2]=0xFFFF; //test |
1517 |
fDataND[2]=0x0000; //background neutrons |
1518 |
} |
1519 |
|
1520 |
|
1521 |
void Digitizer::DigitizeDummy() { |
1522 |
|
1523 |
fhBookTree->SetBranchStatus("Enestrip",1); |
1524 |
|
1525 |
// dumy header |
1526 |
fDataDummy[0] = 0xCAAA; |
1527 |
|
1528 |
for (Int_t i=1; i<fDummybuffer; i++){ |
1529 |
fDataDummy[i] = 0xFFFF; |
1530 |
// printf("%0x ",fDataDummy[i]); |
1531 |
//if ((i+1)%8 ==0) cout << endl; |
1532 |
} |
1533 |
|
1534 |
|
1535 |
|
1536 |
}; |
1537 |
|
1538 |
|
1539 |
void Digitizer::WriteData(){ |
1540 |
|
1541 |
// Routine that writes the data to a binary file |
1542 |
// PSCU data are already swapped |
1543 |
fOutputfile.write(reinterpret_cast<char*>(fDataPSCU),sizeof(UShort_t)*fPSCUbuffer); |
1544 |
// TRG |
1545 |
fOutputfile.write(reinterpret_cast<char*>(fDataTrigger),sizeof(UChar_t)*153); |
1546 |
// TOF |
1547 |
fOutputfile.write(reinterpret_cast<char*>(fDataTof),sizeof(UChar_t)*276); |
1548 |
// AC |
1549 |
UShort_t temp[1000000]; |
1550 |
memset(temp,0,sizeof(UShort_t)*1000000); |
1551 |
swab(fDataAC,temp,sizeof(UShort_t)*fACbuffer); // WE MUST SWAP THE BYTES!!! |
1552 |
fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fACbuffer); |
1553 |
// CALO |
1554 |
memset(temp,0,sizeof(UShort_t)*1000000); |
1555 |
swab(fDataCALO,temp,sizeof(UShort_t)*fCALOlength); // WE MUST SWAP THE BYTES!!! |
1556 |
fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fCALOlength); |
1557 |
// TRK |
1558 |
memset(temp,0,sizeof(UShort_t)*1000000); |
1559 |
swab(fDataTrack,temp,sizeof(UShort_t)*fTracklength); // WE MUST SWAP THE BYTES!!! |
1560 |
fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fTracklength); |
1561 |
fTracklength=0; |
1562 |
// S4 |
1563 |
// ...to be done... |
1564 |
// ND |
1565 |
memset(temp,0,sizeof(UShort_t)*1000000); |
1566 |
swab(fDataND,temp,sizeof(UShort_t)*4); // WE MUST SWAP THE BYTES!!! |
1567 |
fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*4); |
1568 |
|
1569 |
// |
1570 |
// fOutputfile.write(reinterpret_cast<char*>(fDataDummy),sizeof(UShort_t)*fDummybuffer); |
1571 |
// |
1572 |
// padding to 64 bytes |
1573 |
// |
1574 |
if ( fPadding ){ |
1575 |
fOutputfile.write(reinterpret_cast<char*>(fDataPadding),sizeof(UChar_t)*fPadding); |
1576 |
}; |
1577 |
// |
1578 |
}; |
1579 |
|
1580 |
|
1581 |
void Digitizer::ReadData(){ |
1582 |
|
1583 |
UShort_t InData[64]; |
1584 |
|
1585 |
// for debuggigng purposes only, write your own routine if you like (many |
1586 |
// hardwired things. |
1587 |
|
1588 |
ifstream InputFile; |
1589 |
|
1590 |
// if (!InputFile) { |
1591 |
|
1592 |
// std::cout << "ERROR" << endl; |
1593 |
// // An error occurred! |
1594 |
// // myFile.gcount() returns the number of bytes read. |
1595 |
// // calling myFile.clear() will reset the stream state |
1596 |
// // so it is usable again. |
1597 |
// }; |
1598 |
|
1599 |
|
1600 |
|
1601 |
//InputFile.seekg(0); |
1602 |
|
1603 |
InputFile.open(fFilename, ios::in | ios::binary); |
1604 |
// fOutputfile.seekg(0); |
1605 |
if (!InputFile.is_open()) std::cout << "ERROR" << endl; |
1606 |
|
1607 |
InputFile.seekg(0); |
1608 |
|
1609 |
for (Int_t k=0; k<=1000; k++){ |
1610 |
InputFile.read(reinterpret_cast<char*>(InData),384*sizeof(UShort_t)); |
1611 |
|
1612 |
std::cout << "Read back: " << endl << endl; |
1613 |
|
1614 |
for (Int_t i=0; i<=384; i++){ |
1615 |
printf("%4x ", InData[i]); |
1616 |
if ((i+1)%8 ==0) cout << endl; |
1617 |
} |
1618 |
|
1619 |
} |
1620 |
cout << endl; |
1621 |
InputFile.close(); |
1622 |
|
1623 |
}; |
1624 |
|
1625 |
|
1626 |
|
1627 |
void Digitizer::DigitizeTrack() { |
1628 |
//std:: cout << "Entering DigitizeTrack " << endl; |
1629 |
Float_t AdcTrack[fNviews][fNstrips_view]; // Vector of strips to be compressed |
1630 |
|
1631 |
Int_t Iview; |
1632 |
Int_t Nstrip; |
1633 |
|
1634 |
for (Int_t j=0; j<fNviews;j++) { |
1635 |
|
1636 |
for (Int_t i=0; i<fNladder;i++) { |
1637 |
|
1638 |
Float_t commonN1=gRandom->Gaus(0.,fSigmaCommon); |
1639 |
Float_t commonN2=gRandom->Gaus(0.,fSigmaCommon); |
1640 |
for (Int_t k=0; k<fNstrips_ladder;k++) { |
1641 |
Nstrip=i*fNstrips_ladder+k; |
1642 |
AdcTrack[j][Nstrip]=gRandom->Gaus(fPedeTrack[j][Nstrip],fSigmaTrack[j][Nstrip]); |
1643 |
if(k<4*128) {AdcTrack[j][Nstrip] += commonN1;} // full correlation of 4 VA1 Com. Noise |
1644 |
else {AdcTrack[j][Nstrip] += commonN2;} // full correlation of 4 VA1 Com. Noise |
1645 |
|
1646 |
}; |
1647 |
|
1648 |
|
1649 |
}; |
1650 |
|
1651 |
|
1652 |
}; |
1653 |
|
1654 |
|
1655 |
fhBookTree->SetBranchStatus("Nstrpx",1); |
1656 |
fhBookTree->SetBranchStatus("Npstripx",1); |
1657 |
fhBookTree->SetBranchStatus("Ntstripx",1); |
1658 |
fhBookTree->SetBranchStatus("Istripx",1); |
1659 |
fhBookTree->SetBranchStatus("Qstripx",1); |
1660 |
fhBookTree->SetBranchStatus("Xstripx",1); |
1661 |
fhBookTree->SetBranchStatus("Nstrpy",1); |
1662 |
fhBookTree->SetBranchStatus("Npstripy",1); |
1663 |
fhBookTree->SetBranchStatus("Ntstripy",1); |
1664 |
fhBookTree->SetBranchStatus("Istripy",1); |
1665 |
fhBookTree->SetBranchStatus("Qstripy",1); |
1666 |
fhBookTree->SetBranchStatus("Ystripy",1); |
1667 |
|
1668 |
|
1669 |
|
1670 |
|
1671 |
Float_t ADCfull; |
1672 |
for (Int_t ix=0; ix<Nstrpx;ix++) { |
1673 |
Iview=Npstripx[ix]*2-1; |
1674 |
Nstrip=(Int_t)Istripx[ix]-1; |
1675 |
ADCfull=AdcTrack[Iview][Nstrip] += Qstripx[ix]*fMipCor; |
1676 |
AdcTrack[Iview][Nstrip] *= SaturationTrack(ADCfull); |
1677 |
|
1678 |
}; |
1679 |
|
1680 |
|
1681 |
for (Int_t iy=0; iy<Nstrpy;iy++) { |
1682 |
Iview=Npstripy[iy]*2-2; |
1683 |
Nstrip=(Int_t)Istripy[iy]-1; |
1684 |
ADCfull=AdcTrack[Iview][Nstrip] -= Qstripy[iy]*fMipCor; |
1685 |
AdcTrack[Iview][Nstrip] *= SaturationTrack(ADCfull); |
1686 |
|
1687 |
}; |
1688 |
|
1689 |
CompressTrackData(AdcTrack); // Compress and Digitize data of one Ladder in turn for all ladders |
1690 |
|
1691 |
}; |
1692 |
|
1693 |
|
1694 |
|
1695 |
void Digitizer::DigitizeTrackCalib(Int_t ii) { |
1696 |
|
1697 |
std:: cout << "Entering DigitizeTrackCalib " << ii << endl; |
1698 |
if( (ii!=1)&&(ii!=2) ) { |
1699 |
std:: cout << "error wrong DigitizeTrackCalib argument" << endl; |
1700 |
return; |
1701 |
}; |
1702 |
|
1703 |
memset(fDataTrack,0,sizeof(UShort_t)*fTRACKbuffer); |
1704 |
fTracklength=0; |
1705 |
|
1706 |
UShort_t Dato; |
1707 |
|
1708 |
Float_t dato1; |
1709 |
Float_t dato2; |
1710 |
Float_t dato3; |
1711 |
Float_t dato4; |
1712 |
|
1713 |
UShort_t DatoDec; |
1714 |
UShort_t DatoDec1; |
1715 |
UShort_t DatoDec2; |
1716 |
UShort_t DatoDec3; |
1717 |
UShort_t DatoDec4; |
1718 |
|
1719 |
UShort_t EVENT_CAL; |
1720 |
UShort_t PED_L1; |
1721 |
UShort_t ReLength; |
1722 |
UShort_t OveCheckCode; |
1723 |
//UShort_t PED_L2; |
1724 |
//UShort_t PED_L3HI; |
1725 |
//UShort_t PED_L3LO; |
1726 |
//UShort_t SIG_L1HI; |
1727 |
//UShort_t SIG_L1LO; |
1728 |
//UShort_t SIG_L2HI; |
1729 |
//UShort_t SIG_L2LO; |
1730 |
//UShort_t SIG_L3; |
1731 |
//UShort_t BAD_L1; |
1732 |
//UShort_t BAD_L2LO; |
1733 |
//UShort_t BAD_L3HI; |
1734 |
//UShort_t BAD_L3LO; |
1735 |
//UShort_t FLAG; |
1736 |
|
1737 |
|
1738 |
Int_t DSPpos; |
1739 |
for (Int_t j=ii-1; j<fNviews;j+=2) { |
1740 |
UShort_t CkSum=0; |
1741 |
// here skip the dsp header and his trailer , to be written later |
1742 |
DSPpos=fTracklength; |
1743 |
fTracklength=fTracklength+13+3; |
1744 |
|
1745 |
|
1746 |
for (Int_t i=0; i<fNladder;i++) { |
1747 |
for (Int_t k=0; k<fNstrips_ladder;k++) { |
1748 |
// write in buffer the current LADDER |
1749 |
Dato=(UShort_t)fPedeTrack[j][i*fNstrips_ladder+k]; |
1750 |
dato1=fPedeTrack[j][i*fNstrips_ladder+k]-Dato; |
1751 |
|
1752 |
DatoDec1=(UShort_t)(dato1*2); |
1753 |
dato2=dato1*2-DatoDec1; |
1754 |
|
1755 |
DatoDec2=(UShort_t)(dato2*2); |
1756 |
dato3=dato2*2-DatoDec2; |
1757 |
|
1758 |
DatoDec3=(UShort_t)(dato3*2); |
1759 |
dato4=dato3*2-DatoDec3; |
1760 |
|
1761 |
DatoDec4=(UShort_t)(dato4*2); |
1762 |
|
1763 |
DatoDec=DatoDec1*0x0008+DatoDec2*0x0004+DatoDec3*0x0002+DatoDec4*0x0001; |
1764 |
fDataTrack[fTracklength]=( (Dato << 4) | (DatoDec & 0x000F) ); |
1765 |
CkSum=CkSum^fDataTrack[fTracklength]; |
1766 |
fTracklength++; |
1767 |
}; |
1768 |
|
1769 |
for (Int_t k=0; k<fNstrips_ladder;k++) { |
1770 |
// write in buffer the current LADDER |
1771 |
Dato=(UShort_t)fSigmaTrack[j][i*fNstrips_ladder+k]; |
1772 |
dato1=fSigmaTrack[j][i*fNstrips_ladder+k]-Dato; |
1773 |
|
1774 |
DatoDec1=(UShort_t)(dato1*2); |
1775 |
dato2=dato1*2-DatoDec1; |
1776 |
|
1777 |
DatoDec2=(UShort_t)(dato2*2); |
1778 |
dato3=dato2*2-DatoDec2; |
1779 |
|
1780 |
DatoDec3=(UShort_t)(dato3*2); |
1781 |
dato4=dato3*2-DatoDec3; |
1782 |
|
1783 |
DatoDec4=(UShort_t)(dato4*2); |
1784 |
|
1785 |
DatoDec=DatoDec1*0x0008+DatoDec2*0x0004+DatoDec3*0x0002+DatoDec4*0x0001; |
1786 |
|
1787 |
fDataTrack[fTracklength]=( (Dato << 4) | (DatoDec & 0x000F) ); |
1788 |
CkSum=CkSum^fDataTrack[fTracklength]; |
1789 |
fTracklength++; |
1790 |
}; |
1791 |
|
1792 |
for (Int_t k=0; k<64;k++) { |
1793 |
fDataTrack[fTracklength]=0x0000; |
1794 |
CkSum=CkSum^fDataTrack[fTracklength]; |
1795 |
fTracklength++; |
1796 |
|
1797 |
}; |
1798 |
// end ladder |
1799 |
|
1800 |
// write in buffer the end ladder word |
1801 |
if(i==0) fDataTrack[fTracklength]=0x1807; |
1802 |
if(i==1) fDataTrack[fTracklength]=0x1808; |
1803 |
if(i==2) fDataTrack[fTracklength]=0x1809; |
1804 |
CkSum=CkSum^fDataTrack[fTracklength]; |
1805 |
fTracklength++; |
1806 |
|
1807 |
// write in buffer the TRAILER |
1808 |
ReLength=(UShort_t)((fNstrips_ladder*2+64+1)*2+3); |
1809 |
OveCheckCode=0x0000; |
1810 |
|
1811 |
fDataTrack[fTracklength]=0x0000; |
1812 |
fTracklength++; |
1813 |
|
1814 |
fDataTrack[fTracklength]=(ReLength >> 8); |
1815 |
fTracklength++; |
1816 |
|
1817 |
fDataTrack[fTracklength]=( (ReLength << 8) | (OveCheckCode & 0x00FF) ); |
1818 |
fTracklength++; |
1819 |
|
1820 |
// end TRAILER |
1821 |
}; |
1822 |
|
1823 |
// write in buffer the DSP header |
1824 |
|
1825 |
fDataTrack[DSPpos]=(0xE800 | ( ((j+1) << 3) | 0x0005) ); |
1826 |
|
1827 |
fDataTrack[DSPpos+1]=0x01A9; |
1828 |
|
1829 |
fDataTrack[DSPpos+2]=0x8740; |
1830 |
|
1831 |
EVENT_CAL=0; |
1832 |
fDataTrack[DSPpos+3]=(0x1A00 | ( (0x03FF & EVENT_CAL)>> 1) ); |
1833 |
|
1834 |
PED_L1=0; |
1835 |
fDataTrack[DSPpos+4]=( ((EVENT_CAL << 15) | 0x5002 ) | ((0x03FF & PED_L1) << 2) ); |
1836 |
|
1837 |
// FROM HERE WE WRITE AS ALL VARIABLE apart CkSum are =0 |
1838 |
|
1839 |
fDataTrack[DSPpos+5]=0x8014; |
1840 |
|
1841 |
fDataTrack[DSPpos+6]=0x00A0; |
1842 |
|
1843 |
fDataTrack[DSPpos+7]=0x0500; |
1844 |
|
1845 |
fDataTrack[DSPpos+8]=0x2801; |
1846 |
|
1847 |
fDataTrack[DSPpos+9]=0x400A; |
1848 |
|
1849 |
fDataTrack[DSPpos+10]=0x0050; |
1850 |
|
1851 |
CkSum=(CkSum >> 8)^(CkSum&0x00FF); |
1852 |
fDataTrack[DSPpos+11]=(0x0280 | (CkSum >> 3)); |
1853 |
|
1854 |
fDataTrack[DSPpos+12]=(0x1FFF | (CkSum << 13) ); |
1855 |
|
1856 |
// end dsp header |
1857 |
|
1858 |
// write in buffer the TRAILER |
1859 |
|
1860 |
ReLength=(UShort_t)((13*2)+3); |
1861 |
OveCheckCode=0x0000; |
1862 |
fDataTrack[DSPpos+13]=0x0000; |
1863 |
|
1864 |
fDataTrack[DSPpos+14]=(ReLength >> 8); |
1865 |
|
1866 |
fDataTrack[DSPpos+15]=( (ReLength << 8) | (OveCheckCode & 0x00FF) ); |
1867 |
|
1868 |
// end TRAILER |
1869 |
|
1870 |
|
1871 |
|
1872 |
|
1873 |
// end DSP |
1874 |
}; |
1875 |
|
1876 |
|
1877 |
|
1878 |
}; |
1879 |
|
1880 |
void Digitizer::WriteTrackCalib() { |
1881 |
|
1882 |
|
1883 |
std:: cout << " Entering WriteTrackCalib " << endl; |
1884 |
|
1885 |
fOutputfile.write(reinterpret_cast<char*>(fDataPSCU),sizeof(UShort_t)*fPSCUbuffer); |
1886 |
|
1887 |
UShort_t temp[1000000]; |
1888 |
memset(temp,0,sizeof(UShort_t)*1000000); |
1889 |
swab(fDataTrack,temp,sizeof(UShort_t)*fTracklength); // WE MUST SWAP THE BYTES!!! |
1890 |
fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fTracklength); |
1891 |
fTracklength=0; |
1892 |
if ( fPadding ){ |
1893 |
fOutputfile.write(reinterpret_cast<char*>(fDataPadding),sizeof(UChar_t)*fPadding); |
1894 |
}; |
1895 |
|
1896 |
}; |
1897 |
|
1898 |
|
1899 |
void Digitizer::ClearTrackCalib() { |
1900 |
|
1901 |
std:: cout << "Entering ClearTrackCalib " << endl; |
1902 |
|
1903 |
|
1904 |
}; |
1905 |
|
1906 |
|
1907 |
void Digitizer::LoadTrackCalib() { |
1908 |
std:: cout << "Entering LoadTrackCalib " << endl; |
1909 |
|
1910 |
// Generate the pedestals and sigmas according to parametrization |
1911 |
for (Int_t j=0; j<fNviews;j++) { |
1912 |
for (Int_t i=0; i<fNstrips_view;i++) { |
1913 |
|
1914 |
if((j+1)%2==0) { |
1915 |
fPedeTrack[j][i]=gRandom->Gaus(fAvePedex,fSigmaPedex); |
1916 |
fSigmaTrack[j][i]=gRandom->Gaus(fAveSigmax,fSigmaSigmax); |
1917 |
}; |
1918 |
if((j+1)%2==1) { |
1919 |
fPedeTrack[j][i]=gRandom->Gaus(fAvePedey,fSigmaPedey); |
1920 |
fSigmaTrack[j][i]=gRandom->Gaus(fAveSigmay,fSigmaSigmay); |
1921 |
}; |
1922 |
|
1923 |
}; |
1924 |
}; |
1925 |
|
1926 |
|
1927 |
|
1928 |
}; |
1929 |
|
1930 |
void Digitizer::LoadMipCor() { |
1931 |
std:: cout << "Entering LoadMipCor" << endl; |
1932 |
/* |
1933 |
for (Int_t j=0; j<fNviews;j++) { |
1934 |
for (Int_t i=0; i<fNstrips_view;i++) { |
1935 |
fMipCor[j][i]=1.; |
1936 |
}; |
1937 |
}; |
1938 |
|
1939 |
|
1940 |
*/ |
1941 |
}; |
1942 |
|
1943 |
void Digitizer::CompressTrackData(Float_t AdcTrack[fNviews][fNstrips_view]) { |
1944 |
// copy of the corresponding compression fortran routine + new digitization |
1945 |
// std:: cout << "Entering CompressTrackData " << endl; |
1946 |
Int_t oldval=0; |
1947 |
Int_t newval=0; |
1948 |
Int_t trasmesso=0; |
1949 |
Int_t ntrastot=0; |
1950 |
Float_t real; |
1951 |
Float_t inte; |
1952 |
Int_t cercacluster=0; |
1953 |
Int_t kt=0; |
1954 |
static const int DSPbufferSize = 4000; // 13 bit buffer to be rearranged in 16 bit Track buffer |
1955 |
UShort_t DataDSP[DSPbufferSize]; // 13 bit buffer to be rearranged in 16 bit Track buffer |
1956 |
UShort_t DSPlength; // 13 bit buffer to be rearranged in 16 bit Track buffer |
1957 |
|
1958 |
memset(fDataTrack,0,sizeof(UShort_t)*fTRACKbuffer); // probably not necessary becouse already done ? |
1959 |
fTracklength=0; |
1960 |
|
1961 |
for (Int_t iv=0; iv<fNviews;iv++) { |
1962 |
memset(DataDSP,0,sizeof(UShort_t)*DSPbufferSize); |
1963 |
DSPlength=16; // skip the header, to be written later |
1964 |
UShort_t CheckSum=0; |
1965 |
// write dsp header on buffer |
1966 |
|
1967 |
// fDataTrack[fTracklength]=0xE805; |
1968 |
// fTracklength++; |
1969 |
|
1970 |
// fDataTrack[fTracklength]=0x01A9; |
1971 |
// fTracklength++; |
1972 |
|
1973 |
// end dsp header |
1974 |
|
1975 |
// |
1976 |
// INIZIO VISTA IV - TAKE PROPER ACTION |
1977 |
// |
1978 |
|
1979 |
|
1980 |
|
1981 |
for (Int_t ladder=0; ladder<fNladder;ladder++) { |
1982 |
Int_t k=0; |
1983 |
while (k<fNstrips_ladder) { |
1984 |
// compress write in buffer the current LADDER |
1985 |
if ( k == 0) { |
1986 |
real=modff(AdcTrack[iv][ladder*fNstrips_ladder+k],&inte); |
1987 |
if (real > 0.5) inte=inte+1; |
1988 |
newval=(Int_t)inte -(Int_t)fPedeTrack[iv][ladder*fNstrips_ladder+k]; |
1989 |
// first strip of ladder is transmitted |
1990 |
// DC_TOT first " << AdcTrack[iv][ladder*fNstrips_ladder+k] << endl; |
1991 |
DataDSP[DSPlength]=( ((UShort_t)inte) & 0x0FFF); |
1992 |
DSPlength++; |
1993 |
ntrastot++; |
1994 |
trasmesso=1; |
1995 |
oldval=newval; |
1996 |
kt=k; |
1997 |
k++; |
1998 |
continue; |
1999 |
}; |
2000 |
real=modff(AdcTrack[iv][ladder*fNstrips_ladder+k],&inte); |
2001 |
if (real > 0.5) inte=inte+1; |
2002 |
newval=(Int_t)inte -(Int_t)(fPedeTrack[iv][ladder*fNstrips_ladder+k]); |
2003 |
cercacluster=1; // ????????? |
2004 |
if (cercacluster==1) { |
2005 |
|
2006 |
// controlla l'ordine di tutti queste strip ladder e DSP !!!!!!! |
2007 |
Int_t diff=0; |
2008 |
|
2009 |
|
2010 |
switch ((iv+1)%2) { |
2011 |
case 0: diff=newval-oldval; |
2012 |
break; |
2013 |
case 1: diff=oldval-newval; |
2014 |
break; |
2015 |
}; |
2016 |
|
2017 |
if (diff>fCutclu*(Int_t)fSigmaTrack[iv][ladder*fNstrips_ladder+k]) { |
2018 |
Int_t clval=newval; |
2019 |
Int_t klp=k; // go on to search for maximum |
2020 |
klp++; |
2021 |
|
2022 |
while(klp<fNstrips_ladder) { |
2023 |
real=modff(AdcTrack[iv][ladder*fNstrips_ladder+klp],&inte); |
2024 |
if (real > 0.5) inte=inte+1; |
2025 |
Int_t clvalp=(Int_t)inte -(Int_t)fPedeTrack[iv][ladder*fNstrips_ladder+klp]; |
2026 |
if((iv+1)%2==0) { |
2027 |
|
2028 |
if(clvalp>clval) { |
2029 |
clval=clvalp; |
2030 |
k=klp;} |
2031 |
else break; // max of cluster found |
2032 |
|
2033 |
} else { |
2034 |
|
2035 |
if(clvalp<clval) { |
2036 |
clval=clvalp; |
2037 |
k=klp;} |
2038 |
else break; // max of cluster found |
2039 |
|
2040 |
}; |
2041 |
|
2042 |
klp++; |
2043 |
}; |
2044 |
|
2045 |
Int_t kl1=k-fNclst; // max of cluster (or end of ladder ?) |
2046 |
trasmesso=0; |
2047 |
if(kl1<0) kl1=0; |
2048 |
|
2049 |
if(kt>=kl1) kl1=kt+1; |
2050 |
if( (kt+1)==kl1 ) trasmesso=1; |
2051 |
|
2052 |
|
2053 |
|
2054 |
Int_t kl2=k+fNclst; |
2055 |
if(kl2>=fNstrips_ladder) kl2=fNstrips_ladder-1; |
2056 |
|
2057 |
for(Int_t klt=kl1 ; klt<=kl2 ; klt++) { |
2058 |
if(trasmesso==0) { |
2059 |
// std:: cout << "STRIP " << klt << endl; |
2060 |
// std:: cout << "ADC_TOT " <<AdcTrack[iv][ladder*fNstrips_ladder+klt] << endl; |
2061 |
|
2062 |
DataDSP[DSPlength]=( ((UShort_t)klt) | 0x1000); |
2063 |
DSPlength++; |
2064 |
ntrastot++; |
2065 |
|
2066 |
|
2067 |
real=modff(AdcTrack[iv][ladder*fNstrips_ladder+klt],&inte); |
2068 |
if (real > 0.5) inte=inte+1; |
2069 |
DataDSP[DSPlength]=( ((UShort_t)inte) & 0x0FFF); |
2070 |
DSPlength++; |
2071 |
ntrastot++; |
2072 |
|
2073 |
} |
2074 |
else { |
2075 |
// std:: cout << "ADC_TOT " <<AdcTrack[iv][ladder*fNstrips_ladder+klt] << endl; |
2076 |
real=modff(AdcTrack[iv][ladder*fNstrips_ladder+klt],&inte); |
2077 |
if (real > 0.5) inte=inte+1; |
2078 |
DataDSP[DSPlength]=( ((UShort_t)inte) & 0x0FFF); |
2079 |
DSPlength++; |
2080 |
ntrastot++; |
2081 |
}; |
2082 |
trasmesso=1; |
2083 |
}; // end trasmission |
2084 |
kt=kl2; |
2085 |
k=kl2; |
2086 |
real=modff(AdcTrack[iv][ladder*fNstrips_ladder+kt],&inte); |
2087 |
if (real > 0.5) inte=inte+1; |
2088 |
oldval=(Int_t)inte -(Int_t)fPedeTrack[iv][ladder*fNstrips_ladder+kt]; |
2089 |
k++; |
2090 |
continue; |
2091 |
|
2092 |
|
2093 |
}; // end cercacluster |
2094 |
}; // end cercacluster |
2095 |
|
2096 |
// start ZOP check for strips no |
2097 |
|
2098 |
if(abs(newval-oldval)>=fCutzop*(Int_t)fSigmaTrack[iv][ladder*fNstrips_ladder+k]) { |
2099 |
|
2100 |
if(trasmesso==0) { |
2101 |
// std:: cout << "STRIP " << k << endl; |
2102 |
// std:: cout << "ADC_TOT " << AdcTrack[iv][ladder*fNstrips_ladder+k] << endl; |
2103 |
|
2104 |
DataDSP[DSPlength]=( ((UShort_t)k) | 0x1000); |
2105 |
DSPlength++; |
2106 |
ntrastot++; |
2107 |
|
2108 |
|
2109 |
real=modff(AdcTrack[iv][ladder*fNstrips_ladder+k],&inte); |
2110 |
if (real > 0.5) inte=inte+1; |
2111 |
DataDSP[DSPlength]=( ((UShort_t)inte) & 0x0FFF); |
2112 |
DSPlength++; |
2113 |
ntrastot++; |
2114 |
|
2115 |
} |
2116 |
else { |
2117 |
// std:: cout << "ADC_TOT " << AdcTrack[iv][ladder*fNstrips_ladder+k] << endl; |
2118 |
real=modff(AdcTrack[iv][ladder*fNstrips_ladder+k],&inte); |
2119 |
if (real > 0.5) inte=inte+1; |
2120 |
DataDSP[DSPlength]=( ((UShort_t)inte) & 0x0FFF); |
2121 |
DSPlength++; |
2122 |
ntrastot++; |
2123 |
}; |
2124 |
trasmesso=1; |
2125 |
oldval=newval; |
2126 |
kt=k; |
2127 |
|
2128 |
} |
2129 |
else trasmesso=0; |
2130 |
// end zop |
2131 |
|
2132 |
k++; |
2133 |
}; // end cycle inside ladder |
2134 |
// write here the end ladder bytes |
2135 |
// std:: cout << "FINE LADDER " << ladder+1 << endl; |
2136 |
|
2137 |
DataDSP[DSPlength]=( ((UShort_t)(ladder+1)) | 0x1800); |
2138 |
DSPlength++; |
2139 |
ntrastot++; |
2140 |
trasmesso=0; |
2141 |
|
2142 |
}; //end cycle inside dsp |
2143 |
// std:: cout << "FINE DSP " << iv+1 << endl; |
2144 |
// here put DSP header |
2145 |
DataDSP[0]=(0x1CA0 | ((UShort_t)(iv+1)) ); |
2146 |
UShort_t Nword=(DSPlength*13)/16; |
2147 |
if( ((DSPlength*13)%16)!=0) Nword++; |
2148 |
DataDSP[1]=(0x1400 | ( Nword >> 10)); |
2149 |
DataDSP[2]=(0x1400 | ( Nword & 0x03FF) ); |
2150 |
DataDSP[3]=(0x1400 | (( (UShort_t)(fCounter >> 10) ) & 0x03FF) ); |
2151 |
DataDSP[4]=(0x1400 | (( (UShort_t)(fCounter) ) & 0x03FF) ); |
2152 |
DataDSP[5]=(0x1400 | ( (UShort_t)(fNclst << 7) ) | ( (UShort_t)(fCutzop << 4) ) |
2153 |
| ( (UShort_t)fCutzop ) ); |
2154 |
DataDSP[6]=0x1400; |
2155 |
DataDSP[7]=0x1400; |
2156 |
DataDSP[8]=0x1400; |
2157 |
DataDSP[9]=0x1400; |
2158 |
DataDSP[10]=0x1400; |
2159 |
DataDSP[11]=0x1400; |
2160 |
DataDSP[12]=0x1400; |
2161 |
DataDSP[13]=0x1400; |
2162 |
DataDSP[14]=(0x1400 | (CheckSum & 0x00FF) ); |
2163 |
DataDSP[15]=0x1C00; |
2164 |
// end DSP header |
2165 |
|
2166 |
|
2167 |
// write 13 bit DataDSP bufer inside 16 bit fDataTrack buffer |
2168 |
Int_t Bit16free=16; |
2169 |
UShort_t Dato; |
2170 |
for (Int_t NDSP=0; NDSP<DSPlength;NDSP++) { |
2171 |
Int_t Bit13ToWrite=13; |
2172 |
while(Bit13ToWrite>0) { |
2173 |
if(Bit13ToWrite<=Bit16free) { |
2174 |
Dato=((DataDSP[NDSP]&(0xFFFF >> (16-Bit13ToWrite)))<<(Bit16free-Bit13ToWrite)); |
2175 |
fDataTrack[fTracklength]=fDataTrack[fTracklength] | Dato ; |
2176 |
Bit16free=Bit16free-Bit13ToWrite; |
2177 |
Bit13ToWrite=0; |
2178 |
if(Bit16free==0) { |
2179 |
if(NDSP>15) CheckSum=CheckSum^fDataTrack[fTracklength]; |
2180 |
fTracklength++; |
2181 |
Bit16free=16; |
2182 |
}; |
2183 |
} |
2184 |
else if(Bit13ToWrite>Bit16free) { |
2185 |
Dato=( (DataDSP[NDSP]&(0xFFFF >> (16-Bit13ToWrite) ) ) >> (Bit13ToWrite-Bit16free) ); |
2186 |
fDataTrack[fTracklength]=fDataTrack[fTracklength] | Dato ; |
2187 |
if(NDSP>15) CheckSum=CheckSum^fDataTrack[fTracklength]; |
2188 |
fTracklength++; |
2189 |
Bit13ToWrite=Bit13ToWrite-Bit16free; |
2190 |
Bit16free=16; |
2191 |
}; |
2192 |
|
2193 |
}; // end cycle while(Bit13ToWrite>0) |
2194 |
|
2195 |
}; // end cycle DataDSP |
2196 |
if(Bit16free!=16) { fTracklength++; CheckSum=CheckSum^fDataTrack[fTracklength]; }; |
2197 |
CheckSum=(CheckSum >> 8)^(CheckSum&0x00FF); |
2198 |
fDataTrack[fTracklength-Nword+11]=(0x0280 | (CheckSum >> 3)); |
2199 |
fDataTrack[fTracklength-Nword+12]=(0x1C00 | (CheckSum << 13) ); |
2200 |
|
2201 |
// end write 13 bit DataDSP bufer inside 16 bit fDataTrack buffer |
2202 |
|
2203 |
//write trailer on buffer |
2204 |
UShort_t ReLength=(UShort_t)((Nword+13)*2+3); |
2205 |
UShort_t OveCheckCode=0x0000; |
2206 |
|
2207 |
fDataTrack[fTracklength]=0x0000; |
2208 |
fTracklength++; |
2209 |
|
2210 |
fDataTrack[fTracklength]=(ReLength >> 8); |
2211 |
fTracklength++; |
2212 |
|
2213 |
fDataTrack[fTracklength]=( (ReLength << 8) | (OveCheckCode & 0x00FF) ); |
2214 |
fTracklength++; |
2215 |
// end trailer |
2216 |
// std:: cout << "DSPlength " <<DSPlength << endl; |
2217 |
// std:: cout << "Nword " << Nword << endl; |
2218 |
// std:: cout << "ReLength " << ReLength << endl; |
2219 |
}; |
2220 |
// std:: cout << "ntrastot " << ntrastot << endl; |
2221 |
|
2222 |
}; |
2223 |
|
2224 |
Float_t Digitizer::SaturationTrack(Float_t ADC) { |
2225 |
|
2226 |
Float_t SatFact=1.; |
2227 |
return SatFact; |
2228 |
}; |
2229 |
|
2230 |
|
2231 |
|
2232 |
|
2233 |
|
2234 |
|