/[PAMELA software]/PamelaDigitizer/Digitizer.cxx
ViewVC logotype

Annotation of /PamelaDigitizer/Digitizer.cxx

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.4 - (hide annotations) (download)
Wed Oct 31 18:17:58 2007 UTC (17 years, 3 months ago) by orsi
Branch: MAIN
Changes since 1.3: +2705 -2571 lines
ToF improved; HOW-TO-DIGIT.TXT extended

1 orsi 1.4 // ------ PAMELA Digitizer ------
2     //
3     // Date, release and how-to: see file Pamelagp2Digits.cxx
4     //
5     // NB: Check length physics packet [packet type (0x10 = physics data)]
6     //
7     #include <sstream>
8     #include <fstream>
9     #include <stdlib.h>
10     #include <stdio.h>
11     #include <string.h>
12     #include <ctype.h>
13     #include <time.h>
14     #include "Riostream.h"
15     #include "TFile.h"
16     #include "TDirectory.h"
17     #include "TTree.h"
18     #include "TLeafI.h"
19     #include "TH1.h"
20     #include "TH2.h"
21     #include "TMath.h"
22     #include "TRandom.h"
23     #include "TSQLServer.h"
24     #include "TSystem.h"
25     //
26     #include "Digitizer.h"
27     #include "CRC.h"
28     //
29     #include <PamelaRun.h>
30     #include <physics/calorimeter/CalorimeterEvent.h>
31     #include <CalibCalPedEvent.h>
32     #include "GLTables.h"
33     //
34     extern "C"{
35     short crc(short, short);
36     };
37     //
38    
39     Digitizer::Digitizer(TTree* tree, char* &file_raw){
40     fhBookTree = tree;
41     fFilename = file_raw;
42     fCounter = 0;
43     fOBT = 0;
44    
45     //
46     // DB connections
47     //
48     TString host = "mysql://localhost/pamelaprod";
49     TString user = "anonymous";
50     TString psw = "";
51     //
52     const char *pamdbhost=gSystem->Getenv("PAM_DBHOST");
53     const char *pamdbuser=gSystem->Getenv("PAM_DBUSER");
54     const char *pamdbpsw=gSystem->Getenv("PAM_DBPSW");
55     if ( !pamdbhost ) pamdbhost = "";
56     if ( !pamdbuser ) pamdbuser = "";
57     if ( !pamdbpsw ) pamdbpsw = "";
58     if ( strcmp(pamdbhost,"") ) host = pamdbhost;
59     if ( strcmp(pamdbuser,"") ) user = pamdbuser;
60     if ( strcmp(pamdbpsw,"") ) psw = pamdbpsw;
61     fDbc = TSQLServer::Connect(host.Data(),user.Data(),psw.Data());
62     //
63     GL_TABLES *glt = new GL_TABLES(host,user,psw);
64     if ( glt->IsConnected(fDbc) ) printf("\n DB INFORMATION:\n SQL: %s Version: %s Host %s Port %i \n\n",fDbc->GetDBMS(),fDbc->ServerInfo(),fDbc->GetHost(),fDbc->GetPort());
65     //
66     // Use UTC in the DB and make timeout bigger
67     //
68     stringstream myquery;
69     myquery.str("");
70     myquery << "SET time_zone='+0:00'";
71     fDbc->Query(myquery.str().c_str());
72     myquery.str("");
73     myquery << "SET wait_timeout=173000;";
74     fDbc->Query(myquery.str().c_str());
75     //
76    
77     std:: cout << "preparing tree" << endl;
78    
79     // prepare tree
80     fhBookTree->SetBranchAddress("Irun",&Irun);
81     fhBookTree->SetBranchAddress("Ievnt",&Ievnt);
82     fhBookTree->SetBranchAddress("Ipa",&Ipa);
83     fhBookTree->SetBranchAddress("X0",&X0);
84     fhBookTree->SetBranchAddress("Y0",&Y0);
85     fhBookTree->SetBranchAddress("Z0",&Z0);
86     fhBookTree->SetBranchAddress("Theta",&Theta);
87     fhBookTree->SetBranchAddress("Phi",&Phi);
88     fhBookTree->SetBranchAddress("P0",&P0);
89     fhBookTree->SetBranchAddress("Nthtof",&Nthtof);
90     fhBookTree->SetBranchAddress("Ipltof",Ipltof);
91     fhBookTree->SetBranchAddress("Ipaddle",Ipaddle);
92     fhBookTree->SetBranchAddress("Ipartof",Ipartof);
93     fhBookTree->SetBranchAddress("Xintof",Xintof);
94     fhBookTree->SetBranchAddress("Yintof",Yintof);
95     fhBookTree->SetBranchAddress("Zintof",Zintof);
96     fhBookTree->SetBranchAddress("Xouttof",Xouttof);
97     fhBookTree->SetBranchAddress("Youttof",Youttof);
98     fhBookTree->SetBranchAddress("Zouttof",Zouttof);
99     fhBookTree->SetBranchAddress("Ereltof",Ereltof);
100     fhBookTree->SetBranchAddress("Timetof",Timetof);
101     fhBookTree->SetBranchAddress("Pathtof",Pathtof);
102     fhBookTree->SetBranchAddress("P0tof",P0tof);
103     fhBookTree->SetBranchAddress("Nthcat",&Nthcat);
104     fhBookTree->SetBranchAddress("Iparcat",Iparcat);
105     fhBookTree->SetBranchAddress("Icat",Icat);
106     fhBookTree->SetBranchAddress("Xincat",Xincat);
107     fhBookTree->SetBranchAddress("Yincat",Yincat);
108     fhBookTree->SetBranchAddress("Zincat",Zincat);
109     fhBookTree->SetBranchAddress("Xoutcat",Xoutcat);
110     fhBookTree->SetBranchAddress("Youtcat",Youtcat);
111     fhBookTree->SetBranchAddress("Zoutcat",Zoutcat);
112     fhBookTree->SetBranchAddress("Erelcat",Erelcat);
113     fhBookTree->SetBranchAddress("Timecat",Timecat);
114     fhBookTree->SetBranchAddress("Pathcat",Pathcat);
115     fhBookTree->SetBranchAddress("P0cat",P0cat);
116     fhBookTree->SetBranchAddress("Nthcas",&Nthcas);
117     fhBookTree->SetBranchAddress("Iparcas",Iparcas);
118     fhBookTree->SetBranchAddress("Icas",Icas);
119     fhBookTree->SetBranchAddress("Xincas",Xincas);
120     fhBookTree->SetBranchAddress("Yincas",Yincas);
121     fhBookTree->SetBranchAddress("Zincas",Zincas);
122     fhBookTree->SetBranchAddress("Xoutcas",Xoutcas);
123     fhBookTree->SetBranchAddress("Youtcas",Youtcas);
124     fhBookTree->SetBranchAddress("Zoutcas",Zoutcas);
125     fhBookTree->SetBranchAddress("Erelcas",Erelcas);
126     fhBookTree->SetBranchAddress("Timecas",Timecas);
127     fhBookTree->SetBranchAddress("Pathcas",Pathcas);
128     fhBookTree->SetBranchAddress("P0cas",P0cas);
129     fhBookTree->SetBranchAddress("Nthspe",&Nthspe);
130     fhBookTree->SetBranchAddress("Iparspe",Iparspe);
131     fhBookTree->SetBranchAddress("Itrpb",Itrpb);
132     fhBookTree->SetBranchAddress("Itrsl",Itrsl);
133     fhBookTree->SetBranchAddress("Itspa",Itspa);
134     fhBookTree->SetBranchAddress("Xinspe",Xinspe);
135     fhBookTree->SetBranchAddress("Yinspe",Yinspe);
136     fhBookTree->SetBranchAddress("Zinspe",Zinspe);
137     fhBookTree->SetBranchAddress("Xoutspe",Xoutspe);
138     fhBookTree->SetBranchAddress("Youtspe",Youtspe);
139     fhBookTree->SetBranchAddress("Zoutspe",Zoutspe);
140     fhBookTree->SetBranchAddress("Xavspe",Xavspe);
141     fhBookTree->SetBranchAddress("Yavspe",Yavspe);
142     fhBookTree->SetBranchAddress("Zavspe",Zavspe);
143     fhBookTree->SetBranchAddress("Erelspe",Erelspe);
144     fhBookTree->SetBranchAddress("Pathspe",Pathspe);
145     fhBookTree->SetBranchAddress("P0spe",P0spe);
146     fhBookTree->SetBranchAddress("Nxmult",Nxmult);
147     fhBookTree->SetBranchAddress("Nymult",Nymult);
148     fhBookTree->SetBranchAddress("Nstrpx",&Nstrpx);
149     fhBookTree->SetBranchAddress("Npstripx",Npstripx);
150     fhBookTree->SetBranchAddress("Ntstripx",Ntstripx);
151     fhBookTree->SetBranchAddress("Istripx",Istripx);
152     fhBookTree->SetBranchAddress("Qstripx",Qstripx);
153     fhBookTree->SetBranchAddress("Xstripx",Xstripx);
154     fhBookTree->SetBranchAddress("Nstrpy",&Nstrpy);
155     fhBookTree->SetBranchAddress("Npstripy",Npstripy);
156     fhBookTree->SetBranchAddress("Ntstripy",Ntstripy);
157     fhBookTree->SetBranchAddress("Istripy",Istripy);
158     fhBookTree->SetBranchAddress("Qstripy",Qstripy);
159     fhBookTree->SetBranchAddress("Ystripy",Ystripy);
160     fhBookTree->SetBranchAddress("Nthcali",&Nthcali);
161     fhBookTree->SetBranchAddress("Icaplane",Icaplane);
162     fhBookTree->SetBranchAddress("Icastrip",Icastrip);
163     fhBookTree->SetBranchAddress("Icamod",Icamod);
164     fhBookTree->SetBranchAddress("Enestrip",Enestrip);
165     fhBookTree->SetBranchAddress("Nthcal",&Nthcal);
166     fhBookTree->SetBranchAddress("Icapl",Icapl);
167     fhBookTree->SetBranchAddress("Icasi",Icasi);
168     fhBookTree->SetBranchAddress("Icast",Icast);
169     fhBookTree->SetBranchAddress("Xincal",Xincal);
170     fhBookTree->SetBranchAddress("Yincal",Yincal);
171     fhBookTree->SetBranchAddress("Zincal",Zincal);
172     fhBookTree->SetBranchAddress("Erelcal",Erelcal);
173     fhBookTree->SetBranchAddress("Nthnd",&Nthnd);
174     fhBookTree->SetBranchAddress("Itubend",Itubend);
175     fhBookTree->SetBranchAddress("Iparnd",Iparnd);
176     fhBookTree->SetBranchAddress("Xinnd",Xinnd);
177     fhBookTree->SetBranchAddress("Yinnd",Yinnd);
178     fhBookTree->SetBranchAddress("Zinnd",Zinnd);
179     fhBookTree->SetBranchAddress("Xoutnd",Xoutnd);
180     fhBookTree->SetBranchAddress("Youtnd",Youtnd);
181     fhBookTree->SetBranchAddress("Zoutnd",Zoutnd);
182     fhBookTree->SetBranchAddress("Erelnd",Erelnd);
183     fhBookTree->SetBranchAddress("Timend",Timend);
184     fhBookTree->SetBranchAddress("Pathnd",Pathnd);
185     fhBookTree->SetBranchAddress("P0nd",P0nd);
186     fhBookTree->SetBranchAddress("Nthcard",&Nthcard);
187     fhBookTree->SetBranchAddress("Iparcard",Iparcard);
188     fhBookTree->SetBranchAddress("Icard",Icard);
189     fhBookTree->SetBranchAddress("Xincard",Xincard);
190     fhBookTree->SetBranchAddress("Yincard",Yincard);
191     fhBookTree->SetBranchAddress("Zincard",Zincard);
192     fhBookTree->SetBranchAddress("Xoutcard",Xoutcard);
193     fhBookTree->SetBranchAddress("Youtcard",Youtcard);
194     fhBookTree->SetBranchAddress("Zoutcard",Zoutcard);
195     fhBookTree->SetBranchAddress("Erelcard",Erelcard);
196     fhBookTree->SetBranchAddress("Timecard",Timecard);
197     fhBookTree->SetBranchAddress("Pathcard",Pathcard);
198     fhBookTree->SetBranchAddress("P0card",P0card);
199    
200     fhBookTree->SetBranchStatus("*",0);
201    
202     };
203    
204    
205    
206     void Digitizer::Close(){
207    
208     delete fhBookTree;
209    
210     };
211    
212    
213    
214    
215     void Digitizer::Loop() {
216     //
217     // opens the raw output file and loops over the events
218     //
219     fOutputfile.open(fFilename, ios::out | ios::binary);
220     //fOutputfile.open(Form("Output%s",fFilename), ios::out | ios::binary);
221     //
222     // Load in memory and save at the beginning of file the calorimeter calibration
223     //
224     CaloLoadCalib();
225     DigitizeCALOCALIB();
226    
227     // load, digitize and write tracker calibration
228     LoadTrackCalib();
229    
230     DigitizeTrackCalib(1);
231     UInt_t length=fTracklength*2;
232     DigitizePSCU(length,0x12);
233     AddPadding();
234     WriteTrackCalib();
235    
236     DigitizeTrackCalib(2);
237     length=fTracklength*2;
238     DigitizePSCU(length,0x13);
239     AddPadding();
240     WriteTrackCalib();
241    
242     LoadMipCor(); // some initialization of parameters -not used now-
243     // end loading, digitizing and writing tracker calibration
244    
245     //
246     // loops over the events
247     //
248    
249     Int_t nentries = fhBookTree->GetEntriesFast();
250     Long64_t nbytes = 0;
251     for (Int_t i=0; i<nentries;i++) {
252     //
253     nbytes += fhBookTree->GetEntry(i);
254     // read detectors sequentially:
255     // http://www.ts.infn.it/fileadmin/documents/physics/experiments/wizard/cpu/gen_arch/RM_Acquisition.pdf
256     // on pamelatov:
257     // /cvs/yoda/techmodel/physics/NeutronDetectorReader.cpp
258     DigitizeTRIGGER();
259     DigitizeTOF();
260     DigitizeAC();
261     DigitizeCALO();
262     DigitizeTrack();
263     DigitizeS4();
264     DigitizeND();
265     //
266     // Add padding to 64 bits
267     //
268     AddPadding();
269     //
270     // Create CPU header, we need packet type (0x10 = physics data) and packet length.
271     //
272     UInt_t length=2*(fCALOlength+fACbuffer+fTracklength+fNDbuffer+fS4buffer)+fPadding+fTOFbuffer+fTRIGGERbuffer;
273     //UInt_t length=2*(fCALOlength+fACbuffer+fTracklength+fNDbuffer)+fPadding+fTOFbuffer+fTRIGGERbuffer;
274     DigitizePSCU(length,0x10);
275     if ( !i%100 ) std::cout << "writing event " << i << endl;
276     WriteData();
277     };
278    
279     fOutputfile.close();
280     std::cout << "files closed" << endl << flush;
281    
282     };
283    
284     void Digitizer::AddPadding(){
285     //
286     Float_t pd0 = (fLen+16)/64.;
287     Float_t pd1 = pd0 - (Float_t)int(pd0);
288     Float_t padfrac = 64. - pd1 * 64.;
289     //
290     UInt_t padbytes = (UInt_t)padfrac;
291     if ( padbytes > 0 && padbytes < 64 ){
292     //
293     // here the padding length
294     //
295     fPadding = padbytes+64;
296     //
297     // random padding bytes
298     //
299     for (Int_t ur=0; ur<32; ur++){
300     fDataPadding[ur] = (UShort_t)rand();
301     };
302     };
303     };
304    
305    
306     void Digitizer::DigitizePSCU(UInt_t length, UChar_t type) {
307     //
308     UChar_t buff[16];
309     //
310     // CPU signature
311     //
312     buff[0] = 0xFA;
313     buff[1] = 0xFE;
314     buff[2] = 0xDE;
315     //
316     // packet type (twice)
317     //
318     buff[3] = type;
319     buff[4] = type;
320     //
321     // counter
322     //
323     fCounter++;
324     while ( fCounter > 16777215 ){
325     fCounter -= 16777215;
326     };
327     //
328     buff[5] = (UChar_t)(fCounter >> 16);
329     buff[6] = (UChar_t)(fCounter >> 8);
330     buff[7] = (UChar_t)fCounter;
331     //
332     // on board time
333     //
334     ULong64_t obt = fOBT + 30LL;
335     //
336     while ( obt > 4294967295LL ){
337     obt -= 4294967295LL;
338     };
339     fOBT = (UInt_t)obt;
340     //
341     buff[8] = (UChar_t)(fOBT >> 24);
342     buff[9] = (UChar_t)(fOBT >> 16);
343     buff[10] = (UChar_t)(fOBT >> 8);
344     buff[11] = (UChar_t)fOBT;
345     //
346     // Packet length
347     //
348     fLen = length;
349     //
350     buff[12] = (UChar_t)(fLen >> 16);
351     buff[13] = (UChar_t)(fLen >> 8);
352     buff[14] = (UChar_t)fLen;
353     //
354     // CPU header CRC
355     //
356     buff[15] = (BYTE)CM_Compute_CRC16((UINT16)0, (BYTE*)&buff, (UINT32)15);
357     //
358     memcpy(fDataPSCU,buff,16*sizeof(UChar_t));
359     //
360     };
361    
362     void Digitizer::ClearCaloCalib(Int_t s){
363     //
364     fcstwerr[s] = 0;
365     fcperror[s] = 0.;
366     for ( Int_t d=0 ; d<11 ;d++ ){
367     Int_t pre = -1;
368     for ( Int_t j=0; j<96 ;j++){
369     if ( j%16 == 0 ) pre++;
370     fcalped[s][d][j] = 0.;
371     fcstwerr[s] = 0.;
372     fcperror[s] = 0.;
373     fcalgood[s][d][j] = 0.;
374     fcalthr[s][d][pre] = 0.;
375     fcalrms[s][d][j] = 0.;
376     fcalbase[s][d][pre] = 0.;
377     fcalvar[s][d][pre] = 0.;
378     };
379     };
380     return;
381     }
382    
383     Int_t Digitizer::CaloLoadCalib(Int_t s,TString fcalname, UInt_t calibno){
384     //
385     //
386     UInt_t e = 0;
387     if ( s == 0 ) e = 0;
388     if ( s == 1 ) e = 2;
389     if ( s == 2 ) e = 3;
390     if ( s == 3 ) e = 1;
391     //
392     ifstream myfile;
393     myfile.open(fcalname.Data());
394     if ( !myfile ){
395     return(-107);
396     };
397     myfile.close();
398     //
399     TFile *File = new TFile(fcalname.Data());
400     if ( !File ) return(-108);
401     TTree *tr = (TTree*)File->Get("CalibCalPed");
402     if ( !tr ) return(-109);
403     //
404     TBranch *calo = tr->GetBranch("CalibCalPed");
405     //
406     pamela::CalibCalPedEvent *ce = 0;
407     tr->SetBranchAddress("CalibCalPed", &ce);
408     //
409     Long64_t ncalibs = calo->GetEntries();
410     //
411     if ( !ncalibs ) return(-110);
412     //
413     calo->GetEntry(calibno);
414     //
415     if (ce->cstwerr[s] != 0 && ce->cperror[s] == 0 ) {
416     fcstwerr[s] = ce->cstwerr[s];
417     fcperror[s] = ce->cperror[s];
418     for ( Int_t d=0 ; d<11 ;d++ ){
419     Int_t pre = -1;
420     for ( Int_t j=0; j<96 ;j++){
421     if ( j%16 == 0 ) pre++;
422     fcalped[s][d][j] = ce->calped[e][d][j];
423     fcalgood[s][d][j] = ce->calgood[e][d][j];
424     fcalthr[s][d][pre] = ce->calthr[e][d][pre];
425     fcalrms[s][d][j] = ce->calrms[e][d][j];
426     fcalbase[s][d][pre] = ce->calbase[e][d][pre];
427     fcalvar[s][d][pre] = ce->calvar[e][d][pre];
428     };
429     };
430     } else {
431     printf(" CALORIMETER - ERROR: problems finding a good calibration in this file! \n\n ");
432     File->Close();
433     return(-111);
434     };
435     File->Close();
436     return(0);
437     }
438    
439    
440     void Digitizer::DigitizeCALOCALIB() {
441     //
442     // Header of the four sections
443     //
444     fSecCalo[0] = 0xAA00; // XE
445     fSecCalo[1] = 0xB100; // XO
446     fSecCalo[2] = 0xB600; // YE
447     fSecCalo[3] = 0xAD00; // YO
448     //
449     // length of the data is 0x1215
450     //
451     fSecCALOLength[0] = 0x1215; // XE
452     fSecCALOLength[1] = 0x1215; // XO
453     fSecCALOLength[2] = 0x1215; // YE
454     fSecCALOLength[3] = 0x1215; // YO
455     //
456     Int_t chksum = 0;
457     UInt_t tstrip = 0;
458     UInt_t fSecPointer = 0;
459     //
460     for (Int_t sec=0; sec < 4; sec++){
461     //
462     // sec = 0 -> XE 1 -> XO 2-> YE 3 -> YO
463     //
464     fCALOlength = 0;
465     memset(fDataCALO,0,sizeof(UShort_t)*fCALObuffer);
466     fSecPointer = fCALOlength;
467     //
468     // First of all we have section header and packet length
469     //
470     fDataCALO[fCALOlength] = fSecCalo[sec];
471     fCALOlength++;
472     fDataCALO[fCALOlength] = fSecCALOLength[sec];
473     fCALOlength++;
474     //
475     // Section XO is read in the opposite direction respect to the others
476     //
477     chksum = 0;
478     //
479     for (Int_t plane=0; plane < 11; plane++){
480     //
481     if ( sec == 1 ) tstrip = fCALOlength + 96*2;
482     //
483     for (Int_t strip=0; strip < 96; strip++){
484     //
485     chksum += (Int_t)fcalped[sec][plane][strip];
486     //
487     // save value
488     //
489     if ( sec == 1 ){
490     tstrip -= 2;
491     fDataCALO[tstrip] = (Int_t)fcalped[sec][plane][strip];
492     fDataCALO[tstrip+1] = (Int_t)fcalgood[sec][plane][strip];
493     } else {
494     fDataCALO[fCALOlength] = (Int_t)fcalped[sec][plane][strip];
495     fDataCALO[fCALOlength+1] = (Int_t)fcalgood[sec][plane][strip];
496     };
497     fCALOlength +=2;
498     };
499     //
500     };
501     //
502     fDataCALO[fCALOlength] = (UShort_t)chksum;
503     fCALOlength++;
504     fDataCALO[fCALOlength] = 0;
505     fCALOlength++;
506     fDataCALO[fCALOlength] = (UShort_t)((Int_t)(chksum >> 16));
507     fCALOlength++;
508     //
509     // Section XO is read in the opposite direction respect to the others
510     //
511     chksum = 0;
512     //
513     for (Int_t plane=0; plane < 11; plane++){
514     //
515     if ( sec == 1 ) tstrip = fCALOlength+6*2;
516     //
517     for (Int_t strip=0; strip < 6; strip++){
518     //
519     chksum += (Int_t)fcalthr[sec][plane][strip];
520     //
521     // save value
522     //
523     if ( sec == 1 ){
524     tstrip -= 2;
525     fDataCALO[tstrip] = 0;
526     fDataCALO[tstrip+1] = (Int_t)fcalthr[sec][plane][strip];
527     } else {
528     fDataCALO[fCALOlength] = 0;
529     fDataCALO[fCALOlength+1] = (Int_t)fcalthr[sec][plane][strip];
530     };
531     fCALOlength +=2;
532     };
533     //
534     };
535     //
536     fDataCALO[fCALOlength] = 0;
537     fCALOlength++;
538     fDataCALO[fCALOlength] = (UShort_t)chksum;
539     fCALOlength++;
540     fDataCALO[fCALOlength] = 0;
541     fCALOlength++;
542     fDataCALO[fCALOlength] = (UShort_t)((Int_t)(chksum >> 16));
543     fCALOlength++;
544     //
545     // Section XO is read in the opposite direction respect to the others
546     //
547     for (Int_t plane=0; plane < 11; plane++){
548     //
549     if ( sec == 1 ) tstrip = fCALOlength+96*2;
550     //
551     for (Int_t strip=0; strip < 96; strip++){
552     //
553     // save value
554     //
555     if ( sec == 1 ){
556     tstrip -= 2;
557     fDataCALO[tstrip] = 0;
558     fDataCALO[tstrip+1] = (Int_t)fcalrms[sec][plane][strip];
559     } else {
560     fDataCALO[fCALOlength] = 0;
561     fDataCALO[fCALOlength+1] = (Int_t)fcalrms[sec][plane][strip];
562     };
563     fCALOlength += 2;
564     };
565     //
566     };
567     //
568     // Section XO is read in the opposite direction respect to the others
569     //
570     for (Int_t plane=0; plane < 11; plane++){
571     //
572     if ( sec == 1 ) tstrip = fCALOlength+6*4;
573     //
574     for (Int_t strip=0; strip < 6; strip++){
575     //
576     // save value
577     //
578     if ( sec == 1 ){
579     tstrip -= 4;
580     fDataCALO[tstrip] = 0;
581     fDataCALO[tstrip+1] = (Int_t)fcalbase[sec][plane][strip];
582     fDataCALO[tstrip+2] = 0;
583     fDataCALO[tstrip+3] = (Int_t)fcalvar[sec][plane][strip];
584     } else {
585     fDataCALO[fCALOlength] = 0;
586     fDataCALO[fCALOlength+1] = (Int_t)fcalbase[sec][plane][strip];
587     fDataCALO[fCALOlength+2] = 0;
588     fDataCALO[fCALOlength+3] = (Int_t)fcalvar[sec][plane][strip];
589     };
590     fCALOlength +=4;
591     };
592     //
593     };
594     //
595     //
596     // here we calculate and save the CRC
597     //
598     fDataCALO[fCALOlength] = 0;
599     fCALOlength++;
600     Short_t CRC = 0;
601     for (UInt_t i=0; i<(fCALOlength-fSecPointer); i++){
602     CRC=crc(CRC,fDataCALO[i+fSecPointer]);
603     };
604     fDataCALO[fCALOlength] = (UShort_t)CRC;
605     fCALOlength++;
606     //
607     UInt_t length=fCALOlength*2;
608     DigitizePSCU(length,0x18);
609     //
610     // Add padding to 64 bits
611     //
612     AddPadding();
613     //
614     fOutputfile.write(reinterpret_cast<char*>(fDataPSCU),sizeof(UShort_t)*fPSCUbuffer);
615     UShort_t temp[1000000];
616     memset(temp,0,sizeof(UShort_t)*1000000);
617     swab(fDataCALO,temp,sizeof(UShort_t)*fCALOlength); // WE MUST SWAP THE BYTES!!!
618     fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fCALOlength);
619     //
620     // padding to 64 bytes
621     //
622     if ( fPadding ){
623     fOutputfile.write(reinterpret_cast<char*>(fDataPadding),sizeof(UChar_t)*fPadding);
624     };
625     //
626     //
627     };
628     //
629     };
630    
631     void Digitizer::CaloLoadCalib() {
632     //
633     fGivenCaloCalib = 0; // ####@@@@ should be given as input par @@@@####
634     //
635     // first of all load the MIP to ADC conversion values
636     //
637     stringstream calfile;
638     Int_t error = 0;
639     GL_PARAM *glparam = new GL_PARAM();
640     //
641     // determine where I can find calorimeter ADC to MIP conversion file
642     //
643     error = 0;
644     error = glparam->Query_GL_PARAM(3,101,fDbc);
645     //
646     calfile.str("");
647     calfile << glparam->PATH.Data() << "/";
648     calfile << glparam->NAME.Data();
649     //
650     printf("\n Using Calorimeter ADC to MIP conversion file: \n %s \n",calfile.str().c_str());
651     FILE *f;
652     f = fopen(calfile.str().c_str(),"rb");
653     //
654     memset(fCalomip,0,4224*sizeof(fCalomip[0][0][0]));
655     //
656     for (Int_t m = 0; m < 2 ; m++ ){
657     for (Int_t k = 0; k < 22; k++ ){
658     for (Int_t l = 0; l < 96; l++ ){
659     fread(&fCalomip[m][k][l],sizeof(fCalomip[m][k][l]),1,f);
660     };
661     };
662     };
663     fclose(f);
664     //
665     // determine which calibration has to be used and load it for each section
666     //
667     GL_CALO_CALIB *glcalo = new GL_CALO_CALIB();
668     GL_ROOT *glroot = new GL_ROOT();
669     TString fcalname;
670     UInt_t idcalib;
671     UInt_t calibno;
672     UInt_t utime = 0;
673     //
674     for (UInt_t s=0; s<4; s++){
675     //
676     // clear calo calib variables for section s
677     //
678     ClearCaloCalib(s);
679     //
680     if ( fGivenCaloCalib ){
681     //
682     // a time has been given as input on the command line so retrieve the calibration that preceed that time
683     //
684     glcalo->Query_GL_CALO_CALIB(fGivenCaloCalib,utime,s,fDbc);
685     //
686     calibno = glcalo->EV_ROOT;
687     idcalib = glcalo->ID_ROOT_L0;
688     //
689     // determine path and name and entry of the calibration file
690     //
691     printf("\n");
692     printf(" ** SECTION %i **\n",s);
693     //
694     glroot->Query_GL_ROOT(idcalib,fDbc);
695     //
696     stringstream name;
697     name.str("");
698     name << glroot->PATH.Data() << "/";
699     name << glroot->NAME.Data();
700     //
701     fcalname = (TString)name.str().c_str();
702     //
703     printf("\n Section %i : using file %s calibration at entry %i: \n",s,fcalname.Data(),calibno);
704     //
705     } else {
706     error = 0;
707     error = glparam->Query_GL_PARAM(1,104,fDbc);
708     //
709     calfile.str("");
710     calfile << glparam->PATH.Data() << "/";
711     calfile << glparam->NAME.Data();
712     //
713     printf("\n Section %i : using default calorimeter calibration: \n %s \n",s,calfile.str().c_str());
714     //
715     fcalname = (TString)calfile.str().c_str();
716     calibno = s;
717     //
718     };
719     //
720     // load calibration variables in memory
721     //
722     CaloLoadCalib(s,fcalname,calibno);
723     //
724     };
725     //
726     // at this point we have in memory the calorimeter calibration and we can save it to disk in the correct format and use it to digitize the data
727     //
728     delete glparam;
729     delete glcalo;
730     delete glroot;
731     };
732    
733     void Digitizer::DigitizeCALO() {
734     //
735     fModCalo = 0; // 0 is RAW, 1 is COMPRESS, 2 is FULL ####@@@@ should be given as input par @@@@####
736     //
737     //
738     //
739     fCALOlength = 0; // reset total dimension of calo data
740     //
741     // gpamela variables to be used
742     //
743     fhBookTree->SetBranchStatus("Nthcali",1);
744     fhBookTree->SetBranchStatus("Icaplane",1);
745     fhBookTree->SetBranchStatus("Icastrip",1);
746     fhBookTree->SetBranchStatus("Icamod",1);
747     fhBookTree->SetBranchStatus("Enestrip",1);
748     //
749     // call different routines depending on the acq mode you want to simulate
750     //
751     switch ( fModCalo ){
752     case 0:
753     this->DigitizeCALORAW();
754     break;
755     case 1:
756     this->DigitizeCALOCOMPRESS();
757     break;
758     case 2:
759     this->DigitizeCALOFULL();
760     break;
761     };
762     //
763     };
764    
765     Float_t Digitizer::GetCALOen(Int_t sec, Int_t plane, Int_t strip){
766     //
767     // determine plane and strip
768     //
769     Int_t mplane = 0;
770     //
771     // wrong!
772     //
773     // if ( sec == 0 || sec == 3 ) mplane = (plane * 4) + sec + 1;
774     // if ( sec == 1 ) mplane = (plane * 4) + 2 + 1;
775     // if ( sec == 2 ) mplane = (plane * 4) + 1 + 1;
776     //
777     if ( sec == 0 ) mplane = plane * 4 + 1; // it must be 0, 4, 8, ... (+1) from plane = 0, 11
778     if ( sec == 1 ) mplane = plane * 4 + 2 + 1; // it must be 2, 6, 10, ... (+1) from plane = 0, 11
779     if ( sec == 2 ) mplane = plane * 4 + 3 + 1; // it must be 3, 7, 11, ... (+1) from plane = 0, 11
780     if ( sec == 3 ) mplane = plane * 4 + 1 + 1; // it must be 1, 5, 9, ... (+1) from plane = 0, 11
781     //
782     Int_t mstrip = strip + 1;
783     //
784     // search energy release in gpamela output
785     //
786     for (Int_t i=0; i<Nthcali;i++){
787     if ( Icaplane[i] == mplane && Icastrip[i] == mstrip ){
788     return (Enestrip[i]);
789     };
790     };
791     //
792     // if not found it means no energy release so return 0.
793     //
794     return(0.);
795     };
796    
797     void Digitizer::DigitizeCALORAW() {
798     //
799     // some variables
800     //
801     Float_t ens = 0.;
802     UInt_t adcsig = 0;
803     UInt_t adcbase = 0;
804     UInt_t adc = 0;
805     Int_t pre = 0;
806     UInt_t l = 0;
807     UInt_t lpl = 0;
808     UInt_t tstrip = 0;
809     UInt_t fSecPointer = 0;
810     Double_t pedenoise;
811     Float_t rms = 0.;
812     Float_t pedestal = 0.;
813     //
814     // clean the data structure
815     //
816     memset(fDataCALO,0,sizeof(UShort_t)*fCALObuffer);
817     //
818     // Header of the four sections
819     //
820     fSecCalo[0] = 0xEA08; // XE
821     fSecCalo[1] = 0xF108; // XO
822     fSecCalo[2] = 0xF608; // YE
823     fSecCalo[3] = 0xED08; // YO
824     //
825     // length of the data is 0x0428 in RAW mode
826     //
827     fSecCALOLength[0] = 0x0428; // XE
828     fSecCALOLength[1] = 0x0428; // XO
829     fSecCALOLength[2] = 0x0428; // YE
830     fSecCALOLength[3] = 0x0428; // YO
831     //
832     // let's start
833     //
834     fCALOlength = 0;
835     //
836     for (Int_t sec=0; sec < 4; sec++){
837     //
838     // sec = 0 -> XE 1 -> XO 2-> YE 3 -> YO
839     //
840     l = 0; // XE and XO are Y planes
841     if ( sec < 2 ) l = 1; // while YE and YO are X planes
842     //
843     fSecPointer = fCALOlength;
844     //
845     // First of all we have section header and packet length
846     //
847     fDataCALO[fCALOlength] = fSecCalo[sec];
848     fCALOlength++;
849     fDataCALO[fCALOlength] = fSecCALOLength[sec];
850     fCALOlength++;
851     //
852     // selftrigger coincidences - in the future we should add here some code to simulate timing response of pre-amplifiers
853     //
854     for (Int_t autoplane=0; autoplane < 7; autoplane++){
855     fDataCALO[fCALOlength] = 0x0000;
856     fCALOlength++;
857     };
858     //
859     //
860     // here comes data
861     //
862     //
863     // Section XO is read in the opposite direction respect to the others
864     //
865     if ( sec == 1 ){
866     tstrip = 96*11 + fCALOlength;
867     } else {
868     tstrip = 0;
869     };
870     //
871     pre = -1;
872     //
873     for (Int_t strip=0; strip < 96; strip++){
874     //
875     // which is the pre for this strip?
876     //
877     if (strip%16 == 0) {
878     pre++;
879     };
880     //
881     if ( sec == 1 ) tstrip -= 11;
882     //
883     for (Int_t plane=0; plane < 11; plane++){
884     //
885     // here is wrong!!!!
886     //
887     //
888     // if ( plane%2 == 0 && sec%2 != 0){
889     // lpl = plane*2;
890     // } else {
891     // lpl = (plane*2) + 1;
892     // };
893     //
894     if ( sec == 0 || sec == 3 ) lpl = plane * 2;
895     if ( sec == 1 || sec == 2 ) lpl = (plane * 2) + 1;
896     //
897     // get the energy in GeV from the simulation for that strip
898     //
899     ens = this->GetCALOen(sec,plane,strip);
900     //
901     // convert it into ADC channels
902     //
903     adcsig = int(ens*fCalomip[l][lpl][strip]/fCALOGeV2MIPratio);
904     //
905     // sum baselines
906     //
907     adcbase = (UInt_t)fcalbase[sec][plane][pre];
908     //
909     // add noise and pedestals
910     //
911     pedestal = fcalped[sec][plane][strip];
912     rms = fcalrms[sec][plane][strip]/4.;
913     //
914     // Add random gaussian noise of RMS rms and Centered in the pedestal
915     //
916     pedenoise = gRandom->Gaus((Double_t)pedestal,(Double_t)rms);
917     //
918     // Sum all contribution
919     //
920     adc = adcsig + adcbase + (Int_t)round(pedenoise);
921     //
922     // Signal saturation
923     //
924     if ( adc > 0x7FFF ) adc = 0x7FFF;
925     //
926     // save value
927     //
928     if ( sec == 1 ){
929     fDataCALO[tstrip] = adc;
930     tstrip++;
931     } else {
932     fDataCALO[fCALOlength] = adc;
933     };
934     fCALOlength++;
935     //
936     };
937     //
938     if ( sec == 1 ) tstrip -= 11;
939     //
940     };
941     //
942     // here we calculate and save the CRC
943     //
944     Short_t CRC = 0;
945     for (UInt_t i=0; i<(fCALOlength-fSecPointer); i++){
946     CRC=crc(CRC,fDataCALO[i+fSecPointer]);
947     };
948     fDataCALO[fCALOlength] = (UShort_t)CRC;
949     fCALOlength++;
950     //
951     };
952     //
953     // for (Int_t i=0; i<fCALOlength; i++){
954     // printf(" WORD %i DIGIT %0x \n",i,fDataCALO[i]);
955     // };
956     //
957     };
958    
959     void Digitizer::DigitizeCALOCOMPRESS() {
960     //
961     printf(" COMPRESS MODE STILL NOT IMPLEMENTED! \n");
962     //
963     this->DigitizeCALORAW();
964     return;
965     //
966     //
967     //
968     fSecCalo[0] = 0xEA00;
969     fSecCalo[1] = 0xF100;
970     fSecCalo[2] = 0xF600;
971     fSecCalo[3] = 0xED00;
972     //
973     // length of the data in DSP mode must be calculated on fly during digitization
974     //
975     memset(fSecCALOLength,0x0,4*sizeof(UShort_t));
976     //
977     // here comes raw data
978     //
979     Int_t en = 0;
980     //
981     for (Int_t sec=0; sec < 4; sec++){
982     fDataCALO[en] = fSecCalo[sec];
983     en++;
984     fDataCALO[en] = fSecCALOLength[sec];
985     en++;
986     for (Int_t plane=0; plane < 11; plane++){
987     for (Int_t strip=0; strip < 11; strip++){
988     fDataCALO[en] = 0x0;
989     en++;
990     };
991     };
992     };
993     //
994     };
995    
996     void Digitizer::DigitizeCALOFULL() {
997     //
998     printf(" FULL MODE STILL NOT IMPLEMENTED! \n");
999     //
1000     this->DigitizeCALORAW();
1001     return;
1002     //
1003     fSecCalo[0] = 0xEA00;
1004     fSecCalo[1] = 0xF100;
1005     fSecCalo[2] = 0xF600;
1006     fSecCalo[3] = 0xED00;
1007     //
1008     // length of the data in DSP mode must be calculated on fly during digitization
1009     //
1010     memset(fSecCALOLength,0x0,4*sizeof(UShort_t));
1011     //
1012     // here comes raw data
1013     //
1014     Int_t en = 0;
1015     //
1016     for (Int_t sec=0; sec < 4; sec++){
1017     fDataCALO[en] = fSecCalo[sec];
1018     en++;
1019     fDataCALO[en] = fSecCALOLength[sec];
1020     en++;
1021     for (Int_t plane=0; plane < 11; plane++){
1022     for (Int_t strip=0; strip < 11; strip++){
1023     fDataCALO[en] = 0x0;
1024     en++;
1025     };
1026     };
1027     };
1028     //
1029     };
1030    
1031     void Digitizer::DigitizeTRIGGER() {
1032     //fDataTrigger: 153 bytes
1033     for (Int_t j=0; j < 153; j++)
1034     fDataTrigger[j]=0x00;
1035     };
1036    
1037     Int_t Digitizer::DigitizeTOF() {
1038     //fDataTof: 12 x 23 bytes (=276 bytes)
1039     UChar_t *pTof=fDataTof;
1040     Bool_t DEBUG=false;
1041    
1042     // --- activate branches:
1043     fhBookTree->SetBranchStatus("Nthtof",1);
1044     fhBookTree->SetBranchStatus("Ipltof",1);
1045     fhBookTree->SetBranchStatus("Ipaddle",1);
1046     fhBookTree->SetBranchStatus("Xintof",1);
1047     fhBookTree->SetBranchStatus("Yintof",1);
1048     fhBookTree->SetBranchStatus("Xouttof",1);
1049     fhBookTree->SetBranchStatus("Youttof",1);
1050     fhBookTree->SetBranchStatus("Ereltof",1);
1051     fhBookTree->SetBranchStatus("Timetof",1);
1052     // not yet used: Zintof, Xouttof, Youttof, Zouttof
1053    
1054     // ------ evaluate energy in each pmt: ------
1055     // strip geometry (lenght/width)
1056     Float_t dimel[6] = {33.0, 40.8 ,18.0, 15.0, 15.0, 18.0};
1057     //Float_t dimes[6] = {5.1, 5.5, 7.5, 9.0, 6.0, 5.0};
1058    
1059     // S11 8 paddles 33.0 x 5.1 cm
1060     // S12 6 paddles 40.8 x 5.5 cm
1061     // S21 2 paddles 18.0 x 7.5 cm
1062     // S22 2 paddles 15.0 x 9.0 cm
1063     // S31 3 paddles 15.0 x 6.0 cm
1064     // S32 3 paddles 18.0 x 5.0 cm
1065    
1066     Float_t FGeo[2]={0., 0.}; /* geometrical factor */
1067    
1068     const Float_t Pho_keV = 10.; // photons per keV in scintillator
1069     const Float_t echarge = 1.6e-19; // electron charge
1070     Float_t Npho=0.;
1071     Float_t QevePmt_pC[48];
1072     Float_t QhitPad_pC[2]={0., 0.};
1073     Float_t QhitPmt_pC[2]={0., 0.};
1074     Float_t pmGain = 3.5e6; /* PMT Gain: the same for all PMTs */
1075     Float_t effi=0.21; /* Efficienza di fotocatodo */
1076    
1077     Float_t ADC_pC0=-58.1; // ADC/pC conversion coefficient 0
1078     Float_t ADC_pC1=1.728; // ADC/pC conversion coefficient 1
1079     Float_t ADC_pC2=-4.063e-05; // ADC/pC conversion coefficient 2
1080     Float_t ADC_pC3=-5.763e-08; // ADC/pC conversion coefficient 3
1081    
1082     Float_t pCthres=40.; // threshold in charge
1083     Int_t ADClast=4095; // no signal --> ADC ch=4095
1084     Int_t ADCsat=3100; // saturation value for the ADCs
1085     Int_t ADCtof[48];
1086    
1087    
1088     // ---- introduce scale factors to tune simul ADC to real data 24-oct DC
1089     Float_t ScaleFact[48]={0.18,0.22,0.35,0.26,0.47,0.35,0.31,0.37,
1090     0.44,0.23,0.38,0.60,0.39,0.29,0.40,0.23,
1091     0.30,0.66,0.22,1.53,0.17,0.55,
1092     0.84,0.19,0.21,1.64,0.62,0.13,
1093     0.18,0.15,0.10,0.14,0.14,0.14,0.14,0.12,
1094     0.26,0.18,0.25,0.23,0.20,0.40,
1095     0.19,0.23,0.25,0.23,0.25,0.20};
1096    
1097     for(Int_t i=0; i<48; i++){
1098     QevePmt_pC[i] = 0;
1099     ADCtof[i]=0;
1100     }
1101    
1102     // ------ read calibration file (get A1, A2, lambda1, lambda2)
1103     ifstream fileTriggerCalib;
1104     TString ftrigname="TrigCalibParam.txt";
1105     fileTriggerCalib.open(ftrigname.Data());
1106     if ( !fileTriggerCalib ) {
1107     printf("debug: no trigger calib file!\n");
1108     return(-117); //check output!
1109     };
1110     Float_t atte1[48],atte2[48],lambda1[48],lambda2[48];
1111     Int_t temp=0;
1112     // correct readout WM Oct '07
1113     for(Int_t i=0; i<48; i++){
1114     fileTriggerCalib >> temp;
1115     fileTriggerCalib >> atte1[i];
1116     fileTriggerCalib >> lambda1[i];
1117     fileTriggerCalib >> atte2[i];
1118     fileTriggerCalib >> lambda2[i];
1119     fileTriggerCalib >> temp;
1120     }
1121     fileTriggerCalib.close();
1122    
1123     Int_t ip, ipad;
1124     //Int_t ipmt;
1125     Int_t pmtleft=0, pmtright=0;
1126     Int_t *pl, *pr;
1127     pl = &pmtleft;
1128     pr = &pmtright;
1129    
1130     // TDC variables:
1131     Int_t TDClast=4095; // no signal --> TDC ch=4095
1132     Int_t TDCint[48];
1133     Float_t tdc[48],tdc1[48],tdcpmt[48];
1134     for(Int_t i=0; i<48; i++) {
1135     tdcpmt[i] = 1000.;
1136     tdc[i] = 0.; // 18-oct WM
1137     tdc1[i] = 0.; // 18-oct WM
1138     }
1139    
1140     Float_t thresh=10.; // to be defined better... (Wolfgang)
1141    
1142     // === TDC: simulate timing for each paddle
1143     Float_t dt1 = 285.e-12 ; // single PMT resolution
1144     // Float_t dt1 = 10.e-12 ; // TEST
1145     Float_t tdcres[50],c1_S[50],c2_S[50],c3_S[50];
1146     for(Int_t j=0;j<48;j++) tdcres[j] = 50.E-12; // TDC resolution 50 picosec
1147     for(Int_t j=0;j<48;j++) c1_S[j] = 500.; // cable length in channels
1148     for(Int_t j=0;j<48;j++) c2_S[j] = 0.;
1149     for(Int_t j=0;j<48;j++) c3_S[j] = 1000.;
1150     for(Int_t j=0;j<48;j++) c1_S[j] = c1_S[j]*tdcres[j]; // cable length in sec
1151     for(Int_t j=0;j<48;j++) c2_S[j] = c2_S[j]*tdcres[j];
1152     // ih = 0 + i1; // not used?? (Silvio)
1153    
1154     /* ********************************** start loop over hits */
1155    
1156     for(Int_t nh=0; nh<Nthtof; nh++){
1157    
1158     Float_t s_l_g[6] = {8.0, 8.0, 20.9, 22.0, 9.8, 8.3 }; // length of the lightguide
1159     Float_t t1,t2,veff,veff1,veff0 ;
1160     veff0 = 100.*1.0e8 ; // light velocity in the scintillator in m/sec
1161     veff1 = 100.*1.5e8; // light velocity in the lightguide in m/sec
1162     veff=veff0; // signal velocity in the paddle
1163    
1164     t1 = Timetof[nh] ; // Start
1165     t2 = Timetof[nh] ;
1166    
1167     // Donatella: redefinition plane and pad for vectors in C
1168     ip = Ipltof[nh]-1;
1169     ipad = Ipaddle[nh]-1;
1170     pmtleft=0;
1171     pmtright=0;
1172    
1173     if (ip<6) {
1174     Paddle2Pmt(ip, ipad, &pmtleft, &pmtright);
1175    
1176     // DC: evaluates mean position and path inside the paddle
1177    
1178     Float_t tpos=0.;
1179     Float_t path[2] = {0., 0.};
1180     //--- Strip in Y = S11,S22,S31 ------
1181     if(ip==0 || ip==3 || ip==4)
1182     tpos = (Yintof[nh]+Youttof[nh])/2.;
1183     else
1184     if(ip==1 || ip==2 || ip==5) //--- Strip in X per S12,S21,S32
1185     tpos = (Xintof[nh]+Xouttof[nh])/2.;
1186     else //if (ip!=6)
1187     printf("*** WARNING TOF: this option should never occur! (ip=%2i, nh=%2i)\n",ip,nh);
1188    
1189     path[0]= tpos + dimel[ip]/2.; // path to left PMT
1190     path[1]= dimel[ip]/2.- tpos; // path to right PMT
1191    
1192     // cout <<"Strip N. ="<< ipaddle <<" piano n.= "<< iplane <<" POSIZ = "<< tpos <<"\n";
1193    
1194     if (DEBUG) {
1195     cout <<" plane "<<ip<<" strip # ="<< ipad <<" tpos "<< tpos <<"\n";
1196     cout <<"pmtleft, pmtright "<<pmtleft<<" "<<pmtright<<endl;
1197     }
1198    
1199     // constant geometric factor, for the moment
1200     FGeo[0] =0.5;
1201     FGeo[1] =0.5;
1202     // FGeo[1] = atan(path[1]/dimes[ip])/6.28318; // fraction of photons toward SX
1203     // FGeo[2] = atan(path[2]/dimes[ip])/6.28318; // toward DX
1204    
1205    
1206     // Npho = Poisson(ERELTOF[nh])*Pho_keV*1e6 Poissonian fluctuations to be inserted-DC
1207     Npho = Ereltof[nh]*Pho_keV*1.0e6; // Eloss in GeV
1208    
1209     Float_t knorm[2]={0., 0.}; // Donatella
1210     Float_t Atten[2]={0., 0.}; // Donatella
1211     for(Int_t j=0; j<2; j++){
1212     QhitPad_pC[j]= Npho*FGeo[j]*effi*pmGain*echarge*1.E12; // corrected WM
1213     // WM
1214     knorm[j]=atte1[pmtleft+j]*exp(lambda1[pmtleft+j]*dimel[ip]/2.*pow(-1,j+1)) +
1215     atte2[pmtleft+j]*exp(lambda2[pmtleft+j]*dimel[ip]/2.*pow(-1,j+1));
1216     Atten[j]=atte1[pmtleft+j]*exp(tpos*lambda1[pmtleft+j]) +
1217     atte2[pmtleft+j]*exp(tpos*lambda2[pmtleft+j]) ;
1218     QhitPmt_pC[j]= QhitPad_pC[j]*Atten[j]/knorm[j];
1219     // QhitPmt_pC[j]= QhitPad_pC[j]; //no attenuation
1220    
1221    
1222     if (DEBUG) {
1223     cout<<"pmtleft "<<pmtleft<<" j "<<j<<endl;
1224     cout<<" atte1 "<<atte1[pmtleft+j]<<"lambda1 "<<lambda1[pmtleft+j]<<" atte2 "<<atte2[pmtleft+j]<<"lambda2 "<<lambda2[pmtleft+j] <<endl;
1225     cout<<j<<" tpos "<<tpos<<" knorm "<<knorm[j]<<" "<<Atten[j]<<" "<<"QhitPmt_pC "<<QhitPmt_pC[j]<<endl;
1226     }
1227     }
1228    
1229     if (DEBUG)
1230     cout<<"Npho "<<Npho<<" QhitPmt_pC "<<QhitPmt_pC[0]<<" "<<QhitPmt_pC[1]<<endl;
1231    
1232     QevePmt_pC[pmtleft] += QhitPmt_pC[0];
1233     QevePmt_pC[pmtright] += QhitPmt_pC[1];
1234    
1235     // TDC
1236     // WM right and left <->
1237     // t2 = t2 + fabs(path[0]/veff) + s_l_g[ip]/veff1 ; // Signal reaches PMT
1238     // t1 = t1 + fabs(path[1]/veff) + s_l_g[ip]/veff1;
1239    
1240     t1 = t1 + fabs(path[0]/veff) + s_l_g[ip]/veff1;
1241     t2 = t2 + fabs(path[1]/veff) + s_l_g[ip]/veff1 ; // Signal reaches PMT
1242    
1243     Float_t t1save = t1;
1244     Float_t t2save = t2;
1245    
1246     /*
1247     TRandom r;
1248     // This does not work... WM - but works in my simulation code ??
1249     // t1 = r.Gaus(t1,dt1); //apply gaussian error dt
1250     // t2 = r.Gaus(t2,dt1); //apply gaussian error dt
1251     */
1252     t1 = gRandom->Gaus(t1,dt1); //apply gaussian error dt
1253     t2 = gRandom->Gaus(t2,dt1); //apply gaussian error dt
1254    
1255     // cout<<1E12*(t1save-t1)<<" "<<1E12*(t2save-t2)<<endl;
1256    
1257     t1 = t1 + c1_S[pmtleft] ; // Signal reaches Discriminator ,TDC starts to run
1258     t2 = t2 + c1_S[pmtright] ;
1259    
1260     // check if signal is above threshold
1261     // then check if tdcpmt is already filled by another hit...
1262     // only re-fill if time is smaller
1263    
1264     if (QhitPmt_pC[0] > thresh) {
1265     if (tdcpmt[pmtleft] == 1000.) { // fill for the first time
1266     tdcpmt[pmtleft] = t1;
1267     tdc[pmtleft] = t1 + c2_S[pmtleft] ; // Signal reaches Coincidence
1268     }
1269     if (tdcpmt[pmtleft] < 1000.) // is already filled!
1270     if (t1 < tdcpmt[pmtleft]) {
1271     tdcpmt[pmtleft] = t1;
1272     t1 = t1 + c2_S[pmtleft] ; // Signal reaches Coincidence
1273     tdc[pmtleft] = t1;
1274     }
1275     }
1276     if (QhitPmt_pC[1] > thresh) {
1277     if (tdcpmt[pmtright] == 1000.) { // fill for the first time
1278     tdcpmt[pmtright] = t2;
1279     tdc[pmtright] = t2 + c2_S[pmtright] ; // Signal reaches Coincidence
1280     }
1281     if (tdcpmt[pmtright] < 1000.) // is already filled!
1282     if (t2 < tdcpmt[pmtright]) {
1283     tdcpmt[pmtright] = t2;
1284     t2 = t2 + c2_S[pmtright] ;
1285     tdc[pmtright] = t2;
1286     }
1287     }
1288    
1289     if (DEBUG)
1290     cout<<nh<<" "<<Timetof[nh]<<" "<<t1<<" "<<t2<<endl;
1291    
1292     } // ip < 6
1293    
1294     }; // **************************************** end loop over hits
1295    
1296     // ====== ADC ======
1297    
1298    
1299     for(Int_t i=0; i<48; i++){
1300     if(QevePmt_pC[i] >= pCthres){
1301     ADCtof[i]= (Int_t)(ADC_pC0 + ADC_pC1*QevePmt_pC[i] + ADC_pC2*pow(QevePmt_pC[i],2) + ADC_pC3*pow(QevePmt_pC[i],3));
1302     } else
1303     ADCtof[i]= ADClast;
1304     }
1305    
1306     // ---- introduce scale factors to tune simul ADC to real data 24-oct DC
1307    
1308     for(Int_t i=0; i<48; i++){
1309     if(ADCtof[i] != ADClast){
1310     // printf("%3d, %4d, %4.2f\n",i, ADCtof[i],ScaleFact[i]);
1311     ADCtof[i]= Int_t (ADCtof[i]*ScaleFact[i]);
1312     // printf("%3d, %4d,\n",i, ADCtof[i]);
1313     }
1314     }
1315    
1316     for(Int_t i=0; i<48; i++){
1317     if(ADCtof[i] != ADClast){
1318     if(ADCtof[i]> ADCsat) ADCtof[i]=ADCsat;
1319     else if(ADCtof[i]< 0) ADCtof[i]=ADClast;
1320     }
1321     }
1322     // ====== build TDC coincidence ======
1323    
1324     Float_t t_coinc = 0;
1325     Int_t ilast = 100;
1326     for (Int_t ii=0; ii<48;ii++)
1327     if (tdc[ii] > t_coinc) {
1328     t_coinc = tdc[ii];
1329     ilast = ii;
1330     }
1331    
1332     // cout<<ilast<<" "<<t_coinc<<endl;
1333     // At t_coinc trigger condition is fulfilled
1334    
1335     for (Int_t ii=0; ii<48;ii++){
1336     // if (tdc[ii] != 0) tdc1[ii] = t_coinc - tdc[ii]; // test 1
1337     if (tdc[ii] != 0) tdc1[ii] = t_coinc - tdcpmt[ii]; // test 2
1338     tdc1[ii] = tdc1[ii]/tdcres[ii]; // divide by TDC resolution
1339     if (tdc[ii] != 0) tdc1[ii] = tdc1[ii] + c3_S[ii]; // add cable length c3
1340    
1341     } // missing parenthesis inserted! (Silvio)
1342    
1343     for(Int_t i=0; i<48; i++){
1344     if(tdc1[i] != 0.){
1345     TDCint[i]=(Int_t)tdc1[i];
1346     if (TDCint[i]>4093) TDCint[i]=TDClast; // 18-oct WM
1347     if (DEBUG)
1348     cout<<i<<" "<<TDCint[i]<<endl;
1349     //ADC[i]= ADC_pC * QevePmt_pC[i] + ADCoffset;
1350     //if(ADC[i]> ADClast) ADC[i]=ADClast;
1351     } else
1352     TDCint[i]= TDClast;
1353     }
1354    
1355     if (DEBUG)
1356     cout<<"-----------"<<endl;
1357    
1358    
1359     //------ use channelmap 18-oct WM
1360    
1361     Int_t channelmap[] = {3,21,11,29,19,45,27,37,36,28,44,20,5,12,13,4,
1362     6,47,14,39,22,31,30,23,38,15,46,7,0,33,16,24,
1363     8,41,32,40,25,17,34,9,42,1,2,10,18,26,35,43};
1364    
1365     Int_t ADChelp[48];
1366     Int_t TDChelp[48];
1367    
1368     for(Int_t i=0; i<48; i++){
1369     Int_t ii=channelmap[i];
1370     ADChelp[ii]= ADCtof[i];
1371     TDChelp[ii]= TDCint[i];
1372     }
1373    
1374     for(Int_t i=0; i<48; i++){
1375     ADCtof[i]= ADChelp[i];
1376     TDCint[i]= TDChelp[i];
1377     }
1378    
1379    
1380     /*
1381     //--- fake data ------------------------
1382     for(Int_t i=0; i<48; i++){
1383     ADCtof[i]= 100 + 10*i;
1384     TDCint[i]= 800 + 10*i;
1385     // cout<<i<<" "<<ADCtof[i]<<" "<<TDCint[i]<<endl;
1386     }
1387     */
1388    
1389     /*
1390     for(Int_t i=0; i<48; i++){
1391     if (((ADCtof[i]>0)&&(ADCtof[i]<4095)) || ((TDCint[i]>0)&&(TDCint[i]<4095))) cout<<i<<" "<<ADCtof[i]<<" "<<TDCint[i]<<endl;
1392     }
1393     */
1394    
1395    
1396     // ====== write fDataTof =======
1397    
1398    
1399     // UChar_t tdcadd[8]={1,0,3,2,5,4,7,6}; (coded in 3 bit)
1400     UChar_t Ctrl3bit[8]={32,0,96,64,160,128,224,192}; // DC (msb in 8 bit word )
1401    
1402     UChar_t tofBin;
1403     for (Int_t j=0; j < 12; j++){ // loop on TDC #12
1404     Int_t j12=j*23; // for each TDC 23 bytes (8 bits)
1405     fDataTof[j12+0]=0x00; // TDC_ID
1406     fDataTof[j12+1]=0x00; // EV_COUNT
1407     fDataTof[j12+2]=0x00; // TDC_MASK (1)
1408     fDataTof[j12+3]=0x00; // TDC_MASK (2)
1409     for (Int_t k=0; k < 4; k++){ // for each TDC 4 channels (ADC+TDC)
1410    
1411     Int_t jk12=j12+4*k; // ADC,TDC channel (0-47)
1412    
1413     tofBin =(UChar_t)(ADCtof[k+4*j]/256); // ADC# (msb)
1414     fDataTof[jk12+4] = Bin2GrayTof(tofBin,fDataTof[jk12+4]);
1415     /* control bits inserted here, after the bin to gray conv - DC*/
1416     fDataTof[jk12+4] = Ctrl3bit[2*k] | fDataTof[jk12+4];
1417     tofBin=(UChar_t)(ADCtof[k+4*j]%256); // ADC# (lsb)
1418     fDataTof[jk12+5] = Bin2GrayTof(tofBin,fDataTof[jk12+5]);
1419     tofBin=(UChar_t)(TDCint[k+4*j]/256); // TDC# (msb)
1420     fDataTof[jk12+6]=Bin2GrayTof(tofBin,fDataTof[jk12+6]);
1421     /* control bits inserted here, after the bin to gray conv - DC*/
1422     fDataTof[jk12+6] = Ctrl3bit[2*k+1] | fDataTof[jk12+6];
1423     tofBin=(UChar_t)(TDCint[k+4*j]%256); // TDC# (lsb)
1424     fDataTof[jk12+7]=Bin2GrayTof(tofBin,fDataTof[jk12+7]);
1425     };
1426     fDataTof[j12+20]=0x00; // TEMP1
1427     fDataTof[j12+21]=0x00; // TEMP2
1428     fDataTof[j12+22]= EvaluateCrcTof(pTof); // CRC
1429     pTof+=23;
1430     };
1431     return(0);
1432     };
1433    
1434    
1435     UChar_t Digitizer::Bin2GrayTof(UChar_t binaTOF,UChar_t grayTOF){
1436     union graytof_data {
1437     UChar_t word;
1438     struct bit_field {
1439     unsigned b0:1;
1440     unsigned b1:1;
1441     unsigned b2:1;
1442     unsigned b3:1;
1443     unsigned b4:1;
1444     unsigned b5:1;
1445     unsigned b6:1;
1446     unsigned b7:1;
1447     } bit;
1448     } bi,gr;
1449     //
1450     bi.word = binaTOF;
1451     gr.word = grayTOF;
1452     //
1453     gr.bit.b0 = bi.bit.b1 ^ bi.bit.b0;
1454     gr.bit.b1 = bi.bit.b2 ^ bi.bit.b1;
1455     gr.bit.b2 = bi.bit.b3 ^ bi.bit.b2;
1456     gr.bit.b3 = bi.bit.b3;
1457     //
1458     /* bin to gray conversion 4 bit per time*/
1459     //
1460     gr.bit.b4 = bi.bit.b5 ^ bi.bit.b4;
1461     gr.bit.b5 = bi.bit.b6 ^ bi.bit.b5;
1462     gr.bit.b6 = bi.bit.b7 ^ bi.bit.b6;
1463     gr.bit.b7 = bi.bit.b7;
1464     //
1465     return(gr.word);
1466     }
1467    
1468     UChar_t Digitizer::EvaluateCrcTof(UChar_t *pTof) {
1469     Bool_t DEBUG=false;
1470     if (DEBUG)
1471     return(0x00);
1472    
1473     UChar_t crcTof=0x00;
1474     UChar_t *pc=&crcTof, *pc2;
1475     pc2=pTof;
1476     for (Int_t jp=0; jp < 23; jp++){
1477     //crcTof = crc8(...)
1478     Crc8Tof(pc2++,pc);
1479     // printf("%2i --- %x\n",jp,crcTof);
1480     }
1481     return(crcTof);
1482     }
1483    
1484     void Digitizer::Crc8Tof(UChar_t *oldCRC, UChar_t *crcTof){
1485     union crctof_data {
1486     UChar_t word;
1487     struct bit_field {
1488     unsigned b0:1;
1489     unsigned b1:1;
1490     unsigned b2:1;
1491     unsigned b3:1;
1492     unsigned b4:1;
1493     unsigned b5:1;
1494     unsigned b6:1;
1495     unsigned b7:1;
1496     } bit;
1497     } c,d,r;
1498    
1499     c.word = *oldCRC;
1500     //d.word = *newCRC;
1501     d.word = *crcTof;
1502     r.word = 0;
1503    
1504     r.bit.b0 = c.bit.b7 ^ c.bit.b6 ^ c.bit.b0 ^
1505     d.bit.b0 ^ d.bit.b6 ^ d.bit.b7;
1506    
1507     r.bit.b1 = c.bit.b6 ^ c.bit.b1 ^ c.bit.b0 ^
1508     d.bit.b0 ^ d.bit.b1 ^ d.bit.b6;
1509    
1510     r.bit.b2 = c.bit.b6 ^ c.bit.b2 ^ c.bit.b1 ^ c.bit.b0 ^
1511     d.bit.b0 ^ d.bit.b1 ^ d.bit.b2 ^ d.bit.b6;
1512    
1513     r.bit.b3 = c.bit.b7 ^ c.bit.b3 ^ c.bit.b2 ^ c.bit.b1 ^
1514     d.bit.b1 ^ d.bit.b2 ^ d.bit.b3 ^ d.bit.b7;
1515    
1516     r.bit.b4 = c.bit.b4 ^ c.bit.b3 ^ c.bit.b2 ^
1517     d.bit.b2 ^ d.bit.b3 ^ d.bit.b4;
1518    
1519     r.bit.b5 = c.bit.b5 ^ c.bit.b4 ^ c.bit.b3 ^
1520     d.bit.b3 ^ d.bit.b4 ^ d.bit.b5;
1521    
1522     r.bit.b6 = c.bit.b6 ^ c.bit.b5 ^ c.bit.b4 ^
1523     d.bit.b4 ^ d.bit.b5 ^ d.bit.b6;
1524    
1525     r.bit.b7 = c.bit.b7 ^ c.bit.b6 ^ c.bit.b5 ^
1526     d.bit.b5 ^ d.bit.b6 ^ d.bit.b7 ;
1527    
1528     *crcTof=r.word;
1529     //return r.word;
1530     };
1531    
1532     //void Digitizer::Paddle2Pmt(Int_t plane, Int_t paddle, Int_t* &pmtleft, Int_t* &pmtright){
1533     void Digitizer::Paddle2Pmt(Int_t plane, Int_t paddle, Int_t *pl, Int_t *pr){
1534     //* @param plane (0 - 5)
1535     //* @param paddle (plane=0, paddle = 0,...5)
1536     //* @param padid (0 - 23)
1537     //
1538     Int_t padid=-1;
1539     Int_t pads[6]={8,6,2,2,3,3};
1540     //
1541     Int_t somma=0;
1542     Int_t np=plane;
1543     for(Int_t j=0; j<np; j++)
1544     somma+=pads[j];
1545     padid=paddle+somma;
1546     *pl = padid*2;
1547     // *pr = *pr + 1;
1548     *pr = *pl + 1; // WM
1549     };
1550    
1551     void Digitizer::DigitizeAC() {
1552     // created: J. Conrad, KTH
1553     // modified: S. Orsi, INFN Roma2
1554     // fDataAC[0-63]: main AC board
1555     // fDataAC[64-127]: extra AC board
1556    
1557     fDataAC[0] = 0xACAC;
1558     fDataAC[64]= 0xACAC;
1559     fDataAC[1] = 0xAC11;
1560     fDataAC[65] = 0xAC22;
1561    
1562     // the third word is a status word (dummy: "no errors are present in the AC boards")
1563     fDataAC[2] = 0xFFFF; //FFEF?
1564     fDataAC[66] = 0xFFFF;
1565    
1566     const UInt_t nReg = 6;
1567    
1568     // FPGA Registers (dummy)
1569     for (UInt_t i=0; i<=nReg; i++){
1570     fDataAC[i+4] = 0xFFFF;
1571     fDataAC[i+68] = 0xFFFF;
1572     }
1573    
1574     // the last word is a CRC
1575     // Dummy for the time being, but it might need to be calculated in the end
1576     fDataAC[63] = 0xABCD;
1577     fDataAC[127] = 0xABCD;
1578    
1579     // shift registers (moved to the end of the routine)
1580    
1581     Int_t evntLSB=Ievnt%65536;
1582     Int_t evntMSB=(Int_t)(Ievnt/65536);
1583    
1584     // singles counters are dummy
1585     for (UInt_t i=0; i<=15; i++){ //SO Oct '07: // for (UInt_t i=0; i<=16; i++){
1586     // fDataAC[i+26] = 0x0000;
1587     // fDataAC[i+90] = 0x0000;
1588     fDataAC[i+26] = evntLSB;
1589     fDataAC[i+90] = evntLSB;
1590     };
1591    
1592     // coincidences are dummy (increment by 1 at each event)
1593     // for (UInt_t i=0; i<=7; i++){
1594     // fDataAC[i+42] = 0x0000;
1595     // fDataAC[i+106] = 0x0000;
1596     // }
1597     for (UInt_t i=0; i<=7; i++){
1598     fDataAC[i+42] = evntLSB;
1599     fDataAC[i+106] = evntLSB;
1600     };
1601    
1602     // increments for every trigger might be needed at some point.
1603     // dummy for now
1604     fDataAC[50] = 0x0000;
1605     fDataAC[114] = 0x0000;
1606    
1607     // dummy FPGA clock (increment by 1 at each event)
1608     /*
1609     fDataAC[51] = 0x006C;
1610     fDataAC[52] = 0x6C6C;
1611     fDataAC[115] = 0x006C;
1612     fDataAC[116] = 0x6C6C;
1613     */
1614     if (Ievnt<=0xFFFF) {
1615     fDataAC[51] = 0x0000;
1616     fDataAC[52] = Ievnt;
1617     fDataAC[115] = 0x0000;
1618     fDataAC[116] = Ievnt;
1619     } else {
1620     fDataAC[51] = evntMSB;
1621     fDataAC[52] = evntLSB;
1622     fDataAC[115] = fDataAC[51];
1623     fDataAC[116] = fDataAC[52];
1624     }
1625    
1626     // dummy temperatures
1627     fDataAC[53] = 0x0000;
1628     fDataAC[54] = 0x0000;
1629     fDataAC[117] = 0x0000;
1630     fDataAC[118] = 0x0000;
1631    
1632    
1633     // dummy DAC thresholds
1634     for (UInt_t i=0; i<=7; i++){
1635     fDataAC[i+55] = 0x1A13;
1636     fDataAC[i+119] = 0x1A13;
1637     }
1638    
1639     // We activate all branches. Once the digitization algorithm is determined
1640     // only the branches that involve needed information will be activated
1641    
1642     fhBookTree->SetBranchAddress("Ievnt",&Ievnt);
1643     fhBookTree->SetBranchStatus("Nthcat",1);
1644     fhBookTree->SetBranchStatus("Iparcat",1);
1645     fhBookTree->SetBranchStatus("Icat",1);
1646     fhBookTree->SetBranchStatus("Xincat",1);
1647     fhBookTree->SetBranchStatus("Yincat",1);
1648     fhBookTree->SetBranchStatus("Zincat",1);
1649     fhBookTree->SetBranchStatus("Xoutcat",1);
1650     fhBookTree->SetBranchStatus("Youtcat",1);
1651     fhBookTree->SetBranchStatus("Zoutcat",1);
1652     fhBookTree->SetBranchStatus("Erelcat",1);
1653     fhBookTree->SetBranchStatus("Timecat",1);
1654     fhBookTree->SetBranchStatus("Pathcat",1);
1655     fhBookTree->SetBranchStatus("P0cat",1);
1656     fhBookTree->SetBranchStatus("Nthcas",1);
1657     fhBookTree->SetBranchStatus("Iparcas",1);
1658     fhBookTree->SetBranchStatus("Icas",1);
1659     fhBookTree->SetBranchStatus("Xincas",1);
1660     fhBookTree->SetBranchStatus("Yincas",1);
1661     fhBookTree->SetBranchStatus("Zincas",1);
1662     fhBookTree->SetBranchStatus("Xoutcas",1);
1663     fhBookTree->SetBranchStatus("Youtcas",1);
1664     fhBookTree->SetBranchStatus("Zoutcas",1);
1665     fhBookTree->SetBranchStatus("Erelcas",1);
1666     fhBookTree->SetBranchStatus("Timecas",1);
1667     fhBookTree->SetBranchStatus("Pathcas",1);
1668     fhBookTree->SetBranchStatus("P0cas",1);
1669     fhBookTree->SetBranchStatus("Nthcard",1);
1670     fhBookTree->SetBranchStatus("Iparcard",1);
1671     fhBookTree->SetBranchStatus("Icard",1);
1672     fhBookTree->SetBranchStatus("Xincard",1);
1673     fhBookTree->SetBranchStatus("Yincard",1);
1674     fhBookTree->SetBranchStatus("Zincard",1);
1675     fhBookTree->SetBranchStatus("Xoutcard",1);
1676     fhBookTree->SetBranchStatus("Youtcard",1);
1677     fhBookTree->SetBranchStatus("Zoutcard",1);
1678     fhBookTree->SetBranchStatus("Erelcard",1);
1679     fhBookTree->SetBranchStatus("Timecard",1);
1680     fhBookTree->SetBranchStatus("Pathcard",1);
1681     fhBookTree->SetBranchStatus("P0card",1);
1682    
1683     // In this simpliefied approach we will assume that once
1684     // a particle releases > 0.5 mip in one of the 12 AC detectors it
1685     // will fire. We will furthermore assume that both cards read out
1686     // identical data.
1687    
1688     // If you develop your digitization algorithm, you should start by
1689     // identifying the information present in level2 (post-darth-vader)
1690     // data.
1691    
1692     Float_t SumEcat[5];
1693     Float_t SumEcas[5];
1694     Float_t SumEcard[5];
1695     for (Int_t k= 0;k<5;k++){
1696     SumEcat[k]=0.;
1697     SumEcas[k]=0.;
1698     SumEcard[k]=0.;
1699     };
1700    
1701     if (Nthcat>50 || Nthcas>50 || Nthcard>50)
1702     printf("*** ERROR AC! NthAC out of range!\n\n");
1703    
1704     // energy dependence on position (see file AcFitOutputDistancePmt.C by S.Orsi)
1705     // based on J.Lundquist's calculations (PhD thesis, page 94)
1706     // function: [0]+[1]*atan([2]/(x+1)), where the 3 parameters are:
1707     // 8.25470e-01 +- 1.79489e-02
1708     // 6.41609e-01 +- 2.65846e-02
1709     // 9.81177e+00 +- 1.21284e+00
1710     // hp: 1 minimum ionising particle at 35cm from the PMT releases 1mip
1711     //
1712     // NB: the PMT positions are needed!
1713    
1714     // look in CAT
1715     // for (UInt_t k= 0;k<50;k++){
1716     for (Int_t k= 0;k<Nthcat;k++){
1717     if (Erelcat[k] > 0)
1718     SumEcat[Icat[k]] += Erelcat[k];
1719     };
1720    
1721     // look in CAS
1722     for (Int_t k= 0;k<Nthcas;k++){
1723     if (Erelcas[k] >0)
1724     SumEcas[Icas[k]] += Erelcas[k];
1725     };
1726    
1727     // look in CARD
1728     for (Int_t k= 0;k<Nthcard;k++){
1729     if (Erelcard[k] >0)
1730     SumEcard[Icard[k]] += Erelcard[k];
1731     };
1732    
1733     // channel mapping Hit Map
1734     // 1 CARD4 0 LSB
1735     // 2 CAT2 0
1736     // 3 CAS1 0
1737     // 4 NC 0
1738     // 5 CARD2 0
1739     // 6 CAT4 1
1740     // 7 CAS4 0
1741     // 8 NC 0
1742     // 9 CARD3 0
1743     // 10 CAT3 0
1744     // 11 CAS3 0
1745     // 12 NC 0
1746     // 13 CARD1 0
1747     // 14 CAT1 0
1748     // 15 CAS2 0
1749     // 16 NC 0 MSB
1750    
1751     // In the first version only the hit-map is filled, not the SR.
1752    
1753     // Threshold: 0.8 MeV.
1754    
1755     Float_t thr = 8e-4;
1756    
1757     fDataAC[3] = 0x0000;
1758    
1759     if (SumEcas[0] > thr) fDataAC[3] = 0x0004;
1760     if (SumEcas[1] > thr) fDataAC[3] += 0x4000;
1761     if (SumEcas[2] > thr) fDataAC[3] += 0x0400;
1762     if (SumEcas[3] > thr) fDataAC[3] += 0x0040;
1763    
1764     if (SumEcat[0] > thr) fDataAC[3] += 0x2000;
1765     if (SumEcat[1] > thr) fDataAC[3] += 0x0002;
1766     if (SumEcat[2] > thr) fDataAC[3] += 0x0200;
1767     if (SumEcat[3] > thr) fDataAC[3] += 0x0020;
1768    
1769     if (SumEcard[0] > thr) fDataAC[3] += 0x1000;
1770     if (SumEcard[1] > thr) fDataAC[3] += 0x0010;
1771     if (SumEcard[2] > thr) fDataAC[3] += 0x0100;
1772     if (SumEcard[3] > thr) fDataAC[3] += 0x0001;
1773    
1774     fDataAC[67] = fDataAC[3];
1775    
1776     // shift registers
1777     // the central bin is equal to the hitmap, all other bins in the shift register are 0
1778     for (UInt_t i=0; i<=15; i++){
1779     fDataAC[i+11] = 0x0000;
1780     fDataAC[i+75] = 0x0000;
1781     }
1782     fDataAC[18] = fDataAC[3];
1783     fDataAC[82] = fDataAC[3];
1784    
1785     // for (Int_t i=0; i<fACbuffer; i++){
1786     // printf("%0x ",fDataAC[i]);
1787     // if ((i+1)%8 ==0) cout << endl;
1788     // }
1789     };
1790    
1791    
1792     void Digitizer::DigitizeS4(){
1793     Int_t DEBUG=0;
1794     // creato: S. Borisov, INFN Roma2 e MEPHI, Sett 2007
1795     TString ciao,modo="ns";
1796     Int_t i,j,t,NdF,pmt,NdFT,S4,S4v=0,S4p=32;
1797     Float_t E0,E1=1e-6,Ert,X,Y,Z,x,y,z,V[3],Xs[2],Ys[2],Zs[2],Yp[6],q,w,p=0.1,l,l0=500;
1798     Xs[0]=-24.1;
1799     Xs[1]=24.1;
1800     Ys[0]=-24.1;
1801     Ys[1]=24.1;
1802     Zs[0]=-0.5;
1803     Zs[1]=0.5;
1804     Yp[0]=-20.;
1805     Yp[2]=-1.;
1806     Yp[4]=17.;
1807     for(i=0;i<3;i++)
1808     Yp[2*i+1]=Yp[2*i]+3;
1809     srand(time(NULL));
1810     // --- activate branches:
1811     fhBookTree->SetBranchStatus("Nthtof",1);
1812     fhBookTree->SetBranchStatus("Ipltof",1);
1813     fhBookTree->SetBranchStatus("Ipaddle",1);
1814    
1815     fhBookTree->SetBranchStatus("Xintof",1);
1816     fhBookTree->SetBranchStatus("Yintof",1);
1817     fhBookTree->SetBranchStatus("Xouttof",1);
1818     fhBookTree->SetBranchStatus("Youttof",1);
1819    
1820     fhBookTree->SetBranchStatus("Ereltof",1);
1821     fhBookTree->SetBranchStatus("Timetof",1);
1822     NdFT=0;
1823     Ert=0;
1824     for(i=0;i<Nthtof;i++){
1825     if(Ipltof[i]!=6) continue;
1826     Ert+=Ereltof[i];
1827    
1828     if(modo=="ns") continue;
1829     NdF=Int_t(Ereltof[i]/E1);
1830     NdFT=0;
1831     X=Xintof[i];
1832     Y=Yintof[i];
1833     Z=(Float_t)(random())/(Float_t)(0x7fffffff)-0.5;
1834     //cout<<"XYZ "<<X<<" "<<Y<<" "<<Z<<endl;
1835     for(j=0;j<NdF;j++){
1836     q=(Float_t)random()/(Float_t)0x7fffffff;
1837     w=(Float_t)random()/(Float_t)0x7fffffff;
1838     // cout<<"qw "<<q<<" "<<w<<endl;
1839     V[0]=p*cos(6.28318*q);
1840     V[1]=p*sin(6.28318*q);
1841     V[2]=p*(2.*w-1.);
1842     pmt=0;
1843     x=X;
1844     y=Y;
1845     z=Z;
1846     while(pmt==0 && (x>Xs[0] && x<Xs[1])&&(y>Ys[0] && y<Ys[1])&&(z>Zs[0] && z<Zs[1])){
1847     l=0;
1848     while(pmt==0 && (x>Xs[0] && x<Xs[1])&&(y>Ys[0] && y<Ys[1])&&(z>Zs[0] && z<Zs[1])){
1849     x+=V[0];
1850     y+=V[1];
1851     z+=V[2];
1852     l+=p;
1853     //cout<<x<<" "<<y<<" "<<z<<" "<<l<<endl;
1854     //cin>>ciao;
1855     }
1856     if((x<Xs[0]+p || x>Xs[1]-p)&&(y>Ys[0]+p && y<Ys[1]-p)&&(z>Zs[0]+p && z<Zs[1]-p)){
1857     for(t=0;t<3;t++){
1858     if(y>=Yp[2*t] && y<Yp[2*t+1]){
1859     if(pmt==0)NdFT++;
1860     pmt=1;
1861     //cout<<NdFT<<endl;
1862     break;
1863     }
1864     }
1865     if(pmt==1)break;
1866     V[0]=-V[0];
1867     }
1868     q=(Float_t)random()/(Float_t)0x7fffffff;
1869     w=1-exp(-l/l0);
1870     if(q<w)break;
1871     q=(Float_t)random()/(Float_t)0x7fffffff;
1872     w=0.5;
1873     if(q<w)break;
1874     if((x>Xs[0]+p && x<Xs[1]-p)&&(y<Ys[0]+p || y>Ys[1]-p)&&(z>Zs[0]+p && z<Zs[1]-p))V[1]=-V[1];
1875     if((x>Xs[0]+p && x<Xs[1]-p)&&(y>Ys[0]+p && y<Ys[1]-p)&&(z<Zs[0]+p || z>Zs[1]-p))V[2]=-V[2];
1876     x+=V[0];
1877     y+=V[1];
1878     z+=V[2];
1879     l=0;
1880     //cout<<x<<" "<<y<<" "<<z<<" "<<l<<endl;
1881     //cin>>ciao;
1882     }
1883     }
1884     }
1885     Ert=Ert/0.002;
1886     q=(Float_t)(random())/(Float_t)0x7fffffff;
1887     w=0.7;
1888     //E0=(Float_t)(4064./7.);
1889     E0=4064./7.;
1890     if(Ert<1) S4=0;
1891     else S4=(Int_t)(4064.*(1.-exp(-(Ert-1.)/E0)));
1892     i=S4/4;
1893     if(S4%4==0)
1894     S4v=S4+S4p;
1895     else if(S4%4==1){
1896     if(q<w) S4v=S4-1+S4p;
1897     else S4v=S4+1+S4p;
1898     } else if(S4%4==2) S4v=S4+S4p;
1899     else if(S4%4==3){
1900     if(q<w) S4v=S4+1+S4p;
1901     else S4v=S4-1+S4p;
1902     }
1903     if (DEBUG)
1904     cout<<"Ert_S4 = " << Ert << " --- S4v = " << S4v << endl;
1905     fDataS4[0]=S4v;//0xf028;
1906     fDataS4[1]=0xd800;
1907     fDataS4[2]=0x0300;
1908     //cout<<" PMT "<<NdFT<<" "<<NdF<<endl;
1909     //cin>>ciao;
1910     }
1911    
1912    
1913    
1914     void Digitizer::DigitizeND(){
1915     // creato: S. Borisov, INFN Roma2 e MEPHI, Sett 2007
1916     Int_t i=0;
1917     UShort_t NdN=0;
1918     fhBookTree->SetBranchStatus("Nthnd",1);
1919     fhBookTree->SetBranchStatus("Itubend",1);
1920     fhBookTree->SetBranchStatus("Iparnd",1);
1921     fhBookTree->SetBranchStatus("Xinnd",1);
1922     fhBookTree->SetBranchStatus("Yinnd",1);
1923     fhBookTree->SetBranchStatus("Zinnd",1);
1924     fhBookTree->SetBranchStatus("Xoutnd",1);
1925     fhBookTree->SetBranchStatus("Youtnd",1);
1926     fhBookTree->SetBranchStatus("Zoutnd",1);
1927     fhBookTree->SetBranchStatus("Erelnd",1);
1928     fhBookTree->SetBranchStatus("Timend",1);
1929     fhBookTree->SetBranchStatus("Pathnd",1);
1930     fhBookTree->SetBranchStatus("P0nd",1);
1931     //cout<<"n="<<Nthnd<<" "<<NdN<<"\n";
1932     for(i=0;i<Nthnd;i++){
1933     if(Iparnd[i]==13){
1934     NdN++;
1935     }
1936     }
1937     //NdN=100; //only for debug
1938    
1939     for(i=0;i<3;i++){
1940     fDataND[2*i]=0x0000;
1941     fDataND[2*i+1]=0x010F;
1942     }
1943     fDataND[0]=0xFF00 & (256*NdN);
1944     }
1945    
1946    
1947     void Digitizer::DigitizeDummy() {
1948    
1949     fhBookTree->SetBranchStatus("Enestrip",1);
1950    
1951     // dumy header
1952     fDataDummy[0] = 0xCAAA;
1953    
1954     for (Int_t i=1; i<fDummybuffer; i++){
1955     fDataDummy[i] = 0xFFFF;
1956     // printf("%0x ",fDataDummy[i]);
1957     //if ((i+1)%8 ==0) cout << endl;
1958     }
1959     };
1960    
1961    
1962     void Digitizer::WriteData(){
1963    
1964     // Routine that writes the data to a binary file
1965     // PSCU data are already swapped
1966     fOutputfile.write(reinterpret_cast<char*>(fDataPSCU),sizeof(UShort_t)*fPSCUbuffer);
1967     // TRG
1968     fOutputfile.write(reinterpret_cast<char*>(fDataTrigger),sizeof(UChar_t)*153);
1969     // TOF
1970     fOutputfile.write(reinterpret_cast<char*>(fDataTof),sizeof(UChar_t)*276);
1971     // AC
1972     UShort_t temp[1000000];
1973     memset(temp,0,sizeof(UShort_t)*1000000);
1974     swab(fDataAC,temp,sizeof(UShort_t)*fACbuffer); // WE MUST SWAP THE BYTES!!!
1975     fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fACbuffer);
1976     // CALO
1977     memset(temp,0,sizeof(UShort_t)*1000000);
1978     swab(fDataCALO,temp,sizeof(UShort_t)*fCALOlength); // WE MUST SWAP THE BYTES!!!
1979     fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fCALOlength);
1980     // TRK
1981     memset(temp,0,sizeof(UShort_t)*1000000);
1982     swab(fDataTrack,temp,sizeof(UShort_t)*fTracklength); // WE MUST SWAP THE BYTES!!!
1983     fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fTracklength);
1984     fTracklength=0;
1985     // padding to 64 bytes
1986     //
1987     if ( fPadding ){
1988     fOutputfile.write(reinterpret_cast<char*>(fDataPadding),sizeof(UChar_t)*fPadding);
1989     };
1990     // S4
1991     memset(temp,0,sizeof(UShort_t)*1000000);
1992     swab(fDataS4,temp,sizeof(UShort_t)*fS4buffer); // WE MUST SWAP THE BYTES!!!
1993     fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fS4buffer);
1994     // ND
1995     memset(temp,0,sizeof(UShort_t)*1000000);
1996     swab(fDataND,temp,sizeof(UShort_t)*fNDbuffer); // WE MUST SWAP THE BYTES!!!
1997     fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fNDbuffer);
1998     };
1999    
2000    
2001     void Digitizer::ReadData(){
2002    
2003     UShort_t InData[64];
2004    
2005     // for debuggigng purposes only, write your own routine if you like (many
2006     // hardwired things.
2007    
2008     ifstream InputFile;
2009    
2010     // if (!InputFile) {
2011    
2012     // std::cout << "ERROR" << endl;
2013     // // An error occurred!
2014     // // myFile.gcount() returns the number of bytes read.
2015     // // calling myFile.clear() will reset the stream state
2016     // // so it is usable again.
2017     // };
2018    
2019    
2020    
2021     //InputFile.seekg(0);
2022    
2023     InputFile.open(fFilename, ios::in | ios::binary);
2024     // fOutputfile.seekg(0);
2025     if (!InputFile.is_open()) std::cout << "ERROR" << endl;
2026    
2027     InputFile.seekg(0);
2028    
2029     for (Int_t k=0; k<=1000; k++){
2030     InputFile.read(reinterpret_cast<char*>(InData),384*sizeof(UShort_t));
2031    
2032     std::cout << "Read back: " << endl << endl;
2033    
2034     for (Int_t i=0; i<=384; i++){
2035     printf("%4x ", InData[i]);
2036     if ((i+1)%8 ==0) cout << endl;
2037     }
2038    
2039     }
2040     cout << endl;
2041     InputFile.close();
2042    
2043     };
2044    
2045    
2046    
2047     void Digitizer::DigitizeTrack() {
2048     //std:: cout << "Entering DigitizeTrack " << endl;
2049     Float_t AdcTrack[fNviews][fNstrips_view]; // Vector of strips to be compressed
2050    
2051     Int_t Iview;
2052     Int_t Nstrip;
2053    
2054     for (Int_t j=0; j<fNviews;j++) {
2055    
2056     for (Int_t i=0; i<fNladder;i++) {
2057    
2058     Float_t commonN1=gRandom->Gaus(0.,fSigmaCommon);
2059     Float_t commonN2=gRandom->Gaus(0.,fSigmaCommon);
2060     for (Int_t k=0; k<fNstrips_ladder;k++) {
2061     Nstrip=i*fNstrips_ladder+k;
2062     AdcTrack[j][Nstrip]=gRandom->Gaus(fPedeTrack[j][Nstrip],fSigmaTrack[j][Nstrip]);
2063     if(k<4*128) {AdcTrack[j][Nstrip] += commonN1;} // full correlation of 4 VA1 Com. Noise
2064     else {AdcTrack[j][Nstrip] += commonN2;} // full correlation of 4 VA1 Com. Noise
2065    
2066     };
2067    
2068    
2069     };
2070    
2071    
2072     };
2073    
2074    
2075     fhBookTree->SetBranchStatus("Nstrpx",1);
2076     fhBookTree->SetBranchStatus("Npstripx",1);
2077     fhBookTree->SetBranchStatus("Ntstripx",1);
2078     fhBookTree->SetBranchStatus("Istripx",1);
2079     fhBookTree->SetBranchStatus("Qstripx",1);
2080     fhBookTree->SetBranchStatus("Xstripx",1);
2081     fhBookTree->SetBranchStatus("Nstrpy",1);
2082     fhBookTree->SetBranchStatus("Npstripy",1);
2083     fhBookTree->SetBranchStatus("Ntstripy",1);
2084     fhBookTree->SetBranchStatus("Istripy",1);
2085     fhBookTree->SetBranchStatus("Qstripy",1);
2086     fhBookTree->SetBranchStatus("Ystripy",1);
2087    
2088    
2089    
2090     Float_t ADCfull;
2091     Int_t iladd=0;
2092     for (Int_t ix=0; ix<Nstrpx;ix++) {
2093     Iview=Npstripx[ix]*2-1;
2094     Nstrip=(Int_t)Istripx[ix]-1;
2095     if(Nstrip<fNstrips_ladder) iladd=0;
2096     if((Nstrip>=fNstrips_ladder)&&(Nstrip<2*fNstrips_ladder)) iladd=1;
2097     if((Nstrip>=2*fNstrips_ladder)&&(Nstrip<3*fNstrips_ladder)) iladd=2;
2098     ADCfull=AdcTrack[Iview][Nstrip] += Qstripx[ix]*fMipCor[iladd][Iview];
2099     AdcTrack[Iview][Nstrip] *= SaturationTrack(ADCfull);
2100    
2101     };
2102    
2103    
2104     for (Int_t iy=0; iy<Nstrpy;iy++) {
2105     Iview=Npstripy[iy]*2-2;
2106     Nstrip=(Int_t)Istripy[iy]-1;
2107     if(Nstrip<fNstrips_ladder) iladd=0;
2108     if((Nstrip>=fNstrips_ladder)&&(Nstrip<2*fNstrips_ladder)) iladd=1;
2109     if((Nstrip>=2*fNstrips_ladder)&&(Nstrip<3*fNstrips_ladder)) iladd=2;
2110     ADCfull=AdcTrack[Iview][Nstrip] -= Qstripy[iy]*fMipCor[iladd][Iview];
2111     AdcTrack[Iview][Nstrip] *= SaturationTrack(ADCfull);
2112    
2113     };
2114    
2115     CompressTrackData(AdcTrack); // Compress and Digitize data of one Ladder in turn for all ladders
2116    
2117     };
2118    
2119    
2120    
2121     void Digitizer::DigitizeTrackCalib(Int_t ii) {
2122    
2123     std:: cout << "Entering DigitizeTrackCalib " << ii << endl;
2124     if( (ii!=1)&&(ii!=2) ) {
2125     std:: cout << "error wrong DigitizeTrackCalib argument" << endl;
2126     return;
2127     };
2128    
2129     memset(fDataTrack,0,sizeof(UShort_t)*fTRACKbuffer);
2130     fTracklength=0;
2131    
2132     UShort_t Dato;
2133    
2134     Float_t dato1;
2135     Float_t dato2;
2136     Float_t dato3;
2137     Float_t dato4;
2138    
2139     UShort_t DatoDec;
2140     UShort_t DatoDec1;
2141     UShort_t DatoDec2;
2142     UShort_t DatoDec3;
2143     UShort_t DatoDec4;
2144    
2145     UShort_t EVENT_CAL;
2146     UShort_t PED_L1;
2147     UShort_t ReLength;
2148     UShort_t OveCheckCode;
2149     //UShort_t PED_L2;
2150     //UShort_t PED_L3HI;
2151     //UShort_t PED_L3LO;
2152     //UShort_t SIG_L1HI;
2153     //UShort_t SIG_L1LO;
2154     //UShort_t SIG_L2HI;
2155     //UShort_t SIG_L2LO;
2156     //UShort_t SIG_L3;
2157     //UShort_t BAD_L1;
2158     //UShort_t BAD_L2LO;
2159     //UShort_t BAD_L3HI;
2160     //UShort_t BAD_L3LO;
2161     //UShort_t FLAG;
2162    
2163    
2164     Int_t DSPpos;
2165     for (Int_t j=ii-1; j<fNviews;j+=2) {
2166     UShort_t CkSum=0;
2167     // here skip the dsp header and his trailer , to be written later
2168     DSPpos=fTracklength;
2169     fTracklength=fTracklength+13+3;
2170    
2171    
2172     for (Int_t i=0; i<fNladder;i++) {
2173     for (Int_t k=0; k<fNstrips_ladder;k++) {
2174     // write in buffer the current LADDER
2175     Dato=(UShort_t)fPedeTrack[j][i*fNstrips_ladder+k];
2176     dato1=fPedeTrack[j][i*fNstrips_ladder+k]-Dato;
2177    
2178     DatoDec1=(UShort_t)(dato1*2);
2179     dato2=dato1*2-DatoDec1;
2180    
2181     DatoDec2=(UShort_t)(dato2*2);
2182     dato3=dato2*2-DatoDec2;
2183    
2184     DatoDec3=(UShort_t)(dato3*2);
2185     dato4=dato3*2-DatoDec3;
2186    
2187     DatoDec4=(UShort_t)(dato4*2);
2188    
2189     DatoDec=DatoDec1*0x0008+DatoDec2*0x0004+DatoDec3*0x0002+DatoDec4*0x0001;
2190     fDataTrack[fTracklength]=( (Dato << 4) | (DatoDec & 0x000F) );
2191     CkSum=CkSum^fDataTrack[fTracklength];
2192     fTracklength++;
2193     };
2194    
2195     for (Int_t k=0; k<fNstrips_ladder;k++) {
2196     // write in buffer the current LADDER
2197     Dato=(UShort_t)fSigmaTrack[j][i*fNstrips_ladder+k];
2198     dato1=fSigmaTrack[j][i*fNstrips_ladder+k]-Dato;
2199    
2200     DatoDec1=(UShort_t)(dato1*2);
2201     dato2=dato1*2-DatoDec1;
2202    
2203     DatoDec2=(UShort_t)(dato2*2);
2204     dato3=dato2*2-DatoDec2;
2205    
2206     DatoDec3=(UShort_t)(dato3*2);
2207     dato4=dato3*2-DatoDec3;
2208    
2209     DatoDec4=(UShort_t)(dato4*2);
2210    
2211     DatoDec=DatoDec1*0x0008+DatoDec2*0x0004+DatoDec3*0x0002+DatoDec4*0x0001;
2212    
2213     fDataTrack[fTracklength]=( (Dato << 4) | (DatoDec & 0x000F) );
2214     CkSum=CkSum^fDataTrack[fTracklength];
2215     fTracklength++;
2216     };
2217    
2218     for (Int_t k=0; k<64;k++) {
2219     fDataTrack[fTracklength]=0x0000;
2220     CkSum=CkSum^fDataTrack[fTracklength];
2221     fTracklength++;
2222    
2223     };
2224     // end ladder
2225    
2226     // write in buffer the end ladder word
2227     if(i==0) fDataTrack[fTracklength]=0x1807;
2228     if(i==1) fDataTrack[fTracklength]=0x1808;
2229     if(i==2) fDataTrack[fTracklength]=0x1809;
2230     CkSum=CkSum^fDataTrack[fTracklength];
2231     fTracklength++;
2232    
2233     // write in buffer the TRAILER
2234     ReLength=(UShort_t)((fNstrips_ladder*2+64+1)*2+3);
2235     OveCheckCode=0x0000;
2236    
2237     fDataTrack[fTracklength]=0x0000;
2238     fTracklength++;
2239    
2240     fDataTrack[fTracklength]=(ReLength >> 8);
2241     fTracklength++;
2242    
2243     fDataTrack[fTracklength]=( (ReLength << 8) | (OveCheckCode & 0x00FF) );
2244     fTracklength++;
2245    
2246     // end TRAILER
2247     };
2248    
2249     // write in buffer the DSP header
2250    
2251     fDataTrack[DSPpos]=(0xE800 | ( ((j+1) << 3) | 0x0005) );
2252    
2253     fDataTrack[DSPpos+1]=0x01A9;
2254    
2255     fDataTrack[DSPpos+2]=0x8740;
2256    
2257     EVENT_CAL=0;
2258     fDataTrack[DSPpos+3]=(0x1A00 | ( (0x03FF & EVENT_CAL)>> 1) );
2259    
2260     PED_L1=0;
2261     fDataTrack[DSPpos+4]=( ((EVENT_CAL << 15) | 0x5002 ) | ((0x03FF & PED_L1) << 2) );
2262    
2263     // FROM HERE WE WRITE AS ALL VARIABLE apart CkSum are =0
2264    
2265     fDataTrack[DSPpos+5]=0x8014;
2266    
2267     fDataTrack[DSPpos+6]=0x00A0;
2268    
2269     fDataTrack[DSPpos+7]=0x0500;
2270    
2271     fDataTrack[DSPpos+8]=0x2801;
2272    
2273     fDataTrack[DSPpos+9]=0x400A;
2274    
2275     fDataTrack[DSPpos+10]=0x0050;
2276    
2277     CkSum=(CkSum >> 8)^(CkSum&0x00FF);
2278     fDataTrack[DSPpos+11]=(0x0280 | (CkSum >> 3));
2279    
2280     fDataTrack[DSPpos+12]=(0x1FFF | (CkSum << 13) );
2281    
2282     // end dsp header
2283    
2284     // write in buffer the TRAILER
2285    
2286     ReLength=(UShort_t)((13*2)+3);
2287     OveCheckCode=0x0000;
2288     fDataTrack[DSPpos+13]=0x0000;
2289    
2290     fDataTrack[DSPpos+14]=(ReLength >> 8);
2291    
2292     fDataTrack[DSPpos+15]=( (ReLength << 8) | (OveCheckCode & 0x00FF) );
2293    
2294     // end TRAILER
2295    
2296    
2297    
2298    
2299     // end DSP
2300     };
2301    
2302    
2303    
2304     };
2305    
2306     void Digitizer::WriteTrackCalib() {
2307    
2308    
2309     std:: cout << " Entering WriteTrackCalib " << endl;
2310    
2311     fOutputfile.write(reinterpret_cast<char*>(fDataPSCU),sizeof(UShort_t)*fPSCUbuffer);
2312    
2313     UShort_t temp[1000000];
2314     memset(temp,0,sizeof(UShort_t)*1000000);
2315     swab(fDataTrack,temp,sizeof(UShort_t)*fTracklength); // WE MUST SWAP THE BYTES!!!
2316     fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fTracklength);
2317     fTracklength=0;
2318     if ( fPadding ){
2319     fOutputfile.write(reinterpret_cast<char*>(fDataPadding),sizeof(UChar_t)*fPadding);
2320     };
2321    
2322     };
2323    
2324    
2325     void Digitizer::ClearTrackCalib() {
2326    
2327     std:: cout << "Entering ClearTrackCalib " << endl;
2328    
2329    
2330     };
2331    
2332    
2333     void Digitizer::LoadTrackCalib() {
2334     std:: cout << "Entering LoadTrackCalib " << endl;
2335    
2336     // Generate the pedestals and sigmas according to parametrization
2337     for (Int_t j=0; j<fNviews;j++) {
2338     for (Int_t i=0; i<fNstrips_view;i++) {
2339    
2340     if((j+1)%2==0) {
2341     fPedeTrack[j][i]=gRandom->Gaus(fAvePedex,fSigmaPedex);
2342     fSigmaTrack[j][i]=gRandom->Gaus(fAveSigmax,fSigmaSigmax);
2343     };
2344     if((j+1)%2==1) {
2345     fPedeTrack[j][i]=gRandom->Gaus(fAvePedey,fSigmaPedey);
2346     fSigmaTrack[j][i]=gRandom->Gaus(fAveSigmay,fSigmaSigmay);
2347     };
2348    
2349     };
2350     };
2351    
2352    
2353    
2354     };
2355    
2356     void Digitizer::LoadMipCor() {
2357     std:: cout << "Entering LoadMipCor" << endl;
2358     Float_t xfactor=1./151.6*1.04;
2359     Float_t yfactor=1./152.1;
2360    
2361     fMipCor[0][0]=140.02*yfactor;
2362     fMipCor[0][1]=140.99*xfactor;
2363     fMipCor[0][2]=134.48*yfactor;
2364     fMipCor[0][3]=144.41*xfactor;
2365     fMipCor[0][4]=140.74*yfactor;
2366     fMipCor[0][5]=142.28*xfactor;
2367     fMipCor[0][6]=134.53*yfactor;
2368     fMipCor[0][7]=140.63*xfactor;
2369     fMipCor[0][8]=135.55*yfactor;
2370     fMipCor[0][9]=138.00*xfactor;
2371     fMipCor[0][10]=154.95*yfactor;
2372     fMipCor[0][11]=158.44*xfactor;
2373    
2374    
2375     fMipCor[1][0]=136.07*yfactor;
2376     fMipCor[1][1]=135.59*xfactor;
2377     fMipCor[1][2]=142.69*yfactor;
2378     fMipCor[1][3]=138.19*xfactor;
2379     fMipCor[1][4]=137.35*yfactor;
2380     fMipCor[1][5]=140.23*xfactor;
2381     fMipCor[1][6]=153.15*yfactor;
2382     fMipCor[1][7]=151.42*xfactor;
2383     fMipCor[1][8]=129.76*yfactor;
2384     fMipCor[1][9]=140.63*xfactor;
2385     fMipCor[1][10]=157.87*yfactor;
2386     fMipCor[1][11]=153.64*xfactor;
2387    
2388     fMipCor[2][0]=134.98*yfactor;
2389     fMipCor[2][1]=143.95*xfactor;
2390     fMipCor[2][2]=140.23*yfactor;
2391     fMipCor[2][3]=138.88*xfactor;
2392     fMipCor[2][4]=137.95*yfactor;
2393     fMipCor[2][5]=134.87*xfactor;
2394     fMipCor[2][6]=157.56*yfactor;
2395     fMipCor[2][7]=157.31*xfactor;
2396     fMipCor[2][8]=141.37*yfactor;
2397     fMipCor[2][9]=143.39*xfactor;
2398     fMipCor[2][10]=156.15*yfactor;
2399     fMipCor[2][11]=158.79*xfactor;
2400    
2401     /*
2402     for (Int_t j=0; j<fNviews;j++) {
2403     for (Int_t i=0; i<fNstrips_view;i++) {
2404     fMipCor[j][i]=1.;
2405     };
2406     };
2407    
2408    
2409     */
2410     };
2411    
2412     void Digitizer::CompressTrackData(Float_t AdcTrack[fNviews][fNstrips_view]) {
2413     // copy of the corresponding compression fortran routine + new digitization
2414     // std:: cout << "Entering CompressTrackData " << endl;
2415     Int_t oldval=0;
2416     Int_t newval=0;
2417     Int_t trasmesso=0;
2418     Int_t ntrastot=0;
2419     Float_t real;
2420     Float_t inte;
2421     Int_t cercacluster=0;
2422     Int_t kt=0;
2423     static const int DSPbufferSize = 4000; // 13 bit buffer to be rearranged in 16 bit Track buffer
2424     UShort_t DataDSP[DSPbufferSize]; // 13 bit buffer to be rearranged in 16 bit Track buffer
2425     UShort_t DSPlength; // 13 bit buffer to be rearranged in 16 bit Track buffer
2426    
2427     memset(fDataTrack,0,sizeof(UShort_t)*fTRACKbuffer); // probably not necessary becouse already done ?
2428     fTracklength=0;
2429    
2430     for (Int_t iv=0; iv<fNviews;iv++) {
2431     memset(DataDSP,0,sizeof(UShort_t)*DSPbufferSize);
2432     DSPlength=16; // skip the header, to be written later
2433     UShort_t CheckSum=0;
2434     // write dsp header on buffer
2435    
2436     // fDataTrack[fTracklength]=0xE805;
2437     // fTracklength++;
2438    
2439     // fDataTrack[fTracklength]=0x01A9;
2440     // fTracklength++;
2441    
2442     // end dsp header
2443    
2444     //
2445     // INIZIO VISTA IV - TAKE PROPER ACTION
2446     //
2447    
2448    
2449    
2450     for (Int_t ladder=0; ladder<fNladder;ladder++) {
2451     Int_t k=0;
2452     while (k<fNstrips_ladder) {
2453     // compress write in buffer the current LADDER
2454     if ( k == 0) {
2455     real=modff(AdcTrack[iv][ladder*fNstrips_ladder+k],&inte);
2456     if (real > 0.5) inte=inte+1;
2457     newval=(Int_t)inte -(Int_t)fPedeTrack[iv][ladder*fNstrips_ladder+k];
2458     // first strip of ladder is transmitted
2459     // DC_TOT first " << AdcTrack[iv][ladder*fNstrips_ladder+k] << endl;
2460     DataDSP[DSPlength]=( ((UShort_t)inte) & 0x0FFF);
2461     DSPlength++;
2462     ntrastot++;
2463     trasmesso=1;
2464     oldval=newval;
2465     kt=k;
2466     k++;
2467     continue;
2468     };
2469     real=modff(AdcTrack[iv][ladder*fNstrips_ladder+k],&inte);
2470     if (real > 0.5) inte=inte+1;
2471     newval=(Int_t)inte -(Int_t)(fPedeTrack[iv][ladder*fNstrips_ladder+k]);
2472     cercacluster=1; // ?????????
2473     if (cercacluster==1) {
2474    
2475     // controlla l'ordine di tutti queste strip ladder e DSP !!!!!!!
2476     Int_t diff=0;
2477    
2478    
2479     switch ((iv+1)%2) {
2480     case 0: diff=newval-oldval;
2481     break;
2482     case 1: diff=oldval-newval;
2483     break;
2484     };
2485    
2486     if (diff>fCutclu*(Int_t)fSigmaTrack[iv][ladder*fNstrips_ladder+k]) {
2487     Int_t clval=newval;
2488     Int_t klp=k; // go on to search for maximum
2489     klp++;
2490    
2491     while(klp<fNstrips_ladder) {
2492     real=modff(AdcTrack[iv][ladder*fNstrips_ladder+klp],&inte);
2493     if (real > 0.5) inte=inte+1;
2494     Int_t clvalp=(Int_t)inte -(Int_t)fPedeTrack[iv][ladder*fNstrips_ladder+klp];
2495     if((iv+1)%2==0) {
2496    
2497     if(clvalp>clval) {
2498     clval=clvalp;
2499     k=klp;}
2500     else break; // max of cluster found
2501    
2502     } else {
2503    
2504     if(clvalp<clval) {
2505     clval=clvalp;
2506     k=klp;}
2507     else break; // max of cluster found
2508    
2509     };
2510    
2511     klp++;
2512     };
2513    
2514     Int_t kl1=k-fNclst; // max of cluster (or end of ladder ?)
2515     trasmesso=0;
2516     if(kl1<0) kl1=0;
2517    
2518     if(kt>=kl1) kl1=kt+1;
2519     if( (kt+1)==kl1 ) trasmesso=1;
2520    
2521    
2522    
2523     Int_t kl2=k+fNclst;
2524     if(kl2>=fNstrips_ladder) kl2=fNstrips_ladder-1;
2525    
2526     for(Int_t klt=kl1 ; klt<=kl2 ; klt++) {
2527     if(trasmesso==0) {
2528     // std:: cout << "STRIP " << klt << endl;
2529     // std:: cout << "ADC_TOT " <<AdcTrack[iv][ladder*fNstrips_ladder+klt] << endl;
2530    
2531     DataDSP[DSPlength]=( ((UShort_t)klt) | 0x1000);
2532     DSPlength++;
2533     ntrastot++;
2534    
2535    
2536     real=modff(AdcTrack[iv][ladder*fNstrips_ladder+klt],&inte);
2537     if (real > 0.5) inte=inte+1;
2538     DataDSP[DSPlength]=( ((UShort_t)inte) & 0x0FFF);
2539     DSPlength++;
2540     ntrastot++;
2541    
2542     }
2543     else {
2544     // std:: cout << "ADC_TOT " <<AdcTrack[iv][ladder*fNstrips_ladder+klt] << endl;
2545     real=modff(AdcTrack[iv][ladder*fNstrips_ladder+klt],&inte);
2546     if (real > 0.5) inte=inte+1;
2547     DataDSP[DSPlength]=( ((UShort_t)inte) & 0x0FFF);
2548     DSPlength++;
2549     ntrastot++;
2550     };
2551     trasmesso=1;
2552     }; // end trasmission
2553     kt=kl2;
2554     k=kl2;
2555     real=modff(AdcTrack[iv][ladder*fNstrips_ladder+kt],&inte);
2556     if (real > 0.5) inte=inte+1;
2557     oldval=(Int_t)inte -(Int_t)fPedeTrack[iv][ladder*fNstrips_ladder+kt];
2558     k++;
2559     continue;
2560    
2561    
2562     }; // end cercacluster
2563     }; // end cercacluster
2564    
2565     // start ZOP check for strips no
2566    
2567     if(abs(newval-oldval)>=fCutzop*(Int_t)fSigmaTrack[iv][ladder*fNstrips_ladder+k]) {
2568    
2569     if(trasmesso==0) {
2570     // std:: cout << "STRIP " << k << endl;
2571     // std:: cout << "ADC_TOT " << AdcTrack[iv][ladder*fNstrips_ladder+k] << endl;
2572    
2573     DataDSP[DSPlength]=( ((UShort_t)k) | 0x1000);
2574     DSPlength++;
2575     ntrastot++;
2576    
2577    
2578     real=modff(AdcTrack[iv][ladder*fNstrips_ladder+k],&inte);
2579     if (real > 0.5) inte=inte+1;
2580     DataDSP[DSPlength]=( ((UShort_t)inte) & 0x0FFF);
2581     DSPlength++;
2582     ntrastot++;
2583    
2584     }
2585     else {
2586     // std:: cout << "ADC_TOT " << AdcTrack[iv][ladder*fNstrips_ladder+k] << endl;
2587     real=modff(AdcTrack[iv][ladder*fNstrips_ladder+k],&inte);
2588     if (real > 0.5) inte=inte+1;
2589     DataDSP[DSPlength]=( ((UShort_t)inte) & 0x0FFF);
2590     DSPlength++;
2591     ntrastot++;
2592     };
2593     trasmesso=1;
2594     oldval=newval;
2595     kt=k;
2596    
2597     }
2598     else trasmesso=0;
2599     // end zop
2600    
2601     k++;
2602     }; // end cycle inside ladder
2603     // write here the end ladder bytes
2604     // std:: cout << "FINE LADDER " << ladder+1 << endl;
2605    
2606     DataDSP[DSPlength]=( ((UShort_t)(ladder+1)) | 0x1800);
2607     DSPlength++;
2608     ntrastot++;
2609     trasmesso=0;
2610    
2611     }; //end cycle inside dsp
2612     // std:: cout << "FINE DSP " << iv+1 << endl;
2613     // here put DSP header
2614     DataDSP[0]=(0x1CA0 | ((UShort_t)(iv+1)) );
2615     UShort_t Nword=(DSPlength*13)/16;
2616     if( ((DSPlength*13)%16)!=0) Nword++;
2617     DataDSP[1]=(0x1400 | ( Nword >> 10));
2618     DataDSP[2]=(0x1400 | ( Nword & 0x03FF) );
2619     DataDSP[3]=(0x1400 | (( (UShort_t)(fCounter >> 10) ) & 0x03FF) );
2620     DataDSP[4]=(0x1400 | (( (UShort_t)(fCounter) ) & 0x03FF) );
2621     DataDSP[5]=(0x1400 | ( (UShort_t)(fNclst << 7) ) | ( (UShort_t)(fCutzop << 4) )
2622     | ( (UShort_t)fCutzop ) );
2623     DataDSP[6]=0x1400;
2624     DataDSP[7]=0x1400;
2625     DataDSP[8]=0x1400;
2626     DataDSP[9]=0x1400;
2627     DataDSP[10]=0x1400;
2628     DataDSP[11]=0x1400;
2629     DataDSP[12]=0x1400;
2630     DataDSP[13]=0x1400;
2631     DataDSP[14]=(0x1400 | (CheckSum & 0x00FF) );
2632     DataDSP[15]=0x1C00;
2633     // end DSP header
2634    
2635    
2636     // write 13 bit DataDSP bufer inside 16 bit fDataTrack buffer
2637     Int_t Bit16free=16;
2638     UShort_t Dato;
2639     for (Int_t NDSP=0; NDSP<DSPlength;NDSP++) {
2640     Int_t Bit13ToWrite=13;
2641     while(Bit13ToWrite>0) {
2642     if(Bit13ToWrite<=Bit16free) {
2643     Dato=((DataDSP[NDSP]&(0xFFFF >> (16-Bit13ToWrite)))<<(Bit16free-Bit13ToWrite));
2644     fDataTrack[fTracklength]=fDataTrack[fTracklength] | Dato ;
2645     Bit16free=Bit16free-Bit13ToWrite;
2646     Bit13ToWrite=0;
2647     if(Bit16free==0) {
2648     if(NDSP>15) CheckSum=CheckSum^fDataTrack[fTracklength];
2649     fTracklength++;
2650     Bit16free=16;
2651     };
2652     }
2653     else if(Bit13ToWrite>Bit16free) {
2654     Dato=( (DataDSP[NDSP]&(0xFFFF >> (16-Bit13ToWrite) ) ) >> (Bit13ToWrite-Bit16free) );
2655     fDataTrack[fTracklength]=fDataTrack[fTracklength] | Dato ;
2656     if(NDSP>15) CheckSum=CheckSum^fDataTrack[fTracklength];
2657     fTracklength++;
2658     Bit13ToWrite=Bit13ToWrite-Bit16free;
2659     Bit16free=16;
2660     };
2661    
2662     }; // end cycle while(Bit13ToWrite>0)
2663    
2664     }; // end cycle DataDSP
2665     if(Bit16free!=16) { fTracklength++; CheckSum=CheckSum^fDataTrack[fTracklength]; };
2666     CheckSum=(CheckSum >> 8)^(CheckSum&0x00FF);
2667     fDataTrack[fTracklength-Nword+11]=(0x0280 | (CheckSum >> 3));
2668     fDataTrack[fTracklength-Nword+12]=(0x1C00 | (CheckSum << 13) );
2669    
2670     // end write 13 bit DataDSP bufer inside 16 bit fDataTrack buffer
2671    
2672     //write trailer on buffer
2673     UShort_t ReLength=(UShort_t)((Nword+13)*2+3);
2674     UShort_t OveCheckCode=0x0000;
2675    
2676     fDataTrack[fTracklength]=0x0000;
2677     fTracklength++;
2678    
2679     fDataTrack[fTracklength]=(ReLength >> 8);
2680     fTracklength++;
2681    
2682     fDataTrack[fTracklength]=( (ReLength << 8) | (OveCheckCode & 0x00FF) );
2683     fTracklength++;
2684     // end trailer
2685     // std:: cout << "DSPlength " <<DSPlength << endl;
2686     // std:: cout << "Nword " << Nword << endl;
2687     // std:: cout << "ReLength " << ReLength << endl;
2688     };
2689     // std:: cout << "ntrastot " << ntrastot << endl;
2690    
2691     };
2692    
2693    
2694     Float_t Digitizer::SaturationTrack(Float_t ADC) {
2695     Float_t SatFact=1.;
2696     if(ADC<70.) { SatFact=80./ADC; };
2697     if(ADC>3000.) { SatFact=3000./ADC; };
2698     return SatFact;
2699     };
2700    
2701    
2702    
2703    
2704    
2705    

  ViewVC Help
Powered by ViewVC 1.1.23