/[PAMELA software]/PamelaDigitizer/Digitizer.cxx
ViewVC logotype

Annotation of /PamelaDigitizer/Digitizer.cxx

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.3 - (hide annotations) (download)
Thu Oct 11 11:29:21 2007 UTC (17 years, 4 months ago) by orsi
Branch: MAIN
Changes since 1.2: +201 -133 lines
TOF/AC/S4 changes;packet length bug fixed

1 orsi 1.2 // ------ PAMELA Digitizer ------
2     //
3     // Date, release and how-to: see file Pamelagp2Digits.cxx
4     //
5     // NB: Check length physics packet [packet type (0x10 = physics data)]
6 silvio 1.1 //
7     #include <sstream>
8     #include <fstream>
9     #include <stdlib.h>
10 orsi 1.2 #include <stdio.h>
11 silvio 1.1 #include <string.h>
12     #include <ctype.h>
13 orsi 1.2 #include <time.h>
14 silvio 1.1 #include "Riostream.h"
15     #include "TFile.h"
16     #include "TDirectory.h"
17     #include "TTree.h"
18     #include "TLeafI.h"
19     #include "TH1.h"
20     #include "TH2.h"
21     #include "TMath.h"
22     #include "TRandom.h"
23     #include "TSQLServer.h"
24     #include "TSystem.h"
25     //
26     #include "Digitizer.h"
27     #include "CRC.h"
28     //
29     #include <PamelaRun.h>
30     #include <physics/calorimeter/CalorimeterEvent.h>
31     #include <CalibCalPedEvent.h>
32     #include "GLTables.h"
33     //
34     extern "C"{
35     short crc(short, short);
36     };
37     //
38    
39     Digitizer::Digitizer(TTree* tree, char* &file_raw){
40     fhBookTree = tree;
41     fFilename = file_raw;
42     fCounter = 0;
43     fOBT = 0;
44    
45     //
46     // DB connections
47     //
48     TString host = "mysql://localhost/pamelaprod";
49     TString user = "anonymous";
50     TString psw = "";
51     //
52     const char *pamdbhost=gSystem->Getenv("PAM_DBHOST");
53     const char *pamdbuser=gSystem->Getenv("PAM_DBUSER");
54     const char *pamdbpsw=gSystem->Getenv("PAM_DBPSW");
55     if ( !pamdbhost ) pamdbhost = "";
56     if ( !pamdbuser ) pamdbuser = "";
57     if ( !pamdbpsw ) pamdbpsw = "";
58     if ( strcmp(pamdbhost,"") ) host = pamdbhost;
59     if ( strcmp(pamdbuser,"") ) user = pamdbuser;
60     if ( strcmp(pamdbpsw,"") ) psw = pamdbpsw;
61     fDbc = TSQLServer::Connect(host.Data(),user.Data(),psw.Data());
62     //
63     GL_TABLES *glt = new GL_TABLES(host,user,psw);
64     if ( glt->IsConnected(fDbc) ) printf("\n DB INFORMATION:\n SQL: %s Version: %s Host %s Port %i \n\n",fDbc->GetDBMS(),fDbc->ServerInfo(),fDbc->GetHost(),fDbc->GetPort());
65     //
66     // Use UTC in the DB and make timeout bigger
67     //
68     stringstream myquery;
69     myquery.str("");
70     myquery << "SET time_zone='+0:00'";
71     fDbc->Query(myquery.str().c_str());
72     myquery.str("");
73     myquery << "SET wait_timeout=173000;";
74     fDbc->Query(myquery.str().c_str());
75     //
76    
77     std:: cout << "preparing tree" << endl;
78    
79     // prepare tree
80     fhBookTree->SetBranchAddress("Irun",&Irun);
81     fhBookTree->SetBranchAddress("Ievnt",&Ievnt);
82     fhBookTree->SetBranchAddress("Ipa",&Ipa);
83     fhBookTree->SetBranchAddress("X0",&X0);
84     fhBookTree->SetBranchAddress("Y0",&Y0);
85     fhBookTree->SetBranchAddress("Z0",&Z0);
86     fhBookTree->SetBranchAddress("Theta",&Theta);
87     fhBookTree->SetBranchAddress("Phi",&Phi);
88     fhBookTree->SetBranchAddress("P0",&P0);
89     fhBookTree->SetBranchAddress("Nthtof",&Nthtof);
90     fhBookTree->SetBranchAddress("Ipltof",Ipltof);
91     fhBookTree->SetBranchAddress("Ipaddle",Ipaddle);
92     fhBookTree->SetBranchAddress("Ipartof",Ipartof);
93     fhBookTree->SetBranchAddress("Xintof",Xintof);
94     fhBookTree->SetBranchAddress("Yintof",Yintof);
95     fhBookTree->SetBranchAddress("Zintof",Zintof);
96     fhBookTree->SetBranchAddress("Xouttof",Xouttof);
97     fhBookTree->SetBranchAddress("Youttof",Youttof);
98     fhBookTree->SetBranchAddress("Zouttof",Zouttof);
99     fhBookTree->SetBranchAddress("Ereltof",Ereltof);
100     fhBookTree->SetBranchAddress("Timetof",Timetof);
101     fhBookTree->SetBranchAddress("Pathtof",Pathtof);
102     fhBookTree->SetBranchAddress("P0tof",P0tof);
103     fhBookTree->SetBranchAddress("Nthcat",&Nthcat);
104     fhBookTree->SetBranchAddress("Iparcat",Iparcat);
105     fhBookTree->SetBranchAddress("Icat",Icat);
106     fhBookTree->SetBranchAddress("Xincat",Xincat);
107     fhBookTree->SetBranchAddress("Yincat",Yincat);
108     fhBookTree->SetBranchAddress("Zincat",Zincat);
109     fhBookTree->SetBranchAddress("Xoutcat",Xoutcat);
110     fhBookTree->SetBranchAddress("Youtcat",Youtcat);
111     fhBookTree->SetBranchAddress("Zoutcat",Zoutcat);
112     fhBookTree->SetBranchAddress("Erelcat",Erelcat);
113     fhBookTree->SetBranchAddress("Timecat",Timecat);
114     fhBookTree->SetBranchAddress("Pathcat",Pathcat);
115     fhBookTree->SetBranchAddress("P0cat",P0cat);
116     fhBookTree->SetBranchAddress("Nthcas",&Nthcas);
117     fhBookTree->SetBranchAddress("Iparcas",Iparcas);
118     fhBookTree->SetBranchAddress("Icas",Icas);
119     fhBookTree->SetBranchAddress("Xincas",Xincas);
120     fhBookTree->SetBranchAddress("Yincas",Yincas);
121     fhBookTree->SetBranchAddress("Zincas",Zincas);
122     fhBookTree->SetBranchAddress("Xoutcas",Xoutcas);
123     fhBookTree->SetBranchAddress("Youtcas",Youtcas);
124     fhBookTree->SetBranchAddress("Zoutcas",Zoutcas);
125     fhBookTree->SetBranchAddress("Erelcas",Erelcas);
126     fhBookTree->SetBranchAddress("Timecas",Timecas);
127     fhBookTree->SetBranchAddress("Pathcas",Pathcas);
128     fhBookTree->SetBranchAddress("P0cas",P0cas);
129     fhBookTree->SetBranchAddress("Nthspe",&Nthspe);
130     fhBookTree->SetBranchAddress("Iparspe",Iparspe);
131     fhBookTree->SetBranchAddress("Itrpb",Itrpb);
132     fhBookTree->SetBranchAddress("Itrsl",Itrsl);
133     fhBookTree->SetBranchAddress("Itspa",Itspa);
134     fhBookTree->SetBranchAddress("Xinspe",Xinspe);
135     fhBookTree->SetBranchAddress("Yinspe",Yinspe);
136     fhBookTree->SetBranchAddress("Zinspe",Zinspe);
137     fhBookTree->SetBranchAddress("Xoutspe",Xoutspe);
138     fhBookTree->SetBranchAddress("Youtspe",Youtspe);
139     fhBookTree->SetBranchAddress("Zoutspe",Zoutspe);
140     fhBookTree->SetBranchAddress("Xavspe",Xavspe);
141     fhBookTree->SetBranchAddress("Yavspe",Yavspe);
142     fhBookTree->SetBranchAddress("Zavspe",Zavspe);
143     fhBookTree->SetBranchAddress("Erelspe",Erelspe);
144     fhBookTree->SetBranchAddress("Pathspe",Pathspe);
145     fhBookTree->SetBranchAddress("P0spe",P0spe);
146     fhBookTree->SetBranchAddress("Nxmult",Nxmult);
147     fhBookTree->SetBranchAddress("Nymult",Nymult);
148     fhBookTree->SetBranchAddress("Nstrpx",&Nstrpx);
149     fhBookTree->SetBranchAddress("Npstripx",Npstripx);
150     fhBookTree->SetBranchAddress("Ntstripx",Ntstripx);
151     fhBookTree->SetBranchAddress("Istripx",Istripx);
152     fhBookTree->SetBranchAddress("Qstripx",Qstripx);
153     fhBookTree->SetBranchAddress("Xstripx",Xstripx);
154     fhBookTree->SetBranchAddress("Nstrpy",&Nstrpy);
155     fhBookTree->SetBranchAddress("Npstripy",Npstripy);
156     fhBookTree->SetBranchAddress("Ntstripy",Ntstripy);
157     fhBookTree->SetBranchAddress("Istripy",Istripy);
158     fhBookTree->SetBranchAddress("Qstripy",Qstripy);
159     fhBookTree->SetBranchAddress("Ystripy",Ystripy);
160     fhBookTree->SetBranchAddress("Nthcali",&Nthcali);
161     fhBookTree->SetBranchAddress("Icaplane",Icaplane);
162     fhBookTree->SetBranchAddress("Icastrip",Icastrip);
163     fhBookTree->SetBranchAddress("Icamod",Icamod);
164     fhBookTree->SetBranchAddress("Enestrip",Enestrip);
165     fhBookTree->SetBranchAddress("Nthcal",&Nthcal);
166     fhBookTree->SetBranchAddress("Icapl",Icapl);
167     fhBookTree->SetBranchAddress("Icasi",Icasi);
168     fhBookTree->SetBranchAddress("Icast",Icast);
169     fhBookTree->SetBranchAddress("Xincal",Xincal);
170     fhBookTree->SetBranchAddress("Yincal",Yincal);
171     fhBookTree->SetBranchAddress("Zincal",Zincal);
172     fhBookTree->SetBranchAddress("Erelcal",Erelcal);
173     fhBookTree->SetBranchAddress("Nthnd",&Nthnd);
174     fhBookTree->SetBranchAddress("Itubend",Itubend);
175     fhBookTree->SetBranchAddress("Iparnd",Iparnd);
176     fhBookTree->SetBranchAddress("Xinnd",Xinnd);
177     fhBookTree->SetBranchAddress("Yinnd",Yinnd);
178     fhBookTree->SetBranchAddress("Zinnd",Zinnd);
179     fhBookTree->SetBranchAddress("Xoutnd",Xoutnd);
180     fhBookTree->SetBranchAddress("Youtnd",Youtnd);
181     fhBookTree->SetBranchAddress("Zoutnd",Zoutnd);
182     fhBookTree->SetBranchAddress("Erelnd",Erelnd);
183     fhBookTree->SetBranchAddress("Timend",Timend);
184     fhBookTree->SetBranchAddress("Pathnd",Pathnd);
185     fhBookTree->SetBranchAddress("P0nd",P0nd);
186     fhBookTree->SetBranchAddress("Nthcard",&Nthcard);
187     fhBookTree->SetBranchAddress("Iparcard",Iparcard);
188     fhBookTree->SetBranchAddress("Icard",Icard);
189     fhBookTree->SetBranchAddress("Xincard",Xincard);
190     fhBookTree->SetBranchAddress("Yincard",Yincard);
191     fhBookTree->SetBranchAddress("Zincard",Zincard);
192     fhBookTree->SetBranchAddress("Xoutcard",Xoutcard);
193     fhBookTree->SetBranchAddress("Youtcard",Youtcard);
194     fhBookTree->SetBranchAddress("Zoutcard",Zoutcard);
195     fhBookTree->SetBranchAddress("Erelcard",Erelcard);
196     fhBookTree->SetBranchAddress("Timecard",Timecard);
197     fhBookTree->SetBranchAddress("Pathcard",Pathcard);
198     fhBookTree->SetBranchAddress("P0card",P0card);
199    
200     fhBookTree->SetBranchStatus("*",0);
201    
202     };
203    
204    
205    
206     void Digitizer::Close(){
207    
208     delete fhBookTree;
209    
210     };
211    
212    
213    
214    
215     void Digitizer::Loop() {
216     //
217     // opens the raw output file and loops over the events
218     //
219     fOutputfile.open(fFilename, ios::out | ios::binary);
220     //fOutputfile.open(Form("Output%s",fFilename), ios::out | ios::binary);
221     //
222     // Load in memory and save at the beginning of file the calorimeter calibration
223     //
224     CaloLoadCalib();
225     DigitizeCALOCALIB();
226    
227     // load, digitize and write tracker calibration
228     LoadTrackCalib();
229    
230     DigitizeTrackCalib(1);
231     UInt_t length=fTracklength*2;
232     DigitizePSCU(length,0x12);
233     AddPadding();
234     WriteTrackCalib();
235    
236     DigitizeTrackCalib(2);
237     length=fTracklength*2;
238     DigitizePSCU(length,0x13);
239     AddPadding();
240     WriteTrackCalib();
241    
242     LoadMipCor(); // some initialization of parameters -not used now-
243     // end loading, digitizing and writing tracker calibration
244    
245     //
246     // loops over the events
247     //
248    
249     Int_t nentries = fhBookTree->GetEntriesFast();
250     Long64_t nbytes = 0;
251     for (Int_t i=0; i<nentries;i++) {
252     //
253     nbytes += fhBookTree->GetEntry(i);
254     // read detectors sequentially:
255     // http://www.ts.infn.it/fileadmin/documents/physics/experiments/wizard/cpu/gen_arch/RM_Acquisition.pdf
256     // on pamelatov:
257     // /cvs/yoda/techmodel/physics/NeutronDetectorReader.cpp
258     DigitizeTRIGGER();
259     DigitizeTOF();
260     DigitizeAC();
261     DigitizeCALO();
262     DigitizeTrack();
263 orsi 1.3 DigitizeS4();
264 silvio 1.1 DigitizeND();
265 orsi 1.2 //
266     // Add padding to 64 bits
267 silvio 1.1 //
268 orsi 1.2 AddPadding();
269     //
270 silvio 1.1 // Create CPU header, we need packet type (0x10 = physics data) and packet length.
271     //
272 orsi 1.3 UInt_t length=2*(fCALOlength+fACbuffer+fTracklength+fNDbuffer+fS4buffer)+fPadding+fTOFbuffer+fTRIGGERbuffer;
273     //UInt_t length=2*(fCALOlength+fACbuffer+fTracklength+fNDbuffer)+fPadding+fTOFbuffer+fTRIGGERbuffer;
274 silvio 1.1 DigitizePSCU(length,0x10);
275     if ( !i%100 ) std::cout << "writing event " << i << endl;
276     WriteData();
277     };
278    
279     fOutputfile.close();
280     std::cout << "files closed" << endl << flush;
281    
282     };
283    
284     void Digitizer::AddPadding(){
285     //
286     Float_t pd0 = (fLen+16)/64.;
287     Float_t pd1 = pd0 - (Float_t)int(pd0);
288     Float_t padfrac = 64. - pd1 * 64.;
289     //
290     UInt_t padbytes = (UInt_t)padfrac;
291     if ( padbytes > 0 && padbytes < 64 ){
292     //
293     // here the padding length
294     //
295     fPadding = padbytes+64;
296     //
297     // random padding bytes
298     //
299     for (Int_t ur=0; ur<32; ur++){
300     fDataPadding[ur] = (UShort_t)rand();
301     };
302     };
303     };
304    
305    
306     void Digitizer::DigitizePSCU(UInt_t length, UChar_t type) {
307     //
308     UChar_t buff[16];
309     //
310     // CPU signature
311     //
312     buff[0] = 0xFA;
313     buff[1] = 0xFE;
314     buff[2] = 0xDE;
315     //
316     // packet type (twice)
317     //
318     buff[3] = type;
319     buff[4] = type;
320     //
321     // counter
322     //
323     fCounter++;
324     while ( fCounter > 16777215 ){
325     fCounter -= 16777215;
326     };
327     //
328     buff[5] = (UChar_t)(fCounter >> 16);
329     buff[6] = (UChar_t)(fCounter >> 8);
330     buff[7] = (UChar_t)fCounter;
331     //
332     // on board time
333     //
334     ULong64_t obt = fOBT + 30LL;
335     //
336     while ( obt > 4294967295LL ){
337     obt -= 4294967295LL;
338     };
339     fOBT = (UInt_t)obt;
340     //
341     buff[8] = (UChar_t)(fOBT >> 24);
342     buff[9] = (UChar_t)(fOBT >> 16);
343     buff[10] = (UChar_t)(fOBT >> 8);
344     buff[11] = (UChar_t)fOBT;
345     //
346     // Packet length
347     //
348     fLen = length;
349     //
350     buff[12] = (UChar_t)(fLen >> 16);
351     buff[13] = (UChar_t)(fLen >> 8);
352     buff[14] = (UChar_t)fLen;
353     //
354     // CPU header CRC
355     //
356     buff[15] = (BYTE)CM_Compute_CRC16((UINT16)0, (BYTE*)&buff, (UINT32)15);
357     //
358     memcpy(fDataPSCU,buff,16*sizeof(UChar_t));
359     //
360     };
361    
362     void Digitizer::ClearCaloCalib(Int_t s){
363     //
364     fcstwerr[s] = 0;
365     fcperror[s] = 0.;
366     for ( Int_t d=0 ; d<11 ;d++ ){
367     Int_t pre = -1;
368     for ( Int_t j=0; j<96 ;j++){
369     if ( j%16 == 0 ) pre++;
370     fcalped[s][d][j] = 0.;
371     fcstwerr[s] = 0.;
372     fcperror[s] = 0.;
373     fcalgood[s][d][j] = 0.;
374     fcalthr[s][d][pre] = 0.;
375     fcalrms[s][d][j] = 0.;
376     fcalbase[s][d][pre] = 0.;
377     fcalvar[s][d][pre] = 0.;
378     };
379     };
380     return;
381     }
382    
383     Int_t Digitizer::CaloLoadCalib(Int_t s,TString fcalname, UInt_t calibno){
384     //
385     //
386     UInt_t e = 0;
387     if ( s == 0 ) e = 0;
388     if ( s == 1 ) e = 2;
389     if ( s == 2 ) e = 3;
390     if ( s == 3 ) e = 1;
391     //
392     ifstream myfile;
393     myfile.open(fcalname.Data());
394     if ( !myfile ){
395     return(-107);
396     };
397     myfile.close();
398     //
399     TFile *File = new TFile(fcalname.Data());
400     if ( !File ) return(-108);
401     TTree *tr = (TTree*)File->Get("CalibCalPed");
402     if ( !tr ) return(-109);
403     //
404     TBranch *calo = tr->GetBranch("CalibCalPed");
405     //
406     pamela::CalibCalPedEvent *ce = 0;
407     tr->SetBranchAddress("CalibCalPed", &ce);
408     //
409     Long64_t ncalibs = calo->GetEntries();
410     //
411     if ( !ncalibs ) return(-110);
412     //
413     calo->GetEntry(calibno);
414     //
415     if (ce->cstwerr[s] != 0 && ce->cperror[s] == 0 ) {
416     fcstwerr[s] = ce->cstwerr[s];
417     fcperror[s] = ce->cperror[s];
418     for ( Int_t d=0 ; d<11 ;d++ ){
419     Int_t pre = -1;
420     for ( Int_t j=0; j<96 ;j++){
421     if ( j%16 == 0 ) pre++;
422     fcalped[s][d][j] = ce->calped[e][d][j];
423     fcalgood[s][d][j] = ce->calgood[e][d][j];
424     fcalthr[s][d][pre] = ce->calthr[e][d][pre];
425     fcalrms[s][d][j] = ce->calrms[e][d][j];
426     fcalbase[s][d][pre] = ce->calbase[e][d][pre];
427     fcalvar[s][d][pre] = ce->calvar[e][d][pre];
428     };
429     };
430     } else {
431     printf(" CALORIMETER - ERROR: problems finding a good calibration in this file! \n\n ");
432     File->Close();
433     return(-111);
434     };
435     File->Close();
436     return(0);
437     }
438    
439    
440     void Digitizer::DigitizeCALOCALIB() {
441     //
442     // Header of the four sections
443     //
444     fSecCalo[0] = 0xAA00; // XE
445     fSecCalo[1] = 0xB100; // XO
446     fSecCalo[2] = 0xB600; // YE
447     fSecCalo[3] = 0xAD00; // YO
448     //
449     // length of the data is 0x1215
450     //
451     fSecCALOLength[0] = 0x1215; // XE
452     fSecCALOLength[1] = 0x1215; // XO
453     fSecCALOLength[2] = 0x1215; // YE
454     fSecCALOLength[3] = 0x1215; // YO
455     //
456     Int_t chksum = 0;
457     UInt_t tstrip = 0;
458     UInt_t fSecPointer = 0;
459     //
460     for (Int_t sec=0; sec < 4; sec++){
461     //
462     // sec = 0 -> XE 1 -> XO 2-> YE 3 -> YO
463     //
464     fCALOlength = 0;
465     memset(fDataCALO,0,sizeof(UShort_t)*fCALObuffer);
466     fSecPointer = fCALOlength;
467     //
468     // First of all we have section header and packet length
469     //
470     fDataCALO[fCALOlength] = fSecCalo[sec];
471     fCALOlength++;
472     fDataCALO[fCALOlength] = fSecCALOLength[sec];
473     fCALOlength++;
474     //
475     // Section XO is read in the opposite direction respect to the others
476     //
477     chksum = 0;
478     //
479     for (Int_t plane=0; plane < 11; plane++){
480     //
481     if ( sec == 1 ) tstrip = fCALOlength + 96*2;
482     //
483     for (Int_t strip=0; strip < 96; strip++){
484     //
485     chksum += (Int_t)fcalped[sec][plane][strip];
486     //
487     // save value
488     //
489     if ( sec == 1 ){
490     tstrip -= 2;
491     fDataCALO[tstrip] = (Int_t)fcalped[sec][plane][strip];
492     fDataCALO[tstrip+1] = (Int_t)fcalgood[sec][plane][strip];
493     } else {
494     fDataCALO[fCALOlength] = (Int_t)fcalped[sec][plane][strip];
495     fDataCALO[fCALOlength+1] = (Int_t)fcalgood[sec][plane][strip];
496     };
497     fCALOlength +=2;
498     };
499     //
500     };
501     //
502     fDataCALO[fCALOlength] = (UShort_t)chksum;
503     fCALOlength++;
504     fDataCALO[fCALOlength] = 0;
505     fCALOlength++;
506     fDataCALO[fCALOlength] = (UShort_t)((Int_t)(chksum >> 16));
507     fCALOlength++;
508     //
509     // Section XO is read in the opposite direction respect to the others
510     //
511     chksum = 0;
512     //
513     for (Int_t plane=0; plane < 11; plane++){
514     //
515     if ( sec == 1 ) tstrip = fCALOlength+6*2;
516     //
517     for (Int_t strip=0; strip < 6; strip++){
518     //
519     chksum += (Int_t)fcalthr[sec][plane][strip];
520     //
521     // save value
522     //
523     if ( sec == 1 ){
524     tstrip -= 2;
525     fDataCALO[tstrip] = 0;
526     fDataCALO[tstrip+1] = (Int_t)fcalthr[sec][plane][strip];
527     } else {
528     fDataCALO[fCALOlength] = 0;
529     fDataCALO[fCALOlength+1] = (Int_t)fcalthr[sec][plane][strip];
530     };
531     fCALOlength +=2;
532     };
533     //
534     };
535     //
536     fDataCALO[fCALOlength] = 0;
537     fCALOlength++;
538     fDataCALO[fCALOlength] = (UShort_t)chksum;
539     fCALOlength++;
540     fDataCALO[fCALOlength] = 0;
541     fCALOlength++;
542     fDataCALO[fCALOlength] = (UShort_t)((Int_t)(chksum >> 16));
543     fCALOlength++;
544     //
545     // Section XO is read in the opposite direction respect to the others
546     //
547     for (Int_t plane=0; plane < 11; plane++){
548     //
549     if ( sec == 1 ) tstrip = fCALOlength+96*2;
550     //
551     for (Int_t strip=0; strip < 96; strip++){
552     //
553     // save value
554     //
555     if ( sec == 1 ){
556     tstrip -= 2;
557     fDataCALO[tstrip] = 0;
558     fDataCALO[tstrip+1] = (Int_t)fcalrms[sec][plane][strip];
559     } else {
560     fDataCALO[fCALOlength] = 0;
561     fDataCALO[fCALOlength+1] = (Int_t)fcalrms[sec][plane][strip];
562     };
563     fCALOlength += 2;
564     };
565     //
566     };
567     //
568     // Section XO is read in the opposite direction respect to the others
569     //
570     for (Int_t plane=0; plane < 11; plane++){
571     //
572     if ( sec == 1 ) tstrip = fCALOlength+6*4;
573     //
574     for (Int_t strip=0; strip < 6; strip++){
575     //
576     // save value
577     //
578     if ( sec == 1 ){
579     tstrip -= 4;
580     fDataCALO[tstrip] = 0;
581     fDataCALO[tstrip+1] = (Int_t)fcalbase[sec][plane][strip];
582     fDataCALO[tstrip+2] = 0;
583     fDataCALO[tstrip+3] = (Int_t)fcalvar[sec][plane][strip];
584     } else {
585     fDataCALO[fCALOlength] = 0;
586     fDataCALO[fCALOlength+1] = (Int_t)fcalbase[sec][plane][strip];
587     fDataCALO[fCALOlength+2] = 0;
588     fDataCALO[fCALOlength+3] = (Int_t)fcalvar[sec][plane][strip];
589     };
590     fCALOlength +=4;
591     };
592     //
593     };
594     //
595     //
596     // here we calculate and save the CRC
597     //
598     fDataCALO[fCALOlength] = 0;
599     fCALOlength++;
600     Short_t CRC = 0;
601     for (UInt_t i=0; i<(fCALOlength-fSecPointer); i++){
602     CRC=crc(CRC,fDataCALO[i+fSecPointer]);
603     };
604     fDataCALO[fCALOlength] = (UShort_t)CRC;
605     fCALOlength++;
606     //
607     UInt_t length=fCALOlength*2;
608     DigitizePSCU(length,0x18);
609     //
610     // Add padding to 64 bits
611     //
612     AddPadding();
613     //
614     fOutputfile.write(reinterpret_cast<char*>(fDataPSCU),sizeof(UShort_t)*fPSCUbuffer);
615     UShort_t temp[1000000];
616     memset(temp,0,sizeof(UShort_t)*1000000);
617     swab(fDataCALO,temp,sizeof(UShort_t)*fCALOlength); // WE MUST SWAP THE BYTES!!!
618     fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fCALOlength);
619     //
620     // padding to 64 bytes
621     //
622     if ( fPadding ){
623     fOutputfile.write(reinterpret_cast<char*>(fDataPadding),sizeof(UChar_t)*fPadding);
624     };
625     //
626     //
627     };
628     //
629     };
630    
631     void Digitizer::CaloLoadCalib() {
632     //
633     fGivenCaloCalib = 0; // ####@@@@ should be given as input par @@@@####
634     //
635     // first of all load the MIP to ADC conversion values
636     //
637     stringstream calfile;
638     Int_t error = 0;
639     GL_PARAM *glparam = new GL_PARAM();
640     //
641     // determine where I can find calorimeter ADC to MIP conversion file
642     //
643     error = 0;
644     error = glparam->Query_GL_PARAM(3,101,fDbc);
645     //
646     calfile.str("");
647     calfile << glparam->PATH.Data() << "/";
648     calfile << glparam->NAME.Data();
649     //
650     printf("\n Using Calorimeter ADC to MIP conversion file: \n %s \n",calfile.str().c_str());
651     FILE *f;
652     f = fopen(calfile.str().c_str(),"rb");
653     //
654     memset(fCalomip,0,4224*sizeof(fCalomip[0][0][0]));
655     //
656     for (Int_t m = 0; m < 2 ; m++ ){
657     for (Int_t k = 0; k < 22; k++ ){
658     for (Int_t l = 0; l < 96; l++ ){
659     fread(&fCalomip[m][k][l],sizeof(fCalomip[m][k][l]),1,f);
660     };
661     };
662     };
663     fclose(f);
664     //
665     // determine which calibration has to be used and load it for each section
666     //
667     GL_CALO_CALIB *glcalo = new GL_CALO_CALIB();
668     GL_ROOT *glroot = new GL_ROOT();
669     TString fcalname;
670     UInt_t idcalib;
671     UInt_t calibno;
672     UInt_t utime = 0;
673     //
674     for (UInt_t s=0; s<4; s++){
675     //
676     // clear calo calib variables for section s
677     //
678     ClearCaloCalib(s);
679     //
680     if ( fGivenCaloCalib ){
681     //
682     // a time has been given as input on the command line so retrieve the calibration that preceed that time
683     //
684     glcalo->Query_GL_CALO_CALIB(fGivenCaloCalib,utime,s,fDbc);
685     //
686     calibno = glcalo->EV_ROOT;
687     idcalib = glcalo->ID_ROOT_L0;
688     //
689     // determine path and name and entry of the calibration file
690     //
691     printf("\n");
692     printf(" ** SECTION %i **\n",s);
693     //
694     glroot->Query_GL_ROOT(idcalib,fDbc);
695     //
696     stringstream name;
697     name.str("");
698     name << glroot->PATH.Data() << "/";
699     name << glroot->NAME.Data();
700     //
701     fcalname = (TString)name.str().c_str();
702     //
703     printf("\n Section %i : using file %s calibration at entry %i: \n",s,fcalname.Data(),calibno);
704     //
705     } else {
706     error = 0;
707     error = glparam->Query_GL_PARAM(1,104,fDbc);
708     //
709     calfile.str("");
710     calfile << glparam->PATH.Data() << "/";
711     calfile << glparam->NAME.Data();
712     //
713     printf("\n Section %i : using default calorimeter calibration: \n %s \n",s,calfile.str().c_str());
714     //
715     fcalname = (TString)calfile.str().c_str();
716     calibno = s;
717     //
718     };
719     //
720     // load calibration variables in memory
721     //
722     CaloLoadCalib(s,fcalname,calibno);
723     //
724     };
725     //
726     // at this point we have in memory the calorimeter calibration and we can save it to disk in the correct format and use it to digitize the data
727     //
728     delete glparam;
729     delete glcalo;
730     delete glroot;
731     };
732    
733     void Digitizer::DigitizeCALO() {
734     //
735     fModCalo = 0; // 0 is RAW, 1 is COMPRESS, 2 is FULL ####@@@@ should be given as input par @@@@####
736     //
737     //
738     //
739     fCALOlength = 0; // reset total dimension of calo data
740     //
741     // gpamela variables to be used
742     //
743     fhBookTree->SetBranchStatus("Nthcali",1);
744     fhBookTree->SetBranchStatus("Icaplane",1);
745     fhBookTree->SetBranchStatus("Icastrip",1);
746     fhBookTree->SetBranchStatus("Icamod",1);
747     fhBookTree->SetBranchStatus("Enestrip",1);
748     //
749     // call different routines depending on the acq mode you want to simulate
750     //
751     switch ( fModCalo ){
752     case 0:
753     this->DigitizeCALORAW();
754     break;
755     case 1:
756     this->DigitizeCALOCOMPRESS();
757     break;
758     case 2:
759     this->DigitizeCALOFULL();
760     break;
761     };
762     //
763     };
764    
765     Float_t Digitizer::GetCALOen(Int_t sec, Int_t plane, Int_t strip){
766     //
767     // determine plane and strip
768     //
769     Int_t mplane = 0;
770     //
771     // wrong!
772     //
773     // if ( sec == 0 || sec == 3 ) mplane = (plane * 4) + sec + 1;
774     // if ( sec == 1 ) mplane = (plane * 4) + 2 + 1;
775     // if ( sec == 2 ) mplane = (plane * 4) + 1 + 1;
776     //
777     if ( sec == 0 ) mplane = plane * 4 + 1; // it must be 0, 4, 8, ... (+1) from plane = 0, 11
778     if ( sec == 1 ) mplane = plane * 4 + 2 + 1; // it must be 2, 6, 10, ... (+1) from plane = 0, 11
779     if ( sec == 2 ) mplane = plane * 4 + 3 + 1; // it must be 3, 7, 11, ... (+1) from plane = 0, 11
780     if ( sec == 3 ) mplane = plane * 4 + 1 + 1; // it must be 1, 5, 9, ... (+1) from plane = 0, 11
781     //
782     Int_t mstrip = strip + 1;
783     //
784     // search energy release in gpamela output
785     //
786     for (Int_t i=0; i<Nthcali;i++){
787     if ( Icaplane[i] == mplane && Icastrip[i] == mstrip ){
788     return (Enestrip[i]);
789     };
790     };
791     //
792     // if not found it means no energy release so return 0.
793     //
794     return(0.);
795     };
796    
797     void Digitizer::DigitizeCALORAW() {
798     //
799     // some variables
800     //
801     Float_t ens = 0.;
802     UInt_t adcsig = 0;
803     UInt_t adcbase = 0;
804     UInt_t adc = 0;
805     Int_t pre = 0;
806     UInt_t l = 0;
807     UInt_t lpl = 0;
808     UInt_t tstrip = 0;
809     UInt_t fSecPointer = 0;
810     Double_t pedenoise;
811     Float_t rms = 0.;
812     Float_t pedestal = 0.;
813     //
814     // clean the data structure
815     //
816     memset(fDataCALO,0,sizeof(UShort_t)*fCALObuffer);
817     //
818     // Header of the four sections
819     //
820     fSecCalo[0] = 0xEA08; // XE
821     fSecCalo[1] = 0xF108; // XO
822     fSecCalo[2] = 0xF608; // YE
823     fSecCalo[3] = 0xED08; // YO
824     //
825     // length of the data is 0x0428 in RAW mode
826     //
827     fSecCALOLength[0] = 0x0428; // XE
828     fSecCALOLength[1] = 0x0428; // XO
829     fSecCALOLength[2] = 0x0428; // YE
830     fSecCALOLength[3] = 0x0428; // YO
831     //
832     // let's start
833     //
834     fCALOlength = 0;
835     //
836     for (Int_t sec=0; sec < 4; sec++){
837     //
838     // sec = 0 -> XE 1 -> XO 2-> YE 3 -> YO
839     //
840     l = 0; // XE and XO are Y planes
841     if ( sec < 2 ) l = 1; // while YE and YO are X planes
842     //
843     fSecPointer = fCALOlength;
844     //
845     // First of all we have section header and packet length
846     //
847     fDataCALO[fCALOlength] = fSecCalo[sec];
848     fCALOlength++;
849     fDataCALO[fCALOlength] = fSecCALOLength[sec];
850     fCALOlength++;
851     //
852     // selftrigger coincidences - in the future we should add here some code to simulate timing response of pre-amplifiers
853     //
854     for (Int_t autoplane=0; autoplane < 7; autoplane++){
855     fDataCALO[fCALOlength] = 0x0000;
856     fCALOlength++;
857     };
858     //
859     //
860     // here comes data
861     //
862     //
863     // Section XO is read in the opposite direction respect to the others
864     //
865     if ( sec == 1 ){
866     tstrip = 96*11 + fCALOlength;
867     } else {
868     tstrip = 0;
869     };
870     //
871     pre = -1;
872     //
873     for (Int_t strip=0; strip < 96; strip++){
874     //
875     // which is the pre for this strip?
876     //
877     if (strip%16 == 0) {
878     pre++;
879     };
880     //
881     if ( sec == 1 ) tstrip -= 11;
882     //
883     for (Int_t plane=0; plane < 11; plane++){
884     //
885     // here is wrong!!!!
886     //
887     //
888     // if ( plane%2 == 0 && sec%2 != 0){
889     // lpl = plane*2;
890     // } else {
891     // lpl = (plane*2) + 1;
892     // };
893     //
894     if ( sec == 0 || sec == 3 ) lpl = plane * 2;
895     if ( sec == 1 || sec == 2 ) lpl = (plane * 2) + 1;
896     //
897     // get the energy in GeV from the simulation for that strip
898     //
899     ens = this->GetCALOen(sec,plane,strip);
900     //
901     // convert it into ADC channels
902     //
903     adcsig = int(ens*fCalomip[l][lpl][strip]/fCALOGeV2MIPratio);
904     //
905     // sum baselines
906     //
907     adcbase = (UInt_t)fcalbase[sec][plane][pre];
908     //
909     // add noise and pedestals
910     //
911     pedestal = fcalped[sec][plane][strip];
912     rms = fcalrms[sec][plane][strip]/4.;
913     //
914     // Add random gaussian noise of RMS rms and Centered in the pedestal
915     //
916     pedenoise = gRandom->Gaus((Double_t)pedestal,(Double_t)rms);
917     //
918     // Sum all contribution
919     //
920     adc = adcsig + adcbase + (Int_t)round(pedenoise);
921     //
922     // Signal saturation
923     //
924     if ( adc > 0x7FFF ) adc = 0x7FFF;
925     //
926     // save value
927     //
928     if ( sec == 1 ){
929     fDataCALO[tstrip] = adc;
930     tstrip++;
931     } else {
932     fDataCALO[fCALOlength] = adc;
933     };
934     fCALOlength++;
935     //
936     };
937     //
938     if ( sec == 1 ) tstrip -= 11;
939     //
940     };
941     //
942     // here we calculate and save the CRC
943     //
944     Short_t CRC = 0;
945     for (UInt_t i=0; i<(fCALOlength-fSecPointer); i++){
946     CRC=crc(CRC,fDataCALO[i+fSecPointer]);
947     };
948     fDataCALO[fCALOlength] = (UShort_t)CRC;
949     fCALOlength++;
950     //
951     };
952     //
953     // for (Int_t i=0; i<fCALOlength; i++){
954     // printf(" WORD %i DIGIT %0x \n",i,fDataCALO[i]);
955     // };
956     //
957     };
958    
959     void Digitizer::DigitizeCALOCOMPRESS() {
960     //
961     printf(" COMPRESS MODE STILL NOT IMPLEMENTED! \n");
962     //
963     this->DigitizeCALORAW();
964     return;
965     //
966     //
967     //
968     fSecCalo[0] = 0xEA00;
969     fSecCalo[1] = 0xF100;
970     fSecCalo[2] = 0xF600;
971     fSecCalo[3] = 0xED00;
972     //
973     // length of the data in DSP mode must be calculated on fly during digitization
974     //
975     memset(fSecCALOLength,0x0,4*sizeof(UShort_t));
976     //
977     // here comes raw data
978     //
979     Int_t en = 0;
980     //
981     for (Int_t sec=0; sec < 4; sec++){
982     fDataCALO[en] = fSecCalo[sec];
983     en++;
984     fDataCALO[en] = fSecCALOLength[sec];
985     en++;
986     for (Int_t plane=0; plane < 11; plane++){
987     for (Int_t strip=0; strip < 11; strip++){
988     fDataCALO[en] = 0x0;
989     en++;
990     };
991     };
992     };
993     //
994     };
995    
996     void Digitizer::DigitizeCALOFULL() {
997     //
998     printf(" FULL MODE STILL NOT IMPLEMENTED! \n");
999     //
1000     this->DigitizeCALORAW();
1001     return;
1002     //
1003     fSecCalo[0] = 0xEA00;
1004     fSecCalo[1] = 0xF100;
1005     fSecCalo[2] = 0xF600;
1006     fSecCalo[3] = 0xED00;
1007     //
1008     // length of the data in DSP mode must be calculated on fly during digitization
1009     //
1010     memset(fSecCALOLength,0x0,4*sizeof(UShort_t));
1011     //
1012     // here comes raw data
1013     //
1014     Int_t en = 0;
1015     //
1016     for (Int_t sec=0; sec < 4; sec++){
1017     fDataCALO[en] = fSecCalo[sec];
1018     en++;
1019     fDataCALO[en] = fSecCALOLength[sec];
1020     en++;
1021     for (Int_t plane=0; plane < 11; plane++){
1022     for (Int_t strip=0; strip < 11; strip++){
1023     fDataCALO[en] = 0x0;
1024     en++;
1025     };
1026     };
1027     };
1028     //
1029     };
1030    
1031     void Digitizer::DigitizeTRIGGER() {
1032     //fDataTrigger: 153 bytes
1033     for (Int_t j=0; j < 153; j++)
1034     fDataTrigger[0]=0x00;
1035     };
1036    
1037     Int_t Digitizer::DigitizeTOF() {
1038     //fDataTof: 12 x 23 bytes (=276 bytes)
1039     UChar_t *pTof=fDataTof;
1040 orsi 1.3 Bool_t DEBUG=false;
1041 silvio 1.1
1042     // --- activate branches:
1043     fhBookTree->SetBranchStatus("Nthtof",1);
1044     fhBookTree->SetBranchStatus("Ipltof",1);
1045     fhBookTree->SetBranchStatus("Ipaddle",1);
1046     fhBookTree->SetBranchStatus("Xintof",1);
1047     fhBookTree->SetBranchStatus("Yintof",1);
1048     fhBookTree->SetBranchStatus("Xouttof",1);
1049     fhBookTree->SetBranchStatus("Youttof",1);
1050     fhBookTree->SetBranchStatus("Ereltof",1);
1051     fhBookTree->SetBranchStatus("Timetof",1);
1052     // not yet used: Zintof, Xouttof, Youttof, Zouttof
1053    
1054     // ------ evaluate energy in each pmt: ------
1055     // strip geometry (lenght/width)
1056     Float_t dimel[6] = {33.0, 40.8 ,18.0, 15.0, 15.0, 18.0};
1057 orsi 1.2 //Float_t dimes[6] = {5.1, 5.5, 7.5, 9.0, 6.0, 5.0};
1058 silvio 1.1
1059     // S11 8 paddles 33.0 x 5.1 cm
1060     // S12 6 paddles 40.8 x 5.5 cm
1061     // S21 2 paddles 18.0 x 7.5 cm
1062     // S22 2 paddles 15.0 x 9.0 cm
1063     // S31 3 paddles 15.0 x 6.0 cm
1064     // S32 3 paddles 18.0 x 5.0 cm
1065    
1066     // distance from the interaction point to the pmts (right,left)
1067     Float_t xpath[2]={0., 0.}; /*path(cm) in X per S12,S21,S32 verso il pmt DX o SX*/
1068     Float_t ypath[2]={0., 0.}; /*path(cm) in Y per S11,S22,S31 verso il pmt DX o SX*/
1069     Float_t FGeo[2]={0., 0.}; /* fattore geometrico */
1070    
1071     const Float_t Pho_keV = 10.; // photons per keV in scintillator
1072     const Float_t echarge = 1.6e-19; // carica dell'elettrone
1073     Float_t Npho=0.;
1074     Float_t QevePmt_pC[48];
1075     Float_t QhitPad_pC[2]={0., 0.};
1076     Float_t QhitPmt_pC[2]={0., 0.};
1077     Float_t pmGain = 3.5e6; /* Gain: per il momento uguale per tutti */
1078     Float_t effi=0.21; /* Efficienza di fotocatodo */
1079     Float_t ADC_pC=1.666667; // ADC_ch/pC conversion = 0.6 pC/channel (+30 di offset)
1080     Float_t ADCoffset=30.;
1081     Int_t ADClast=4095; // no signal --> ADC ch=4095
1082     Int_t ADCtof[48];
1083     //Float_t ADCsat=3100; ci pensiamo in futuro !
1084     //Float_t pCsat=2500;
1085     for(Int_t i=0; i<48; i++){
1086     QevePmt_pC[i] = 0;
1087     ADCtof[i]=0;
1088     }
1089    
1090     // ------ read calibration file (get A1, A2, lambda1, lambda2)
1091     ifstream fileTriggerCalib;
1092     TString ftrigname="TrigCalibParam.txt";
1093     fileTriggerCalib.open(ftrigname.Data());
1094     if ( !fileTriggerCalib ) {
1095     printf("debug: no trigger calib file!\n");
1096     return(-117); //check output!
1097     };
1098     Float_t atte1[48],atte2[48],lambda1[48],lambda2[48];
1099     Int_t temp=0;
1100 orsi 1.3 // correct readout WM Oct '07
1101 silvio 1.1 for(Int_t i=0; i<48; i++){
1102     fileTriggerCalib >> temp;
1103     fileTriggerCalib >> atte1[i];
1104 orsi 1.3 fileTriggerCalib >> lambda1[i];
1105 silvio 1.1 fileTriggerCalib >> atte2[i];
1106     fileTriggerCalib >> lambda2[i];
1107     fileTriggerCalib >> temp;
1108     }
1109     fileTriggerCalib.close();
1110    
1111     // Read from file the 48*4 values of the attenuation fit function
1112     // NB: lambda<0; x,y defined in gpamela (=0 in the centre of the cavity)
1113     // Qhitpmt_pC = atte1 * exp(x/lambda1) + atte2 * exp(x/lambda2)
1114    
1115     // fine lettura dal file */
1116    
1117     //const Int_t nmax=??; = Nthtof
1118 orsi 1.2 Int_t ip, ipad;
1119     //Int_t ipmt;
1120 silvio 1.1 Int_t pmtleft=0, pmtright=0;
1121     Int_t *pl, *pr;
1122     pl = &pmtleft;
1123     pr = &pmtright;
1124    
1125 orsi 1.2 // TDC variables:
1126     Int_t TDClast=4095; // no signal --> ADC ch=4095
1127     Int_t TDCint[48];
1128     Float_t tdc[48],tdc1[48],tdcpmt[48];
1129     for(Int_t i=0; i<48; i++)
1130     tdcpmt[i] = 1000.;
1131 orsi 1.3 Float_t thresh=10.; // to be defined better... (Wolfgang)
1132 orsi 1.2
1133     // === TDC: simulate timing for each paddle
1134     Float_t dt1 = 285.e-12 ; // single PMT resolution
1135     Float_t tdcres[50],c1_S[50],c2_S[50],c3_S[50];
1136     for(Int_t j=0;j<48;j++) tdcres[j] = 50.E-12; // TDC resolution 50 picosec
1137     for(Int_t j=0;j<48;j++) c1_S[j] = 500.; // cable length in channels
1138     for(Int_t j=0;j<48;j++) c2_S[j] = 0.;
1139     for(Int_t j=0;j<48;j++) c3_S[j] = 1000.;
1140     for(Int_t j=0;j<48;j++) c1_S[j] = c1_S[j]*tdcres[j]; // cable length in sec
1141     for(Int_t j=0;j<48;j++) c2_S[j] = c2_S[j]*tdcres[j];
1142     // ih = 0 + i1; // not used?? (Silvio)
1143    
1144 orsi 1.3 /* ********************************** start loop over hits */
1145 silvio 1.1
1146     for(Int_t nh=0; nh<Nthtof; nh++){
1147    
1148     for(Int_t j=0; j<2; j++) { // already done!! remove???
1149     xpath[j]=0.;
1150     ypath[j]=0.;
1151     FGeo[j]=0.;
1152     }
1153    
1154 orsi 1.2 Float_t s_l_g[6] = {8.0, 8.0, 20.9, 22.0, 9.8, 8.3 }; // length of the lightguide
1155     Float_t t1,t2,veff,veff1,veff0 ;
1156     veff0 = 100.*1.0e8 ; // light velocity in the scintillator in m/sec
1157     veff1 = 100.*1.5e8; // light velocity in the lightguide in m/sec
1158     veff=veff0; // signal velocity in the paddle
1159    
1160     t1 = Timetof[nh] ; // Start
1161     t2 = Timetof[nh] ;
1162    
1163 orsi 1.3 // Donatella: redefinition plane and pad for vectors in C
1164 silvio 1.1 ip = Ipltof[nh]-1;
1165     ipad = Ipaddle[nh]-1;
1166     pmtleft=0;
1167     pmtright=0;
1168    
1169 orsi 1.3 if (ip<6) {
1170     Paddle2Pmt(ip, ipad, &pmtleft, &pmtright);
1171 silvio 1.1
1172 orsi 1.3 // per avere anche la corrispondenza pmt --> half board e canale
1173     // metodo GetPMTIndex(Int_t ipmt, Int_t &hb, Int_t &ch) // non lo usiamo x ora
1174 silvio 1.1
1175 orsi 1.3 // evaluates mean position and path inside the paddle
1176 silvio 1.1
1177 orsi 1.3 Float_t tpos=0.;
1178     Float_t path[2] = {0., 0.};
1179     //--- Strip in Y = S11,S22,S31 ------
1180     if(ip==0 || ip==3 || ip==4)
1181     tpos = (Yintof[nh]+Youttof[nh])/2.;
1182     else
1183     if(ip==1 || ip==2 || ip==5) //--- Strip in X per S12,S21,S32
1184     tpos = (Xintof[nh]+Xouttof[nh])/2.;
1185     else //if (ip!=6)
1186     printf("*** WARNING TOF: this option should never occur! (ip=%2i, nh=%2i)\n",ip,nh);
1187     path[0]= tpos + dimel[ip]/2.;
1188     path[1]= dimel[ip]/2.- tpos;
1189    
1190     // cout <<"Strip N. ="<< ipaddle <<" piano n.= "<< iplane <<" POSIZ = "<< tpos <<"\n";
1191    
1192     if (DEBUG) {
1193     cout <<" plane "<<ip<<" strip # ="<< ipad <<" tpos "<< tpos <<"\n";
1194     cout <<"pmtleft, pmtright "<<pmtleft<<" "<<pmtright<<endl;
1195     }
1196    
1197     // constant geometric factor, for the moment
1198     FGeo[0] =0.5;
1199     FGeo[1] =0.5;
1200     // FGeo[1] = atan(path[1]/dimes[ip])/6.28318; // frazione fotoni verso SX
1201     // FGeo[2] = atan(path[2]/dimes[ip])/6.28318; // e verso DX
1202 silvio 1.1
1203 orsi 1.3 /* rimando la fluttuazione poissoniana sui fotoni prodotti
1204     sto studiando come funziona la funzione:
1205     long int i = sto.Poisson(double x); */
1206     // Npho = Poisson(ERELTOF[nh])*Pho_keV*1e6 Eloss in GeV ?
1207     Npho = Ereltof[nh]*Pho_keV*1.0e6; // Eloss in GeV ?
1208    
1209     Float_t knorm[2]={0., 0.}; // Donatella
1210     Float_t Atten[2]={0., 0.}; // Donatella
1211     for(Int_t j=0; j<2; j++){
1212     QhitPad_pC[j]= Npho*FGeo[j]*effi*pmGain*echarge*1.E12; // corrected WM
1213     /* knorm[j]=QhitPad_pC[j]/(atte1[pmtleft+j]*exp((dimel[ip]/2.*pow(-1,j+1))/lambda1[pmtleft+j]) +
1214     atte2[pmtleft+j]*exp((dimel[ip]/2.*pow(-1,j+1))/lambda2[pmtleft+j]));
1215     Atten[j]=knorm[j]*(atte1[pmtleft+j]*exp(tpos/lambda1[pmtleft+j]) +
1216     atte2[pmtleft+j]*exp(tpos/lambda2[pmtleft+j]));
1217     QhitPmt_pC[j]= QhitPad_pC[j]*Atten[j];
1218     */
1219     // WM
1220     knorm[j]=atte1[pmtleft+j]*exp(lambda1[pmtleft+j]*dimel[ip]/2.*pow(-1,j+1)) +
1221     atte2[pmtleft+j]*exp(lambda2[pmtleft+j]*dimel[ip]/2.*pow(-1,j+1));
1222     Atten[j]=atte1[pmtleft+j]*exp(tpos*lambda1[pmtleft+j]) +
1223     atte2[pmtleft+j]*exp(tpos*lambda2[pmtleft+j]) ;
1224     QhitPmt_pC[j]= QhitPad_pC[j]*Atten[j]/knorm[j];
1225     if (DEBUG) {
1226     cout<<"pmtleft "<<pmtleft<<" j "<<j<<endl;
1227     cout<<" atte1 "<<atte1[pmtleft+j]<<"lambda1 "<<lambda1[pmtleft+j]<<" atte2 "<<atte2[pmtleft+j]<<"lambda2 "<<lambda2[pmtleft+j] <<endl;
1228     cout<<j<<" tpos "<<tpos<<" knorm "<<knorm[j]<<" "<<Atten[j]<<" "<<"QhitPmt_pC "<<QhitPmt_pC[j]<<endl;
1229     }
1230     }
1231    
1232     if (DEBUG)
1233     cout<<"Npho "<<Npho<<" QhitPmt_pC "<<QhitPmt_pC[0]<<" "<<QhitPmt_pC[1]<<endl;
1234 silvio 1.1
1235 orsi 1.3 QevePmt_pC[pmtleft] += QhitPmt_pC[0];
1236     QevePmt_pC[pmtright] += QhitPmt_pC[1];
1237    
1238     // TDC
1239     t2 = t2 + fabs(path[0]/veff) + s_l_g[ip]/veff1 ; // Signal reaches PMT
1240     t1 = t1 + fabs(path[1]/veff) + s_l_g[ip]/veff1;
1241 silvio 1.1
1242 orsi 1.3 TRandom r;
1243     t1 = r.Gaus(t1,dt1); //apply gaussian error dt
1244     t2 = r.Gaus(t2,dt1); //apply gaussian error dt
1245    
1246     t1 = t1 + c1_S[pmtleft] ; // Signal reaches Discriminator ,TDC starts to run
1247     t2 = t2 + c1_S[pmtright] ;
1248    
1249     // check if signal is above threshold
1250     // then check if tdcpmt is already filled by another hit...
1251     // only re-fill if time is smaller
1252    
1253     if (QhitPmt_pC[0] > thresh) {
1254     if (tdcpmt[pmtleft] == 1000.) { // fill for the first time
1255 orsi 1.2 tdcpmt[pmtleft] = t1;
1256 orsi 1.3 tdc[pmtleft] = t1 + c2_S[pmtleft] ; // Signal reaches Coincidence
1257     }
1258     if (tdcpmt[pmtleft] < 1000.) // is already filled!
1259     if (t1 < tdcpmt[pmtleft]) {
1260     tdcpmt[pmtleft] = t1;
1261     t1 = t1 + c2_S[pmtleft] ; // Signal reaches Coincidence
1262     tdc[pmtleft] = t1;
1263     }
1264     }
1265     if (QhitPmt_pC[1] > thresh) {
1266     if (tdcpmt[pmtright] == 1000.) { // fill for the first time
1267     tdcpmt[pmtright] = t2;
1268     tdc[pmtright] = t2 + c2_S[pmtright] ; // Signal reaches Coincidence
1269 orsi 1.2 }
1270     if (tdcpmt[pmtright] < 1000.) // is already filled!
1271     if (t2 < tdcpmt[pmtright]) {
1272     tdcpmt[pmtright] = t2;
1273     t2 = t2 + c2_S[pmtright] ;
1274     tdc[pmtright] = t2;
1275     }
1276 orsi 1.3 }
1277    
1278     if (DEBUG)
1279     cout<<nh<<" "<<Timetof[nh]<<" "<<t1<<" "<<t2<<endl;
1280    
1281     } // ip < 6
1282 orsi 1.2
1283 orsi 1.3 }; // **************************************** end loop over hits
1284    
1285 orsi 1.2 // ====== ADC ======
1286 silvio 1.1 for(Int_t i=0; i<48; i++){
1287     if(QevePmt_pC[i] != 0.){
1288     ADCtof[i]= (Int_t)(ADC_pC*QevePmt_pC[i] + ADCoffset);
1289     if(ADCtof[i]> ADClast) ADCtof[i]=ADClast;
1290     } else
1291     ADCtof[i]= ADClast;
1292 orsi 1.3 }
1293 orsi 1.2
1294    
1295     // ====== build TDC coincidence ======
1296    
1297     Float_t t_coinc = 0;
1298     Int_t ilast = 100;
1299     for (Int_t ii=0; ii<48;ii++)
1300     if (tdc[ii] > t_coinc) {
1301     t_coinc = tdc[ii];
1302     ilast = ii;
1303     }
1304    
1305     // cout<<ilast<<" "<<t_coinc<<endl;
1306     // At t_coinc trigger condition is fulfilled
1307    
1308     for (Int_t ii=0; ii<48;ii++){
1309     // if (tdc[ii] != 0) tdc1[ii] = t_coinc - tdc[ii]; // test 1
1310     if (tdc[ii] != 0) tdc1[ii] = t_coinc - tdcpmt[ii]; // test 2
1311     tdc1[ii] = tdc1[ii]/tdcres[ii]; // divide by TDC resolution
1312     if (tdc[ii] != 0) tdc1[ii] = tdc1[ii] + c3_S[ii]; // add cable length c3
1313    
1314     } // missing parenthesis inserted! (Silvio)
1315    
1316     for(Int_t i=0; i<48; i++){
1317     if(tdc1[i] != 0.){
1318     TDCint[i]=(Int_t)tdc1[i];
1319 orsi 1.3 if (DEBUG)
1320     cout<<i<<" "<<TDCint[i]<<endl;
1321 orsi 1.2 //ADC[i]= ADC_pC * QevePmt_pC[i] + ADCoffset;
1322     //if(ADC[i]> ADClast) ADC[i]=ADClast;
1323     } else
1324     TDCint[i]= TDClast;
1325     }
1326 orsi 1.3
1327     if (DEBUG)
1328     cout<<"-----------"<<endl;
1329    
1330 orsi 1.2 // ====== write fDataTof =======
1331 silvio 1.1 UChar_t tofBin;
1332     for (Int_t j=0; j < 12; j++){
1333     Int_t j12=j*12;
1334     fDataTof[j12+0]=0x00; // TDC_ID
1335     fDataTof[j12+1]=0x00; // EV_COUNT
1336     fDataTof[j12+2]=0x00; // TDC_MASK (1)
1337     fDataTof[j12+3]=0x00; // TDC_MASK (2)
1338     for (Int_t k=0; k < 4; k++){
1339     Int_t jk12=j12+k;
1340     tofBin=(UChar_t)(ADCtof[k+4*j]/256); // ADC# (msb) (#=1+k+4*j)
1341     fDataTof[jk12+4] = Bin2GrayTof(tofBin,fDataTof[jk12+4]);
1342     tofBin=(UChar_t)(ADCtof[k+4*j]%256); // ADC# (lsb)
1343     fDataTof[jk12+5] = Bin2GrayTof(tofBin,fDataTof[jk12+5]);
1344 orsi 1.2 tofBin=(UChar_t)(TDCint[k+4*j]/256); // TDC# (msb)
1345     fDataTof[jk12+6]=Bin2GrayTof(tofBin,fDataTof[jk12+6]);
1346     tofBin=(UChar_t)(TDCint[k+4*j]%256); // TDC# (lsb)
1347     fDataTof[jk12+7]=Bin2GrayTof(tofBin,fDataTof[jk12+7]);
1348 silvio 1.1 };
1349     fDataTof[j12+20]=0x00; // TEMP1
1350     fDataTof[j12+21]=0x00; // TEMP2
1351     fDataTof[j12+22]= EvaluateCrcTof(pTof); // CRC
1352     pTof+=23;
1353     };
1354     return(0);
1355     };
1356    
1357     UChar_t Digitizer::Bin2GrayTof(UChar_t binaTOF,UChar_t grayTOF){
1358     union graytof_data {
1359     UChar_t word;
1360     struct bit_field {
1361     unsigned b0:1;
1362     unsigned b1:1;
1363     unsigned b2:1;
1364     unsigned b3:1;
1365     unsigned b4:1;
1366     unsigned b5:1;
1367     unsigned b6:1;
1368     unsigned b7:1;
1369     } bit;
1370     } bi,gr;
1371     //
1372     bi.word = binaTOF;
1373     gr.word = grayTOF;
1374     //
1375     gr.bit.b0 = bi.bit.b1 ^ bi.bit.b0;
1376     gr.bit.b1 = bi.bit.b2 ^ bi.bit.b1;
1377     gr.bit.b2 = bi.bit.b3 ^ bi.bit.b2;
1378     gr.bit.b3 = bi.bit.b3;
1379     //
1380     /* bin to gray conversion 4 bit per time*/
1381     //
1382     gr.bit.b4 = bi.bit.b5 ^ bi.bit.b4;
1383     gr.bit.b5 = bi.bit.b6 ^ bi.bit.b5;
1384     gr.bit.b6 = bi.bit.b7 ^ bi.bit.b6;
1385     gr.bit.b7 = bi.bit.b7;
1386     //
1387     return(gr.word);
1388     }
1389    
1390     UChar_t Digitizer::EvaluateCrcTof(UChar_t *pTof) {
1391     // UChar_t crcTof=0x00;
1392     // for (Int_t jp=0; jp < 23; jp++){
1393     // crcTof = crc8(...)
1394     // }
1395     return(0x00);
1396     };
1397    
1398     //void Digitizer::Paddle2Pmt(Int_t plane, Int_t paddle, Int_t* &pmtleft, Int_t* &pmtright){
1399     void Digitizer::Paddle2Pmt(Int_t plane, Int_t paddle, Int_t *pl, Int_t *pr){
1400     //* @param plane (0 - 5)
1401     //* @param paddle (plane=0, paddle = 0,...5)
1402     //* @param padid (0 - 23)
1403     //
1404     Int_t padid=-1;
1405     Int_t pads[6]={8,6,2,2,3,3};
1406     //
1407     Int_t somma=0;
1408     Int_t np=plane;
1409     for(Int_t j=0; j<np; j++)
1410     somma+=pads[j];
1411     padid=paddle+somma;
1412     *pl = padid*2;
1413 orsi 1.3 // *pr = *pr + 1;
1414     *pr = *pl + 1; // WM
1415 silvio 1.1 };
1416    
1417     void Digitizer::DigitizeAC() {
1418     // created: J. Conrad, KTH
1419     // modified: S. Orsi, INFN Roma2
1420 orsi 1.3 // fDataAC[0-63]: main AC board
1421     // fDataAC[64-127]: extra AC board
1422 silvio 1.1
1423     fDataAC[0] = 0xACAC;
1424     fDataAC[64]= 0xACAC;
1425 orsi 1.3 fDataAC[1] = 0xAC11;
1426     fDataAC[65] = 0xAC22;
1427 silvio 1.1
1428 orsi 1.3 // the third word is a status word (dummy: "no errors are present in the AC boards")
1429 silvio 1.1 fDataAC[2] = 0xFFFF; //FFEF?
1430     fDataAC[66] = 0xFFFF;
1431    
1432     const UInt_t nReg = 6;
1433    
1434 orsi 1.3 // FPGA Registers (dummy)
1435 silvio 1.1 for (UInt_t i=0; i<=nReg; i++){
1436     fDataAC[i+4] = 0xFFFF;
1437     fDataAC[i+68] = 0xFFFF;
1438     }
1439    
1440     // the last word is a CRC
1441     // Dummy for the time being, but it might need to be calculated in the end
1442     fDataAC[63] = 0xABCD;
1443     fDataAC[127] = 0xABCD;
1444    
1445 orsi 1.3 // shift registers (moved to the end of the routine)
1446    
1447     Int_t evntLSB=Ievnt%65536;
1448     Int_t evntMSB=(Int_t)(Ievnt/65536);
1449 silvio 1.1
1450     // singles counters are dummy
1451 orsi 1.3 for (UInt_t i=0; i<=15; i++){ //SO Oct '07: // for (UInt_t i=0; i<=16; i++){
1452     // fDataAC[i+26] = 0x0000;
1453     // fDataAC[i+90] = 0x0000;
1454     fDataAC[i+26] = evntLSB;
1455     fDataAC[i+90] = evntLSB;
1456     };
1457 silvio 1.1
1458 orsi 1.3 // coincidences are dummy (increment by 1 at each event)
1459     // for (UInt_t i=0; i<=7; i++){
1460     // fDataAC[i+42] = 0x0000;
1461     // fDataAC[i+106] = 0x0000;
1462     // }
1463 silvio 1.1 for (UInt_t i=0; i<=7; i++){
1464 orsi 1.3 fDataAC[i+42] = evntLSB;
1465     fDataAC[i+106] = evntLSB;
1466     };
1467 silvio 1.1
1468     // increments for every trigger might be needed at some point.
1469     // dummy for now
1470     fDataAC[50] = 0x0000;
1471     fDataAC[114] = 0x0000;
1472    
1473 orsi 1.3 // dummy FPGA clock (increment by 1 at each event)
1474     /*
1475     fDataAC[51] = 0x006C;
1476     fDataAC[52] = 0x6C6C;
1477     fDataAC[115] = 0x006C;
1478     fDataAC[116] = 0x6C6C;
1479     */
1480     if (Ievnt<=0xFFFF) {
1481     fDataAC[51] = 0x0000;
1482     fDataAC[52] = Ievnt;
1483     fDataAC[115] = 0x0000;
1484     fDataAC[116] = Ievnt;
1485     } else {
1486     fDataAC[51] = evntMSB;
1487     fDataAC[52] = evntLSB;
1488     fDataAC[115] = fDataAC[51];
1489     fDataAC[116] = fDataAC[52];
1490     }
1491 silvio 1.1
1492     // dummy temperatures
1493     fDataAC[53] = 0x0000;
1494     fDataAC[54] = 0x0000;
1495     fDataAC[117] = 0x0000;
1496     fDataAC[118] = 0x0000;
1497    
1498    
1499     // dummy DAC thresholds
1500     for (UInt_t i=0; i<=7; i++){
1501     fDataAC[i+55] = 0x1A13;
1502     fDataAC[i+119] = 0x1A13;
1503     }
1504    
1505 orsi 1.3 // We activate all branches. Once the digitization algorithm is determined
1506     // only the branches that involve needed information will be activated
1507 silvio 1.1
1508 orsi 1.3 fhBookTree->SetBranchAddress("Ievnt",&Ievnt);
1509 silvio 1.1 fhBookTree->SetBranchStatus("Nthcat",1);
1510     fhBookTree->SetBranchStatus("Iparcat",1);
1511     fhBookTree->SetBranchStatus("Icat",1);
1512     fhBookTree->SetBranchStatus("Xincat",1);
1513     fhBookTree->SetBranchStatus("Yincat",1);
1514     fhBookTree->SetBranchStatus("Zincat",1);
1515     fhBookTree->SetBranchStatus("Xoutcat",1);
1516     fhBookTree->SetBranchStatus("Youtcat",1);
1517     fhBookTree->SetBranchStatus("Zoutcat",1);
1518     fhBookTree->SetBranchStatus("Erelcat",1);
1519     fhBookTree->SetBranchStatus("Timecat",1);
1520     fhBookTree->SetBranchStatus("Pathcat",1);
1521     fhBookTree->SetBranchStatus("P0cat",1);
1522     fhBookTree->SetBranchStatus("Nthcas",1);
1523     fhBookTree->SetBranchStatus("Iparcas",1);
1524     fhBookTree->SetBranchStatus("Icas",1);
1525     fhBookTree->SetBranchStatus("Xincas",1);
1526     fhBookTree->SetBranchStatus("Yincas",1);
1527     fhBookTree->SetBranchStatus("Zincas",1);
1528     fhBookTree->SetBranchStatus("Xoutcas",1);
1529     fhBookTree->SetBranchStatus("Youtcas",1);
1530     fhBookTree->SetBranchStatus("Zoutcas",1);
1531     fhBookTree->SetBranchStatus("Erelcas",1);
1532     fhBookTree->SetBranchStatus("Timecas",1);
1533     fhBookTree->SetBranchStatus("Pathcas",1);
1534     fhBookTree->SetBranchStatus("P0cas",1);
1535     fhBookTree->SetBranchStatus("Nthcard",1);
1536     fhBookTree->SetBranchStatus("Iparcard",1);
1537     fhBookTree->SetBranchStatus("Icard",1);
1538     fhBookTree->SetBranchStatus("Xincard",1);
1539     fhBookTree->SetBranchStatus("Yincard",1);
1540     fhBookTree->SetBranchStatus("Zincard",1);
1541     fhBookTree->SetBranchStatus("Xoutcard",1);
1542     fhBookTree->SetBranchStatus("Youtcard",1);
1543     fhBookTree->SetBranchStatus("Zoutcard",1);
1544     fhBookTree->SetBranchStatus("Erelcard",1);
1545     fhBookTree->SetBranchStatus("Timecard",1);
1546     fhBookTree->SetBranchStatus("Pathcard",1);
1547     fhBookTree->SetBranchStatus("P0card",1);
1548    
1549     // In this simpliefied approach we will assume that once
1550     // a particle releases > 0.5 mip in one of the 12 AC detectors it
1551     // will fire. We will furthermore assume that both cards read out
1552     // identical data.
1553    
1554 orsi 1.3 // If you develop your digitization algorithm, you should start by
1555 silvio 1.1 // identifying the information present in level2 (post-darth-vader)
1556     // data.
1557    
1558     Float_t SumEcat[5];
1559     Float_t SumEcas[5];
1560     Float_t SumEcard[5];
1561     for (Int_t k= 0;k<5;k++){
1562     SumEcat[k]=0.;
1563     SumEcas[k]=0.;
1564     SumEcard[k]=0.;
1565     };
1566    
1567     if (Nthcat>50 || Nthcas>50 || Nthcard>50)
1568 orsi 1.3 printf("*** ERROR AC! NthAC out of range!\n\n");
1569    
1570     // energy dependence on position (see file AcFitOutputDistancePmt.C by S.Orsi)
1571     // based on J.Lundquist's calculations (PhD thesis, page 94)
1572     // function: [0]+[1]*atan([2]/(x+1)), where the 3 parameters are:
1573     // 8.25470e-01 +- 1.79489e-02
1574     // 6.41609e-01 +- 2.65846e-02
1575     // 9.81177e+00 +- 1.21284e+00
1576     // hp: 1 minimum ionising particle at 35cm from the PMT releases 1mip
1577     //
1578     // NB: the PMT positions are needed!
1579 silvio 1.1
1580     // look in CAT
1581     // for (UInt_t k= 0;k<50;k++){
1582     for (Int_t k= 0;k<Nthcat;k++){
1583     if (Erelcat[k] > 0)
1584     SumEcat[Icat[k]] += Erelcat[k];
1585     };
1586    
1587     // look in CAS
1588     for (Int_t k= 0;k<Nthcas;k++){
1589     if (Erelcas[k] >0)
1590     SumEcas[Icas[k]] += Erelcas[k];
1591     };
1592    
1593     // look in CARD
1594     for (Int_t k= 0;k<Nthcard;k++){
1595     if (Erelcard[k] >0)
1596     SumEcard[Icard[k]] += Erelcard[k];
1597     };
1598    
1599     // channel mapping Hit Map
1600     // 1 CARD4 0 LSB
1601     // 2 CAT2 0
1602     // 3 CAS1 0
1603     // 4 NC 0
1604     // 5 CARD2 0
1605     // 6 CAT4 1
1606     // 7 CAS4 0
1607     // 8 NC 0
1608     // 9 CARD3 0
1609     // 10 CAT3 0
1610     // 11 CAS3 0
1611     // 12 NC 0
1612     // 13 CARD1 0
1613     // 14 CAT1 0
1614     // 15 CAS2 0
1615     // 16 NC 0 MSB
1616    
1617     // In the first version only the hit-map is filled, not the SR.
1618    
1619     // Threshold: 0.8 MeV.
1620    
1621     Float_t thr = 8e-4;
1622    
1623     fDataAC[3] = 0x0000;
1624    
1625     if (SumEcas[0] > thr) fDataAC[3] = 0x0004;
1626     if (SumEcas[1] > thr) fDataAC[3] += 0x4000;
1627     if (SumEcas[2] > thr) fDataAC[3] += 0x0400;
1628     if (SumEcas[3] > thr) fDataAC[3] += 0x0040;
1629    
1630     if (SumEcat[0] > thr) fDataAC[3] += 0x2000;
1631     if (SumEcat[1] > thr) fDataAC[3] += 0x0002;
1632     if (SumEcat[2] > thr) fDataAC[3] += 0x0200;
1633     if (SumEcat[3] > thr) fDataAC[3] += 0x0020;
1634    
1635     if (SumEcard[0] > thr) fDataAC[3] += 0x1000;
1636     if (SumEcard[1] > thr) fDataAC[3] += 0x0010;
1637     if (SumEcard[2] > thr) fDataAC[3] += 0x0100;
1638     if (SumEcard[3] > thr) fDataAC[3] += 0x0001;
1639    
1640     fDataAC[67] = fDataAC[3];
1641    
1642 orsi 1.3 // shift registers
1643     // the central bin is equal to the hitmap, all other bins in the shift register are 0
1644     for (UInt_t i=0; i<=15; i++){
1645     fDataAC[i+11] = 0x0000;
1646     fDataAC[i+75] = 0x0000;
1647     }
1648     fDataAC[18] = fDataAC[3];
1649     fDataAC[82] = fDataAC[3];
1650    
1651 silvio 1.1 // for (Int_t i=0; i<fACbuffer; i++){
1652     // printf("%0x ",fDataAC[i]);
1653     // if ((i+1)%8 ==0) cout << endl;
1654     // }
1655     };
1656    
1657    
1658 orsi 1.2 void Digitizer::DigitizeS4(){
1659 orsi 1.3 Int_t DEBUG=0;
1660 orsi 1.2 // creato: S. Borisov, INFN Roma2 e MEPHI, Sett 2007
1661     TString ciao,modo="ns";
1662     Int_t i,j,t,NdF,pmt,NdFT,S4,S4v=0,S4p=32;
1663 orsi 1.3 Float_t E0,E1=1e-6,Ert,X,Y,Z,x,y,z,V[3],Xs[2],Ys[2],Zs[2],Yp[6],q,w,p=0.1,l,l0=500;
1664 orsi 1.2 Xs[0]=-24.1;
1665     Xs[1]=24.1;
1666     Ys[0]=-24.1;
1667     Ys[1]=24.1;
1668     Zs[0]=-0.5;
1669     Zs[1]=0.5;
1670     Yp[0]=-20.;
1671     Yp[2]=-1.;
1672     Yp[4]=17.;
1673     for(i=0;i<3;i++)
1674     Yp[2*i+1]=Yp[2*i]+3;
1675     srand(time(NULL));
1676     // --- activate branches:
1677     fhBookTree->SetBranchStatus("Nthtof",1);
1678     fhBookTree->SetBranchStatus("Ipltof",1);
1679     fhBookTree->SetBranchStatus("Ipaddle",1);
1680 silvio 1.1
1681 orsi 1.2 fhBookTree->SetBranchStatus("Xintof",1);
1682     fhBookTree->SetBranchStatus("Yintof",1);
1683     fhBookTree->SetBranchStatus("Xouttof",1);
1684     fhBookTree->SetBranchStatus("Youttof",1);
1685    
1686     fhBookTree->SetBranchStatus("Ereltof",1);
1687     fhBookTree->SetBranchStatus("Timetof",1);
1688     NdFT=0;
1689     Ert=0;
1690     for(i=0;i<Nthtof;i++){
1691     if(Ipltof[i]!=6) continue;
1692     Ert+=Ereltof[i];
1693 orsi 1.3
1694 orsi 1.2 if(modo=="ns") continue;
1695     NdF=Int_t(Ereltof[i]/E1);
1696     NdFT=0;
1697     X=Xintof[i];
1698     Y=Yintof[i];
1699 orsi 1.3 Z=(Float_t)(random())/(Float_t)(0x7fffffff)-0.5;
1700 orsi 1.2 //cout<<"XYZ "<<X<<" "<<Y<<" "<<Z<<endl;
1701     for(j=0;j<NdF;j++){
1702     q=(Float_t)random()/(Float_t)0x7fffffff;
1703     w=(Float_t)random()/(Float_t)0x7fffffff;
1704     // cout<<"qw "<<q<<" "<<w<<endl;
1705     V[0]=p*cos(6.28318*q);
1706     V[1]=p*sin(6.28318*q);
1707     V[2]=p*(2.*w-1.);
1708     pmt=0;
1709     x=X;
1710     y=Y;
1711     z=Z;
1712     while(pmt==0 && (x>Xs[0] && x<Xs[1])&&(y>Ys[0] && y<Ys[1])&&(z>Zs[0] && z<Zs[1])){
1713     l=0;
1714     while(pmt==0 && (x>Xs[0] && x<Xs[1])&&(y>Ys[0] && y<Ys[1])&&(z>Zs[0] && z<Zs[1])){
1715     x+=V[0];
1716     y+=V[1];
1717     z+=V[2];
1718     l+=p;
1719     //cout<<x<<" "<<y<<" "<<z<<" "<<l<<endl;
1720     //cin>>ciao;
1721     }
1722     if((x<Xs[0]+p || x>Xs[1]-p)&&(y>Ys[0]+p && y<Ys[1]-p)&&(z>Zs[0]+p && z<Zs[1]-p)){
1723     for(t=0;t<3;t++){
1724     if(y>=Yp[2*t] && y<Yp[2*t+1]){
1725     if(pmt==0)NdFT++;
1726     pmt=1;
1727     //cout<<NdFT<<endl;
1728     break;
1729     }
1730     }
1731     if(pmt==1)break;
1732     V[0]=-V[0];
1733     }
1734     q=(Float_t)random()/(Float_t)0x7fffffff;
1735     w=1-exp(-l/l0);
1736     if(q<w)break;
1737     q=(Float_t)random()/(Float_t)0x7fffffff;
1738     w=0.5;
1739     if(q<w)break;
1740     if((x>Xs[0]+p && x<Xs[1]-p)&&(y<Ys[0]+p || y>Ys[1]-p)&&(z>Zs[0]+p && z<Zs[1]-p))V[1]=-V[1];
1741     if((x>Xs[0]+p && x<Xs[1]-p)&&(y>Ys[0]+p && y<Ys[1]-p)&&(z<Zs[0]+p || z>Zs[1]-p))V[2]=-V[2];
1742     x+=V[0];
1743     y+=V[1];
1744     z+=V[2];
1745     l=0;
1746     //cout<<x<<" "<<y<<" "<<z<<" "<<l<<endl;
1747     //cin>>ciao;
1748     }
1749     }
1750     }
1751     Ert=Ert/0.002;
1752 orsi 1.3 q=(Float_t)(random())/(Float_t)0x7fffffff;
1753 orsi 1.2 w=0.7;
1754 orsi 1.3 //E0=(Float_t)(4064./7.);
1755 orsi 1.2 E0=4064./7.;
1756 orsi 1.3 if(Ert<1) S4=0;
1757     else S4=(Int_t)(4064.*(1.-exp(-(Ert-1.)/E0)));
1758 orsi 1.2 i=S4/4;
1759 orsi 1.3 if(S4%4==0)
1760 orsi 1.2 S4v=S4+S4p;
1761 orsi 1.3 else if(S4%4==1){
1762 orsi 1.2 if(q<w) S4v=S4-1+S4p;
1763     else S4v=S4+1+S4p;
1764 orsi 1.3 } else if(S4%4==2) S4v=S4+S4p;
1765 orsi 1.2 else if(S4%4==3){
1766     if(q<w) S4v=S4+1+S4p;
1767     else S4v=S4-1+S4p;
1768     }
1769 orsi 1.3 if (DEBUG)
1770     cout<<"Ert_S4 = " << Ert << " --- S4v = " << S4v << endl;
1771 orsi 1.2 fDataS4[0]=S4v;//0xf028;
1772     fDataS4[1]=0xd800;
1773     fDataS4[2]=0x0300;
1774 orsi 1.3 //cout<<" PMT "<<NdFT<<" "<<NdF<<endl;
1775 orsi 1.2 //cin>>ciao;
1776     }
1777    
1778    
1779    
1780     void Digitizer::DigitizeND(){
1781     // creato: S. Borisov, INFN Roma2 e MEPHI, Sett 2007
1782     Int_t i=0;
1783     UShort_t NdN=0;
1784 silvio 1.1 fhBookTree->SetBranchStatus("Nthnd",1);
1785     fhBookTree->SetBranchStatus("Itubend",1);
1786     fhBookTree->SetBranchStatus("Iparnd",1);
1787     fhBookTree->SetBranchStatus("Xinnd",1);
1788     fhBookTree->SetBranchStatus("Yinnd",1);
1789     fhBookTree->SetBranchStatus("Zinnd",1);
1790     fhBookTree->SetBranchStatus("Xoutnd",1);
1791     fhBookTree->SetBranchStatus("Youtnd",1);
1792     fhBookTree->SetBranchStatus("Zoutnd",1);
1793     fhBookTree->SetBranchStatus("Erelnd",1);
1794     fhBookTree->SetBranchStatus("Timend",1);
1795     fhBookTree->SetBranchStatus("Pathnd",1);
1796     fhBookTree->SetBranchStatus("P0nd",1);
1797 orsi 1.2 //cout<<"n="<<Nthnd<<" "<<NdN<<"\n";
1798     for(i=0;i<Nthnd;i++){
1799     if(Iparnd[i]==13){
1800     NdN++;
1801     }
1802     }
1803 orsi 1.3 //NdN=100; //only for debug
1804    
1805 orsi 1.2 for(i=0;i<3;i++){
1806     fDataND[2*i]=0x0000;
1807     fDataND[2*i+1]=0x010F;
1808     }
1809     fDataND[0]=0xFF00 & (256*NdN);
1810 silvio 1.1 }
1811    
1812    
1813     void Digitizer::DigitizeDummy() {
1814    
1815     fhBookTree->SetBranchStatus("Enestrip",1);
1816    
1817     // dumy header
1818     fDataDummy[0] = 0xCAAA;
1819    
1820     for (Int_t i=1; i<fDummybuffer; i++){
1821     fDataDummy[i] = 0xFFFF;
1822     // printf("%0x ",fDataDummy[i]);
1823     //if ((i+1)%8 ==0) cout << endl;
1824     }
1825     };
1826    
1827    
1828     void Digitizer::WriteData(){
1829    
1830     // Routine that writes the data to a binary file
1831     // PSCU data are already swapped
1832     fOutputfile.write(reinterpret_cast<char*>(fDataPSCU),sizeof(UShort_t)*fPSCUbuffer);
1833     // TRG
1834     fOutputfile.write(reinterpret_cast<char*>(fDataTrigger),sizeof(UChar_t)*153);
1835     // TOF
1836     fOutputfile.write(reinterpret_cast<char*>(fDataTof),sizeof(UChar_t)*276);
1837     // AC
1838     UShort_t temp[1000000];
1839     memset(temp,0,sizeof(UShort_t)*1000000);
1840     swab(fDataAC,temp,sizeof(UShort_t)*fACbuffer); // WE MUST SWAP THE BYTES!!!
1841     fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fACbuffer);
1842     // CALO
1843     memset(temp,0,sizeof(UShort_t)*1000000);
1844     swab(fDataCALO,temp,sizeof(UShort_t)*fCALOlength); // WE MUST SWAP THE BYTES!!!
1845     fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fCALOlength);
1846     // TRK
1847     memset(temp,0,sizeof(UShort_t)*1000000);
1848     swab(fDataTrack,temp,sizeof(UShort_t)*fTracklength); // WE MUST SWAP THE BYTES!!!
1849     fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fTracklength);
1850     fTracklength=0;
1851 orsi 1.2 // padding to 64 bytes
1852 silvio 1.1 //
1853     if ( fPadding ){
1854     fOutputfile.write(reinterpret_cast<char*>(fDataPadding),sizeof(UChar_t)*fPadding);
1855     };
1856 orsi 1.2 // S4
1857     memset(temp,0,sizeof(UShort_t)*1000000);
1858     swab(fDataS4,temp,sizeof(UShort_t)*fS4buffer); // WE MUST SWAP THE BYTES!!!
1859     fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fS4buffer);
1860     // ND
1861     memset(temp,0,sizeof(UShort_t)*1000000);
1862     swab(fDataND,temp,sizeof(UShort_t)*fNDbuffer); // WE MUST SWAP THE BYTES!!!
1863     fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fNDbuffer);
1864 silvio 1.1 };
1865    
1866    
1867     void Digitizer::ReadData(){
1868    
1869     UShort_t InData[64];
1870    
1871     // for debuggigng purposes only, write your own routine if you like (many
1872     // hardwired things.
1873    
1874     ifstream InputFile;
1875    
1876     // if (!InputFile) {
1877    
1878     // std::cout << "ERROR" << endl;
1879     // // An error occurred!
1880     // // myFile.gcount() returns the number of bytes read.
1881     // // calling myFile.clear() will reset the stream state
1882     // // so it is usable again.
1883     // };
1884    
1885    
1886    
1887     //InputFile.seekg(0);
1888    
1889     InputFile.open(fFilename, ios::in | ios::binary);
1890     // fOutputfile.seekg(0);
1891     if (!InputFile.is_open()) std::cout << "ERROR" << endl;
1892    
1893     InputFile.seekg(0);
1894    
1895     for (Int_t k=0; k<=1000; k++){
1896     InputFile.read(reinterpret_cast<char*>(InData),384*sizeof(UShort_t));
1897    
1898     std::cout << "Read back: " << endl << endl;
1899    
1900     for (Int_t i=0; i<=384; i++){
1901     printf("%4x ", InData[i]);
1902     if ((i+1)%8 ==0) cout << endl;
1903     }
1904    
1905     }
1906     cout << endl;
1907     InputFile.close();
1908    
1909     };
1910    
1911    
1912    
1913     void Digitizer::DigitizeTrack() {
1914     //std:: cout << "Entering DigitizeTrack " << endl;
1915     Float_t AdcTrack[fNviews][fNstrips_view]; // Vector of strips to be compressed
1916    
1917     Int_t Iview;
1918     Int_t Nstrip;
1919    
1920     for (Int_t j=0; j<fNviews;j++) {
1921    
1922     for (Int_t i=0; i<fNladder;i++) {
1923    
1924     Float_t commonN1=gRandom->Gaus(0.,fSigmaCommon);
1925     Float_t commonN2=gRandom->Gaus(0.,fSigmaCommon);
1926     for (Int_t k=0; k<fNstrips_ladder;k++) {
1927     Nstrip=i*fNstrips_ladder+k;
1928     AdcTrack[j][Nstrip]=gRandom->Gaus(fPedeTrack[j][Nstrip],fSigmaTrack[j][Nstrip]);
1929     if(k<4*128) {AdcTrack[j][Nstrip] += commonN1;} // full correlation of 4 VA1 Com. Noise
1930     else {AdcTrack[j][Nstrip] += commonN2;} // full correlation of 4 VA1 Com. Noise
1931    
1932     };
1933    
1934    
1935     };
1936    
1937    
1938     };
1939    
1940    
1941     fhBookTree->SetBranchStatus("Nstrpx",1);
1942     fhBookTree->SetBranchStatus("Npstripx",1);
1943     fhBookTree->SetBranchStatus("Ntstripx",1);
1944     fhBookTree->SetBranchStatus("Istripx",1);
1945     fhBookTree->SetBranchStatus("Qstripx",1);
1946     fhBookTree->SetBranchStatus("Xstripx",1);
1947     fhBookTree->SetBranchStatus("Nstrpy",1);
1948     fhBookTree->SetBranchStatus("Npstripy",1);
1949     fhBookTree->SetBranchStatus("Ntstripy",1);
1950     fhBookTree->SetBranchStatus("Istripy",1);
1951     fhBookTree->SetBranchStatus("Qstripy",1);
1952     fhBookTree->SetBranchStatus("Ystripy",1);
1953    
1954    
1955    
1956     Float_t ADCfull;
1957 orsi 1.2 Int_t iladd=0;
1958 silvio 1.1 for (Int_t ix=0; ix<Nstrpx;ix++) {
1959     Iview=Npstripx[ix]*2-1;
1960     Nstrip=(Int_t)Istripx[ix]-1;
1961 orsi 1.2 if(Nstrip<fNstrips_ladder) iladd=0;
1962     if((Nstrip>=fNstrips_ladder)&&(Nstrip<2*fNstrips_ladder)) iladd=1;
1963     if((Nstrip>=2*fNstrips_ladder)&&(Nstrip<3*fNstrips_ladder)) iladd=2;
1964     ADCfull=AdcTrack[Iview][Nstrip] += Qstripx[ix]*fMipCor[iladd][Iview];
1965 silvio 1.1 AdcTrack[Iview][Nstrip] *= SaturationTrack(ADCfull);
1966    
1967     };
1968    
1969    
1970     for (Int_t iy=0; iy<Nstrpy;iy++) {
1971     Iview=Npstripy[iy]*2-2;
1972     Nstrip=(Int_t)Istripy[iy]-1;
1973 orsi 1.2 if(Nstrip<fNstrips_ladder) iladd=0;
1974     if((Nstrip>=fNstrips_ladder)&&(Nstrip<2*fNstrips_ladder)) iladd=1;
1975     if((Nstrip>=2*fNstrips_ladder)&&(Nstrip<3*fNstrips_ladder)) iladd=2;
1976     ADCfull=AdcTrack[Iview][Nstrip] -= Qstripy[iy]*fMipCor[iladd][Iview];
1977 silvio 1.1 AdcTrack[Iview][Nstrip] *= SaturationTrack(ADCfull);
1978    
1979     };
1980    
1981     CompressTrackData(AdcTrack); // Compress and Digitize data of one Ladder in turn for all ladders
1982    
1983     };
1984    
1985    
1986    
1987     void Digitizer::DigitizeTrackCalib(Int_t ii) {
1988    
1989     std:: cout << "Entering DigitizeTrackCalib " << ii << endl;
1990     if( (ii!=1)&&(ii!=2) ) {
1991     std:: cout << "error wrong DigitizeTrackCalib argument" << endl;
1992     return;
1993     };
1994    
1995     memset(fDataTrack,0,sizeof(UShort_t)*fTRACKbuffer);
1996     fTracklength=0;
1997    
1998     UShort_t Dato;
1999    
2000     Float_t dato1;
2001     Float_t dato2;
2002     Float_t dato3;
2003     Float_t dato4;
2004    
2005     UShort_t DatoDec;
2006     UShort_t DatoDec1;
2007     UShort_t DatoDec2;
2008     UShort_t DatoDec3;
2009     UShort_t DatoDec4;
2010    
2011     UShort_t EVENT_CAL;
2012     UShort_t PED_L1;
2013     UShort_t ReLength;
2014     UShort_t OveCheckCode;
2015     //UShort_t PED_L2;
2016     //UShort_t PED_L3HI;
2017     //UShort_t PED_L3LO;
2018     //UShort_t SIG_L1HI;
2019     //UShort_t SIG_L1LO;
2020     //UShort_t SIG_L2HI;
2021     //UShort_t SIG_L2LO;
2022     //UShort_t SIG_L3;
2023     //UShort_t BAD_L1;
2024     //UShort_t BAD_L2LO;
2025     //UShort_t BAD_L3HI;
2026     //UShort_t BAD_L3LO;
2027     //UShort_t FLAG;
2028    
2029    
2030     Int_t DSPpos;
2031     for (Int_t j=ii-1; j<fNviews;j+=2) {
2032     UShort_t CkSum=0;
2033     // here skip the dsp header and his trailer , to be written later
2034     DSPpos=fTracklength;
2035     fTracklength=fTracklength+13+3;
2036    
2037    
2038     for (Int_t i=0; i<fNladder;i++) {
2039     for (Int_t k=0; k<fNstrips_ladder;k++) {
2040     // write in buffer the current LADDER
2041     Dato=(UShort_t)fPedeTrack[j][i*fNstrips_ladder+k];
2042     dato1=fPedeTrack[j][i*fNstrips_ladder+k]-Dato;
2043    
2044     DatoDec1=(UShort_t)(dato1*2);
2045     dato2=dato1*2-DatoDec1;
2046    
2047     DatoDec2=(UShort_t)(dato2*2);
2048     dato3=dato2*2-DatoDec2;
2049    
2050     DatoDec3=(UShort_t)(dato3*2);
2051     dato4=dato3*2-DatoDec3;
2052    
2053     DatoDec4=(UShort_t)(dato4*2);
2054    
2055     DatoDec=DatoDec1*0x0008+DatoDec2*0x0004+DatoDec3*0x0002+DatoDec4*0x0001;
2056     fDataTrack[fTracklength]=( (Dato << 4) | (DatoDec & 0x000F) );
2057     CkSum=CkSum^fDataTrack[fTracklength];
2058     fTracklength++;
2059     };
2060    
2061     for (Int_t k=0; k<fNstrips_ladder;k++) {
2062     // write in buffer the current LADDER
2063     Dato=(UShort_t)fSigmaTrack[j][i*fNstrips_ladder+k];
2064     dato1=fSigmaTrack[j][i*fNstrips_ladder+k]-Dato;
2065    
2066     DatoDec1=(UShort_t)(dato1*2);
2067     dato2=dato1*2-DatoDec1;
2068    
2069     DatoDec2=(UShort_t)(dato2*2);
2070     dato3=dato2*2-DatoDec2;
2071    
2072     DatoDec3=(UShort_t)(dato3*2);
2073     dato4=dato3*2-DatoDec3;
2074    
2075     DatoDec4=(UShort_t)(dato4*2);
2076    
2077     DatoDec=DatoDec1*0x0008+DatoDec2*0x0004+DatoDec3*0x0002+DatoDec4*0x0001;
2078    
2079     fDataTrack[fTracklength]=( (Dato << 4) | (DatoDec & 0x000F) );
2080     CkSum=CkSum^fDataTrack[fTracklength];
2081     fTracklength++;
2082     };
2083    
2084     for (Int_t k=0; k<64;k++) {
2085     fDataTrack[fTracklength]=0x0000;
2086     CkSum=CkSum^fDataTrack[fTracklength];
2087     fTracklength++;
2088    
2089     };
2090     // end ladder
2091    
2092     // write in buffer the end ladder word
2093     if(i==0) fDataTrack[fTracklength]=0x1807;
2094     if(i==1) fDataTrack[fTracklength]=0x1808;
2095     if(i==2) fDataTrack[fTracklength]=0x1809;
2096     CkSum=CkSum^fDataTrack[fTracklength];
2097     fTracklength++;
2098    
2099     // write in buffer the TRAILER
2100     ReLength=(UShort_t)((fNstrips_ladder*2+64+1)*2+3);
2101     OveCheckCode=0x0000;
2102    
2103     fDataTrack[fTracklength]=0x0000;
2104     fTracklength++;
2105    
2106     fDataTrack[fTracklength]=(ReLength >> 8);
2107     fTracklength++;
2108    
2109     fDataTrack[fTracklength]=( (ReLength << 8) | (OveCheckCode & 0x00FF) );
2110     fTracklength++;
2111    
2112     // end TRAILER
2113     };
2114    
2115     // write in buffer the DSP header
2116    
2117     fDataTrack[DSPpos]=(0xE800 | ( ((j+1) << 3) | 0x0005) );
2118    
2119     fDataTrack[DSPpos+1]=0x01A9;
2120    
2121     fDataTrack[DSPpos+2]=0x8740;
2122    
2123     EVENT_CAL=0;
2124     fDataTrack[DSPpos+3]=(0x1A00 | ( (0x03FF & EVENT_CAL)>> 1) );
2125    
2126     PED_L1=0;
2127     fDataTrack[DSPpos+4]=( ((EVENT_CAL << 15) | 0x5002 ) | ((0x03FF & PED_L1) << 2) );
2128    
2129     // FROM HERE WE WRITE AS ALL VARIABLE apart CkSum are =0
2130    
2131     fDataTrack[DSPpos+5]=0x8014;
2132    
2133     fDataTrack[DSPpos+6]=0x00A0;
2134    
2135     fDataTrack[DSPpos+7]=0x0500;
2136    
2137     fDataTrack[DSPpos+8]=0x2801;
2138    
2139     fDataTrack[DSPpos+9]=0x400A;
2140    
2141     fDataTrack[DSPpos+10]=0x0050;
2142    
2143     CkSum=(CkSum >> 8)^(CkSum&0x00FF);
2144     fDataTrack[DSPpos+11]=(0x0280 | (CkSum >> 3));
2145    
2146     fDataTrack[DSPpos+12]=(0x1FFF | (CkSum << 13) );
2147    
2148     // end dsp header
2149    
2150     // write in buffer the TRAILER
2151    
2152     ReLength=(UShort_t)((13*2)+3);
2153     OveCheckCode=0x0000;
2154     fDataTrack[DSPpos+13]=0x0000;
2155    
2156     fDataTrack[DSPpos+14]=(ReLength >> 8);
2157    
2158     fDataTrack[DSPpos+15]=( (ReLength << 8) | (OveCheckCode & 0x00FF) );
2159    
2160     // end TRAILER
2161    
2162    
2163    
2164    
2165     // end DSP
2166     };
2167    
2168    
2169    
2170     };
2171    
2172     void Digitizer::WriteTrackCalib() {
2173    
2174    
2175     std:: cout << " Entering WriteTrackCalib " << endl;
2176    
2177     fOutputfile.write(reinterpret_cast<char*>(fDataPSCU),sizeof(UShort_t)*fPSCUbuffer);
2178    
2179     UShort_t temp[1000000];
2180     memset(temp,0,sizeof(UShort_t)*1000000);
2181     swab(fDataTrack,temp,sizeof(UShort_t)*fTracklength); // WE MUST SWAP THE BYTES!!!
2182     fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fTracklength);
2183     fTracklength=0;
2184     if ( fPadding ){
2185     fOutputfile.write(reinterpret_cast<char*>(fDataPadding),sizeof(UChar_t)*fPadding);
2186     };
2187    
2188     };
2189    
2190    
2191     void Digitizer::ClearTrackCalib() {
2192    
2193     std:: cout << "Entering ClearTrackCalib " << endl;
2194    
2195    
2196     };
2197    
2198    
2199     void Digitizer::LoadTrackCalib() {
2200     std:: cout << "Entering LoadTrackCalib " << endl;
2201    
2202     // Generate the pedestals and sigmas according to parametrization
2203     for (Int_t j=0; j<fNviews;j++) {
2204     for (Int_t i=0; i<fNstrips_view;i++) {
2205    
2206     if((j+1)%2==0) {
2207     fPedeTrack[j][i]=gRandom->Gaus(fAvePedex,fSigmaPedex);
2208     fSigmaTrack[j][i]=gRandom->Gaus(fAveSigmax,fSigmaSigmax);
2209     };
2210     if((j+1)%2==1) {
2211     fPedeTrack[j][i]=gRandom->Gaus(fAvePedey,fSigmaPedey);
2212     fSigmaTrack[j][i]=gRandom->Gaus(fAveSigmay,fSigmaSigmay);
2213     };
2214    
2215     };
2216     };
2217    
2218    
2219    
2220     };
2221    
2222     void Digitizer::LoadMipCor() {
2223     std:: cout << "Entering LoadMipCor" << endl;
2224 orsi 1.2 Float_t xfactor=1./151.6*1.04;
2225     Float_t yfactor=1./152.1;
2226    
2227     fMipCor[0][0]=140.02*yfactor;
2228     fMipCor[0][1]=140.99*xfactor;
2229     fMipCor[0][2]=134.48*yfactor;
2230     fMipCor[0][3]=144.41*xfactor;
2231     fMipCor[0][4]=140.74*yfactor;
2232     fMipCor[0][5]=142.28*xfactor;
2233     fMipCor[0][6]=134.53*yfactor;
2234     fMipCor[0][7]=140.63*xfactor;
2235     fMipCor[0][8]=135.55*yfactor;
2236     fMipCor[0][9]=138.00*xfactor;
2237     fMipCor[0][10]=154.95*yfactor;
2238     fMipCor[0][11]=158.44*xfactor;
2239    
2240    
2241     fMipCor[1][0]=136.07*yfactor;
2242     fMipCor[1][1]=135.59*xfactor;
2243     fMipCor[1][2]=142.69*yfactor;
2244     fMipCor[1][3]=138.19*xfactor;
2245     fMipCor[1][4]=137.35*yfactor;
2246     fMipCor[1][5]=140.23*xfactor;
2247     fMipCor[1][6]=153.15*yfactor;
2248     fMipCor[1][7]=151.42*xfactor;
2249     fMipCor[1][8]=129.76*yfactor;
2250     fMipCor[1][9]=140.63*xfactor;
2251     fMipCor[1][10]=157.87*yfactor;
2252     fMipCor[1][11]=153.64*xfactor;
2253    
2254     fMipCor[2][0]=134.98*yfactor;
2255     fMipCor[2][1]=143.95*xfactor;
2256     fMipCor[2][2]=140.23*yfactor;
2257     fMipCor[2][3]=138.88*xfactor;
2258     fMipCor[2][4]=137.95*yfactor;
2259     fMipCor[2][5]=134.87*xfactor;
2260     fMipCor[2][6]=157.56*yfactor;
2261     fMipCor[2][7]=157.31*xfactor;
2262     fMipCor[2][8]=141.37*yfactor;
2263     fMipCor[2][9]=143.39*xfactor;
2264     fMipCor[2][10]=156.15*yfactor;
2265     fMipCor[2][11]=158.79*xfactor;
2266    
2267 silvio 1.1 /*
2268     for (Int_t j=0; j<fNviews;j++) {
2269     for (Int_t i=0; i<fNstrips_view;i++) {
2270     fMipCor[j][i]=1.;
2271     };
2272     };
2273    
2274    
2275     */
2276     };
2277    
2278     void Digitizer::CompressTrackData(Float_t AdcTrack[fNviews][fNstrips_view]) {
2279     // copy of the corresponding compression fortran routine + new digitization
2280     // std:: cout << "Entering CompressTrackData " << endl;
2281     Int_t oldval=0;
2282     Int_t newval=0;
2283     Int_t trasmesso=0;
2284     Int_t ntrastot=0;
2285     Float_t real;
2286     Float_t inte;
2287     Int_t cercacluster=0;
2288     Int_t kt=0;
2289     static const int DSPbufferSize = 4000; // 13 bit buffer to be rearranged in 16 bit Track buffer
2290     UShort_t DataDSP[DSPbufferSize]; // 13 bit buffer to be rearranged in 16 bit Track buffer
2291     UShort_t DSPlength; // 13 bit buffer to be rearranged in 16 bit Track buffer
2292    
2293     memset(fDataTrack,0,sizeof(UShort_t)*fTRACKbuffer); // probably not necessary becouse already done ?
2294     fTracklength=0;
2295    
2296     for (Int_t iv=0; iv<fNviews;iv++) {
2297     memset(DataDSP,0,sizeof(UShort_t)*DSPbufferSize);
2298     DSPlength=16; // skip the header, to be written later
2299     UShort_t CheckSum=0;
2300     // write dsp header on buffer
2301    
2302     // fDataTrack[fTracklength]=0xE805;
2303     // fTracklength++;
2304    
2305     // fDataTrack[fTracklength]=0x01A9;
2306     // fTracklength++;
2307    
2308     // end dsp header
2309    
2310     //
2311     // INIZIO VISTA IV - TAKE PROPER ACTION
2312     //
2313    
2314    
2315    
2316     for (Int_t ladder=0; ladder<fNladder;ladder++) {
2317     Int_t k=0;
2318     while (k<fNstrips_ladder) {
2319     // compress write in buffer the current LADDER
2320     if ( k == 0) {
2321     real=modff(AdcTrack[iv][ladder*fNstrips_ladder+k],&inte);
2322     if (real > 0.5) inte=inte+1;
2323     newval=(Int_t)inte -(Int_t)fPedeTrack[iv][ladder*fNstrips_ladder+k];
2324     // first strip of ladder is transmitted
2325     // DC_TOT first " << AdcTrack[iv][ladder*fNstrips_ladder+k] << endl;
2326     DataDSP[DSPlength]=( ((UShort_t)inte) & 0x0FFF);
2327     DSPlength++;
2328     ntrastot++;
2329     trasmesso=1;
2330     oldval=newval;
2331     kt=k;
2332     k++;
2333     continue;
2334     };
2335     real=modff(AdcTrack[iv][ladder*fNstrips_ladder+k],&inte);
2336     if (real > 0.5) inte=inte+1;
2337     newval=(Int_t)inte -(Int_t)(fPedeTrack[iv][ladder*fNstrips_ladder+k]);
2338     cercacluster=1; // ?????????
2339     if (cercacluster==1) {
2340    
2341     // controlla l'ordine di tutti queste strip ladder e DSP !!!!!!!
2342     Int_t diff=0;
2343    
2344    
2345     switch ((iv+1)%2) {
2346     case 0: diff=newval-oldval;
2347     break;
2348     case 1: diff=oldval-newval;
2349     break;
2350     };
2351    
2352     if (diff>fCutclu*(Int_t)fSigmaTrack[iv][ladder*fNstrips_ladder+k]) {
2353     Int_t clval=newval;
2354     Int_t klp=k; // go on to search for maximum
2355     klp++;
2356    
2357     while(klp<fNstrips_ladder) {
2358     real=modff(AdcTrack[iv][ladder*fNstrips_ladder+klp],&inte);
2359     if (real > 0.5) inte=inte+1;
2360     Int_t clvalp=(Int_t)inte -(Int_t)fPedeTrack[iv][ladder*fNstrips_ladder+klp];
2361     if((iv+1)%2==0) {
2362    
2363     if(clvalp>clval) {
2364     clval=clvalp;
2365     k=klp;}
2366     else break; // max of cluster found
2367    
2368     } else {
2369    
2370     if(clvalp<clval) {
2371     clval=clvalp;
2372     k=klp;}
2373     else break; // max of cluster found
2374    
2375     };
2376    
2377     klp++;
2378     };
2379    
2380     Int_t kl1=k-fNclst; // max of cluster (or end of ladder ?)
2381     trasmesso=0;
2382     if(kl1<0) kl1=0;
2383    
2384     if(kt>=kl1) kl1=kt+1;
2385     if( (kt+1)==kl1 ) trasmesso=1;
2386    
2387    
2388    
2389     Int_t kl2=k+fNclst;
2390     if(kl2>=fNstrips_ladder) kl2=fNstrips_ladder-1;
2391    
2392     for(Int_t klt=kl1 ; klt<=kl2 ; klt++) {
2393     if(trasmesso==0) {
2394     // std:: cout << "STRIP " << klt << endl;
2395     // std:: cout << "ADC_TOT " <<AdcTrack[iv][ladder*fNstrips_ladder+klt] << endl;
2396    
2397     DataDSP[DSPlength]=( ((UShort_t)klt) | 0x1000);
2398     DSPlength++;
2399     ntrastot++;
2400    
2401    
2402     real=modff(AdcTrack[iv][ladder*fNstrips_ladder+klt],&inte);
2403     if (real > 0.5) inte=inte+1;
2404     DataDSP[DSPlength]=( ((UShort_t)inte) & 0x0FFF);
2405     DSPlength++;
2406     ntrastot++;
2407    
2408     }
2409     else {
2410     // std:: cout << "ADC_TOT " <<AdcTrack[iv][ladder*fNstrips_ladder+klt] << endl;
2411     real=modff(AdcTrack[iv][ladder*fNstrips_ladder+klt],&inte);
2412     if (real > 0.5) inte=inte+1;
2413     DataDSP[DSPlength]=( ((UShort_t)inte) & 0x0FFF);
2414     DSPlength++;
2415     ntrastot++;
2416     };
2417     trasmesso=1;
2418     }; // end trasmission
2419     kt=kl2;
2420     k=kl2;
2421     real=modff(AdcTrack[iv][ladder*fNstrips_ladder+kt],&inte);
2422     if (real > 0.5) inte=inte+1;
2423     oldval=(Int_t)inte -(Int_t)fPedeTrack[iv][ladder*fNstrips_ladder+kt];
2424     k++;
2425     continue;
2426    
2427    
2428     }; // end cercacluster
2429     }; // end cercacluster
2430    
2431     // start ZOP check for strips no
2432    
2433     if(abs(newval-oldval)>=fCutzop*(Int_t)fSigmaTrack[iv][ladder*fNstrips_ladder+k]) {
2434    
2435     if(trasmesso==0) {
2436     // std:: cout << "STRIP " << k << endl;
2437     // std:: cout << "ADC_TOT " << AdcTrack[iv][ladder*fNstrips_ladder+k] << endl;
2438    
2439     DataDSP[DSPlength]=( ((UShort_t)k) | 0x1000);
2440     DSPlength++;
2441     ntrastot++;
2442    
2443    
2444     real=modff(AdcTrack[iv][ladder*fNstrips_ladder+k],&inte);
2445     if (real > 0.5) inte=inte+1;
2446     DataDSP[DSPlength]=( ((UShort_t)inte) & 0x0FFF);
2447     DSPlength++;
2448     ntrastot++;
2449    
2450     }
2451     else {
2452     // std:: cout << "ADC_TOT " << AdcTrack[iv][ladder*fNstrips_ladder+k] << endl;
2453     real=modff(AdcTrack[iv][ladder*fNstrips_ladder+k],&inte);
2454     if (real > 0.5) inte=inte+1;
2455     DataDSP[DSPlength]=( ((UShort_t)inte) & 0x0FFF);
2456     DSPlength++;
2457     ntrastot++;
2458     };
2459     trasmesso=1;
2460     oldval=newval;
2461     kt=k;
2462    
2463     }
2464     else trasmesso=0;
2465     // end zop
2466    
2467     k++;
2468     }; // end cycle inside ladder
2469     // write here the end ladder bytes
2470     // std:: cout << "FINE LADDER " << ladder+1 << endl;
2471    
2472     DataDSP[DSPlength]=( ((UShort_t)(ladder+1)) | 0x1800);
2473     DSPlength++;
2474     ntrastot++;
2475     trasmesso=0;
2476    
2477     }; //end cycle inside dsp
2478     // std:: cout << "FINE DSP " << iv+1 << endl;
2479     // here put DSP header
2480     DataDSP[0]=(0x1CA0 | ((UShort_t)(iv+1)) );
2481     UShort_t Nword=(DSPlength*13)/16;
2482     if( ((DSPlength*13)%16)!=0) Nword++;
2483     DataDSP[1]=(0x1400 | ( Nword >> 10));
2484     DataDSP[2]=(0x1400 | ( Nword & 0x03FF) );
2485     DataDSP[3]=(0x1400 | (( (UShort_t)(fCounter >> 10) ) & 0x03FF) );
2486     DataDSP[4]=(0x1400 | (( (UShort_t)(fCounter) ) & 0x03FF) );
2487     DataDSP[5]=(0x1400 | ( (UShort_t)(fNclst << 7) ) | ( (UShort_t)(fCutzop << 4) )
2488     | ( (UShort_t)fCutzop ) );
2489     DataDSP[6]=0x1400;
2490     DataDSP[7]=0x1400;
2491     DataDSP[8]=0x1400;
2492     DataDSP[9]=0x1400;
2493     DataDSP[10]=0x1400;
2494     DataDSP[11]=0x1400;
2495     DataDSP[12]=0x1400;
2496     DataDSP[13]=0x1400;
2497     DataDSP[14]=(0x1400 | (CheckSum & 0x00FF) );
2498     DataDSP[15]=0x1C00;
2499     // end DSP header
2500    
2501    
2502     // write 13 bit DataDSP bufer inside 16 bit fDataTrack buffer
2503     Int_t Bit16free=16;
2504     UShort_t Dato;
2505     for (Int_t NDSP=0; NDSP<DSPlength;NDSP++) {
2506     Int_t Bit13ToWrite=13;
2507     while(Bit13ToWrite>0) {
2508     if(Bit13ToWrite<=Bit16free) {
2509     Dato=((DataDSP[NDSP]&(0xFFFF >> (16-Bit13ToWrite)))<<(Bit16free-Bit13ToWrite));
2510     fDataTrack[fTracklength]=fDataTrack[fTracklength] | Dato ;
2511     Bit16free=Bit16free-Bit13ToWrite;
2512     Bit13ToWrite=0;
2513     if(Bit16free==0) {
2514     if(NDSP>15) CheckSum=CheckSum^fDataTrack[fTracklength];
2515     fTracklength++;
2516     Bit16free=16;
2517     };
2518     }
2519     else if(Bit13ToWrite>Bit16free) {
2520     Dato=( (DataDSP[NDSP]&(0xFFFF >> (16-Bit13ToWrite) ) ) >> (Bit13ToWrite-Bit16free) );
2521     fDataTrack[fTracklength]=fDataTrack[fTracklength] | Dato ;
2522     if(NDSP>15) CheckSum=CheckSum^fDataTrack[fTracklength];
2523     fTracklength++;
2524     Bit13ToWrite=Bit13ToWrite-Bit16free;
2525     Bit16free=16;
2526     };
2527    
2528     }; // end cycle while(Bit13ToWrite>0)
2529    
2530     }; // end cycle DataDSP
2531     if(Bit16free!=16) { fTracklength++; CheckSum=CheckSum^fDataTrack[fTracklength]; };
2532     CheckSum=(CheckSum >> 8)^(CheckSum&0x00FF);
2533     fDataTrack[fTracklength-Nword+11]=(0x0280 | (CheckSum >> 3));
2534     fDataTrack[fTracklength-Nword+12]=(0x1C00 | (CheckSum << 13) );
2535    
2536     // end write 13 bit DataDSP bufer inside 16 bit fDataTrack buffer
2537    
2538     //write trailer on buffer
2539     UShort_t ReLength=(UShort_t)((Nword+13)*2+3);
2540     UShort_t OveCheckCode=0x0000;
2541    
2542     fDataTrack[fTracklength]=0x0000;
2543     fTracklength++;
2544    
2545     fDataTrack[fTracklength]=(ReLength >> 8);
2546     fTracklength++;
2547    
2548     fDataTrack[fTracklength]=( (ReLength << 8) | (OveCheckCode & 0x00FF) );
2549     fTracklength++;
2550     // end trailer
2551     // std:: cout << "DSPlength " <<DSPlength << endl;
2552     // std:: cout << "Nword " << Nword << endl;
2553     // std:: cout << "ReLength " << ReLength << endl;
2554     };
2555     // std:: cout << "ntrastot " << ntrastot << endl;
2556    
2557     };
2558    
2559 orsi 1.2
2560 silvio 1.1 Float_t Digitizer::SaturationTrack(Float_t ADC) {
2561 orsi 1.2 Float_t SatFact=1.;
2562     if(ADC<70.) { SatFact=80./ADC; };
2563     if(ADC>3000.) { SatFact=3000./ADC; };
2564     return SatFact;
2565 silvio 1.1 };
2566    
2567    
2568    
2569    
2570    
2571    

  ViewVC Help
Powered by ViewVC 1.1.23