/[PAMELA software]/PamelaDigitizer/Digitizer.cxx
ViewVC logotype

Annotation of /PamelaDigitizer/Digitizer.cxx

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.2 - (hide annotations) (download)
Fri Sep 28 10:46:23 2007 UTC (17 years, 5 months ago) by orsi
Branch: MAIN
Changes since 1.1: +319 -50 lines
TOF TDC added; TRK improved; bug fixes

1 orsi 1.2 // ------ PAMELA Digitizer ------
2     //
3     // Date, release and how-to: see file Pamelagp2Digits.cxx
4     //
5     // NB: Check length physics packet [packet type (0x10 = physics data)]
6 silvio 1.1 //
7     #include <sstream>
8     #include <fstream>
9     #include <stdlib.h>
10 orsi 1.2 #include <stdio.h>
11 silvio 1.1 #include <string.h>
12     #include <ctype.h>
13 orsi 1.2 #include <time.h>
14 silvio 1.1 #include "Riostream.h"
15     #include "TFile.h"
16     #include "TDirectory.h"
17     #include "TTree.h"
18     #include "TLeafI.h"
19     #include "TH1.h"
20     #include "TH2.h"
21     #include "TMath.h"
22     #include "TRandom.h"
23     #include "TSQLServer.h"
24     #include "TSystem.h"
25     //
26     #include "Digitizer.h"
27     #include "CRC.h"
28     //
29     #include <PamelaRun.h>
30     #include <physics/calorimeter/CalorimeterEvent.h>
31     #include <CalibCalPedEvent.h>
32     #include "GLTables.h"
33     //
34     extern "C"{
35     short crc(short, short);
36     };
37     //
38    
39     Digitizer::Digitizer(TTree* tree, char* &file_raw){
40     fhBookTree = tree;
41     fFilename = file_raw;
42     fCounter = 0;
43     fOBT = 0;
44    
45     //
46     // DB connections
47     //
48     TString host = "mysql://localhost/pamelaprod";
49     TString user = "anonymous";
50     TString psw = "";
51     //
52     const char *pamdbhost=gSystem->Getenv("PAM_DBHOST");
53     const char *pamdbuser=gSystem->Getenv("PAM_DBUSER");
54     const char *pamdbpsw=gSystem->Getenv("PAM_DBPSW");
55     if ( !pamdbhost ) pamdbhost = "";
56     if ( !pamdbuser ) pamdbuser = "";
57     if ( !pamdbpsw ) pamdbpsw = "";
58     if ( strcmp(pamdbhost,"") ) host = pamdbhost;
59     if ( strcmp(pamdbuser,"") ) user = pamdbuser;
60     if ( strcmp(pamdbpsw,"") ) psw = pamdbpsw;
61     fDbc = TSQLServer::Connect(host.Data(),user.Data(),psw.Data());
62     //
63     GL_TABLES *glt = new GL_TABLES(host,user,psw);
64     if ( glt->IsConnected(fDbc) ) printf("\n DB INFORMATION:\n SQL: %s Version: %s Host %s Port %i \n\n",fDbc->GetDBMS(),fDbc->ServerInfo(),fDbc->GetHost(),fDbc->GetPort());
65     //
66     // Use UTC in the DB and make timeout bigger
67     //
68     stringstream myquery;
69     myquery.str("");
70     myquery << "SET time_zone='+0:00'";
71     fDbc->Query(myquery.str().c_str());
72     myquery.str("");
73     myquery << "SET wait_timeout=173000;";
74     fDbc->Query(myquery.str().c_str());
75     //
76    
77     std:: cout << "preparing tree" << endl;
78    
79     // prepare tree
80     fhBookTree->SetBranchAddress("Irun",&Irun);
81     fhBookTree->SetBranchAddress("Ievnt",&Ievnt);
82     fhBookTree->SetBranchAddress("Ipa",&Ipa);
83     fhBookTree->SetBranchAddress("X0",&X0);
84     fhBookTree->SetBranchAddress("Y0",&Y0);
85     fhBookTree->SetBranchAddress("Z0",&Z0);
86     fhBookTree->SetBranchAddress("Theta",&Theta);
87     fhBookTree->SetBranchAddress("Phi",&Phi);
88     fhBookTree->SetBranchAddress("P0",&P0);
89     fhBookTree->SetBranchAddress("Nthtof",&Nthtof);
90     fhBookTree->SetBranchAddress("Ipltof",Ipltof);
91     fhBookTree->SetBranchAddress("Ipaddle",Ipaddle);
92     fhBookTree->SetBranchAddress("Ipartof",Ipartof);
93     fhBookTree->SetBranchAddress("Xintof",Xintof);
94     fhBookTree->SetBranchAddress("Yintof",Yintof);
95     fhBookTree->SetBranchAddress("Zintof",Zintof);
96     fhBookTree->SetBranchAddress("Xouttof",Xouttof);
97     fhBookTree->SetBranchAddress("Youttof",Youttof);
98     fhBookTree->SetBranchAddress("Zouttof",Zouttof);
99     fhBookTree->SetBranchAddress("Ereltof",Ereltof);
100     fhBookTree->SetBranchAddress("Timetof",Timetof);
101     fhBookTree->SetBranchAddress("Pathtof",Pathtof);
102     fhBookTree->SetBranchAddress("P0tof",P0tof);
103     fhBookTree->SetBranchAddress("Nthcat",&Nthcat);
104     fhBookTree->SetBranchAddress("Iparcat",Iparcat);
105     fhBookTree->SetBranchAddress("Icat",Icat);
106     fhBookTree->SetBranchAddress("Xincat",Xincat);
107     fhBookTree->SetBranchAddress("Yincat",Yincat);
108     fhBookTree->SetBranchAddress("Zincat",Zincat);
109     fhBookTree->SetBranchAddress("Xoutcat",Xoutcat);
110     fhBookTree->SetBranchAddress("Youtcat",Youtcat);
111     fhBookTree->SetBranchAddress("Zoutcat",Zoutcat);
112     fhBookTree->SetBranchAddress("Erelcat",Erelcat);
113     fhBookTree->SetBranchAddress("Timecat",Timecat);
114     fhBookTree->SetBranchAddress("Pathcat",Pathcat);
115     fhBookTree->SetBranchAddress("P0cat",P0cat);
116     fhBookTree->SetBranchAddress("Nthcas",&Nthcas);
117     fhBookTree->SetBranchAddress("Iparcas",Iparcas);
118     fhBookTree->SetBranchAddress("Icas",Icas);
119     fhBookTree->SetBranchAddress("Xincas",Xincas);
120     fhBookTree->SetBranchAddress("Yincas",Yincas);
121     fhBookTree->SetBranchAddress("Zincas",Zincas);
122     fhBookTree->SetBranchAddress("Xoutcas",Xoutcas);
123     fhBookTree->SetBranchAddress("Youtcas",Youtcas);
124     fhBookTree->SetBranchAddress("Zoutcas",Zoutcas);
125     fhBookTree->SetBranchAddress("Erelcas",Erelcas);
126     fhBookTree->SetBranchAddress("Timecas",Timecas);
127     fhBookTree->SetBranchAddress("Pathcas",Pathcas);
128     fhBookTree->SetBranchAddress("P0cas",P0cas);
129     fhBookTree->SetBranchAddress("Nthspe",&Nthspe);
130     fhBookTree->SetBranchAddress("Iparspe",Iparspe);
131     fhBookTree->SetBranchAddress("Itrpb",Itrpb);
132     fhBookTree->SetBranchAddress("Itrsl",Itrsl);
133     fhBookTree->SetBranchAddress("Itspa",Itspa);
134     fhBookTree->SetBranchAddress("Xinspe",Xinspe);
135     fhBookTree->SetBranchAddress("Yinspe",Yinspe);
136     fhBookTree->SetBranchAddress("Zinspe",Zinspe);
137     fhBookTree->SetBranchAddress("Xoutspe",Xoutspe);
138     fhBookTree->SetBranchAddress("Youtspe",Youtspe);
139     fhBookTree->SetBranchAddress("Zoutspe",Zoutspe);
140     fhBookTree->SetBranchAddress("Xavspe",Xavspe);
141     fhBookTree->SetBranchAddress("Yavspe",Yavspe);
142     fhBookTree->SetBranchAddress("Zavspe",Zavspe);
143     fhBookTree->SetBranchAddress("Erelspe",Erelspe);
144     fhBookTree->SetBranchAddress("Pathspe",Pathspe);
145     fhBookTree->SetBranchAddress("P0spe",P0spe);
146     fhBookTree->SetBranchAddress("Nxmult",Nxmult);
147     fhBookTree->SetBranchAddress("Nymult",Nymult);
148     fhBookTree->SetBranchAddress("Nstrpx",&Nstrpx);
149     fhBookTree->SetBranchAddress("Npstripx",Npstripx);
150     fhBookTree->SetBranchAddress("Ntstripx",Ntstripx);
151     fhBookTree->SetBranchAddress("Istripx",Istripx);
152     fhBookTree->SetBranchAddress("Qstripx",Qstripx);
153     fhBookTree->SetBranchAddress("Xstripx",Xstripx);
154     fhBookTree->SetBranchAddress("Nstrpy",&Nstrpy);
155     fhBookTree->SetBranchAddress("Npstripy",Npstripy);
156     fhBookTree->SetBranchAddress("Ntstripy",Ntstripy);
157     fhBookTree->SetBranchAddress("Istripy",Istripy);
158     fhBookTree->SetBranchAddress("Qstripy",Qstripy);
159     fhBookTree->SetBranchAddress("Ystripy",Ystripy);
160     fhBookTree->SetBranchAddress("Nthcali",&Nthcali);
161     fhBookTree->SetBranchAddress("Icaplane",Icaplane);
162     fhBookTree->SetBranchAddress("Icastrip",Icastrip);
163     fhBookTree->SetBranchAddress("Icamod",Icamod);
164     fhBookTree->SetBranchAddress("Enestrip",Enestrip);
165     fhBookTree->SetBranchAddress("Nthcal",&Nthcal);
166     fhBookTree->SetBranchAddress("Icapl",Icapl);
167     fhBookTree->SetBranchAddress("Icasi",Icasi);
168     fhBookTree->SetBranchAddress("Icast",Icast);
169     fhBookTree->SetBranchAddress("Xincal",Xincal);
170     fhBookTree->SetBranchAddress("Yincal",Yincal);
171     fhBookTree->SetBranchAddress("Zincal",Zincal);
172     fhBookTree->SetBranchAddress("Erelcal",Erelcal);
173     fhBookTree->SetBranchAddress("Nthnd",&Nthnd);
174     fhBookTree->SetBranchAddress("Itubend",Itubend);
175     fhBookTree->SetBranchAddress("Iparnd",Iparnd);
176     fhBookTree->SetBranchAddress("Xinnd",Xinnd);
177     fhBookTree->SetBranchAddress("Yinnd",Yinnd);
178     fhBookTree->SetBranchAddress("Zinnd",Zinnd);
179     fhBookTree->SetBranchAddress("Xoutnd",Xoutnd);
180     fhBookTree->SetBranchAddress("Youtnd",Youtnd);
181     fhBookTree->SetBranchAddress("Zoutnd",Zoutnd);
182     fhBookTree->SetBranchAddress("Erelnd",Erelnd);
183     fhBookTree->SetBranchAddress("Timend",Timend);
184     fhBookTree->SetBranchAddress("Pathnd",Pathnd);
185     fhBookTree->SetBranchAddress("P0nd",P0nd);
186     fhBookTree->SetBranchAddress("Nthcard",&Nthcard);
187     fhBookTree->SetBranchAddress("Iparcard",Iparcard);
188     fhBookTree->SetBranchAddress("Icard",Icard);
189     fhBookTree->SetBranchAddress("Xincard",Xincard);
190     fhBookTree->SetBranchAddress("Yincard",Yincard);
191     fhBookTree->SetBranchAddress("Zincard",Zincard);
192     fhBookTree->SetBranchAddress("Xoutcard",Xoutcard);
193     fhBookTree->SetBranchAddress("Youtcard",Youtcard);
194     fhBookTree->SetBranchAddress("Zoutcard",Zoutcard);
195     fhBookTree->SetBranchAddress("Erelcard",Erelcard);
196     fhBookTree->SetBranchAddress("Timecard",Timecard);
197     fhBookTree->SetBranchAddress("Pathcard",Pathcard);
198     fhBookTree->SetBranchAddress("P0card",P0card);
199    
200     fhBookTree->SetBranchStatus("*",0);
201    
202     };
203    
204    
205    
206     void Digitizer::Close(){
207    
208     delete fhBookTree;
209    
210     };
211    
212    
213    
214    
215     void Digitizer::Loop() {
216     //
217     // opens the raw output file and loops over the events
218     //
219     fOutputfile.open(fFilename, ios::out | ios::binary);
220     //fOutputfile.open(Form("Output%s",fFilename), ios::out | ios::binary);
221     //
222     // Load in memory and save at the beginning of file the calorimeter calibration
223     //
224     CaloLoadCalib();
225     DigitizeCALOCALIB();
226    
227     // load, digitize and write tracker calibration
228     LoadTrackCalib();
229    
230     DigitizeTrackCalib(1);
231     UInt_t length=fTracklength*2;
232     DigitizePSCU(length,0x12);
233     AddPadding();
234     WriteTrackCalib();
235    
236     DigitizeTrackCalib(2);
237     length=fTracklength*2;
238     DigitizePSCU(length,0x13);
239     AddPadding();
240     WriteTrackCalib();
241    
242     LoadMipCor(); // some initialization of parameters -not used now-
243     // end loading, digitizing and writing tracker calibration
244    
245     //
246     // loops over the events
247     //
248    
249     Int_t nentries = fhBookTree->GetEntriesFast();
250     Long64_t nbytes = 0;
251     for (Int_t i=0; i<nentries;i++) {
252     //
253     nbytes += fhBookTree->GetEntry(i);
254     // read detectors sequentially:
255     // http://www.ts.infn.it/fileadmin/documents/physics/experiments/wizard/cpu/gen_arch/RM_Acquisition.pdf
256     // on pamelatov:
257     // /cvs/yoda/techmodel/physics/NeutronDetectorReader.cpp
258     DigitizeTRIGGER();
259     DigitizeTOF();
260     DigitizeAC();
261     DigitizeCALO();
262     DigitizeTrack();
263     //DigitizeS4();
264     DigitizeND();
265 orsi 1.2 //
266     // Add padding to 64 bits
267 silvio 1.1 //
268 orsi 1.2 AddPadding();
269     //
270 silvio 1.1 // Create CPU header, we need packet type (0x10 = physics data) and packet length.
271     //
272 orsi 1.2 //UInt_t length=2*(fCALOlength+fACbuffer+fTracklength+fNDbuffer+fS4buffer)+fPadding+fTOFbuffer+fTRIGGERbuffer;
273     UInt_t length=2*(fCALOlength+fACbuffer+fTracklength+fNDbuffer)+fPadding+fTOFbuffer+fTRIGGERbuffer;
274 silvio 1.1 DigitizePSCU(length,0x10);
275     if ( !i%100 ) std::cout << "writing event " << i << endl;
276     WriteData();
277     };
278    
279     fOutputfile.close();
280     std::cout << "files closed" << endl << flush;
281    
282     };
283    
284     void Digitizer::AddPadding(){
285     //
286     Float_t pd0 = (fLen+16)/64.;
287     Float_t pd1 = pd0 - (Float_t)int(pd0);
288     Float_t padfrac = 64. - pd1 * 64.;
289     //
290     UInt_t padbytes = (UInt_t)padfrac;
291     if ( padbytes > 0 && padbytes < 64 ){
292     //
293     // here the padding length
294     //
295     fPadding = padbytes+64;
296     //
297     // random padding bytes
298     //
299     for (Int_t ur=0; ur<32; ur++){
300     fDataPadding[ur] = (UShort_t)rand();
301     };
302     };
303     };
304    
305    
306     void Digitizer::DigitizePSCU(UInt_t length, UChar_t type) {
307     //
308     UChar_t buff[16];
309     //
310     // CPU signature
311     //
312     buff[0] = 0xFA;
313     buff[1] = 0xFE;
314     buff[2] = 0xDE;
315     //
316     // packet type (twice)
317     //
318     buff[3] = type;
319     buff[4] = type;
320     //
321     // counter
322     //
323     fCounter++;
324     while ( fCounter > 16777215 ){
325     fCounter -= 16777215;
326     };
327     //
328     buff[5] = (UChar_t)(fCounter >> 16);
329     buff[6] = (UChar_t)(fCounter >> 8);
330     buff[7] = (UChar_t)fCounter;
331     //
332     // on board time
333     //
334     ULong64_t obt = fOBT + 30LL;
335     //
336     while ( obt > 4294967295LL ){
337     obt -= 4294967295LL;
338     };
339     fOBT = (UInt_t)obt;
340     //
341     buff[8] = (UChar_t)(fOBT >> 24);
342     buff[9] = (UChar_t)(fOBT >> 16);
343     buff[10] = (UChar_t)(fOBT >> 8);
344     buff[11] = (UChar_t)fOBT;
345     //
346     // Packet length
347     //
348     fLen = length;
349     //
350     buff[12] = (UChar_t)(fLen >> 16);
351     buff[13] = (UChar_t)(fLen >> 8);
352     buff[14] = (UChar_t)fLen;
353     //
354     // CPU header CRC
355     //
356     buff[15] = (BYTE)CM_Compute_CRC16((UINT16)0, (BYTE*)&buff, (UINT32)15);
357     //
358     memcpy(fDataPSCU,buff,16*sizeof(UChar_t));
359     //
360     };
361    
362     void Digitizer::ClearCaloCalib(Int_t s){
363     //
364     fcstwerr[s] = 0;
365     fcperror[s] = 0.;
366     for ( Int_t d=0 ; d<11 ;d++ ){
367     Int_t pre = -1;
368     for ( Int_t j=0; j<96 ;j++){
369     if ( j%16 == 0 ) pre++;
370     fcalped[s][d][j] = 0.;
371     fcstwerr[s] = 0.;
372     fcperror[s] = 0.;
373     fcalgood[s][d][j] = 0.;
374     fcalthr[s][d][pre] = 0.;
375     fcalrms[s][d][j] = 0.;
376     fcalbase[s][d][pre] = 0.;
377     fcalvar[s][d][pre] = 0.;
378     };
379     };
380     return;
381     }
382    
383     Int_t Digitizer::CaloLoadCalib(Int_t s,TString fcalname, UInt_t calibno){
384     //
385     //
386     UInt_t e = 0;
387     if ( s == 0 ) e = 0;
388     if ( s == 1 ) e = 2;
389     if ( s == 2 ) e = 3;
390     if ( s == 3 ) e = 1;
391     //
392     ifstream myfile;
393     myfile.open(fcalname.Data());
394     if ( !myfile ){
395     return(-107);
396     };
397     myfile.close();
398     //
399     TFile *File = new TFile(fcalname.Data());
400     if ( !File ) return(-108);
401     TTree *tr = (TTree*)File->Get("CalibCalPed");
402     if ( !tr ) return(-109);
403     //
404     TBranch *calo = tr->GetBranch("CalibCalPed");
405     //
406     pamela::CalibCalPedEvent *ce = 0;
407     tr->SetBranchAddress("CalibCalPed", &ce);
408     //
409     Long64_t ncalibs = calo->GetEntries();
410     //
411     if ( !ncalibs ) return(-110);
412     //
413     calo->GetEntry(calibno);
414     //
415     if (ce->cstwerr[s] != 0 && ce->cperror[s] == 0 ) {
416     fcstwerr[s] = ce->cstwerr[s];
417     fcperror[s] = ce->cperror[s];
418     for ( Int_t d=0 ; d<11 ;d++ ){
419     Int_t pre = -1;
420     for ( Int_t j=0; j<96 ;j++){
421     if ( j%16 == 0 ) pre++;
422     fcalped[s][d][j] = ce->calped[e][d][j];
423     fcalgood[s][d][j] = ce->calgood[e][d][j];
424     fcalthr[s][d][pre] = ce->calthr[e][d][pre];
425     fcalrms[s][d][j] = ce->calrms[e][d][j];
426     fcalbase[s][d][pre] = ce->calbase[e][d][pre];
427     fcalvar[s][d][pre] = ce->calvar[e][d][pre];
428     };
429     };
430     } else {
431     printf(" CALORIMETER - ERROR: problems finding a good calibration in this file! \n\n ");
432     File->Close();
433     return(-111);
434     };
435     File->Close();
436     return(0);
437     }
438    
439    
440     void Digitizer::DigitizeCALOCALIB() {
441     //
442     // Header of the four sections
443     //
444     fSecCalo[0] = 0xAA00; // XE
445     fSecCalo[1] = 0xB100; // XO
446     fSecCalo[2] = 0xB600; // YE
447     fSecCalo[3] = 0xAD00; // YO
448     //
449     // length of the data is 0x1215
450     //
451     fSecCALOLength[0] = 0x1215; // XE
452     fSecCALOLength[1] = 0x1215; // XO
453     fSecCALOLength[2] = 0x1215; // YE
454     fSecCALOLength[3] = 0x1215; // YO
455     //
456     Int_t chksum = 0;
457     UInt_t tstrip = 0;
458     UInt_t fSecPointer = 0;
459     //
460     for (Int_t sec=0; sec < 4; sec++){
461     //
462     // sec = 0 -> XE 1 -> XO 2-> YE 3 -> YO
463     //
464     fCALOlength = 0;
465     memset(fDataCALO,0,sizeof(UShort_t)*fCALObuffer);
466     fSecPointer = fCALOlength;
467     //
468     // First of all we have section header and packet length
469     //
470     fDataCALO[fCALOlength] = fSecCalo[sec];
471     fCALOlength++;
472     fDataCALO[fCALOlength] = fSecCALOLength[sec];
473     fCALOlength++;
474     //
475     // Section XO is read in the opposite direction respect to the others
476     //
477     chksum = 0;
478     //
479     for (Int_t plane=0; plane < 11; plane++){
480     //
481     if ( sec == 1 ) tstrip = fCALOlength + 96*2;
482     //
483     for (Int_t strip=0; strip < 96; strip++){
484     //
485     chksum += (Int_t)fcalped[sec][plane][strip];
486     //
487     // save value
488     //
489     if ( sec == 1 ){
490     tstrip -= 2;
491     fDataCALO[tstrip] = (Int_t)fcalped[sec][plane][strip];
492     fDataCALO[tstrip+1] = (Int_t)fcalgood[sec][plane][strip];
493     } else {
494     fDataCALO[fCALOlength] = (Int_t)fcalped[sec][plane][strip];
495     fDataCALO[fCALOlength+1] = (Int_t)fcalgood[sec][plane][strip];
496     };
497     fCALOlength +=2;
498     };
499     //
500     };
501     //
502     fDataCALO[fCALOlength] = (UShort_t)chksum;
503     fCALOlength++;
504     fDataCALO[fCALOlength] = 0;
505     fCALOlength++;
506     fDataCALO[fCALOlength] = (UShort_t)((Int_t)(chksum >> 16));
507     fCALOlength++;
508     //
509     // Section XO is read in the opposite direction respect to the others
510     //
511     chksum = 0;
512     //
513     for (Int_t plane=0; plane < 11; plane++){
514     //
515     if ( sec == 1 ) tstrip = fCALOlength+6*2;
516     //
517     for (Int_t strip=0; strip < 6; strip++){
518     //
519     chksum += (Int_t)fcalthr[sec][plane][strip];
520     //
521     // save value
522     //
523     if ( sec == 1 ){
524     tstrip -= 2;
525     fDataCALO[tstrip] = 0;
526     fDataCALO[tstrip+1] = (Int_t)fcalthr[sec][plane][strip];
527     } else {
528     fDataCALO[fCALOlength] = 0;
529     fDataCALO[fCALOlength+1] = (Int_t)fcalthr[sec][plane][strip];
530     };
531     fCALOlength +=2;
532     };
533     //
534     };
535     //
536     fDataCALO[fCALOlength] = 0;
537     fCALOlength++;
538     fDataCALO[fCALOlength] = (UShort_t)chksum;
539     fCALOlength++;
540     fDataCALO[fCALOlength] = 0;
541     fCALOlength++;
542     fDataCALO[fCALOlength] = (UShort_t)((Int_t)(chksum >> 16));
543     fCALOlength++;
544     //
545     // Section XO is read in the opposite direction respect to the others
546     //
547     for (Int_t plane=0; plane < 11; plane++){
548     //
549     if ( sec == 1 ) tstrip = fCALOlength+96*2;
550     //
551     for (Int_t strip=0; strip < 96; strip++){
552     //
553     // save value
554     //
555     if ( sec == 1 ){
556     tstrip -= 2;
557     fDataCALO[tstrip] = 0;
558     fDataCALO[tstrip+1] = (Int_t)fcalrms[sec][plane][strip];
559     } else {
560     fDataCALO[fCALOlength] = 0;
561     fDataCALO[fCALOlength+1] = (Int_t)fcalrms[sec][plane][strip];
562     };
563     fCALOlength += 2;
564     };
565     //
566     };
567     //
568     // Section XO is read in the opposite direction respect to the others
569     //
570     for (Int_t plane=0; plane < 11; plane++){
571     //
572     if ( sec == 1 ) tstrip = fCALOlength+6*4;
573     //
574     for (Int_t strip=0; strip < 6; strip++){
575     //
576     // save value
577     //
578     if ( sec == 1 ){
579     tstrip -= 4;
580     fDataCALO[tstrip] = 0;
581     fDataCALO[tstrip+1] = (Int_t)fcalbase[sec][plane][strip];
582     fDataCALO[tstrip+2] = 0;
583     fDataCALO[tstrip+3] = (Int_t)fcalvar[sec][plane][strip];
584     } else {
585     fDataCALO[fCALOlength] = 0;
586     fDataCALO[fCALOlength+1] = (Int_t)fcalbase[sec][plane][strip];
587     fDataCALO[fCALOlength+2] = 0;
588     fDataCALO[fCALOlength+3] = (Int_t)fcalvar[sec][plane][strip];
589     };
590     fCALOlength +=4;
591     };
592     //
593     };
594     //
595     //
596     // here we calculate and save the CRC
597     //
598     fDataCALO[fCALOlength] = 0;
599     fCALOlength++;
600     Short_t CRC = 0;
601     for (UInt_t i=0; i<(fCALOlength-fSecPointer); i++){
602     CRC=crc(CRC,fDataCALO[i+fSecPointer]);
603     };
604     fDataCALO[fCALOlength] = (UShort_t)CRC;
605     fCALOlength++;
606     //
607     UInt_t length=fCALOlength*2;
608     DigitizePSCU(length,0x18);
609     //
610     // Add padding to 64 bits
611     //
612     AddPadding();
613     //
614     fOutputfile.write(reinterpret_cast<char*>(fDataPSCU),sizeof(UShort_t)*fPSCUbuffer);
615     UShort_t temp[1000000];
616     memset(temp,0,sizeof(UShort_t)*1000000);
617     swab(fDataCALO,temp,sizeof(UShort_t)*fCALOlength); // WE MUST SWAP THE BYTES!!!
618     fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fCALOlength);
619     //
620     // padding to 64 bytes
621     //
622     if ( fPadding ){
623     fOutputfile.write(reinterpret_cast<char*>(fDataPadding),sizeof(UChar_t)*fPadding);
624     };
625     //
626     //
627     };
628     //
629     };
630    
631     void Digitizer::CaloLoadCalib() {
632     //
633     fGivenCaloCalib = 0; // ####@@@@ should be given as input par @@@@####
634     //
635     // first of all load the MIP to ADC conversion values
636     //
637     stringstream calfile;
638     Int_t error = 0;
639     GL_PARAM *glparam = new GL_PARAM();
640     //
641     // determine where I can find calorimeter ADC to MIP conversion file
642     //
643     error = 0;
644     error = glparam->Query_GL_PARAM(3,101,fDbc);
645     //
646     calfile.str("");
647     calfile << glparam->PATH.Data() << "/";
648     calfile << glparam->NAME.Data();
649     //
650     printf("\n Using Calorimeter ADC to MIP conversion file: \n %s \n",calfile.str().c_str());
651     FILE *f;
652     f = fopen(calfile.str().c_str(),"rb");
653     //
654     memset(fCalomip,0,4224*sizeof(fCalomip[0][0][0]));
655     //
656     for (Int_t m = 0; m < 2 ; m++ ){
657     for (Int_t k = 0; k < 22; k++ ){
658     for (Int_t l = 0; l < 96; l++ ){
659     fread(&fCalomip[m][k][l],sizeof(fCalomip[m][k][l]),1,f);
660     };
661     };
662     };
663     fclose(f);
664     //
665     // determine which calibration has to be used and load it for each section
666     //
667     GL_CALO_CALIB *glcalo = new GL_CALO_CALIB();
668     GL_ROOT *glroot = new GL_ROOT();
669     TString fcalname;
670     UInt_t idcalib;
671     UInt_t calibno;
672     UInt_t utime = 0;
673     //
674     for (UInt_t s=0; s<4; s++){
675     //
676     // clear calo calib variables for section s
677     //
678     ClearCaloCalib(s);
679     //
680     if ( fGivenCaloCalib ){
681     //
682     // a time has been given as input on the command line so retrieve the calibration that preceed that time
683     //
684     glcalo->Query_GL_CALO_CALIB(fGivenCaloCalib,utime,s,fDbc);
685     //
686     calibno = glcalo->EV_ROOT;
687     idcalib = glcalo->ID_ROOT_L0;
688     //
689     // determine path and name and entry of the calibration file
690     //
691     printf("\n");
692     printf(" ** SECTION %i **\n",s);
693     //
694     glroot->Query_GL_ROOT(idcalib,fDbc);
695     //
696     stringstream name;
697     name.str("");
698     name << glroot->PATH.Data() << "/";
699     name << glroot->NAME.Data();
700     //
701     fcalname = (TString)name.str().c_str();
702     //
703     printf("\n Section %i : using file %s calibration at entry %i: \n",s,fcalname.Data(),calibno);
704     //
705     } else {
706     error = 0;
707     error = glparam->Query_GL_PARAM(1,104,fDbc);
708     //
709     calfile.str("");
710     calfile << glparam->PATH.Data() << "/";
711     calfile << glparam->NAME.Data();
712     //
713     printf("\n Section %i : using default calorimeter calibration: \n %s \n",s,calfile.str().c_str());
714     //
715     fcalname = (TString)calfile.str().c_str();
716     calibno = s;
717     //
718     };
719     //
720     // load calibration variables in memory
721     //
722     CaloLoadCalib(s,fcalname,calibno);
723     //
724     };
725     //
726     // at this point we have in memory the calorimeter calibration and we can save it to disk in the correct format and use it to digitize the data
727     //
728     delete glparam;
729     delete glcalo;
730     delete glroot;
731     };
732    
733     void Digitizer::DigitizeCALO() {
734     //
735     fModCalo = 0; // 0 is RAW, 1 is COMPRESS, 2 is FULL ####@@@@ should be given as input par @@@@####
736     //
737     //
738     //
739     fCALOlength = 0; // reset total dimension of calo data
740     //
741     // gpamela variables to be used
742     //
743     fhBookTree->SetBranchStatus("Nthcali",1);
744     fhBookTree->SetBranchStatus("Icaplane",1);
745     fhBookTree->SetBranchStatus("Icastrip",1);
746     fhBookTree->SetBranchStatus("Icamod",1);
747     fhBookTree->SetBranchStatus("Enestrip",1);
748     //
749     // call different routines depending on the acq mode you want to simulate
750     //
751     switch ( fModCalo ){
752     case 0:
753     this->DigitizeCALORAW();
754     break;
755     case 1:
756     this->DigitizeCALOCOMPRESS();
757     break;
758     case 2:
759     this->DigitizeCALOFULL();
760     break;
761     };
762     //
763     };
764    
765     Float_t Digitizer::GetCALOen(Int_t sec, Int_t plane, Int_t strip){
766     //
767     // determine plane and strip
768     //
769     Int_t mplane = 0;
770     //
771     // wrong!
772     //
773     // if ( sec == 0 || sec == 3 ) mplane = (plane * 4) + sec + 1;
774     // if ( sec == 1 ) mplane = (plane * 4) + 2 + 1;
775     // if ( sec == 2 ) mplane = (plane * 4) + 1 + 1;
776     //
777     if ( sec == 0 ) mplane = plane * 4 + 1; // it must be 0, 4, 8, ... (+1) from plane = 0, 11
778     if ( sec == 1 ) mplane = plane * 4 + 2 + 1; // it must be 2, 6, 10, ... (+1) from plane = 0, 11
779     if ( sec == 2 ) mplane = plane * 4 + 3 + 1; // it must be 3, 7, 11, ... (+1) from plane = 0, 11
780     if ( sec == 3 ) mplane = plane * 4 + 1 + 1; // it must be 1, 5, 9, ... (+1) from plane = 0, 11
781     //
782     Int_t mstrip = strip + 1;
783     //
784     // search energy release in gpamela output
785     //
786     for (Int_t i=0; i<Nthcali;i++){
787     if ( Icaplane[i] == mplane && Icastrip[i] == mstrip ){
788     return (Enestrip[i]);
789     };
790     };
791     //
792     // if not found it means no energy release so return 0.
793     //
794     return(0.);
795     };
796    
797     void Digitizer::DigitizeCALORAW() {
798     //
799     // some variables
800     //
801     Float_t ens = 0.;
802     UInt_t adcsig = 0;
803     UInt_t adcbase = 0;
804     UInt_t adc = 0;
805     Int_t pre = 0;
806     UInt_t l = 0;
807     UInt_t lpl = 0;
808     UInt_t tstrip = 0;
809     UInt_t fSecPointer = 0;
810     Double_t pedenoise;
811     Float_t rms = 0.;
812     Float_t pedestal = 0.;
813     //
814     // clean the data structure
815     //
816     memset(fDataCALO,0,sizeof(UShort_t)*fCALObuffer);
817     //
818     // Header of the four sections
819     //
820     fSecCalo[0] = 0xEA08; // XE
821     fSecCalo[1] = 0xF108; // XO
822     fSecCalo[2] = 0xF608; // YE
823     fSecCalo[3] = 0xED08; // YO
824     //
825     // length of the data is 0x0428 in RAW mode
826     //
827     fSecCALOLength[0] = 0x0428; // XE
828     fSecCALOLength[1] = 0x0428; // XO
829     fSecCALOLength[2] = 0x0428; // YE
830     fSecCALOLength[3] = 0x0428; // YO
831     //
832     // let's start
833     //
834     fCALOlength = 0;
835     //
836     for (Int_t sec=0; sec < 4; sec++){
837     //
838     // sec = 0 -> XE 1 -> XO 2-> YE 3 -> YO
839     //
840     l = 0; // XE and XO are Y planes
841     if ( sec < 2 ) l = 1; // while YE and YO are X planes
842     //
843     fSecPointer = fCALOlength;
844     //
845     // First of all we have section header and packet length
846     //
847     fDataCALO[fCALOlength] = fSecCalo[sec];
848     fCALOlength++;
849     fDataCALO[fCALOlength] = fSecCALOLength[sec];
850     fCALOlength++;
851     //
852     // selftrigger coincidences - in the future we should add here some code to simulate timing response of pre-amplifiers
853     //
854     for (Int_t autoplane=0; autoplane < 7; autoplane++){
855     fDataCALO[fCALOlength] = 0x0000;
856     fCALOlength++;
857     };
858     //
859     //
860     // here comes data
861     //
862     //
863     // Section XO is read in the opposite direction respect to the others
864     //
865     if ( sec == 1 ){
866     tstrip = 96*11 + fCALOlength;
867     } else {
868     tstrip = 0;
869     };
870     //
871     pre = -1;
872     //
873     for (Int_t strip=0; strip < 96; strip++){
874     //
875     // which is the pre for this strip?
876     //
877     if (strip%16 == 0) {
878     pre++;
879     };
880     //
881     if ( sec == 1 ) tstrip -= 11;
882     //
883     for (Int_t plane=0; plane < 11; plane++){
884     //
885     // here is wrong!!!!
886     //
887     //
888     // if ( plane%2 == 0 && sec%2 != 0){
889     // lpl = plane*2;
890     // } else {
891     // lpl = (plane*2) + 1;
892     // };
893     //
894     if ( sec == 0 || sec == 3 ) lpl = plane * 2;
895     if ( sec == 1 || sec == 2 ) lpl = (plane * 2) + 1;
896     //
897     // get the energy in GeV from the simulation for that strip
898     //
899     ens = this->GetCALOen(sec,plane,strip);
900     //
901     // convert it into ADC channels
902     //
903     adcsig = int(ens*fCalomip[l][lpl][strip]/fCALOGeV2MIPratio);
904     //
905     // sum baselines
906     //
907     adcbase = (UInt_t)fcalbase[sec][plane][pre];
908     //
909     // add noise and pedestals
910     //
911     pedestal = fcalped[sec][plane][strip];
912     rms = fcalrms[sec][plane][strip]/4.;
913     //
914     // Add random gaussian noise of RMS rms and Centered in the pedestal
915     //
916     pedenoise = gRandom->Gaus((Double_t)pedestal,(Double_t)rms);
917     //
918     // Sum all contribution
919     //
920     adc = adcsig + adcbase + (Int_t)round(pedenoise);
921     //
922     // Signal saturation
923     //
924     if ( adc > 0x7FFF ) adc = 0x7FFF;
925     //
926     // save value
927     //
928     if ( sec == 1 ){
929     fDataCALO[tstrip] = adc;
930     tstrip++;
931     } else {
932     fDataCALO[fCALOlength] = adc;
933     };
934     fCALOlength++;
935     //
936     };
937     //
938     if ( sec == 1 ) tstrip -= 11;
939     //
940     };
941     //
942     // here we calculate and save the CRC
943     //
944     Short_t CRC = 0;
945     for (UInt_t i=0; i<(fCALOlength-fSecPointer); i++){
946     CRC=crc(CRC,fDataCALO[i+fSecPointer]);
947     };
948     fDataCALO[fCALOlength] = (UShort_t)CRC;
949     fCALOlength++;
950     //
951     };
952     //
953     // for (Int_t i=0; i<fCALOlength; i++){
954     // printf(" WORD %i DIGIT %0x \n",i,fDataCALO[i]);
955     // };
956     //
957     };
958    
959     void Digitizer::DigitizeCALOCOMPRESS() {
960     //
961     printf(" COMPRESS MODE STILL NOT IMPLEMENTED! \n");
962     //
963     this->DigitizeCALORAW();
964     return;
965     //
966     //
967     //
968     fSecCalo[0] = 0xEA00;
969     fSecCalo[1] = 0xF100;
970     fSecCalo[2] = 0xF600;
971     fSecCalo[3] = 0xED00;
972     //
973     // length of the data in DSP mode must be calculated on fly during digitization
974     //
975     memset(fSecCALOLength,0x0,4*sizeof(UShort_t));
976     //
977     // here comes raw data
978     //
979     Int_t en = 0;
980     //
981     for (Int_t sec=0; sec < 4; sec++){
982     fDataCALO[en] = fSecCalo[sec];
983     en++;
984     fDataCALO[en] = fSecCALOLength[sec];
985     en++;
986     for (Int_t plane=0; plane < 11; plane++){
987     for (Int_t strip=0; strip < 11; strip++){
988     fDataCALO[en] = 0x0;
989     en++;
990     };
991     };
992     };
993     //
994     };
995    
996     void Digitizer::DigitizeCALOFULL() {
997     //
998     printf(" FULL MODE STILL NOT IMPLEMENTED! \n");
999     //
1000     this->DigitizeCALORAW();
1001     return;
1002     //
1003     fSecCalo[0] = 0xEA00;
1004     fSecCalo[1] = 0xF100;
1005     fSecCalo[2] = 0xF600;
1006     fSecCalo[3] = 0xED00;
1007     //
1008     // length of the data in DSP mode must be calculated on fly during digitization
1009     //
1010     memset(fSecCALOLength,0x0,4*sizeof(UShort_t));
1011     //
1012     // here comes raw data
1013     //
1014     Int_t en = 0;
1015     //
1016     for (Int_t sec=0; sec < 4; sec++){
1017     fDataCALO[en] = fSecCalo[sec];
1018     en++;
1019     fDataCALO[en] = fSecCALOLength[sec];
1020     en++;
1021     for (Int_t plane=0; plane < 11; plane++){
1022     for (Int_t strip=0; strip < 11; strip++){
1023     fDataCALO[en] = 0x0;
1024     en++;
1025     };
1026     };
1027     };
1028     //
1029     };
1030    
1031     void Digitizer::DigitizeTRIGGER() {
1032     //fDataTrigger: 153 bytes
1033     for (Int_t j=0; j < 153; j++)
1034     fDataTrigger[0]=0x00;
1035     };
1036    
1037     Int_t Digitizer::DigitizeTOF() {
1038     //fDataTof: 12 x 23 bytes (=276 bytes)
1039     UChar_t *pTof=fDataTof;
1040    
1041     // --- activate branches:
1042     fhBookTree->SetBranchStatus("Nthtof",1);
1043     fhBookTree->SetBranchStatus("Ipltof",1);
1044     fhBookTree->SetBranchStatus("Ipaddle",1);
1045     fhBookTree->SetBranchStatus("Xintof",1);
1046     fhBookTree->SetBranchStatus("Yintof",1);
1047     fhBookTree->SetBranchStatus("Xouttof",1);
1048     fhBookTree->SetBranchStatus("Youttof",1);
1049     fhBookTree->SetBranchStatus("Ereltof",1);
1050     fhBookTree->SetBranchStatus("Timetof",1);
1051     // not yet used: Zintof, Xouttof, Youttof, Zouttof
1052    
1053     // ------ evaluate energy in each pmt: ------
1054     // strip geometry (lenght/width)
1055     Float_t dimel[6] = {33.0, 40.8 ,18.0, 15.0, 15.0, 18.0};
1056 orsi 1.2 //Float_t dimes[6] = {5.1, 5.5, 7.5, 9.0, 6.0, 5.0};
1057 silvio 1.1
1058     // S11 8 paddles 33.0 x 5.1 cm
1059     // S12 6 paddles 40.8 x 5.5 cm
1060     // S21 2 paddles 18.0 x 7.5 cm
1061     // S22 2 paddles 15.0 x 9.0 cm
1062     // S31 3 paddles 15.0 x 6.0 cm
1063     // S32 3 paddles 18.0 x 5.0 cm
1064    
1065     // distance from the interaction point to the pmts (right,left)
1066     Float_t xpath[2]={0., 0.}; /*path(cm) in X per S12,S21,S32 verso il pmt DX o SX*/
1067     Float_t ypath[2]={0., 0.}; /*path(cm) in Y per S11,S22,S31 verso il pmt DX o SX*/
1068     Float_t FGeo[2]={0., 0.}; /* fattore geometrico */
1069    
1070     const Float_t Pho_keV = 10.; // photons per keV in scintillator
1071     const Float_t echarge = 1.6e-19; // carica dell'elettrone
1072     Float_t Npho=0.;
1073     Float_t QevePmt_pC[48];
1074     Float_t QhitPad_pC[2]={0., 0.};
1075     Float_t QhitPmt_pC[2]={0., 0.};
1076     Float_t pmGain = 3.5e6; /* Gain: per il momento uguale per tutti */
1077     Float_t effi=0.21; /* Efficienza di fotocatodo */
1078     Float_t ADC_pC=1.666667; // ADC_ch/pC conversion = 0.6 pC/channel (+30 di offset)
1079     Float_t ADCoffset=30.;
1080     Int_t ADClast=4095; // no signal --> ADC ch=4095
1081     Int_t ADCtof[48];
1082     //Float_t ADCsat=3100; ci pensiamo in futuro !
1083     //Float_t pCsat=2500;
1084     for(Int_t i=0; i<48; i++){
1085     QevePmt_pC[i] = 0;
1086     ADCtof[i]=0;
1087     }
1088    
1089     // ------ read calibration file (get A1, A2, lambda1, lambda2)
1090     ifstream fileTriggerCalib;
1091     TString ftrigname="TrigCalibParam.txt";
1092     fileTriggerCalib.open(ftrigname.Data());
1093     if ( !fileTriggerCalib ) {
1094     printf("debug: no trigger calib file!\n");
1095     return(-117); //check output!
1096     };
1097     Float_t atte1[48],atte2[48],lambda1[48],lambda2[48];
1098     Int_t temp=0;
1099     for(Int_t i=0; i<48; i++){
1100     fileTriggerCalib >> temp;
1101     fileTriggerCalib >> atte1[i];
1102     fileTriggerCalib >> atte2[i];
1103     fileTriggerCalib >> lambda1[i];
1104     fileTriggerCalib >> lambda2[i];
1105     fileTriggerCalib >> temp;
1106     }
1107     fileTriggerCalib.close();
1108    
1109     // Read from file the 48*4 values of the attenuation fit function
1110     // NB: lambda<0; x,y defined in gpamela (=0 in the centre of the cavity)
1111     // Qhitpmt_pC = atte1 * exp(x/lambda1) + atte2 * exp(x/lambda2)
1112    
1113     // fine lettura dal file */
1114    
1115     //const Int_t nmax=??; = Nthtof
1116 orsi 1.2 Int_t ip, ipad;
1117     //Int_t ipmt;
1118 silvio 1.1 Int_t pmtleft=0, pmtright=0;
1119     Int_t *pl, *pr;
1120     pl = &pmtleft;
1121     pr = &pmtright;
1122    
1123 orsi 1.2 // TDC variables:
1124     Int_t TDClast=4095; // no signal --> ADC ch=4095
1125     Int_t TDCint[48];
1126     Float_t tdc[48],tdc1[48],tdcpmt[48];
1127     for(Int_t i=0; i<48; i++)
1128     tdcpmt[i] = 1000.;
1129     Float_t thresh=1.; // to be defined better... (Wolfgang)
1130    
1131     // === TDC: simulate timing for each paddle
1132     Float_t dt1 = 285.e-12 ; // single PMT resolution
1133     Float_t tdcres[50],c1_S[50],c2_S[50],c3_S[50];
1134     for(Int_t j=0;j<48;j++) tdcres[j] = 50.E-12; // TDC resolution 50 picosec
1135     for(Int_t j=0;j<48;j++) c1_S[j] = 500.; // cable length in channels
1136     for(Int_t j=0;j<48;j++) c2_S[j] = 0.;
1137     for(Int_t j=0;j<48;j++) c3_S[j] = 1000.;
1138     for(Int_t j=0;j<48;j++) c1_S[j] = c1_S[j]*tdcres[j]; // cable length in sec
1139     for(Int_t j=0;j<48;j++) c2_S[j] = c2_S[j]*tdcres[j];
1140     // ih = 0 + i1; // not used?? (Silvio)
1141    
1142 silvio 1.1 /* ********************************** inizio loop sugli hit */
1143    
1144     for(Int_t nh=0; nh<Nthtof; nh++){
1145    
1146     for(Int_t j=0; j<2; j++) { // already done!! remove???
1147     xpath[j]=0.;
1148     ypath[j]=0.;
1149     FGeo[j]=0.;
1150     }
1151    
1152 orsi 1.2 Float_t s_l_g[6] = {8.0, 8.0, 20.9, 22.0, 9.8, 8.3 }; // length of the lightguide
1153     Float_t t1,t2,veff,veff1,veff0 ;
1154     veff0 = 100.*1.0e8 ; // light velocity in the scintillator in m/sec
1155     veff1 = 100.*1.5e8; // light velocity in the lightguide in m/sec
1156     veff=veff0; // signal velocity in the paddle
1157    
1158     t1 = Timetof[nh] ; // Start
1159     t2 = Timetof[nh] ;
1160    
1161     // Donatella
1162 silvio 1.1 // ridefiniz. piano e pad per i vettori in C
1163     ip = Ipltof[nh]-1;
1164     ipad = Ipaddle[nh]-1;
1165     pmtleft=0;
1166     pmtright=0;
1167    
1168     //Paddle2Pmt((Int_t)ip, (Int_t) ipad, (Int_t*) &pmtleft, (Int_t*) &pmtright);
1169     Paddle2Pmt(ip, ipad, &pmtleft, &pmtright);
1170     //Paddle2Pmt(ip, ipad, pl, pr);
1171    
1172     // per avere anche la corrispondenza pmt --> half board e canale
1173     // metodo GetPMTIndex(Int_t ipmt, Int_t &hb, Int_t &ch) // non lo usiamo x ora
1174    
1175     /*calcola la pos media e il path all'interno della paddle */
1176    
1177     Float_t tpos=0.;
1178     Float_t path[2] = {0., 0.};
1179     //--- Strip in Y = S11,S22,S31 ------
1180     if(ip==0 || ip==3 || ip==4)
1181     tpos = (Yintof[nh]+Youttof[nh])/2.;
1182     else
1183     if(ip==1 || ip==2 || ip==5) //--- Strip in X per S12,S21,S32
1184     tpos = (Xintof[nh]+Xouttof[nh])/2.;
1185     else if (ip!=6)
1186     printf("*** Warning: this option should never occur! (ip=%2i, nh=%2i)\n",ip,nh);
1187     path[0]= tpos + dimel[ip]/2.;
1188     path[1]= dimel[ip]/2.- tpos;
1189    
1190     // cout <<"Strip N. ="<< ipaddle <<" piano n.= "<< iplane <<" POSIZ = "<< tpos <<"\n";
1191    
1192     /* per il momento metto un fattore geometrico costante*/
1193     FGeo[0] =0.5;
1194     FGeo[1] =0.5;
1195     // FGeo[1] = atan(path[1]/dimes[ip])/6.28318; // frazione fotoni verso SX
1196     // FGeo[2] = atan(path[2]/dimes[ip])/6.28318; // e verso DX
1197    
1198     /* rimando la fluttuazione poissoniana sui fotoni prodotti
1199     sto studiando come funziona la funzione:
1200     long int i = sto.Poisson(double x); */
1201     // Npho = Poisson(ERELTOF[nh])*Pho_keV*1e6 Eloss in GeV ?
1202     Npho = Ereltof[nh]*Pho_keV*10.0e6; // Eloss in GeV ?
1203    
1204     Float_t knorm[2]={0., 0.}; // Donatella
1205     Float_t Atten[2]={0., 0.}; // Donatella
1206     for(Int_t j=0; j<2; j++){
1207     QhitPad_pC[j]= Npho*FGeo[j]*effi*pmGain*echarge;
1208     knorm[j]=QhitPad_pC[j]/(atte1[pmtleft+j]*exp((dimel[ip]/2.*pow(-1,j+1))/lambda1[pmtleft+j]) +
1209     atte2[pmtleft+j]*exp((dimel[ip]/2.*pow(-1,j+1))/lambda2[pmtleft+j]));
1210    
1211     Atten[j]=knorm[j]*(atte1[pmtleft+j]*exp(tpos/lambda1[pmtleft+j]) +
1212     atte2[pmtleft+j]*exp(tpos/lambda2[pmtleft+j]));
1213    
1214     QhitPmt_pC[j]= QhitPad_pC[j]*Atten[j];
1215     }
1216    
1217     QevePmt_pC[pmtleft] += QhitPmt_pC[0];
1218     QevePmt_pC[pmtright] += QhitPmt_pC[1];
1219    
1220 orsi 1.2 // TDC
1221     t2 = t2 + fabs(path[0]/veff) + s_l_g[ip]/veff1 ; // Signal reaches PMT
1222     t1 = t1 + fabs(path[1]/veff) + s_l_g[ip]/veff1;
1223    
1224     TRandom r;
1225     t1 = r.Gaus(t1,dt1); //apply gaussian error dt
1226     t2 = r.Gaus(t2,dt1); //apply gaussian error dt
1227    
1228     t1 = t1 + c1_S[pmtleft] ; // Signal reaches Discriminator ,TDC starts to run
1229     t2 = t2 + c1_S[pmtright] ;
1230    
1231     // check if signal is above threshold
1232     // then check if tdcpmt is already filled by another hit...
1233     // only re-fill if time is smaller
1234    
1235     if (QhitPmt_pC[0] > thresh)
1236     if (tdcpmt[pmtleft] < 1000.) // is already filled!
1237     if (t1 < tdcpmt[pmtleft]) {
1238     tdcpmt[pmtleft] = t1;
1239     t1 = t1 + c2_S[pmtleft] ; // Signal reaches Coincidence
1240     tdc[pmtleft] = t1;
1241     }
1242    
1243     if (QhitPmt_pC[1] > thresh)
1244     if (tdcpmt[pmtright] < 1000.) // is already filled!
1245     if (t2 < tdcpmt[pmtright]) {
1246     tdcpmt[pmtright] = t2;
1247     t2 = t2 + c2_S[pmtright] ;
1248     tdc[pmtright] = t2;
1249     }
1250    
1251     } // **************************************** end loop over hits
1252    
1253     // ====== ADC ======
1254 silvio 1.1 for(Int_t i=0; i<48; i++){
1255     if(QevePmt_pC[i] != 0.){
1256     ADCtof[i]= (Int_t)(ADC_pC*QevePmt_pC[i] + ADCoffset);
1257     if(ADCtof[i]> ADClast) ADCtof[i]=ADClast;
1258     } else
1259     ADCtof[i]= ADClast;
1260     };
1261 orsi 1.2
1262    
1263     // ====== build TDC coincidence ======
1264    
1265     Float_t t_coinc = 0;
1266     Int_t ilast = 100;
1267     for (Int_t ii=0; ii<48;ii++)
1268     if (tdc[ii] > t_coinc) {
1269     t_coinc = tdc[ii];
1270     ilast = ii;
1271     }
1272    
1273     // cout<<ilast<<" "<<t_coinc<<endl;
1274     // At t_coinc trigger condition is fulfilled
1275    
1276     for (Int_t ii=0; ii<48;ii++){
1277     // if (tdc[ii] != 0) tdc1[ii] = t_coinc - tdc[ii]; // test 1
1278     if (tdc[ii] != 0) tdc1[ii] = t_coinc - tdcpmt[ii]; // test 2
1279     tdc1[ii] = tdc1[ii]/tdcres[ii]; // divide by TDC resolution
1280     if (tdc[ii] != 0) tdc1[ii] = tdc1[ii] + c3_S[ii]; // add cable length c3
1281    
1282     } // missing parenthesis inserted! (Silvio)
1283    
1284     for(Int_t i=0; i<48; i++){
1285     if(tdc1[i] != 0.){
1286     TDCint[i]=(Int_t)tdc1[i];
1287     //ADC[i]= ADC_pC * QevePmt_pC[i] + ADCoffset;
1288     //if(ADC[i]> ADClast) ADC[i]=ADClast;
1289     } else
1290     TDCint[i]= TDClast;
1291     }
1292 silvio 1.1
1293 orsi 1.2 // ====== write fDataTof =======
1294 silvio 1.1 UChar_t tofBin;
1295     for (Int_t j=0; j < 12; j++){
1296     Int_t j12=j*12;
1297     fDataTof[j12+0]=0x00; // TDC_ID
1298     fDataTof[j12+1]=0x00; // EV_COUNT
1299     fDataTof[j12+2]=0x00; // TDC_MASK (1)
1300     fDataTof[j12+3]=0x00; // TDC_MASK (2)
1301     for (Int_t k=0; k < 4; k++){
1302     Int_t jk12=j12+k;
1303     tofBin=(UChar_t)(ADCtof[k+4*j]/256); // ADC# (msb) (#=1+k+4*j)
1304     fDataTof[jk12+4] = Bin2GrayTof(tofBin,fDataTof[jk12+4]);
1305     tofBin=(UChar_t)(ADCtof[k+4*j]%256); // ADC# (lsb)
1306     fDataTof[jk12+5] = Bin2GrayTof(tofBin,fDataTof[jk12+5]);
1307 orsi 1.2 tofBin=(UChar_t)(TDCint[k+4*j]/256); // TDC# (msb)
1308     fDataTof[jk12+6]=Bin2GrayTof(tofBin,fDataTof[jk12+6]);
1309     tofBin=(UChar_t)(TDCint[k+4*j]%256); // TDC# (lsb)
1310     fDataTof[jk12+7]=Bin2GrayTof(tofBin,fDataTof[jk12+7]);
1311 silvio 1.1 };
1312     fDataTof[j12+20]=0x00; // TEMP1
1313     fDataTof[j12+21]=0x00; // TEMP2
1314     fDataTof[j12+22]= EvaluateCrcTof(pTof); // CRC
1315     pTof+=23;
1316     };
1317     return(0);
1318     };
1319    
1320     UChar_t Digitizer::Bin2GrayTof(UChar_t binaTOF,UChar_t grayTOF){
1321     union graytof_data {
1322     UChar_t word;
1323     struct bit_field {
1324     unsigned b0:1;
1325     unsigned b1:1;
1326     unsigned b2:1;
1327     unsigned b3:1;
1328     unsigned b4:1;
1329     unsigned b5:1;
1330     unsigned b6:1;
1331     unsigned b7:1;
1332     } bit;
1333     } bi,gr;
1334     //
1335     bi.word = binaTOF;
1336     gr.word = grayTOF;
1337     //
1338     gr.bit.b0 = bi.bit.b1 ^ bi.bit.b0;
1339     gr.bit.b1 = bi.bit.b2 ^ bi.bit.b1;
1340     gr.bit.b2 = bi.bit.b3 ^ bi.bit.b2;
1341     gr.bit.b3 = bi.bit.b3;
1342     //
1343     /* bin to gray conversion 4 bit per time*/
1344     //
1345     gr.bit.b4 = bi.bit.b5 ^ bi.bit.b4;
1346     gr.bit.b5 = bi.bit.b6 ^ bi.bit.b5;
1347     gr.bit.b6 = bi.bit.b7 ^ bi.bit.b6;
1348     gr.bit.b7 = bi.bit.b7;
1349     //
1350     return(gr.word);
1351     }
1352    
1353     UChar_t Digitizer::EvaluateCrcTof(UChar_t *pTof) {
1354     // UChar_t crcTof=0x00;
1355     // for (Int_t jp=0; jp < 23; jp++){
1356     // crcTof = crc8(...)
1357     // }
1358     return(0x00);
1359     };
1360    
1361     //void Digitizer::Paddle2Pmt(Int_t plane, Int_t paddle, Int_t* &pmtleft, Int_t* &pmtright){
1362     void Digitizer::Paddle2Pmt(Int_t plane, Int_t paddle, Int_t *pl, Int_t *pr){
1363     //* @param plane (0 - 5)
1364     //* @param paddle (plane=0, paddle = 0,...5)
1365     //* @param padid (0 - 23)
1366     //
1367     Int_t padid=-1;
1368     Int_t pads[6]={8,6,2,2,3,3};
1369     //
1370     Int_t somma=0;
1371     Int_t np=plane;
1372     for(Int_t j=0; j<np; j++)
1373     somma+=pads[j];
1374     padid=paddle+somma;
1375     *pl = padid*2;
1376     *pr = *pr + 1;
1377     };
1378    
1379     void Digitizer::DigitizeAC() {
1380     // created: J. Conrad, KTH
1381     // modified: S. Orsi, INFN Roma2
1382    
1383     fDataAC[0] = 0xACAC;
1384     fDataAC[64]= 0xACAC;
1385     fDataAC[1] = 0xAC11; // main card
1386     fDataAC[65] = 0xAC22; // extra card
1387    
1388     // the third word is a status word (dummy)
1389     fDataAC[2] = 0xFFFF; //FFEF?
1390     fDataAC[66] = 0xFFFF;
1391    
1392     const UInt_t nReg = 6;
1393    
1394     // Registers (dummy)
1395     for (UInt_t i=0; i<=nReg; i++){
1396     fDataAC[i+4] = 0xFFFF;
1397     fDataAC[i+68] = 0xFFFF;
1398     }
1399    
1400     // the last word is a CRC
1401     // Dummy for the time being, but it might need to be calculated in the end
1402     fDataAC[63] = 0xABCD;
1403     fDataAC[127] = 0xABCD;
1404    
1405     // shift registers, which one is with respect to PMT, where in
1406     // shift registers is a question of time relative trigger
1407     // In level2: hitmap, hitmap-status (synchronised with a trigger),
1408     // status
1409    
1410     for (UInt_t i=0; i<=15; i++){
1411     fDataAC[i+11] = 0x0000;
1412     fDataAC[i+75] = 0x0000;
1413     }
1414    
1415     // singles counters are dummy
1416    
1417     for (UInt_t i=0; i<=16; i++){
1418     fDataAC[i+26] = 0x0000;
1419     fDataAC[i+90] = 0x0000;
1420     }
1421    
1422     // coincidences are dummy
1423    
1424     for (UInt_t i=0; i<=7; i++){
1425     fDataAC[i+42] = 0x0000;
1426     fDataAC[i+106] = 0x0000;
1427     }
1428    
1429     // increments for every trigger might be needed at some point.
1430     // dummy for now
1431     fDataAC[50] = 0x0000;
1432     fDataAC[114] = 0x0000;
1433    
1434     // dummy FPGA clock
1435    
1436     fDataAC[51] = 0x006C;
1437     fDataAC[52] = 0x6C6C;
1438     fDataAC[115] = 0x006C;
1439     fDataAC[116] = 0x6C6C;
1440    
1441    
1442     // dummy temperatures
1443     fDataAC[53] = 0x0000;
1444     fDataAC[54] = 0x0000;
1445     fDataAC[117] = 0x0000;
1446     fDataAC[118] = 0x0000;
1447    
1448    
1449     // dummy DAC thresholds
1450     for (UInt_t i=0; i<=7; i++){
1451     fDataAC[i+55] = 0x1A13;
1452     fDataAC[i+119] = 0x1A13;
1453     }
1454    
1455     // We activate all branches. Once the digitization algorithm
1456     // is determined only the branches need to activated which involve needed
1457     // information
1458    
1459     fhBookTree->SetBranchStatus("Nthcat",1);
1460     fhBookTree->SetBranchStatus("Iparcat",1);
1461     fhBookTree->SetBranchStatus("Icat",1);
1462     fhBookTree->SetBranchStatus("Xincat",1);
1463     fhBookTree->SetBranchStatus("Yincat",1);
1464     fhBookTree->SetBranchStatus("Zincat",1);
1465     fhBookTree->SetBranchStatus("Xoutcat",1);
1466     fhBookTree->SetBranchStatus("Youtcat",1);
1467     fhBookTree->SetBranchStatus("Zoutcat",1);
1468     fhBookTree->SetBranchStatus("Erelcat",1);
1469     fhBookTree->SetBranchStatus("Timecat",1);
1470     fhBookTree->SetBranchStatus("Pathcat",1);
1471     fhBookTree->SetBranchStatus("P0cat",1);
1472     fhBookTree->SetBranchStatus("Nthcas",1);
1473     fhBookTree->SetBranchStatus("Iparcas",1);
1474     fhBookTree->SetBranchStatus("Icas",1);
1475     fhBookTree->SetBranchStatus("Xincas",1);
1476     fhBookTree->SetBranchStatus("Yincas",1);
1477     fhBookTree->SetBranchStatus("Zincas",1);
1478     fhBookTree->SetBranchStatus("Xoutcas",1);
1479     fhBookTree->SetBranchStatus("Youtcas",1);
1480     fhBookTree->SetBranchStatus("Zoutcas",1);
1481     fhBookTree->SetBranchStatus("Erelcas",1);
1482     fhBookTree->SetBranchStatus("Timecas",1);
1483     fhBookTree->SetBranchStatus("Pathcas",1);
1484     fhBookTree->SetBranchStatus("P0cas",1);
1485     fhBookTree->SetBranchStatus("Nthcard",1);
1486     fhBookTree->SetBranchStatus("Iparcard",1);
1487     fhBookTree->SetBranchStatus("Icard",1);
1488     fhBookTree->SetBranchStatus("Xincard",1);
1489     fhBookTree->SetBranchStatus("Yincard",1);
1490     fhBookTree->SetBranchStatus("Zincard",1);
1491     fhBookTree->SetBranchStatus("Xoutcard",1);
1492     fhBookTree->SetBranchStatus("Youtcard",1);
1493     fhBookTree->SetBranchStatus("Zoutcard",1);
1494     fhBookTree->SetBranchStatus("Erelcard",1);
1495     fhBookTree->SetBranchStatus("Timecard",1);
1496     fhBookTree->SetBranchStatus("Pathcard",1);
1497     fhBookTree->SetBranchStatus("P0card",1);
1498    
1499     // In this simpliefied approach we will assume that once
1500     // a particle releases > 0.5 mip in one of the 12 AC detectors it
1501     // will fire. We will furthermore assume that both cards read out
1502     // identical data.
1503    
1504     // If you develop you digitization algorithm, you should start by
1505     // identifying the information present in level2 (post-darth-vader)
1506     // data.
1507    
1508     Float_t SumEcat[5];
1509     Float_t SumEcas[5];
1510     Float_t SumEcard[5];
1511     for (Int_t k= 0;k<5;k++){
1512     SumEcat[k]=0.;
1513     SumEcas[k]=0.;
1514     SumEcard[k]=0.;
1515     };
1516    
1517     if (Nthcat>50 || Nthcas>50 || Nthcard>50)
1518     printf("Error! NthAC out of range!\n\n");
1519    
1520     // look in CAT
1521     // for (UInt_t k= 0;k<50;k++){
1522     for (Int_t k= 0;k<Nthcat;k++){
1523     if (Erelcat[k] > 0)
1524     SumEcat[Icat[k]] += Erelcat[k];
1525     };
1526    
1527     // look in CAS
1528     for (Int_t k= 0;k<Nthcas;k++){
1529     if (Erelcas[k] >0)
1530     SumEcas[Icas[k]] += Erelcas[k];
1531     };
1532    
1533     // look in CARD
1534     for (Int_t k= 0;k<Nthcard;k++){
1535     if (Erelcard[k] >0)
1536     SumEcard[Icard[k]] += Erelcard[k];
1537     };
1538    
1539     // channel mapping Hit Map
1540     // 1 CARD4 0 LSB
1541     // 2 CAT2 0
1542     // 3 CAS1 0
1543     // 4 NC 0
1544     // 5 CARD2 0
1545     // 6 CAT4 1
1546     // 7 CAS4 0
1547     // 8 NC 0
1548     // 9 CARD3 0
1549     // 10 CAT3 0
1550     // 11 CAS3 0
1551     // 12 NC 0
1552     // 13 CARD1 0
1553     // 14 CAT1 0
1554     // 15 CAS2 0
1555     // 16 NC 0 MSB
1556    
1557     // In the first version only the hit-map is filled, not the SR.
1558    
1559     // Threshold: 0.8 MeV.
1560    
1561     Float_t thr = 8e-4;
1562    
1563     fDataAC[3] = 0x0000;
1564    
1565     if (SumEcas[0] > thr) fDataAC[3] = 0x0004;
1566     if (SumEcas[1] > thr) fDataAC[3] += 0x4000;
1567     if (SumEcas[2] > thr) fDataAC[3] += 0x0400;
1568     if (SumEcas[3] > thr) fDataAC[3] += 0x0040;
1569    
1570     if (SumEcat[0] > thr) fDataAC[3] += 0x2000;
1571     if (SumEcat[1] > thr) fDataAC[3] += 0x0002;
1572     if (SumEcat[2] > thr) fDataAC[3] += 0x0200;
1573     if (SumEcat[3] > thr) fDataAC[3] += 0x0020;
1574    
1575     if (SumEcard[0] > thr) fDataAC[3] += 0x1000;
1576     if (SumEcard[1] > thr) fDataAC[3] += 0x0010;
1577     if (SumEcard[2] > thr) fDataAC[3] += 0x0100;
1578     if (SumEcard[3] > thr) fDataAC[3] += 0x0001;
1579    
1580     fDataAC[67] = fDataAC[3];
1581    
1582     // for (Int_t i=0; i<fACbuffer; i++){
1583     // printf("%0x ",fDataAC[i]);
1584     // if ((i+1)%8 ==0) cout << endl;
1585     // }
1586     };
1587    
1588    
1589    
1590 orsi 1.2 void Digitizer::DigitizeS4(){
1591     // creato: S. Borisov, INFN Roma2 e MEPHI, Sett 2007
1592     TString ciao,modo="ns";
1593     Int_t i,j,t,NdF,pmt,NdFT,S4,S4v=0,S4p=32;
1594     Float_t E0,E1=1e-6,Ert,X,Y,Z,x,y,z,V[3],Xs[2],Ys[2],Zs[2],Yp[6],q,w,p=0.1,l,l0=500.;
1595     Xs[0]=-24.1;
1596     Xs[1]=24.1;
1597     Ys[0]=-24.1;
1598     Ys[1]=24.1;
1599     Zs[0]=-0.5;
1600     Zs[1]=0.5;
1601     Yp[0]=-20.;
1602     Yp[2]=-1.;
1603     Yp[4]=17.;
1604     for(i=0;i<3;i++)
1605     Yp[2*i+1]=Yp[2*i]+3;
1606     srand(time(NULL));
1607     // --- activate branches:
1608     fhBookTree->SetBranchStatus("Nthtof",1);
1609     fhBookTree->SetBranchStatus("Ipltof",1);
1610     fhBookTree->SetBranchStatus("Ipaddle",1);
1611 silvio 1.1
1612 orsi 1.2 fhBookTree->SetBranchStatus("Xintof",1);
1613     fhBookTree->SetBranchStatus("Yintof",1);
1614     fhBookTree->SetBranchStatus("Xouttof",1);
1615     fhBookTree->SetBranchStatus("Youttof",1);
1616    
1617     fhBookTree->SetBranchStatus("Ereltof",1);
1618     fhBookTree->SetBranchStatus("Timetof",1);
1619     NdFT=0;
1620     Ert=0;
1621     for(i=0;i<Nthtof;i++){
1622     if(Ipltof[i]!=6) continue;
1623     Ert+=Ereltof[i];
1624    
1625    
1626     if(modo=="ns") continue;
1627     NdF=Int_t(Ereltof[i]/E1);
1628     NdFT=0;
1629     X=Xintof[i];
1630     Y=Yintof[i];
1631     Z=((Float_t)random()/(Float_t)0x7fffffff)-0.5;
1632     //cout<<"XYZ "<<X<<" "<<Y<<" "<<Z<<endl;
1633     for(j=0;j<NdF;j++){
1634     q=(Float_t)random()/(Float_t)0x7fffffff;
1635     w=(Float_t)random()/(Float_t)0x7fffffff;
1636     // cout<<"qw "<<q<<" "<<w<<endl;
1637     V[0]=p*cos(6.28318*q);
1638     V[1]=p*sin(6.28318*q);
1639     V[2]=p*(2.*w-1.);
1640     pmt=0;
1641     x=X;
1642     y=Y;
1643     z=Z;
1644     while(pmt==0 && (x>Xs[0] && x<Xs[1])&&(y>Ys[0] && y<Ys[1])&&(z>Zs[0] && z<Zs[1])){
1645     l=0;
1646     while(pmt==0 && (x>Xs[0] && x<Xs[1])&&(y>Ys[0] && y<Ys[1])&&(z>Zs[0] && z<Zs[1])){
1647     x+=V[0];
1648     y+=V[1];
1649     z+=V[2];
1650     l+=p;
1651     //cout<<x<<" "<<y<<" "<<z<<" "<<l<<endl;
1652     //cin>>ciao;
1653     }
1654     if((x<Xs[0]+p || x>Xs[1]-p)&&(y>Ys[0]+p && y<Ys[1]-p)&&(z>Zs[0]+p && z<Zs[1]-p)){
1655     for(t=0;t<3;t++){
1656     if(y>=Yp[2*t] && y<Yp[2*t+1]){
1657     if(pmt==0)NdFT++;
1658     pmt=1;
1659     //cout<<NdFT<<endl;
1660     break;
1661     }
1662     }
1663     if(pmt==1)break;
1664     V[0]=-V[0];
1665     }
1666     q=(Float_t)random()/(Float_t)0x7fffffff;
1667     w=1-exp(-l/l0);
1668     if(q<w)break;
1669     q=(Float_t)random()/(Float_t)0x7fffffff;
1670     w=0.5;
1671     if(q<w)break;
1672     if((x>Xs[0]+p && x<Xs[1]-p)&&(y<Ys[0]+p || y>Ys[1]-p)&&(z>Zs[0]+p && z<Zs[1]-p))V[1]=-V[1];
1673     if((x>Xs[0]+p && x<Xs[1]-p)&&(y>Ys[0]+p && y<Ys[1]-p)&&(z<Zs[0]+p || z>Zs[1]-p))V[2]=-V[2];
1674     x+=V[0];
1675     y+=V[1];
1676     z+=V[2];
1677     l=0;
1678     //cout<<x<<" "<<y<<" "<<z<<" "<<l<<endl;
1679     //cin>>ciao;
1680     }
1681     }
1682     }
1683     Ert=Ert/0.002;
1684     q=(Float_t)(random())/(Float_t)(0x7fffffff);
1685     w=0.7;
1686     //E0=Float_t(4064)/7;
1687     E0=4064./7.;
1688     S4=(Int_t)(4064.*(1.-exp(-int(Ert)/E0)));
1689     //S4=Ert*7;
1690     i=S4/4;
1691     if(S4%4==0)
1692     S4v=S4+S4p;
1693     else if(S4%4==1) {
1694     if(q<w) S4v=S4-1+S4p;
1695     else S4v=S4+1+S4p;
1696     } else if(S4%4==2)
1697     S4v=S4+S4p;
1698     else if(S4%4==3){
1699     if(q<w) S4v=S4+1+S4p;
1700     else S4v=S4-1+S4p;
1701     }
1702    
1703     cout << "Ert= " <<Ert<<"; S4v= "<<S4v<<"; S4= "<<S4<<endl;
1704     fDataS4[0]=S4v;//0xf028;
1705     fDataS4[1]=0xd800;
1706     fDataS4[2]=0x0300;
1707     // cout<<" PMT "<<NdFT<<" "<<NdF<<endl;
1708     //cin>>ciao;
1709     }
1710    
1711    
1712    
1713     void Digitizer::DigitizeND(){
1714     // creato: S. Borisov, INFN Roma2 e MEPHI, Sett 2007
1715     Int_t i=0;
1716     UShort_t NdN=0;
1717 silvio 1.1 fhBookTree->SetBranchStatus("Nthnd",1);
1718     fhBookTree->SetBranchStatus("Itubend",1);
1719     fhBookTree->SetBranchStatus("Iparnd",1);
1720     fhBookTree->SetBranchStatus("Xinnd",1);
1721     fhBookTree->SetBranchStatus("Yinnd",1);
1722     fhBookTree->SetBranchStatus("Zinnd",1);
1723     fhBookTree->SetBranchStatus("Xoutnd",1);
1724     fhBookTree->SetBranchStatus("Youtnd",1);
1725     fhBookTree->SetBranchStatus("Zoutnd",1);
1726     fhBookTree->SetBranchStatus("Erelnd",1);
1727     fhBookTree->SetBranchStatus("Timend",1);
1728     fhBookTree->SetBranchStatus("Pathnd",1);
1729     fhBookTree->SetBranchStatus("P0nd",1);
1730 orsi 1.2 //cout<<"n="<<Nthnd<<" "<<NdN<<"\n";
1731     for(i=0;i<Nthnd;i++){
1732     if(Iparnd[i]==13){
1733     NdN++;
1734     }
1735     }
1736     NdN=100;
1737     for(i=0;i<3;i++){
1738     fDataND[2*i]=0x0000;
1739     fDataND[2*i+1]=0x010F;
1740     }
1741     fDataND[0]=0xFF00 & (256*NdN);
1742 silvio 1.1 }
1743    
1744    
1745     void Digitizer::DigitizeDummy() {
1746    
1747     fhBookTree->SetBranchStatus("Enestrip",1);
1748    
1749     // dumy header
1750     fDataDummy[0] = 0xCAAA;
1751    
1752     for (Int_t i=1; i<fDummybuffer; i++){
1753     fDataDummy[i] = 0xFFFF;
1754     // printf("%0x ",fDataDummy[i]);
1755     //if ((i+1)%8 ==0) cout << endl;
1756     }
1757     };
1758    
1759    
1760     void Digitizer::WriteData(){
1761    
1762     // Routine that writes the data to a binary file
1763     // PSCU data are already swapped
1764     fOutputfile.write(reinterpret_cast<char*>(fDataPSCU),sizeof(UShort_t)*fPSCUbuffer);
1765     // TRG
1766     fOutputfile.write(reinterpret_cast<char*>(fDataTrigger),sizeof(UChar_t)*153);
1767     // TOF
1768     fOutputfile.write(reinterpret_cast<char*>(fDataTof),sizeof(UChar_t)*276);
1769     // AC
1770     UShort_t temp[1000000];
1771     memset(temp,0,sizeof(UShort_t)*1000000);
1772     swab(fDataAC,temp,sizeof(UShort_t)*fACbuffer); // WE MUST SWAP THE BYTES!!!
1773     fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fACbuffer);
1774     // CALO
1775     memset(temp,0,sizeof(UShort_t)*1000000);
1776     swab(fDataCALO,temp,sizeof(UShort_t)*fCALOlength); // WE MUST SWAP THE BYTES!!!
1777     fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fCALOlength);
1778     // TRK
1779     memset(temp,0,sizeof(UShort_t)*1000000);
1780     swab(fDataTrack,temp,sizeof(UShort_t)*fTracklength); // WE MUST SWAP THE BYTES!!!
1781     fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fTracklength);
1782     fTracklength=0;
1783 orsi 1.2 // padding to 64 bytes
1784 silvio 1.1 //
1785     if ( fPadding ){
1786     fOutputfile.write(reinterpret_cast<char*>(fDataPadding),sizeof(UChar_t)*fPadding);
1787     };
1788 orsi 1.2 // S4
1789     memset(temp,0,sizeof(UShort_t)*1000000);
1790     swab(fDataS4,temp,sizeof(UShort_t)*fS4buffer); // WE MUST SWAP THE BYTES!!!
1791     fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fS4buffer);
1792     // ND
1793     memset(temp,0,sizeof(UShort_t)*1000000);
1794     swab(fDataND,temp,sizeof(UShort_t)*fNDbuffer); // WE MUST SWAP THE BYTES!!!
1795     fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fNDbuffer);
1796 silvio 1.1 };
1797    
1798    
1799     void Digitizer::ReadData(){
1800    
1801     UShort_t InData[64];
1802    
1803     // for debuggigng purposes only, write your own routine if you like (many
1804     // hardwired things.
1805    
1806     ifstream InputFile;
1807    
1808     // if (!InputFile) {
1809    
1810     // std::cout << "ERROR" << endl;
1811     // // An error occurred!
1812     // // myFile.gcount() returns the number of bytes read.
1813     // // calling myFile.clear() will reset the stream state
1814     // // so it is usable again.
1815     // };
1816    
1817    
1818    
1819     //InputFile.seekg(0);
1820    
1821     InputFile.open(fFilename, ios::in | ios::binary);
1822     // fOutputfile.seekg(0);
1823     if (!InputFile.is_open()) std::cout << "ERROR" << endl;
1824    
1825     InputFile.seekg(0);
1826    
1827     for (Int_t k=0; k<=1000; k++){
1828     InputFile.read(reinterpret_cast<char*>(InData),384*sizeof(UShort_t));
1829    
1830     std::cout << "Read back: " << endl << endl;
1831    
1832     for (Int_t i=0; i<=384; i++){
1833     printf("%4x ", InData[i]);
1834     if ((i+1)%8 ==0) cout << endl;
1835     }
1836    
1837     }
1838     cout << endl;
1839     InputFile.close();
1840    
1841     };
1842    
1843    
1844    
1845     void Digitizer::DigitizeTrack() {
1846     //std:: cout << "Entering DigitizeTrack " << endl;
1847     Float_t AdcTrack[fNviews][fNstrips_view]; // Vector of strips to be compressed
1848    
1849     Int_t Iview;
1850     Int_t Nstrip;
1851    
1852     for (Int_t j=0; j<fNviews;j++) {
1853    
1854     for (Int_t i=0; i<fNladder;i++) {
1855    
1856     Float_t commonN1=gRandom->Gaus(0.,fSigmaCommon);
1857     Float_t commonN2=gRandom->Gaus(0.,fSigmaCommon);
1858     for (Int_t k=0; k<fNstrips_ladder;k++) {
1859     Nstrip=i*fNstrips_ladder+k;
1860     AdcTrack[j][Nstrip]=gRandom->Gaus(fPedeTrack[j][Nstrip],fSigmaTrack[j][Nstrip]);
1861     if(k<4*128) {AdcTrack[j][Nstrip] += commonN1;} // full correlation of 4 VA1 Com. Noise
1862     else {AdcTrack[j][Nstrip] += commonN2;} // full correlation of 4 VA1 Com. Noise
1863    
1864     };
1865    
1866    
1867     };
1868    
1869    
1870     };
1871    
1872    
1873     fhBookTree->SetBranchStatus("Nstrpx",1);
1874     fhBookTree->SetBranchStatus("Npstripx",1);
1875     fhBookTree->SetBranchStatus("Ntstripx",1);
1876     fhBookTree->SetBranchStatus("Istripx",1);
1877     fhBookTree->SetBranchStatus("Qstripx",1);
1878     fhBookTree->SetBranchStatus("Xstripx",1);
1879     fhBookTree->SetBranchStatus("Nstrpy",1);
1880     fhBookTree->SetBranchStatus("Npstripy",1);
1881     fhBookTree->SetBranchStatus("Ntstripy",1);
1882     fhBookTree->SetBranchStatus("Istripy",1);
1883     fhBookTree->SetBranchStatus("Qstripy",1);
1884     fhBookTree->SetBranchStatus("Ystripy",1);
1885    
1886    
1887    
1888     Float_t ADCfull;
1889 orsi 1.2 Int_t iladd=0;
1890 silvio 1.1 for (Int_t ix=0; ix<Nstrpx;ix++) {
1891     Iview=Npstripx[ix]*2-1;
1892     Nstrip=(Int_t)Istripx[ix]-1;
1893 orsi 1.2 if(Nstrip<fNstrips_ladder) iladd=0;
1894     if((Nstrip>=fNstrips_ladder)&&(Nstrip<2*fNstrips_ladder)) iladd=1;
1895     if((Nstrip>=2*fNstrips_ladder)&&(Nstrip<3*fNstrips_ladder)) iladd=2;
1896     ADCfull=AdcTrack[Iview][Nstrip] += Qstripx[ix]*fMipCor[iladd][Iview];
1897 silvio 1.1 AdcTrack[Iview][Nstrip] *= SaturationTrack(ADCfull);
1898    
1899     };
1900    
1901    
1902     for (Int_t iy=0; iy<Nstrpy;iy++) {
1903     Iview=Npstripy[iy]*2-2;
1904     Nstrip=(Int_t)Istripy[iy]-1;
1905 orsi 1.2 if(Nstrip<fNstrips_ladder) iladd=0;
1906     if((Nstrip>=fNstrips_ladder)&&(Nstrip<2*fNstrips_ladder)) iladd=1;
1907     if((Nstrip>=2*fNstrips_ladder)&&(Nstrip<3*fNstrips_ladder)) iladd=2;
1908     ADCfull=AdcTrack[Iview][Nstrip] -= Qstripy[iy]*fMipCor[iladd][Iview];
1909 silvio 1.1 AdcTrack[Iview][Nstrip] *= SaturationTrack(ADCfull);
1910    
1911     };
1912    
1913     CompressTrackData(AdcTrack); // Compress and Digitize data of one Ladder in turn for all ladders
1914    
1915     };
1916    
1917    
1918    
1919     void Digitizer::DigitizeTrackCalib(Int_t ii) {
1920    
1921     std:: cout << "Entering DigitizeTrackCalib " << ii << endl;
1922     if( (ii!=1)&&(ii!=2) ) {
1923     std:: cout << "error wrong DigitizeTrackCalib argument" << endl;
1924     return;
1925     };
1926    
1927     memset(fDataTrack,0,sizeof(UShort_t)*fTRACKbuffer);
1928     fTracklength=0;
1929    
1930     UShort_t Dato;
1931    
1932     Float_t dato1;
1933     Float_t dato2;
1934     Float_t dato3;
1935     Float_t dato4;
1936    
1937     UShort_t DatoDec;
1938     UShort_t DatoDec1;
1939     UShort_t DatoDec2;
1940     UShort_t DatoDec3;
1941     UShort_t DatoDec4;
1942    
1943     UShort_t EVENT_CAL;
1944     UShort_t PED_L1;
1945     UShort_t ReLength;
1946     UShort_t OveCheckCode;
1947     //UShort_t PED_L2;
1948     //UShort_t PED_L3HI;
1949     //UShort_t PED_L3LO;
1950     //UShort_t SIG_L1HI;
1951     //UShort_t SIG_L1LO;
1952     //UShort_t SIG_L2HI;
1953     //UShort_t SIG_L2LO;
1954     //UShort_t SIG_L3;
1955     //UShort_t BAD_L1;
1956     //UShort_t BAD_L2LO;
1957     //UShort_t BAD_L3HI;
1958     //UShort_t BAD_L3LO;
1959     //UShort_t FLAG;
1960    
1961    
1962     Int_t DSPpos;
1963     for (Int_t j=ii-1; j<fNviews;j+=2) {
1964     UShort_t CkSum=0;
1965     // here skip the dsp header and his trailer , to be written later
1966     DSPpos=fTracklength;
1967     fTracklength=fTracklength+13+3;
1968    
1969    
1970     for (Int_t i=0; i<fNladder;i++) {
1971     for (Int_t k=0; k<fNstrips_ladder;k++) {
1972     // write in buffer the current LADDER
1973     Dato=(UShort_t)fPedeTrack[j][i*fNstrips_ladder+k];
1974     dato1=fPedeTrack[j][i*fNstrips_ladder+k]-Dato;
1975    
1976     DatoDec1=(UShort_t)(dato1*2);
1977     dato2=dato1*2-DatoDec1;
1978    
1979     DatoDec2=(UShort_t)(dato2*2);
1980     dato3=dato2*2-DatoDec2;
1981    
1982     DatoDec3=(UShort_t)(dato3*2);
1983     dato4=dato3*2-DatoDec3;
1984    
1985     DatoDec4=(UShort_t)(dato4*2);
1986    
1987     DatoDec=DatoDec1*0x0008+DatoDec2*0x0004+DatoDec3*0x0002+DatoDec4*0x0001;
1988     fDataTrack[fTracklength]=( (Dato << 4) | (DatoDec & 0x000F) );
1989     CkSum=CkSum^fDataTrack[fTracklength];
1990     fTracklength++;
1991     };
1992    
1993     for (Int_t k=0; k<fNstrips_ladder;k++) {
1994     // write in buffer the current LADDER
1995     Dato=(UShort_t)fSigmaTrack[j][i*fNstrips_ladder+k];
1996     dato1=fSigmaTrack[j][i*fNstrips_ladder+k]-Dato;
1997    
1998     DatoDec1=(UShort_t)(dato1*2);
1999     dato2=dato1*2-DatoDec1;
2000    
2001     DatoDec2=(UShort_t)(dato2*2);
2002     dato3=dato2*2-DatoDec2;
2003    
2004     DatoDec3=(UShort_t)(dato3*2);
2005     dato4=dato3*2-DatoDec3;
2006    
2007     DatoDec4=(UShort_t)(dato4*2);
2008    
2009     DatoDec=DatoDec1*0x0008+DatoDec2*0x0004+DatoDec3*0x0002+DatoDec4*0x0001;
2010    
2011     fDataTrack[fTracklength]=( (Dato << 4) | (DatoDec & 0x000F) );
2012     CkSum=CkSum^fDataTrack[fTracklength];
2013     fTracklength++;
2014     };
2015    
2016     for (Int_t k=0; k<64;k++) {
2017     fDataTrack[fTracklength]=0x0000;
2018     CkSum=CkSum^fDataTrack[fTracklength];
2019     fTracklength++;
2020    
2021     };
2022     // end ladder
2023    
2024     // write in buffer the end ladder word
2025     if(i==0) fDataTrack[fTracklength]=0x1807;
2026     if(i==1) fDataTrack[fTracklength]=0x1808;
2027     if(i==2) fDataTrack[fTracklength]=0x1809;
2028     CkSum=CkSum^fDataTrack[fTracklength];
2029     fTracklength++;
2030    
2031     // write in buffer the TRAILER
2032     ReLength=(UShort_t)((fNstrips_ladder*2+64+1)*2+3);
2033     OveCheckCode=0x0000;
2034    
2035     fDataTrack[fTracklength]=0x0000;
2036     fTracklength++;
2037    
2038     fDataTrack[fTracklength]=(ReLength >> 8);
2039     fTracklength++;
2040    
2041     fDataTrack[fTracklength]=( (ReLength << 8) | (OveCheckCode & 0x00FF) );
2042     fTracklength++;
2043    
2044     // end TRAILER
2045     };
2046    
2047     // write in buffer the DSP header
2048    
2049     fDataTrack[DSPpos]=(0xE800 | ( ((j+1) << 3) | 0x0005) );
2050    
2051     fDataTrack[DSPpos+1]=0x01A9;
2052    
2053     fDataTrack[DSPpos+2]=0x8740;
2054    
2055     EVENT_CAL=0;
2056     fDataTrack[DSPpos+3]=(0x1A00 | ( (0x03FF & EVENT_CAL)>> 1) );
2057    
2058     PED_L1=0;
2059     fDataTrack[DSPpos+4]=( ((EVENT_CAL << 15) | 0x5002 ) | ((0x03FF & PED_L1) << 2) );
2060    
2061     // FROM HERE WE WRITE AS ALL VARIABLE apart CkSum are =0
2062    
2063     fDataTrack[DSPpos+5]=0x8014;
2064    
2065     fDataTrack[DSPpos+6]=0x00A0;
2066    
2067     fDataTrack[DSPpos+7]=0x0500;
2068    
2069     fDataTrack[DSPpos+8]=0x2801;
2070    
2071     fDataTrack[DSPpos+9]=0x400A;
2072    
2073     fDataTrack[DSPpos+10]=0x0050;
2074    
2075     CkSum=(CkSum >> 8)^(CkSum&0x00FF);
2076     fDataTrack[DSPpos+11]=(0x0280 | (CkSum >> 3));
2077    
2078     fDataTrack[DSPpos+12]=(0x1FFF | (CkSum << 13) );
2079    
2080     // end dsp header
2081    
2082     // write in buffer the TRAILER
2083    
2084     ReLength=(UShort_t)((13*2)+3);
2085     OveCheckCode=0x0000;
2086     fDataTrack[DSPpos+13]=0x0000;
2087    
2088     fDataTrack[DSPpos+14]=(ReLength >> 8);
2089    
2090     fDataTrack[DSPpos+15]=( (ReLength << 8) | (OveCheckCode & 0x00FF) );
2091    
2092     // end TRAILER
2093    
2094    
2095    
2096    
2097     // end DSP
2098     };
2099    
2100    
2101    
2102     };
2103    
2104     void Digitizer::WriteTrackCalib() {
2105    
2106    
2107     std:: cout << " Entering WriteTrackCalib " << endl;
2108    
2109     fOutputfile.write(reinterpret_cast<char*>(fDataPSCU),sizeof(UShort_t)*fPSCUbuffer);
2110    
2111     UShort_t temp[1000000];
2112     memset(temp,0,sizeof(UShort_t)*1000000);
2113     swab(fDataTrack,temp,sizeof(UShort_t)*fTracklength); // WE MUST SWAP THE BYTES!!!
2114     fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fTracklength);
2115     fTracklength=0;
2116     if ( fPadding ){
2117     fOutputfile.write(reinterpret_cast<char*>(fDataPadding),sizeof(UChar_t)*fPadding);
2118     };
2119    
2120     };
2121    
2122    
2123     void Digitizer::ClearTrackCalib() {
2124    
2125     std:: cout << "Entering ClearTrackCalib " << endl;
2126    
2127    
2128     };
2129    
2130    
2131     void Digitizer::LoadTrackCalib() {
2132     std:: cout << "Entering LoadTrackCalib " << endl;
2133    
2134     // Generate the pedestals and sigmas according to parametrization
2135     for (Int_t j=0; j<fNviews;j++) {
2136     for (Int_t i=0; i<fNstrips_view;i++) {
2137    
2138     if((j+1)%2==0) {
2139     fPedeTrack[j][i]=gRandom->Gaus(fAvePedex,fSigmaPedex);
2140     fSigmaTrack[j][i]=gRandom->Gaus(fAveSigmax,fSigmaSigmax);
2141     };
2142     if((j+1)%2==1) {
2143     fPedeTrack[j][i]=gRandom->Gaus(fAvePedey,fSigmaPedey);
2144     fSigmaTrack[j][i]=gRandom->Gaus(fAveSigmay,fSigmaSigmay);
2145     };
2146    
2147     };
2148     };
2149    
2150    
2151    
2152     };
2153    
2154     void Digitizer::LoadMipCor() {
2155     std:: cout << "Entering LoadMipCor" << endl;
2156 orsi 1.2 Float_t xfactor=1./151.6*1.04;
2157     Float_t yfactor=1./152.1;
2158    
2159     fMipCor[0][0]=140.02*yfactor;
2160     fMipCor[0][1]=140.99*xfactor;
2161     fMipCor[0][2]=134.48*yfactor;
2162     fMipCor[0][3]=144.41*xfactor;
2163     fMipCor[0][4]=140.74*yfactor;
2164     fMipCor[0][5]=142.28*xfactor;
2165     fMipCor[0][6]=134.53*yfactor;
2166     fMipCor[0][7]=140.63*xfactor;
2167     fMipCor[0][8]=135.55*yfactor;
2168     fMipCor[0][9]=138.00*xfactor;
2169     fMipCor[0][10]=154.95*yfactor;
2170     fMipCor[0][11]=158.44*xfactor;
2171    
2172    
2173     fMipCor[1][0]=136.07*yfactor;
2174     fMipCor[1][1]=135.59*xfactor;
2175     fMipCor[1][2]=142.69*yfactor;
2176     fMipCor[1][3]=138.19*xfactor;
2177     fMipCor[1][4]=137.35*yfactor;
2178     fMipCor[1][5]=140.23*xfactor;
2179     fMipCor[1][6]=153.15*yfactor;
2180     fMipCor[1][7]=151.42*xfactor;
2181     fMipCor[1][8]=129.76*yfactor;
2182     fMipCor[1][9]=140.63*xfactor;
2183     fMipCor[1][10]=157.87*yfactor;
2184     fMipCor[1][11]=153.64*xfactor;
2185    
2186     fMipCor[2][0]=134.98*yfactor;
2187     fMipCor[2][1]=143.95*xfactor;
2188     fMipCor[2][2]=140.23*yfactor;
2189     fMipCor[2][3]=138.88*xfactor;
2190     fMipCor[2][4]=137.95*yfactor;
2191     fMipCor[2][5]=134.87*xfactor;
2192     fMipCor[2][6]=157.56*yfactor;
2193     fMipCor[2][7]=157.31*xfactor;
2194     fMipCor[2][8]=141.37*yfactor;
2195     fMipCor[2][9]=143.39*xfactor;
2196     fMipCor[2][10]=156.15*yfactor;
2197     fMipCor[2][11]=158.79*xfactor;
2198    
2199 silvio 1.1 /*
2200     for (Int_t j=0; j<fNviews;j++) {
2201     for (Int_t i=0; i<fNstrips_view;i++) {
2202     fMipCor[j][i]=1.;
2203     };
2204     };
2205    
2206    
2207     */
2208     };
2209    
2210     void Digitizer::CompressTrackData(Float_t AdcTrack[fNviews][fNstrips_view]) {
2211     // copy of the corresponding compression fortran routine + new digitization
2212     // std:: cout << "Entering CompressTrackData " << endl;
2213     Int_t oldval=0;
2214     Int_t newval=0;
2215     Int_t trasmesso=0;
2216     Int_t ntrastot=0;
2217     Float_t real;
2218     Float_t inte;
2219     Int_t cercacluster=0;
2220     Int_t kt=0;
2221     static const int DSPbufferSize = 4000; // 13 bit buffer to be rearranged in 16 bit Track buffer
2222     UShort_t DataDSP[DSPbufferSize]; // 13 bit buffer to be rearranged in 16 bit Track buffer
2223     UShort_t DSPlength; // 13 bit buffer to be rearranged in 16 bit Track buffer
2224    
2225     memset(fDataTrack,0,sizeof(UShort_t)*fTRACKbuffer); // probably not necessary becouse already done ?
2226     fTracklength=0;
2227    
2228     for (Int_t iv=0; iv<fNviews;iv++) {
2229     memset(DataDSP,0,sizeof(UShort_t)*DSPbufferSize);
2230     DSPlength=16; // skip the header, to be written later
2231     UShort_t CheckSum=0;
2232     // write dsp header on buffer
2233    
2234     // fDataTrack[fTracklength]=0xE805;
2235     // fTracklength++;
2236    
2237     // fDataTrack[fTracklength]=0x01A9;
2238     // fTracklength++;
2239    
2240     // end dsp header
2241    
2242     //
2243     // INIZIO VISTA IV - TAKE PROPER ACTION
2244     //
2245    
2246    
2247    
2248     for (Int_t ladder=0; ladder<fNladder;ladder++) {
2249     Int_t k=0;
2250     while (k<fNstrips_ladder) {
2251     // compress write in buffer the current LADDER
2252     if ( k == 0) {
2253     real=modff(AdcTrack[iv][ladder*fNstrips_ladder+k],&inte);
2254     if (real > 0.5) inte=inte+1;
2255     newval=(Int_t)inte -(Int_t)fPedeTrack[iv][ladder*fNstrips_ladder+k];
2256     // first strip of ladder is transmitted
2257     // DC_TOT first " << AdcTrack[iv][ladder*fNstrips_ladder+k] << endl;
2258     DataDSP[DSPlength]=( ((UShort_t)inte) & 0x0FFF);
2259     DSPlength++;
2260     ntrastot++;
2261     trasmesso=1;
2262     oldval=newval;
2263     kt=k;
2264     k++;
2265     continue;
2266     };
2267     real=modff(AdcTrack[iv][ladder*fNstrips_ladder+k],&inte);
2268     if (real > 0.5) inte=inte+1;
2269     newval=(Int_t)inte -(Int_t)(fPedeTrack[iv][ladder*fNstrips_ladder+k]);
2270     cercacluster=1; // ?????????
2271     if (cercacluster==1) {
2272    
2273     // controlla l'ordine di tutti queste strip ladder e DSP !!!!!!!
2274     Int_t diff=0;
2275    
2276    
2277     switch ((iv+1)%2) {
2278     case 0: diff=newval-oldval;
2279     break;
2280     case 1: diff=oldval-newval;
2281     break;
2282     };
2283    
2284     if (diff>fCutclu*(Int_t)fSigmaTrack[iv][ladder*fNstrips_ladder+k]) {
2285     Int_t clval=newval;
2286     Int_t klp=k; // go on to search for maximum
2287     klp++;
2288    
2289     while(klp<fNstrips_ladder) {
2290     real=modff(AdcTrack[iv][ladder*fNstrips_ladder+klp],&inte);
2291     if (real > 0.5) inte=inte+1;
2292     Int_t clvalp=(Int_t)inte -(Int_t)fPedeTrack[iv][ladder*fNstrips_ladder+klp];
2293     if((iv+1)%2==0) {
2294    
2295     if(clvalp>clval) {
2296     clval=clvalp;
2297     k=klp;}
2298     else break; // max of cluster found
2299    
2300     } else {
2301    
2302     if(clvalp<clval) {
2303     clval=clvalp;
2304     k=klp;}
2305     else break; // max of cluster found
2306    
2307     };
2308    
2309     klp++;
2310     };
2311    
2312     Int_t kl1=k-fNclst; // max of cluster (or end of ladder ?)
2313     trasmesso=0;
2314     if(kl1<0) kl1=0;
2315    
2316     if(kt>=kl1) kl1=kt+1;
2317     if( (kt+1)==kl1 ) trasmesso=1;
2318    
2319    
2320    
2321     Int_t kl2=k+fNclst;
2322     if(kl2>=fNstrips_ladder) kl2=fNstrips_ladder-1;
2323    
2324     for(Int_t klt=kl1 ; klt<=kl2 ; klt++) {
2325     if(trasmesso==0) {
2326     // std:: cout << "STRIP " << klt << endl;
2327     // std:: cout << "ADC_TOT " <<AdcTrack[iv][ladder*fNstrips_ladder+klt] << endl;
2328    
2329     DataDSP[DSPlength]=( ((UShort_t)klt) | 0x1000);
2330     DSPlength++;
2331     ntrastot++;
2332    
2333    
2334     real=modff(AdcTrack[iv][ladder*fNstrips_ladder+klt],&inte);
2335     if (real > 0.5) inte=inte+1;
2336     DataDSP[DSPlength]=( ((UShort_t)inte) & 0x0FFF);
2337     DSPlength++;
2338     ntrastot++;
2339    
2340     }
2341     else {
2342     // std:: cout << "ADC_TOT " <<AdcTrack[iv][ladder*fNstrips_ladder+klt] << endl;
2343     real=modff(AdcTrack[iv][ladder*fNstrips_ladder+klt],&inte);
2344     if (real > 0.5) inte=inte+1;
2345     DataDSP[DSPlength]=( ((UShort_t)inte) & 0x0FFF);
2346     DSPlength++;
2347     ntrastot++;
2348     };
2349     trasmesso=1;
2350     }; // end trasmission
2351     kt=kl2;
2352     k=kl2;
2353     real=modff(AdcTrack[iv][ladder*fNstrips_ladder+kt],&inte);
2354     if (real > 0.5) inte=inte+1;
2355     oldval=(Int_t)inte -(Int_t)fPedeTrack[iv][ladder*fNstrips_ladder+kt];
2356     k++;
2357     continue;
2358    
2359    
2360     }; // end cercacluster
2361     }; // end cercacluster
2362    
2363     // start ZOP check for strips no
2364    
2365     if(abs(newval-oldval)>=fCutzop*(Int_t)fSigmaTrack[iv][ladder*fNstrips_ladder+k]) {
2366    
2367     if(trasmesso==0) {
2368     // std:: cout << "STRIP " << k << endl;
2369     // std:: cout << "ADC_TOT " << AdcTrack[iv][ladder*fNstrips_ladder+k] << endl;
2370    
2371     DataDSP[DSPlength]=( ((UShort_t)k) | 0x1000);
2372     DSPlength++;
2373     ntrastot++;
2374    
2375    
2376     real=modff(AdcTrack[iv][ladder*fNstrips_ladder+k],&inte);
2377     if (real > 0.5) inte=inte+1;
2378     DataDSP[DSPlength]=( ((UShort_t)inte) & 0x0FFF);
2379     DSPlength++;
2380     ntrastot++;
2381    
2382     }
2383     else {
2384     // std:: cout << "ADC_TOT " << AdcTrack[iv][ladder*fNstrips_ladder+k] << endl;
2385     real=modff(AdcTrack[iv][ladder*fNstrips_ladder+k],&inte);
2386     if (real > 0.5) inte=inte+1;
2387     DataDSP[DSPlength]=( ((UShort_t)inte) & 0x0FFF);
2388     DSPlength++;
2389     ntrastot++;
2390     };
2391     trasmesso=1;
2392     oldval=newval;
2393     kt=k;
2394    
2395     }
2396     else trasmesso=0;
2397     // end zop
2398    
2399     k++;
2400     }; // end cycle inside ladder
2401     // write here the end ladder bytes
2402     // std:: cout << "FINE LADDER " << ladder+1 << endl;
2403    
2404     DataDSP[DSPlength]=( ((UShort_t)(ladder+1)) | 0x1800);
2405     DSPlength++;
2406     ntrastot++;
2407     trasmesso=0;
2408    
2409     }; //end cycle inside dsp
2410     // std:: cout << "FINE DSP " << iv+1 << endl;
2411     // here put DSP header
2412     DataDSP[0]=(0x1CA0 | ((UShort_t)(iv+1)) );
2413     UShort_t Nword=(DSPlength*13)/16;
2414     if( ((DSPlength*13)%16)!=0) Nword++;
2415     DataDSP[1]=(0x1400 | ( Nword >> 10));
2416     DataDSP[2]=(0x1400 | ( Nword & 0x03FF) );
2417     DataDSP[3]=(0x1400 | (( (UShort_t)(fCounter >> 10) ) & 0x03FF) );
2418     DataDSP[4]=(0x1400 | (( (UShort_t)(fCounter) ) & 0x03FF) );
2419     DataDSP[5]=(0x1400 | ( (UShort_t)(fNclst << 7) ) | ( (UShort_t)(fCutzop << 4) )
2420     | ( (UShort_t)fCutzop ) );
2421     DataDSP[6]=0x1400;
2422     DataDSP[7]=0x1400;
2423     DataDSP[8]=0x1400;
2424     DataDSP[9]=0x1400;
2425     DataDSP[10]=0x1400;
2426     DataDSP[11]=0x1400;
2427     DataDSP[12]=0x1400;
2428     DataDSP[13]=0x1400;
2429     DataDSP[14]=(0x1400 | (CheckSum & 0x00FF) );
2430     DataDSP[15]=0x1C00;
2431     // end DSP header
2432    
2433    
2434     // write 13 bit DataDSP bufer inside 16 bit fDataTrack buffer
2435     Int_t Bit16free=16;
2436     UShort_t Dato;
2437     for (Int_t NDSP=0; NDSP<DSPlength;NDSP++) {
2438     Int_t Bit13ToWrite=13;
2439     while(Bit13ToWrite>0) {
2440     if(Bit13ToWrite<=Bit16free) {
2441     Dato=((DataDSP[NDSP]&(0xFFFF >> (16-Bit13ToWrite)))<<(Bit16free-Bit13ToWrite));
2442     fDataTrack[fTracklength]=fDataTrack[fTracklength] | Dato ;
2443     Bit16free=Bit16free-Bit13ToWrite;
2444     Bit13ToWrite=0;
2445     if(Bit16free==0) {
2446     if(NDSP>15) CheckSum=CheckSum^fDataTrack[fTracklength];
2447     fTracklength++;
2448     Bit16free=16;
2449     };
2450     }
2451     else if(Bit13ToWrite>Bit16free) {
2452     Dato=( (DataDSP[NDSP]&(0xFFFF >> (16-Bit13ToWrite) ) ) >> (Bit13ToWrite-Bit16free) );
2453     fDataTrack[fTracklength]=fDataTrack[fTracklength] | Dato ;
2454     if(NDSP>15) CheckSum=CheckSum^fDataTrack[fTracklength];
2455     fTracklength++;
2456     Bit13ToWrite=Bit13ToWrite-Bit16free;
2457     Bit16free=16;
2458     };
2459    
2460     }; // end cycle while(Bit13ToWrite>0)
2461    
2462     }; // end cycle DataDSP
2463     if(Bit16free!=16) { fTracklength++; CheckSum=CheckSum^fDataTrack[fTracklength]; };
2464     CheckSum=(CheckSum >> 8)^(CheckSum&0x00FF);
2465     fDataTrack[fTracklength-Nword+11]=(0x0280 | (CheckSum >> 3));
2466     fDataTrack[fTracklength-Nword+12]=(0x1C00 | (CheckSum << 13) );
2467    
2468     // end write 13 bit DataDSP bufer inside 16 bit fDataTrack buffer
2469    
2470     //write trailer on buffer
2471     UShort_t ReLength=(UShort_t)((Nword+13)*2+3);
2472     UShort_t OveCheckCode=0x0000;
2473    
2474     fDataTrack[fTracklength]=0x0000;
2475     fTracklength++;
2476    
2477     fDataTrack[fTracklength]=(ReLength >> 8);
2478     fTracklength++;
2479    
2480     fDataTrack[fTracklength]=( (ReLength << 8) | (OveCheckCode & 0x00FF) );
2481     fTracklength++;
2482     // end trailer
2483     // std:: cout << "DSPlength " <<DSPlength << endl;
2484     // std:: cout << "Nword " << Nword << endl;
2485     // std:: cout << "ReLength " << ReLength << endl;
2486     };
2487     // std:: cout << "ntrastot " << ntrastot << endl;
2488    
2489     };
2490    
2491 orsi 1.2
2492 silvio 1.1 Float_t Digitizer::SaturationTrack(Float_t ADC) {
2493 orsi 1.2 Float_t SatFact=1.;
2494     if(ADC<70.) { SatFact=80./ADC; };
2495     if(ADC>3000.) { SatFact=3000./ADC; };
2496     return SatFact;
2497 silvio 1.1 };
2498    
2499    
2500    
2501    
2502    
2503    

  ViewVC Help
Powered by ViewVC 1.1.23