1 |
#include "Digitizer.h" |
2 |
|
3 |
void Digitizer::DigitizeTOF(int np,float *atte1,float *atte2,float *lambda1,float *lambda2){ |
4 |
//fDataTof: 12 x 23 bytes (=276 bytes) |
5 |
UChar_t *pTof=fDataTof; |
6 |
Bool_t DEBUG=false; |
7 |
|
8 |
Int_t cdp[75] = {0,1,1,0,1,1,0,1,1,0,1,1,0,1,1, //0-14 |
9 |
0,0,0,1,0,1,0,1,1,0,0,1,0,1,0, //15-29 |
10 |
1,1,1,1,2,2,2,3,3,3,3,4,4,4,1, //30-44 |
11 |
1,2,0,2,0,0,5,5,5,5,6,6,6,6,7, //45-59 |
12 |
3,3,4,4,5,5,6,7,8,9,10,11,12,13,14 }; //60-74 |
13 |
|
14 |
int Z = cdp[Ipa-1]; |
15 |
|
16 |
float time_res[8] = {425.,210.,170.,130.,120.,120.,120.,120.}; |
17 |
for(Int_t i=0;i<8;i++)time_res[i]/=1.4;//1.17;1.5;1.3*/ |
18 |
Float_t dt1 = 0.;// = 1.e-12*time_res[0]; // single PMT resolution for Z=1 (WM, Nov'07) |
19 |
|
20 |
if ((Z > 1) && (Z < 9)) dt1=1.e-12*time_res[(Z-1)]; |
21 |
if (Z > 8) dt1=120.e-12; |
22 |
|
23 |
|
24 |
// ------ evaluate energy in each pmt: ------ |
25 |
// strip geometry (lenght/width) |
26 |
Float_t dimel[6] = {33.0, 40.8 ,18.0, 15.0, 15.0, 18.0}; |
27 |
// S11 8 paddles 33.0 x 5.1 cm |
28 |
// S12 6 paddles 40.8 x 5.5 cm |
29 |
// S21 2 paddles 18.0 x 7.5 cm |
30 |
// S22 2 paddles 15.0 x 9.0 cm |
31 |
// S31 3 paddles 15.0 x 6.0 cm |
32 |
// S32 3 paddles 18.0 x 5.0 cm |
33 |
Float_t FGeo[2]={0., 0.}; /* geometrical factor */ |
34 |
const Float_t Pho_keV = 10.; // photons per keV in scintillator |
35 |
const Float_t echarge = 1.6e-19; // electron charge |
36 |
Float_t Npho=0.; |
37 |
Float_t QevePmt_pC[48]; |
38 |
Float_t QhitPad_pC[2]={0.,0.}; |
39 |
Float_t QhitPmt_pC[2]={0.,0.}; |
40 |
Float_t pmGain = 3.5e6; /* PMT Gain: the same for all PMTs */ |
41 |
Float_t effi=0.21; /* Efficienza di fotocatodo */ |
42 |
// pC < 800 |
43 |
Float_t ADC_pC0A =-4.437616e+01; |
44 |
Float_t ADC_pC1A = 1.573329e+00; |
45 |
Float_t ADC_pC2A = 2.780518e-04; |
46 |
Float_t ADC_pC3A =-2.302160e-07; |
47 |
// pC > 800: |
48 |
Float_t ADC_pC0B =-2.245756e+02; |
49 |
Float_t ADC_pC1B = 2.184156e+00; |
50 |
Float_t ADC_pC2B =-4.171825e-04; |
51 |
Float_t ADC_pC3B = 3.789715e-08; |
52 |
|
53 |
Float_t pCthres=40.; // threshold in charge |
54 |
Int_t ADClast=4095; // no signal --> ADC ch=4095 |
55 |
Int_t ADCsat=3100; // saturation value for the ADCs |
56 |
Int_t ADCtof[48]; |
57 |
Float_t ScaleFact[48]={0.39, 0.49, 0.38, 0.40, 0.65, 0.51, 0.43, 0.49, |
58 |
0.58, 0.38, 0.53, 0.57, 0.53, 0.45, 0.49, 0.22, |
59 |
0.21, 0.44, 0.28, 0.57, 0.26, 0.72, 0.37, 0.29, |
60 |
0.30, 0.89, 0.37, 0.12, 0.27, 0.23, 0.15, 0.22, |
61 |
0.19, 0.20, 0.21, 0.19, 0.41, 0.32, 0.39, 0.38, |
62 |
0.28, 0.66, 0.28, 0.40, 0.39, 0.40, 0.37, 0.35};//15:0.7--0.95, 16:0.9--1.25, 27:0.9--1.3, 30:0.9--1.15, 32:0.85--1.05, 33:0.85--1.05 |
63 |
for(Int_t i=0; i<48; i++){ |
64 |
QevePmt_pC[i] = 0; |
65 |
ADCtof[i]=0; |
66 |
} |
67 |
Int_t ip,ipad,pmtleft=0,pmtright=0; |
68 |
// TDC variables: |
69 |
Int_t TDClast=4095,TDCint[48]; |
70 |
Float_t tdc[48],tdc1[48],tdcpmt[48]; |
71 |
for(Int_t i=0; i<48; i++) { |
72 |
tdcpmt[i] = 1000.; |
73 |
tdc[i] = 0.; // 18-oct WM |
74 |
tdc1[i] = 0.; // 18-oct WM |
75 |
} |
76 |
Float_t thresh=20.; // to be defined better... (Wolfgang) |
77 |
// === TDC: simulate timing for each paddle |
78 |
Float_t tdcres[50],c1_S[50],c2_S[50],c3_S[50]; |
79 |
for(Int_t j=0;j<48;j++){ |
80 |
tdcres[j] = 50.E-12; // TDC resolution 50 picosec |
81 |
c1_S[j] = 500.; // cable length in channels |
82 |
c2_S[j] = 0.; |
83 |
c3_S[j] = 1000.; |
84 |
c1_S[j] = c1_S[j]*tdcres[j]; // cable length in sec |
85 |
c2_S[j] = c2_S[j]*tdcres[j]; |
86 |
} |
87 |
/* ********************************** start loop over hits */ |
88 |
if(Nthtof>*ntof)cout<<"NTHTOF > "<<*ntof<<" , event rejected ! "<<Nthtof<<endl; |
89 |
else{ |
90 |
for(Int_t nh=0; nh<Nthtof; nh++){ |
91 |
Float_t s_l_g[6] = {8.0, 8.0, 20.9, 22.0, 9.8, 8.3 }; // length of the lightguide |
92 |
Float_t t1,t2,veff,veff1,veff0 ; |
93 |
veff0 = 100.*1.0e8 ; // light velocity in the scintillator in m/sec |
94 |
veff1 = 100.*1.5e8; // light velocity in the lightguide in m/sec |
95 |
veff=veff0; // signal velocity in the paddle |
96 |
t1 = Timetof[nh] ; // Start |
97 |
t2 = Timetof[nh] ; |
98 |
// Donatella: redefinition plane and pad for vectors in C |
99 |
ip = Ipltof[nh]-1; |
100 |
ipad = Ipaddle[nh]-1; |
101 |
pmtleft=0; |
102 |
pmtright=0; |
103 |
// WM: S12 paddles are "reversed" (Nov'07) |
104 |
if (ip==2){ |
105 |
if (ipad==0) |
106 |
ipad=1; |
107 |
else |
108 |
ipad=0; |
109 |
} |
110 |
if ((ip>-1)&&(ip<6)) { //ToF paddles only, not S4 |
111 |
Paddle2Pmt(ip, ipad, &pmtleft, &pmtright); |
112 |
// DC: evaluates mean position and path inside the paddle |
113 |
Float_t tpos=0.; |
114 |
Float_t path[2] = {0., 0.}; |
115 |
//--- Strip in Y = S11,S22,S31 ------ |
116 |
if(ip==0 || ip==3 || ip==4) |
117 |
tpos = (Yintof[nh]+Youttof[nh])/2.; |
118 |
else |
119 |
if(ip==1 || ip==2 || ip==5) //--- Strip in X for S12,S21,S32 |
120 |
tpos = (Xintof[nh]+Xouttof[nh])/2.; |
121 |
else //if (ip!=6) |
122 |
printf("*** WARNING TOF: this option should never occur! (ip=%2i, nh=%2i)\n",ip,nh); |
123 |
path[0]= tpos + dimel[ip]/2.; // path to left PMT |
124 |
path[1]= dimel[ip]/2.- tpos; // path to right PMT |
125 |
if (DEBUG) { |
126 |
cout <<" plane "<<ip<<" strip # ="<< ipad <<" tpos "<< tpos <<"\n"; |
127 |
cout <<"pmtleft, pmtright "<<pmtleft<<" "<<pmtright<<endl; |
128 |
} |
129 |
// constant geometric factor, the rest is handled by the scaling factor |
130 |
FGeo[0] =0.5; |
131 |
FGeo[1] =0.5; |
132 |
Npho = Ereltof[nh]*Pho_keV*1.0e6; // Eloss in GeV |
133 |
|
134 |
Float_t knorm[2]={0., 0.}; // Donatella |
135 |
Float_t Atten[2]={0., 0.}; // Donatella |
136 |
for(Int_t j=0; j<2; j++){ |
137 |
QhitPad_pC[j]= Npho*FGeo[j]*effi*pmGain*echarge*1.E12*ScaleFact[pmtleft+j]; |
138 |
// WM |
139 |
knorm[j]=atte1[pmtleft+j]*exp(lambda1[pmtleft+j]*dimel[ip]/2.*pow(-1,j+1)) + atte2[pmtleft+j]*exp(lambda2[pmtleft+j]*dimel[ip]/2.*pow(-1,j+1)); |
140 |
Atten[j]=atte1[pmtleft+j]*exp(tpos*lambda1[pmtleft+j]) + atte2[pmtleft+j]*exp(tpos*lambda2[pmtleft+j]) ; |
141 |
QhitPmt_pC[j]= QhitPad_pC[j]*Atten[j]/knorm[j]; |
142 |
if (DEBUG) { |
143 |
cout<<"pmtleft "<<pmtleft<<" j "<<j<<endl; |
144 |
cout<<" atte1 "<<atte1[pmtleft+j]<<"lambda1 "<<lambda1[pmtleft+j]<<" atte2 "<<atte2[pmtleft+j]<<"lambda2 "<<lambda2[pmtleft+j] <<endl; |
145 |
cout<<j<<" tpos "<<tpos<<" knorm "<<knorm[j]<<" "<<Atten[j]<<" "<<"QhitPmt_pC "<<QhitPmt_pC[j]<<endl; |
146 |
} |
147 |
} |
148 |
if(DEBUG)cout<<"Npho "<<Npho<<" QhitPmt_pC "<<QhitPmt_pC[0]<<" "<<QhitPmt_pC[1]<<endl; |
149 |
QevePmt_pC[pmtleft] += QhitPmt_pC[0]; |
150 |
QevePmt_pC[pmtright] += QhitPmt_pC[1]; |
151 |
//TDC |
152 |
// WM right and left <-> |
153 |
t1 = t1 + fabs(path[0]/veff) + s_l_g[ip]/veff1; |
154 |
t2 = t2 + fabs(path[1]/veff) + s_l_g[ip]/veff1 ; // Signal reaches PMT |
155 |
t1 = gRandom->Gaus(t1,dt1); //apply gaussian error dt |
156 |
t2 = gRandom->Gaus(t2,dt1); //apply gaussian error dt |
157 |
t1 = t1 + c1_S[pmtleft] ; // Signal reaches Discriminator ,TDC starts to run |
158 |
t2 = t2 + c1_S[pmtright] ; |
159 |
// check if signal is above threshold |
160 |
// then check if tdcpmt is already filled by another hit... |
161 |
// only re-fill if time is smaller |
162 |
if (QhitPmt_pC[0] > thresh) { |
163 |
if (tdcpmt[pmtleft] == 1000.) { // fill for the first time |
164 |
tdcpmt[pmtleft] = t1; |
165 |
tdc[pmtleft] = t1 + c2_S[pmtleft] ; // Signal reaches Coincidence |
166 |
} |
167 |
if (tdcpmt[pmtleft] < 1000.) // is already filled! |
168 |
if (t1 < tdcpmt[pmtleft]) { |
169 |
tdcpmt[pmtleft] = t1; |
170 |
t1 = t1 + c2_S[pmtleft] ; // Signal reaches Coincidence |
171 |
tdc[pmtleft] = t1; |
172 |
} |
173 |
} |
174 |
if (QhitPmt_pC[1] > thresh) { |
175 |
if (tdcpmt[pmtright] == 1000.) { // fill for the first time |
176 |
tdcpmt[pmtright] = t2; |
177 |
tdc[pmtright] = t2 + c2_S[pmtright] ; // Signal reaches Coincidence |
178 |
} |
179 |
if (tdcpmt[pmtright] < 1000.) // is already filled! |
180 |
if (t2 < tdcpmt[pmtright]) { |
181 |
tdcpmt[pmtright] = t2; |
182 |
t2 = t2 + c2_S[pmtright] ; |
183 |
tdc[pmtright] = t2; |
184 |
} |
185 |
} |
186 |
if(DEBUG)cout<<nh<<" "<<Timetof[nh]<<" "<<t1<<" "<<t2<<endl; |
187 |
} // ip > -1 && ip < 6 |
188 |
} // **************************************** end loop over hits |
189 |
} // NTHTOF < 200 |
190 |
// ====== ADC ====== |
191 |
for(Int_t i=0; i<48; i++){ |
192 |
if (QevePmt_pC[i] <= 800.) ADCtof[i]= (Int_t)(ADC_pC0A + ADC_pC1A*QevePmt_pC[i] + ADC_pC2A*pow(QevePmt_pC[i],2) + ADC_pC3A*pow(QevePmt_pC[i],3)); |
193 |
if (QevePmt_pC[i] > 800.) ADCtof[i]= (Int_t)(ADC_pC0B + ADC_pC1B*QevePmt_pC[i] + ADC_pC2B*pow(QevePmt_pC[i],2) + ADC_pC3B*pow(QevePmt_pC[i],3)); |
194 |
if (QevePmt_pC[i] > 2485.) ADCtof[i]= (Int_t)(1758. + 0.54*QevePmt_pC[i]); //assuming a fictional 0.54 ch/pC above ADCsat |
195 |
if (ADCtof[i]>ADCsat) ADCtof[i]=ADCsat; |
196 |
if (QevePmt_pC[i] < pCthres) ADCtof[i]= ADClast; |
197 |
if (ADCtof[i] < 0) ADCtof[i]=ADClast; |
198 |
if (ADCtof[i] > ADClast) ADCtof[i]=ADClast; |
199 |
//if(ADCtof[i]!=4095)cout<<ADCtof[i]<<" "; |
200 |
//if((i+1)%4==0)cout<<endl; |
201 |
} |
202 |
// cin>>ciao; |
203 |
|
204 |
// ====== build TDC coincidence ====== |
205 |
|
206 |
// |
207 |
for(Int_t i=0; i<48; i++) { |
208 |
if((tdcpmt[i] - c1_S[i]) > 1e-7) { |
209 |
tdcpmt[i] = 0.; |
210 |
tdc[i] = 0.; |
211 |
} |
212 |
}// cycle to introduce a window for tdc |
213 |
|
214 |
|
215 |
Float_t t_coinc = 0; |
216 |
Int_t ilast = 100; |
217 |
for (Int_t ii=0; ii<48;ii++) |
218 |
if (tdc[ii] > t_coinc) { |
219 |
t_coinc = tdc[ii]; |
220 |
ilast = ii; |
221 |
} |
222 |
|
223 |
// cout<<ilast<<" "<<t_coinc<<endl; |
224 |
// At t_coinc trigger condition is fulfilled |
225 |
|
226 |
for (Int_t ii=0; ii<48;ii++){ |
227 |
// if (tdc[ii] != 0) tdc1[ii] = t_coinc - tdc[ii]; // test 1 |
228 |
if (tdc[ii] != 0) tdc1[ii] = t_coinc - tdcpmt[ii]; // test 2 |
229 |
tdc1[ii] = tdc1[ii]/tdcres[ii]; // divide by TDC resolution |
230 |
if (tdc[ii] != 0) tdc1[ii] = tdc1[ii] + c3_S[ii]; // add cable length c3 |
231 |
} // missing parenthesis inserted! (Silvio) |
232 |
|
233 |
for(Int_t i=0; i<48; i++){ |
234 |
if(tdc1[i] != 0.){ |
235 |
TDCint[i]=(Int_t)tdc1[i]; |
236 |
if (TDCint[i]>4093) TDCint[i]=TDClast; // 18-oct WM |
237 |
if (DEBUG)cout<<i<<" "<<TDCint[i]<<endl; |
238 |
} else |
239 |
TDCint[i]= TDClast; |
240 |
} |
241 |
if (DEBUG)cout<<"-----------"<<endl; |
242 |
//------ use channelmap for ToF: 18-oct WM |
243 |
Int_t channelmap[] = {3,21,11,29,19,45,27,37,36,28,44,20,5,12,13,4, |
244 |
6,47,14,39,22,31,30,23,38,15,46,7,0,33,16,24, |
245 |
8,41,32,40,25,17,34,9,42,1,2,10,18,26,35,43}; |
246 |
Int_t ADChelp[48],TDChelp[48]; |
247 |
for(Int_t i=0; i<48; i++){ |
248 |
Int_t ii=channelmap[i]; |
249 |
ADChelp[ii]= ADCtof[i]; |
250 |
TDChelp[ii]= TDCint[i]; |
251 |
} |
252 |
for(Int_t i=0; i<48; i++){ |
253 |
ADCtof[i]= ADChelp[i]; |
254 |
TDCint[i]= TDChelp[i]; |
255 |
} |
256 |
// ====== write fDataTof ======= |
257 |
UChar_t Ctrl3bit[8]={32,0,96,64,160,128,224,192}; // DC (msb in 8 bit word ) |
258 |
UChar_t tofBin; |
259 |
for (Int_t j=0; j < 12; j++){ // loop on TDC #12 |
260 |
Int_t j12=j*23; // for each TDC 23 bytes (8 bits) |
261 |
fDataTof[j12+0]=0x00; // TDC_ID |
262 |
fDataTof[j12+1]=0x00; // EV_COUNT |
263 |
fDataTof[j12+2]=0x00; // TDC_MASK (1) |
264 |
fDataTof[j12+3]=0x00; // TDC_MASK (2) |
265 |
for (Int_t k=0; k < 4; k++){ // for each TDC 4 channels (ADC+TDC) |
266 |
Int_t jk12=j12+4*k; // ADC,TDC channel (0-47) |
267 |
tofBin =(UChar_t)(ADCtof[k+4*j]/256); // ADC# (msb) |
268 |
fDataTof[jk12+4] = Bin2GrayTof(tofBin,fDataTof[jk12+4]); |
269 |
/* control bits inserted here, after the bin to gray conv - DC*/ |
270 |
fDataTof[jk12+4] = Ctrl3bit[2*k] | fDataTof[jk12+4]; |
271 |
tofBin=(UChar_t)(ADCtof[k+4*j]%256); // ADC# (lsb) |
272 |
fDataTof[jk12+5] = Bin2GrayTof(tofBin,fDataTof[jk12+5]); |
273 |
tofBin=(UChar_t)(TDCint[k+4*j]/256); // TDC# (msb) |
274 |
fDataTof[jk12+6]=Bin2GrayTof(tofBin,fDataTof[jk12+6]); |
275 |
/* control bits inserted here, after the bin to gray conv - DC*/ |
276 |
fDataTof[jk12+6] = Ctrl3bit[2*k+1] | fDataTof[jk12+6]; |
277 |
tofBin=(UChar_t)(TDCint[k+4*j]%256); // TDC# (lsb) |
278 |
fDataTof[jk12+7]=Bin2GrayTof(tofBin,fDataTof[jk12+7]); |
279 |
} |
280 |
fDataTof[j12+20]=0x00; // TEMP1 |
281 |
fDataTof[j12+21]=0x00; // TEMP2 |
282 |
fDataTof[j12+22]= EvaluateCrcTof(pTof); // CRC |
283 |
pTof+=23; |
284 |
} |
285 |
// ====== evaluate trigger variables ======= |
286 |
//fDataTrigger: 152 bytes (corrected 30/11/'07 SO - it was 153) |
287 |
// initialization: |
288 |
for (Int_t j=0; j < 152; j++)fDataTrigger[j]=0x00; |
289 |
UChar_t *pTrg=fDataTrigger; |
290 |
// Only the variables with a (*) are modified; the others are set to 0 |
291 |
// info given in #bites data + #bites crc |
292 |
// TB_READ_PMT_PLANE : 6 + 1 |
293 |
// TB_READ_EVENT_COUNT : 3 + 1 (*) |
294 |
// TB_READ_TRIGGER_RATE : 12 + 1 |
295 |
// TB_READ_D_L_TIME : 4 + 1 |
296 |
// TB_READ_S4_CAL_COUNT : 4 + 1 |
297 |
// TB_READ_PMT_COUNT1 : 48 + 1 |
298 |
// TB_READ_PMT_COUNT2 : 48 + 1 |
299 |
// TB_READ_PATTERN_BUSY : 8 + 1 |
300 |
// TB_READ_PATTERN_TRIGGER: 7 + 1 (*) |
301 |
// TB_READ_TRIGGER_CONF : 2 + 1 (*) |
302 |
|
303 |
// TB_READ_EVENT_COUNT |
304 |
fhBookTree->SetBranchStatus("Ievnt",&Ievnt); |
305 |
UInt_t cTrg = (UInt_t)Ievnt; //counter |
306 |
UInt_t cTrg2 = 0; //counter with bits inverted, according to document |
307 |
//"formato dati provenienti dalla trigger board" |
308 |
for (Int_t i=0; i < 24; i++){ // Use the first 24 bits |
309 |
if (cTrg & (0x1 << i) ) |
310 |
cTrg2 = cTrg2 | (0x1 << (24-i)); |
311 |
} |
312 |
fDataTrigger[7] = (UChar_t)(cTrg2 >> 16); // 8 MSbits (out of 24) |
313 |
fDataTrigger[8] = (UChar_t)(cTrg2 >> 8); // 8 "middle" bits |
314 |
fDataTrigger[9] = (UChar_t)(cTrg2); // 8 LSbits |
315 |
pTrg=fDataTrigger+7; |
316 |
fDataTrigger[10]=EvaluateCrcTrigger(pTrg, 3); |
317 |
|
318 |
// TB_READ_PATTERN_TRIGGER: bytes 141-148: |
319 |
// PatternTrigMap[i] corresponds to bit i in TB_READ_PATTERN_TRIGGER: |
320 |
// mapping according to documents: |
321 |
// 1. "formato dati provenienti dalla trigger board" |
322 |
// 2. "The ToF quicklook software", Appendix A (Campana, Nagni) |
323 |
Int_t PatternTrigMap[]={29,42,43,1,16,7,17,28,33,41,46,2,15,8,18,27, |
324 |
30,40,44,3,14,9,19,26,32,37,47,4,13,10,20,25, |
325 |
34,31,38,45,5,12,21,24,36,35,39,48,6,11,22,23}; |
326 |
for (Int_t i=0; i < 48; i++) |
327 |
//if (ADCtof[i]>thrTrg) |
328 |
if (tdc1[channelmap[i]]!=0) |
329 |
fDataTrigger[147-(Int_t)((PatternTrigMap[i]+1)/8)]=fDataTrigger[147-(Int_t)((PatternTrigMap[i]+1)/8)] | (0x1 << (PatternTrigMap[i]%8)); |
330 |
pTrg=fDataTrigger+141; |
331 |
fDataTrigger[148]=EvaluateCrcTrigger(pTrg, 7); |
332 |
|
333 |
// TB_READ_TRIGGER_CONF : set always acq.mode TOF4 |
334 |
// |
335 |
// TOF1: S1-S2-S3 (&,|) |
336 |
// TOF4: S2-S3 (&,&) |
337 |
fDataTrigger[149]=0x02; |
338 |
fDataTrigger[150]=0x0; |
339 |
pTrg=fDataTrigger+149; |
340 |
fDataTrigger[151]=EvaluateCrcTrigger(pTrg, 2); |
341 |
} |
342 |
|
343 |
|
344 |
UChar_t Digitizer::Bin2GrayTof(UChar_t binaTOF,UChar_t grayTOF){ |
345 |
union graytof_data { |
346 |
UChar_t word; |
347 |
struct bit_field { |
348 |
unsigned b0:1; |
349 |
unsigned b1:1; |
350 |
unsigned b2:1; |
351 |
unsigned b3:1; |
352 |
unsigned b4:1; |
353 |
unsigned b5:1; |
354 |
unsigned b6:1; |
355 |
unsigned b7:1; |
356 |
} bit; |
357 |
} bi,gr; |
358 |
// |
359 |
bi.word = binaTOF; |
360 |
gr.word = grayTOF; |
361 |
// |
362 |
gr.bit.b0 = bi.bit.b1 ^ bi.bit.b0; |
363 |
gr.bit.b1 = bi.bit.b2 ^ bi.bit.b1; |
364 |
gr.bit.b2 = bi.bit.b3 ^ bi.bit.b2; |
365 |
gr.bit.b3 = bi.bit.b3; |
366 |
// |
367 |
/* bin to gray conversion 4 bit per time*/ |
368 |
// |
369 |
gr.bit.b4 = bi.bit.b5 ^ bi.bit.b4; |
370 |
gr.bit.b5 = bi.bit.b6 ^ bi.bit.b5; |
371 |
gr.bit.b6 = bi.bit.b7 ^ bi.bit.b6; |
372 |
gr.bit.b7 = bi.bit.b7; |
373 |
// |
374 |
return(gr.word); |
375 |
} |
376 |
|
377 |
UChar_t Digitizer::EvaluateCrcTof(UChar_t *pTof) { |
378 |
Bool_t DEBUG=false; |
379 |
if (DEBUG) |
380 |
return(0x00); |
381 |
|
382 |
UChar_t crcTof=0x00; |
383 |
UChar_t *pc=&crcTof, *pc2; |
384 |
pc2=pTof; |
385 |
for (Int_t jp=0; jp < 22; jp++){ // cecilia: fixed 23->22 |
386 |
//crcTof = crc8(...) |
387 |
Crc8Tof(pc2++,pc); |
388 |
// printf("%2i --- %x\n",jp,crcTof); |
389 |
} |
390 |
return(crcTof); |
391 |
} |
392 |
|
393 |
UChar_t Digitizer::EvaluateCrcTrigger(UChar_t *pTrg, Int_t nb) { |
394 |
Bool_t DEBUG=false; |
395 |
if (DEBUG) |
396 |
return(0x00); |
397 |
|
398 |
UChar_t crcTrg=0x00; |
399 |
UChar_t *pc=&crcTrg, *pc2; |
400 |
pc2=pTrg; |
401 |
for (Int_t jp=0; jp < nb; jp++) |
402 |
Crc8Tof(pc2++,pc); |
403 |
return(crcTrg); |
404 |
} |
405 |
|
406 |
void Digitizer::Crc8Tof(UChar_t *oldCRC, UChar_t *crcTof){ |
407 |
union crctof_data { |
408 |
UChar_t word; |
409 |
struct bit_field { |
410 |
unsigned b0:1; |
411 |
unsigned b1:1; |
412 |
unsigned b2:1; |
413 |
unsigned b3:1; |
414 |
unsigned b4:1; |
415 |
unsigned b5:1; |
416 |
unsigned b6:1; |
417 |
unsigned b7:1; |
418 |
} bit; |
419 |
} c,d,r; |
420 |
|
421 |
c.word = *oldCRC; |
422 |
//d.word = *newCRC; |
423 |
d.word = *crcTof; |
424 |
r.word = 0; |
425 |
|
426 |
r.bit.b0 = c.bit.b7 ^ c.bit.b6 ^ c.bit.b0 ^ |
427 |
d.bit.b0 ^ d.bit.b6 ^ d.bit.b7; |
428 |
|
429 |
r.bit.b1 = c.bit.b6 ^ c.bit.b1 ^ c.bit.b0 ^ |
430 |
d.bit.b0 ^ d.bit.b1 ^ d.bit.b6; |
431 |
|
432 |
r.bit.b2 = c.bit.b6 ^ c.bit.b2 ^ c.bit.b1 ^ c.bit.b0 ^ |
433 |
d.bit.b0 ^ d.bit.b1 ^ d.bit.b2 ^ d.bit.b6; |
434 |
|
435 |
r.bit.b3 = c.bit.b7 ^ c.bit.b3 ^ c.bit.b2 ^ c.bit.b1 ^ |
436 |
d.bit.b1 ^ d.bit.b2 ^ d.bit.b3 ^ d.bit.b7; |
437 |
|
438 |
r.bit.b4 = c.bit.b4 ^ c.bit.b3 ^ c.bit.b2 ^ |
439 |
d.bit.b2 ^ d.bit.b3 ^ d.bit.b4; |
440 |
|
441 |
r.bit.b5 = c.bit.b5 ^ c.bit.b4 ^ c.bit.b3 ^ |
442 |
d.bit.b3 ^ d.bit.b4 ^ d.bit.b5; |
443 |
|
444 |
r.bit.b6 = c.bit.b6 ^ c.bit.b5 ^ c.bit.b4 ^ |
445 |
d.bit.b4 ^ d.bit.b5 ^ d.bit.b6; |
446 |
|
447 |
r.bit.b7 = c.bit.b7 ^ c.bit.b6 ^ c.bit.b5 ^ |
448 |
d.bit.b5 ^ d.bit.b6 ^ d.bit.b7 ; |
449 |
|
450 |
*crcTof=r.word; |
451 |
//return r.word; |
452 |
}; |
453 |
|
454 |
void Digitizer::Paddle2Pmt(Int_t plane, Int_t paddle, Int_t *pl, Int_t *pr){ |
455 |
//* @param plane (0 - 5) |
456 |
//* @param paddle (plane=0, paddle = 0,...5) |
457 |
//* @param padid (0 - 23) |
458 |
// |
459 |
Int_t padid=-1; |
460 |
Int_t pads[6]={8,6,2,2,3,3}; |
461 |
// |
462 |
Int_t somma=0; |
463 |
Int_t np=plane; |
464 |
for(Int_t j=0; j<np; j++)somma+=pads[j]; |
465 |
padid=paddle+somma; |
466 |
*pl = padid*2; |
467 |
// *pr = *pr + 1; |
468 |
*pr = *pl + 1; // WM |
469 |
}; |
470 |
|
471 |
void Digitizer::LoadTOFCalib(int np,float *atte1,float *atte2,float *lambda1,float *lambda2){ |
472 |
stringstream calfile; |
473 |
Int_t error = 0,temp=0; |
474 |
GL_PARAM *glparam = new GL_PARAM(); |
475 |
error = glparam->Query_GL_PARAM(3,202,fDbc); |
476 |
if(!error){ |
477 |
calfile.str(""); |
478 |
calfile << glparam->PATH.Data() << "/"; |
479 |
calfile << glparam->NAME.Data(); |
480 |
printf("\n Using TOF calibration file: \n %s\n",calfile.str().c_str()); |
481 |
ifstream fileTriggerCalib; |
482 |
fileTriggerCalib.open(calfile.str().c_str()); |
483 |
for(Int_t i=0; i<np; i++){ |
484 |
fileTriggerCalib >> temp; |
485 |
fileTriggerCalib >> atte1[i]; |
486 |
fileTriggerCalib >> lambda1[i]; |
487 |
fileTriggerCalib >> atte2[i]; |
488 |
fileTriggerCalib >> lambda2[i]; |
489 |
fileTriggerCalib >> temp; |
490 |
} |
491 |
fileTriggerCalib.close(); |
492 |
} |
493 |
else{ |
494 |
cout<<endl<<" *********** ATTENTION ***********"<<endl; |
495 |
cout<<endl<<" TOF: NO trigger calib file!"<<endl<<endl; |
496 |
cout<<endl<<" TOF digitized data will be wrong!"<<endl<<endl; |
497 |
for(Int_t i=0; i<np; i++){ |
498 |
atte1[i]=0.; |
499 |
lambda1[i]=0.; |
500 |
atte2[i]=0.; |
501 |
lambda2[i]=0.; |
502 |
} |
503 |
} |
504 |
//end tof calib |
505 |
} |