/[PAMELA software]/PamelaDigitizer/DigitizeTOF.cxx
ViewVC logotype

Contents of /PamelaDigitizer/DigitizeTOF.cxx

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.4 - (show annotations) (download)
Thu Dec 18 17:11:47 2008 UTC (15 years, 11 months ago) by mocchiut
Branch: MAIN
CVS Tags: v3r04
Changes since 1.3: +1 -1 lines
Small changes for a better compilation

1 #include "Digitizer.h"
2
3 void Digitizer::DigitizeTOF(int np,float *atte1,float *atte2,float *lambda1,float *lambda2){
4 //fDataTof: 12 x 23 bytes (=276 bytes)
5 UChar_t *pTof=fDataTof;
6 Bool_t DEBUG=false;
7
8 Int_t cdp[75] = {0,1,1,0,1,1,0,1,1,0,1,1,0,1,1, //0-14
9 0,0,0,1,0,1,0,1,1,0,0,1,0,1,0, //15-29
10 1,1,1,1,2,2,2,3,3,3,3,4,4,4,1, //30-44
11 1,2,0,2,0,0,5,5,5,5,6,6,6,6,7, //45-59
12 3,3,4,4,5,5,6,7,8,9,10,11,12,13,14 }; //60-74
13
14 int Z = cdp[Ipa-1];
15
16 float time_res[8] = {425.,210.,170.,130.,120.,120.,120.,120.};
17 for(Int_t i=0;i<8;i++)time_res[i]/=1.4;//1.17;1.5;1.3*/
18 Float_t dt1 = 0.;// = 1.e-12*time_res[0]; // single PMT resolution for Z=1 (WM, Nov'07)
19
20 if ((Z > 1) && (Z < 9)) dt1=1.e-12*time_res[(Z-1)];
21 if (Z > 8) dt1=120.e-12;
22
23
24 // ------ evaluate energy in each pmt: ------
25 // strip geometry (lenght/width)
26 Float_t dimel[6] = {33.0, 40.8 ,18.0, 15.0, 15.0, 18.0};
27 // S11 8 paddles 33.0 x 5.1 cm
28 // S12 6 paddles 40.8 x 5.5 cm
29 // S21 2 paddles 18.0 x 7.5 cm
30 // S22 2 paddles 15.0 x 9.0 cm
31 // S31 3 paddles 15.0 x 6.0 cm
32 // S32 3 paddles 18.0 x 5.0 cm
33 Float_t FGeo[2]={0., 0.}; /* geometrical factor */
34 const Float_t Pho_keV = 10.; // photons per keV in scintillator
35 const Float_t echarge = 1.6e-19; // electron charge
36 Float_t Npho=0.;
37 Float_t QevePmt_pC[48];
38 Float_t QhitPad_pC[2]={0.,0.};
39 Float_t QhitPmt_pC[2]={0.,0.};
40 Float_t pmGain = 3.5e6; /* PMT Gain: the same for all PMTs */
41 Float_t effi=0.21; /* Efficienza di fotocatodo */
42 // pC < 800
43 Float_t ADC_pC0A =-4.437616e+01;
44 Float_t ADC_pC1A = 1.573329e+00;
45 Float_t ADC_pC2A = 2.780518e-04;
46 Float_t ADC_pC3A =-2.302160e-07;
47 // pC > 800:
48 Float_t ADC_pC0B =-2.245756e+02;
49 Float_t ADC_pC1B = 2.184156e+00;
50 Float_t ADC_pC2B =-4.171825e-04;
51 Float_t ADC_pC3B = 3.789715e-08;
52
53 Float_t pCthres=40.; // threshold in charge
54 Int_t ADClast=4095; // no signal --> ADC ch=4095
55 Int_t ADCsat=3100; // saturation value for the ADCs
56 Int_t ADCtof[48];
57 Float_t ScaleFact[48]={0.39, 0.49, 0.38, 0.40, 0.65, 0.51, 0.43, 0.49,
58 0.58, 0.38, 0.53, 0.57, 0.53, 0.45, 0.49, 0.22,
59 0.21, 0.44, 0.28, 0.57, 0.26, 0.72, 0.37, 0.29,
60 0.30, 0.89, 0.37, 0.12, 0.27, 0.23, 0.15, 0.22,
61 0.19, 0.20, 0.21, 0.19, 0.41, 0.32, 0.39, 0.38,
62 0.28, 0.66, 0.28, 0.40, 0.39, 0.40, 0.37, 0.35};//15:0.7--0.95, 16:0.9--1.25, 27:0.9--1.3, 30:0.9--1.15, 32:0.85--1.05, 33:0.85--1.05
63 for(Int_t i=0; i<48; i++){
64 QevePmt_pC[i] = 0;
65 ADCtof[i]=0;
66 }
67 Int_t ip,ipad,pmtleft=0,pmtright=0;
68 // TDC variables:
69 Int_t TDClast=4095,TDCint[48];
70 Float_t tdc[48],tdc1[48],tdcpmt[48];
71 for(Int_t i=0; i<48; i++) {
72 tdcpmt[i] = 1000.;
73 tdc[i] = 0.; // 18-oct WM
74 tdc1[i] = 0.; // 18-oct WM
75 }
76 Float_t thresh=20.; // to be defined better... (Wolfgang)
77 // === TDC: simulate timing for each paddle
78 Float_t tdcres[50],c1_S[50],c2_S[50],c3_S[50];
79 for(Int_t j=0;j<48;j++){
80 tdcres[j] = 50.E-12; // TDC resolution 50 picosec
81 c1_S[j] = 500.; // cable length in channels
82 c2_S[j] = 0.;
83 c3_S[j] = 1000.;
84 c1_S[j] = c1_S[j]*tdcres[j]; // cable length in sec
85 c2_S[j] = c2_S[j]*tdcres[j];
86 }
87 /* ********************************** start loop over hits */
88 if(Nthtof>*ntof)cout<<"NTHTOF > "<<*ntof<<" , event rejected ! "<<Nthtof<<endl;
89 else{
90 for(Int_t nh=0; nh<Nthtof; nh++){
91 Float_t s_l_g[6] = {8.0, 8.0, 20.9, 22.0, 9.8, 8.3 }; // length of the lightguide
92 Float_t t1,t2,veff,veff1,veff0 ;
93 veff0 = 100.*1.0e8 ; // light velocity in the scintillator in m/sec
94 veff1 = 100.*1.5e8; // light velocity in the lightguide in m/sec
95 veff=veff0; // signal velocity in the paddle
96 t1 = Timetof[nh] ; // Start
97 t2 = Timetof[nh] ;
98 // Donatella: redefinition plane and pad for vectors in C
99 ip = Ipltof[nh]-1;
100 ipad = Ipaddle[nh]-1;
101 pmtleft=0;
102 pmtright=0;
103 // WM: S12 paddles are "reversed" (Nov'07)
104 if (ip==2)
105 if (ipad==0)
106 ipad=1;
107 else
108 ipad=0;
109 if ((ip>-1)&&(ip<6)) { //ToF paddles only, not S4
110 Paddle2Pmt(ip, ipad, &pmtleft, &pmtright);
111 // DC: evaluates mean position and path inside the paddle
112 Float_t tpos=0.;
113 Float_t path[2] = {0., 0.};
114 //--- Strip in Y = S11,S22,S31 ------
115 if(ip==0 || ip==3 || ip==4)
116 tpos = (Yintof[nh]+Youttof[nh])/2.;
117 else
118 if(ip==1 || ip==2 || ip==5) //--- Strip in X for S12,S21,S32
119 tpos = (Xintof[nh]+Xouttof[nh])/2.;
120 else //if (ip!=6)
121 printf("*** WARNING TOF: this option should never occur! (ip=%2i, nh=%2i)\n",ip,nh);
122 path[0]= tpos + dimel[ip]/2.; // path to left PMT
123 path[1]= dimel[ip]/2.- tpos; // path to right PMT
124 if (DEBUG) {
125 cout <<" plane "<<ip<<" strip # ="<< ipad <<" tpos "<< tpos <<"\n";
126 cout <<"pmtleft, pmtright "<<pmtleft<<" "<<pmtright<<endl;
127 }
128 // constant geometric factor, the rest is handled by the scaling factor
129 FGeo[0] =0.5;
130 FGeo[1] =0.5;
131 Npho = Ereltof[nh]*Pho_keV*1.0e6; // Eloss in GeV
132
133 Float_t knorm[2]={0., 0.}; // Donatella
134 Float_t Atten[2]={0., 0.}; // Donatella
135 for(Int_t j=0; j<2; j++){
136 QhitPad_pC[j]= Npho*FGeo[j]*effi*pmGain*echarge*1.E12*ScaleFact[pmtleft+j];
137 // WM
138 knorm[j]=atte1[pmtleft+j]*exp(lambda1[pmtleft+j]*dimel[ip]/2.*pow(-1,j+1)) + atte2[pmtleft+j]*exp(lambda2[pmtleft+j]*dimel[ip]/2.*pow(-1,j+1));
139 Atten[j]=atte1[pmtleft+j]*exp(tpos*lambda1[pmtleft+j]) + atte2[pmtleft+j]*exp(tpos*lambda2[pmtleft+j]) ;
140 QhitPmt_pC[j]= QhitPad_pC[j]*Atten[j]/knorm[j];
141 if (DEBUG) {
142 cout<<"pmtleft "<<pmtleft<<" j "<<j<<endl;
143 cout<<" atte1 "<<atte1[pmtleft+j]<<"lambda1 "<<lambda1[pmtleft+j]<<" atte2 "<<atte2[pmtleft+j]<<"lambda2 "<<lambda2[pmtleft+j] <<endl;
144 cout<<j<<" tpos "<<tpos<<" knorm "<<knorm[j]<<" "<<Atten[j]<<" "<<"QhitPmt_pC "<<QhitPmt_pC[j]<<endl;
145 }
146 }
147 if(DEBUG)cout<<"Npho "<<Npho<<" QhitPmt_pC "<<QhitPmt_pC[0]<<" "<<QhitPmt_pC[1]<<endl;
148 QevePmt_pC[pmtleft] += QhitPmt_pC[0];
149 QevePmt_pC[pmtright] += QhitPmt_pC[1];
150 //TDC
151 // WM right and left <->
152 t1 = t1 + fabs(path[0]/veff) + s_l_g[ip]/veff1;
153 t2 = t2 + fabs(path[1]/veff) + s_l_g[ip]/veff1 ; // Signal reaches PMT
154 t1 = gRandom->Gaus(t1,dt1); //apply gaussian error dt
155 t2 = gRandom->Gaus(t2,dt1); //apply gaussian error dt
156 t1 = t1 + c1_S[pmtleft] ; // Signal reaches Discriminator ,TDC starts to run
157 t2 = t2 + c1_S[pmtright] ;
158 // check if signal is above threshold
159 // then check if tdcpmt is already filled by another hit...
160 // only re-fill if time is smaller
161 if (QhitPmt_pC[0] > thresh) {
162 if (tdcpmt[pmtleft] == 1000.) { // fill for the first time
163 tdcpmt[pmtleft] = t1;
164 tdc[pmtleft] = t1 + c2_S[pmtleft] ; // Signal reaches Coincidence
165 }
166 if (tdcpmt[pmtleft] < 1000.) // is already filled!
167 if (t1 < tdcpmt[pmtleft]) {
168 tdcpmt[pmtleft] = t1;
169 t1 = t1 + c2_S[pmtleft] ; // Signal reaches Coincidence
170 tdc[pmtleft] = t1;
171 }
172 }
173 if (QhitPmt_pC[1] > thresh) {
174 if (tdcpmt[pmtright] == 1000.) { // fill for the first time
175 tdcpmt[pmtright] = t2;
176 tdc[pmtright] = t2 + c2_S[pmtright] ; // Signal reaches Coincidence
177 }
178 if (tdcpmt[pmtright] < 1000.) // is already filled!
179 if (t2 < tdcpmt[pmtright]) {
180 tdcpmt[pmtright] = t2;
181 t2 = t2 + c2_S[pmtright] ;
182 tdc[pmtright] = t2;
183 }
184 }
185 if(DEBUG)cout<<nh<<" "<<Timetof[nh]<<" "<<t1<<" "<<t2<<endl;
186 } // ip > -1 && ip < 6
187 } // **************************************** end loop over hits
188 } // NTHTOF < 200
189 // ====== ADC ======
190 for(Int_t i=0; i<48; i++){
191 if (QevePmt_pC[i] < 800.) ADCtof[i]= (Int_t)(ADC_pC0A + ADC_pC1A*QevePmt_pC[i] + ADC_pC2A*pow(QevePmt_pC[i],2) + ADC_pC3A*pow(QevePmt_pC[i],3));
192 if (QevePmt_pC[i] > 800.) ADCtof[i]= (Int_t)(ADC_pC0B + ADC_pC1B*QevePmt_pC[i] + ADC_pC2B*pow(QevePmt_pC[i],2) + ADC_pC3B*pow(QevePmt_pC[i],3));
193 if (QevePmt_pC[i] > 2485.) ADCtof[i]= (Int_t)(1758. + 0.54*QevePmt_pC[i]); //assuming a fictional 0.54 ch/pC above ADCsat
194 if (ADCtof[i]>ADCsat) ADCtof[i]=ADCsat;
195 if (QevePmt_pC[i] < pCthres) ADCtof[i]= ADClast;
196 if (ADCtof[i] < 0) ADCtof[i]=ADClast;
197 if (ADCtof[i] > ADClast) ADCtof[i]=ADClast;
198 //if(ADCtof[i]!=4095)cout<<ADCtof[i]<<" ";
199 //if((i+1)%4==0)cout<<endl;
200 }
201 // cin>>ciao;
202
203 // ====== build TDC coincidence ======
204
205 Float_t t_coinc = 0;
206 Int_t ilast = 100;
207 for (Int_t ii=0; ii<48;ii++)
208 if (tdc[ii] > t_coinc) {
209 t_coinc = tdc[ii];
210 ilast = ii;
211 }
212
213 // cout<<ilast<<" "<<t_coinc<<endl;
214 // At t_coinc trigger condition is fulfilled
215
216 for (Int_t ii=0; ii<48;ii++){
217 // if (tdc[ii] != 0) tdc1[ii] = t_coinc - tdc[ii]; // test 1
218 if (tdc[ii] != 0) tdc1[ii] = t_coinc - tdcpmt[ii]; // test 2
219 tdc1[ii] = tdc1[ii]/tdcres[ii]; // divide by TDC resolution
220 if (tdc[ii] != 0) tdc1[ii] = tdc1[ii] + c3_S[ii]; // add cable length c3
221 } // missing parenthesis inserted! (Silvio)
222
223 for(Int_t i=0; i<48; i++){
224 if(tdc1[i] != 0.){
225 TDCint[i]=(Int_t)tdc1[i];
226 if (TDCint[i]>4093) TDCint[i]=TDClast; // 18-oct WM
227 if (DEBUG)cout<<i<<" "<<TDCint[i]<<endl;
228 } else
229 TDCint[i]= TDClast;
230 }
231 if (DEBUG)cout<<"-----------"<<endl;
232 //------ use channelmap for ToF: 18-oct WM
233 Int_t channelmap[] = {3,21,11,29,19,45,27,37,36,28,44,20,5,12,13,4,
234 6,47,14,39,22,31,30,23,38,15,46,7,0,33,16,24,
235 8,41,32,40,25,17,34,9,42,1,2,10,18,26,35,43};
236 Int_t ADChelp[48],TDChelp[48];
237 for(Int_t i=0; i<48; i++){
238 Int_t ii=channelmap[i];
239 ADChelp[ii]= ADCtof[i];
240 TDChelp[ii]= TDCint[i];
241 }
242 for(Int_t i=0; i<48; i++){
243 ADCtof[i]= ADChelp[i];
244 TDCint[i]= TDChelp[i];
245 }
246 // ====== write fDataTof =======
247 UChar_t Ctrl3bit[8]={32,0,96,64,160,128,224,192}; // DC (msb in 8 bit word )
248 UChar_t tofBin;
249 for (Int_t j=0; j < 12; j++){ // loop on TDC #12
250 Int_t j12=j*23; // for each TDC 23 bytes (8 bits)
251 fDataTof[j12+0]=0x00; // TDC_ID
252 fDataTof[j12+1]=0x00; // EV_COUNT
253 fDataTof[j12+2]=0x00; // TDC_MASK (1)
254 fDataTof[j12+3]=0x00; // TDC_MASK (2)
255 for (Int_t k=0; k < 4; k++){ // for each TDC 4 channels (ADC+TDC)
256 Int_t jk12=j12+4*k; // ADC,TDC channel (0-47)
257 tofBin =(UChar_t)(ADCtof[k+4*j]/256); // ADC# (msb)
258 fDataTof[jk12+4] = Bin2GrayTof(tofBin,fDataTof[jk12+4]);
259 /* control bits inserted here, after the bin to gray conv - DC*/
260 fDataTof[jk12+4] = Ctrl3bit[2*k] | fDataTof[jk12+4];
261 tofBin=(UChar_t)(ADCtof[k+4*j]%256); // ADC# (lsb)
262 fDataTof[jk12+5] = Bin2GrayTof(tofBin,fDataTof[jk12+5]);
263 tofBin=(UChar_t)(TDCint[k+4*j]/256); // TDC# (msb)
264 fDataTof[jk12+6]=Bin2GrayTof(tofBin,fDataTof[jk12+6]);
265 /* control bits inserted here, after the bin to gray conv - DC*/
266 fDataTof[jk12+6] = Ctrl3bit[2*k+1] | fDataTof[jk12+6];
267 tofBin=(UChar_t)(TDCint[k+4*j]%256); // TDC# (lsb)
268 fDataTof[jk12+7]=Bin2GrayTof(tofBin,fDataTof[jk12+7]);
269 }
270 fDataTof[j12+20]=0x00; // TEMP1
271 fDataTof[j12+21]=0x00; // TEMP2
272 fDataTof[j12+22]= EvaluateCrcTof(pTof); // CRC
273 pTof+=23;
274 }
275 // ====== evaluate trigger variables =======
276 //fDataTrigger: 152 bytes (corrected 30/11/'07 SO - it was 153)
277 // initialization:
278 for (Int_t j=0; j < 152; j++)fDataTrigger[j]=0x00;
279 UChar_t *pTrg=fDataTrigger;
280 // Only the variables with a (*) are modified; the others are set to 0
281 // info given in #bites data + #bites crc
282 // TB_READ_PMT_PLANE : 6 + 1
283 // TB_READ_EVENT_COUNT : 3 + 1 (*)
284 // TB_READ_TRIGGER_RATE : 12 + 1
285 // TB_READ_D_L_TIME : 4 + 1
286 // TB_READ_S4_CAL_COUNT : 4 + 1
287 // TB_READ_PMT_COUNT1 : 48 + 1
288 // TB_READ_PMT_COUNT2 : 48 + 1
289 // TB_READ_PATTERN_BUSY : 8 + 1
290 // TB_READ_PATTERN_TRIGGER: 7 + 1 (*)
291 // TB_READ_TRIGGER_CONF : 2 + 1 (*)
292
293 // TB_READ_EVENT_COUNT
294 fhBookTree->SetBranchStatus("Ievnt",&Ievnt);
295 UInt_t cTrg = (UInt_t)Ievnt; //counter
296 UInt_t cTrg2 = 0; //counter with bits inverted, according to document
297 //"formato dati provenienti dalla trigger board"
298 for (Int_t i=0; i < 24; i++){ // Use the first 24 bits
299 if (cTrg & (0x1 << i) )
300 cTrg2 = cTrg2 | (0x1 << (24-i));
301 }
302 fDataTrigger[7] = (UChar_t)(cTrg2 >> 16); // 8 MSbits (out of 24)
303 fDataTrigger[8] = (UChar_t)(cTrg2 >> 8); // 8 "middle" bits
304 fDataTrigger[9] = (UChar_t)(cTrg2); // 8 LSbits
305 pTrg=fDataTrigger+7;
306 fDataTrigger[10]=EvaluateCrcTrigger(pTrg, 3);
307
308 // TB_READ_PATTERN_TRIGGER: bytes 141-148:
309 // PatternTrigMap[i] corresponds to bit i in TB_READ_PATTERN_TRIGGER:
310 // mapping according to documents:
311 // 1. "formato dati provenienti dalla trigger board"
312 // 2. "The ToF quicklook software", Appendix A (Campana, Nagni)
313 Int_t PatternTrigMap[]={29,42,43,1,16,7,17,28,33,41,46,2,15,8,18,27,
314 30,40,44,3,14,9,19,26,32,37,47,4,13,10,20,25,
315 34,31,38,45,5,12,21,24,36,35,39,48,6,11,22,23};
316 for (Int_t i=0; i < 48; i++)
317 //if (ADCtof[i]>thrTrg)
318 if (tdc1[channelmap[i]]!=0)
319 fDataTrigger[147-(Int_t)((PatternTrigMap[i]+1)/8)]=fDataTrigger[147-(Int_t)((PatternTrigMap[i]+1)/8)] | (0x1 << (PatternTrigMap[i]%8));
320 pTrg=fDataTrigger+141;
321 fDataTrigger[148]=EvaluateCrcTrigger(pTrg, 7);
322
323 // TB_READ_TRIGGER_CONF : set always acq.mode TOF4
324 //
325 // TOF1: S1-S2-S3 (&,|)
326 // TOF4: S2-S3 (&,&)
327 fDataTrigger[149]=0x02;
328 fDataTrigger[150]=0x0;
329 pTrg=fDataTrigger+149;
330 fDataTrigger[151]=EvaluateCrcTrigger(pTrg, 2);
331 }
332
333
334 UChar_t Digitizer::Bin2GrayTof(UChar_t binaTOF,UChar_t grayTOF){
335 union graytof_data {
336 UChar_t word;
337 struct bit_field {
338 unsigned b0:1;
339 unsigned b1:1;
340 unsigned b2:1;
341 unsigned b3:1;
342 unsigned b4:1;
343 unsigned b5:1;
344 unsigned b6:1;
345 unsigned b7:1;
346 } bit;
347 } bi,gr;
348 //
349 bi.word = binaTOF;
350 gr.word = grayTOF;
351 //
352 gr.bit.b0 = bi.bit.b1 ^ bi.bit.b0;
353 gr.bit.b1 = bi.bit.b2 ^ bi.bit.b1;
354 gr.bit.b2 = bi.bit.b3 ^ bi.bit.b2;
355 gr.bit.b3 = bi.bit.b3;
356 //
357 /* bin to gray conversion 4 bit per time*/
358 //
359 gr.bit.b4 = bi.bit.b5 ^ bi.bit.b4;
360 gr.bit.b5 = bi.bit.b6 ^ bi.bit.b5;
361 gr.bit.b6 = bi.bit.b7 ^ bi.bit.b6;
362 gr.bit.b7 = bi.bit.b7;
363 //
364 return(gr.word);
365 }
366
367 UChar_t Digitizer::EvaluateCrcTof(UChar_t *pTof) {
368 Bool_t DEBUG=false;
369 if (DEBUG)
370 return(0x00);
371
372 UChar_t crcTof=0x00;
373 UChar_t *pc=&crcTof, *pc2;
374 pc2=pTof;
375 for (Int_t jp=0; jp < 23; jp++){
376 //crcTof = crc8(...)
377 Crc8Tof(pc2++,pc);
378 // printf("%2i --- %x\n",jp,crcTof);
379 }
380 return(crcTof);
381 }
382
383 UChar_t Digitizer::EvaluateCrcTrigger(UChar_t *pTrg, Int_t nb) {
384 Bool_t DEBUG=false;
385 if (DEBUG)
386 return(0x00);
387
388 UChar_t crcTrg=0x00;
389 UChar_t *pc=&crcTrg, *pc2;
390 pc2=pTrg;
391 for (Int_t jp=0; jp < nb; jp++)
392 Crc8Tof(pc2++,pc);
393 return(crcTrg);
394 }
395
396 void Digitizer::Crc8Tof(UChar_t *oldCRC, UChar_t *crcTof){
397 union crctof_data {
398 UChar_t word;
399 struct bit_field {
400 unsigned b0:1;
401 unsigned b1:1;
402 unsigned b2:1;
403 unsigned b3:1;
404 unsigned b4:1;
405 unsigned b5:1;
406 unsigned b6:1;
407 unsigned b7:1;
408 } bit;
409 } c,d,r;
410
411 c.word = *oldCRC;
412 //d.word = *newCRC;
413 d.word = *crcTof;
414 r.word = 0;
415
416 r.bit.b0 = c.bit.b7 ^ c.bit.b6 ^ c.bit.b0 ^
417 d.bit.b0 ^ d.bit.b6 ^ d.bit.b7;
418
419 r.bit.b1 = c.bit.b6 ^ c.bit.b1 ^ c.bit.b0 ^
420 d.bit.b0 ^ d.bit.b1 ^ d.bit.b6;
421
422 r.bit.b2 = c.bit.b6 ^ c.bit.b2 ^ c.bit.b1 ^ c.bit.b0 ^
423 d.bit.b0 ^ d.bit.b1 ^ d.bit.b2 ^ d.bit.b6;
424
425 r.bit.b3 = c.bit.b7 ^ c.bit.b3 ^ c.bit.b2 ^ c.bit.b1 ^
426 d.bit.b1 ^ d.bit.b2 ^ d.bit.b3 ^ d.bit.b7;
427
428 r.bit.b4 = c.bit.b4 ^ c.bit.b3 ^ c.bit.b2 ^
429 d.bit.b2 ^ d.bit.b3 ^ d.bit.b4;
430
431 r.bit.b5 = c.bit.b5 ^ c.bit.b4 ^ c.bit.b3 ^
432 d.bit.b3 ^ d.bit.b4 ^ d.bit.b5;
433
434 r.bit.b6 = c.bit.b6 ^ c.bit.b5 ^ c.bit.b4 ^
435 d.bit.b4 ^ d.bit.b5 ^ d.bit.b6;
436
437 r.bit.b7 = c.bit.b7 ^ c.bit.b6 ^ c.bit.b5 ^
438 d.bit.b5 ^ d.bit.b6 ^ d.bit.b7 ;
439
440 *crcTof=r.word;
441 //return r.word;
442 };
443
444 void Digitizer::Paddle2Pmt(Int_t plane, Int_t paddle, Int_t *pl, Int_t *pr){
445 //* @param plane (0 - 5)
446 //* @param paddle (plane=0, paddle = 0,...5)
447 //* @param padid (0 - 23)
448 //
449 Int_t padid=-1;
450 Int_t pads[6]={8,6,2,2,3,3};
451 //
452 Int_t somma=0;
453 Int_t np=plane;
454 for(Int_t j=0; j<np; j++)somma+=pads[j];
455 padid=paddle+somma;
456 *pl = padid*2;
457 // *pr = *pr + 1;
458 *pr = *pl + 1; // WM
459 };
460
461 void Digitizer::LoadTOFCalib(int np,float *atte1,float *atte2,float *lambda1,float *lambda2){
462 stringstream calfile;
463 Int_t error = 0,temp=0;
464 GL_PARAM *glparam = new GL_PARAM();
465 error = glparam->Query_GL_PARAM(3,202,fDbc);
466 calfile.str("");
467 calfile << glparam->PATH.Data() << "/";
468 calfile << glparam->NAME.Data();
469 printf("\n Using TOF calibration file: \n %s\n",calfile.str().c_str());
470 ifstream fileTriggerCalib;
471 fileTriggerCalib.open(calfile.str().c_str());
472 if(!fileTriggerCalib)printf("debug: no trigger calib file!\n");
473 // correct readout WM Oct '07
474 for(Int_t i=0; i<np; i++){
475 fileTriggerCalib >> temp;
476 fileTriggerCalib >> atte1[i];
477 fileTriggerCalib >> lambda1[i];
478 fileTriggerCalib >> atte2[i];
479 fileTriggerCalib >> lambda2[i];
480 fileTriggerCalib >> temp;
481 }
482 fileTriggerCalib.close();
483 //end tof calib
484 }

  ViewVC Help
Powered by ViewVC 1.1.23