| 1 |
#include <sstream> |
| 2 |
#include <fstream> |
| 3 |
#include <stdlib.h> |
| 4 |
#include <stdio.h> |
| 5 |
#include <string.h> |
| 6 |
#include <ctype.h> |
| 7 |
#include <time.h> |
| 8 |
#include "Riostream.h" |
| 9 |
#include "TFile.h" |
| 10 |
#include "TDirectory.h" |
| 11 |
#include "TTree.h" |
| 12 |
#include "TLeafI.h" |
| 13 |
#include "TH1.h" |
| 14 |
#include "TH2.h" |
| 15 |
#include "TF1.h" |
| 16 |
#include "TMath.h" |
| 17 |
#include "TRandom.h" |
| 18 |
#include "TSQLServer.h" |
| 19 |
#include "TSystem.h" |
| 20 |
#include "CalibTrk1Event.h" |
| 21 |
#include "CalibTrk2Event.h" |
| 22 |
// |
| 23 |
#include "Digitizer.h" |
| 24 |
#include "CRC.h" |
| 25 |
// |
| 26 |
#include <PamelaRun.h> |
| 27 |
#include <physics/calorimeter/CalorimeterEvent.h> |
| 28 |
#include <CalibCalPedEvent.h> |
| 29 |
#include "GLTables.h" |
| 30 |
|
| 31 |
extern "C"{ |
| 32 |
short crc(short, short); |
| 33 |
}; |
| 34 |
|
| 35 |
void Digitizer::ClearCaloCalib(Int_t s){ |
| 36 |
// |
| 37 |
fcstwerr[s] = 0; |
| 38 |
fcperror[s] = 0.; |
| 39 |
for ( Int_t d=0 ; d<11 ;d++ ){ |
| 40 |
Int_t pre = -1; |
| 41 |
for ( Int_t j=0; j<96 ;j++){ |
| 42 |
if ( j%16 == 0 ) pre++; |
| 43 |
fcalped[s][d][j] = 0.; |
| 44 |
fcstwerr[s] = 0.; |
| 45 |
fcperror[s] = 0.; |
| 46 |
fcalgood[s][d][j] = 0.; |
| 47 |
fcalthr[s][d][pre] = 0.; |
| 48 |
fcalrms[s][d][j] = 0.; |
| 49 |
fcalbase[s][d][pre] = 0.; |
| 50 |
fcalvar[s][d][pre] = 0.; |
| 51 |
}; |
| 52 |
}; |
| 53 |
return; |
| 54 |
} |
| 55 |
|
| 56 |
Int_t Digitizer::CaloLoadCalib(Int_t s,TString fcalname, UInt_t calibno){ |
| 57 |
// |
| 58 |
// |
| 59 |
UInt_t e = 0; |
| 60 |
if ( s == 0 ) e = 0; |
| 61 |
if ( s == 1 ) e = 2; |
| 62 |
if ( s == 2 ) e = 3; |
| 63 |
if ( s == 3 ) e = 1; |
| 64 |
// |
| 65 |
ifstream myfile; |
| 66 |
myfile.open(fcalname.Data()); |
| 67 |
if ( !myfile ){ |
| 68 |
return(-107); |
| 69 |
}; |
| 70 |
myfile.close(); |
| 71 |
// |
| 72 |
TFile *File = new TFile(fcalname.Data()); |
| 73 |
if ( !File ) return(-108); |
| 74 |
TTree *tr = (TTree*)File->Get("CalibCalPed"); |
| 75 |
if ( !tr ) return(-109); |
| 76 |
// |
| 77 |
TBranch *calo = tr->GetBranch("CalibCalPed"); |
| 78 |
// |
| 79 |
pamela::CalibCalPedEvent *ce = 0; |
| 80 |
tr->SetBranchAddress("CalibCalPed", &ce); |
| 81 |
// |
| 82 |
Long64_t ncalibs = calo->GetEntries(); |
| 83 |
// |
| 84 |
if ( !ncalibs ) return(-110); |
| 85 |
// |
| 86 |
calo->GetEntry(calibno); |
| 87 |
// |
| 88 |
if (ce->cstwerr[s] != 0 && ce->cperror[s] == 0 ) { |
| 89 |
fcstwerr[s] = ce->cstwerr[s]; |
| 90 |
fcperror[s] = ce->cperror[s]; |
| 91 |
for ( Int_t d=0 ; d<11 ;d++ ){ |
| 92 |
Int_t pre = -1; |
| 93 |
for ( Int_t j=0; j<96 ;j++){ |
| 94 |
if ( j%16 == 0 ) pre++; |
| 95 |
fcalped[s][d][j] = ce->calped[e][d][j]; |
| 96 |
fcalgood[s][d][j] = ce->calgood[e][d][j]; |
| 97 |
fcalthr[s][d][pre] = ce->calthr[e][d][pre]; |
| 98 |
fcalrms[s][d][j] = ce->calrms[e][d][j]; |
| 99 |
fcalbase[s][d][pre] = ce->calbase[e][d][pre]; |
| 100 |
fcalvar[s][d][pre] = ce->calvar[e][d][pre]; |
| 101 |
}; |
| 102 |
}; |
| 103 |
} else { |
| 104 |
printf(" CALORIMETER - ERROR: problems finding a good calibration in this file! \n\n "); |
| 105 |
File->Close(); |
| 106 |
return(-111); |
| 107 |
}; |
| 108 |
File->Close(); |
| 109 |
return(0); |
| 110 |
} |
| 111 |
|
| 112 |
|
| 113 |
void Digitizer::DigitizeCALOCALIB() { |
| 114 |
// |
| 115 |
// Header of the four sections |
| 116 |
// |
| 117 |
fSecCalo[0] = 0xAA00; // XE |
| 118 |
fSecCalo[1] = 0xB100; // XO |
| 119 |
fSecCalo[2] = 0xB600; // YE |
| 120 |
fSecCalo[3] = 0xAD00; // YO |
| 121 |
// |
| 122 |
// length of the data is 0x1215 |
| 123 |
// |
| 124 |
fSecCALOLength[0] = 0x1215; // XE |
| 125 |
fSecCALOLength[1] = 0x1215; // XO |
| 126 |
fSecCALOLength[2] = 0x1215; // YE |
| 127 |
fSecCALOLength[3] = 0x1215; // YO |
| 128 |
// |
| 129 |
Int_t chksum = 0; |
| 130 |
UInt_t tstrip = 0; |
| 131 |
UInt_t fSecPointer = 0; |
| 132 |
// |
| 133 |
for (Int_t sec=0; sec < 4; sec++){ |
| 134 |
// |
| 135 |
// sec = 0 -> XE 1 -> XO 2-> YE 3 -> YO |
| 136 |
// |
| 137 |
fCALOlength = 0; |
| 138 |
memset(fDataCALO,0,sizeof(UShort_t)*fCALObuffer); |
| 139 |
fSecPointer = fCALOlength; |
| 140 |
// |
| 141 |
// First of all we have section header and packet length |
| 142 |
// |
| 143 |
fDataCALO[fCALOlength] = fSecCalo[sec]; |
| 144 |
fCALOlength++; |
| 145 |
fDataCALO[fCALOlength] = fSecCALOLength[sec]; |
| 146 |
fCALOlength++; |
| 147 |
// |
| 148 |
// Section XO is read in the opposite direction respect to the others |
| 149 |
// |
| 150 |
chksum = 0; |
| 151 |
// |
| 152 |
for (Int_t plane=0; plane < 11; plane++){ |
| 153 |
// |
| 154 |
if ( sec == 1 ) tstrip = fCALOlength + 96*2; |
| 155 |
// |
| 156 |
for (Int_t strip=0; strip < 96; strip++){ |
| 157 |
// |
| 158 |
chksum += (Int_t)fcalped[sec][plane][strip]; |
| 159 |
// |
| 160 |
// save value |
| 161 |
// |
| 162 |
if ( sec == 1 ){ |
| 163 |
tstrip -= 2; |
| 164 |
fDataCALO[tstrip] = (Int_t)fcalped[sec][plane][strip]; |
| 165 |
fDataCALO[tstrip+1] = (Int_t)fcalgood[sec][plane][strip]; |
| 166 |
} else { |
| 167 |
fDataCALO[fCALOlength] = (Int_t)fcalped[sec][plane][strip]; |
| 168 |
fDataCALO[fCALOlength+1] = (Int_t)fcalgood[sec][plane][strip]; |
| 169 |
}; |
| 170 |
fCALOlength +=2; |
| 171 |
}; |
| 172 |
// |
| 173 |
}; |
| 174 |
// |
| 175 |
fDataCALO[fCALOlength] = (UShort_t)chksum; |
| 176 |
fCALOlength++; |
| 177 |
fDataCALO[fCALOlength] = 0; |
| 178 |
fCALOlength++; |
| 179 |
fDataCALO[fCALOlength] = (UShort_t)((Int_t)(chksum >> 16)); |
| 180 |
fCALOlength++; |
| 181 |
// |
| 182 |
// Section XO is read in the opposite direction respect to the others |
| 183 |
// |
| 184 |
chksum = 0; |
| 185 |
// |
| 186 |
for (Int_t plane=0; plane < 11; plane++){ |
| 187 |
// |
| 188 |
if ( sec == 1 ) tstrip = fCALOlength+6*2; |
| 189 |
// |
| 190 |
for (Int_t strip=0; strip < 6; strip++){ |
| 191 |
// |
| 192 |
chksum += (Int_t)fcalthr[sec][plane][strip]; |
| 193 |
// |
| 194 |
// save value |
| 195 |
// |
| 196 |
if ( sec == 1 ){ |
| 197 |
tstrip -= 2; |
| 198 |
fDataCALO[tstrip] = 0; |
| 199 |
fDataCALO[tstrip+1] = (Int_t)fcalthr[sec][plane][strip]; |
| 200 |
} else { |
| 201 |
fDataCALO[fCALOlength] = 0; |
| 202 |
fDataCALO[fCALOlength+1] = (Int_t)fcalthr[sec][plane][strip]; |
| 203 |
}; |
| 204 |
fCALOlength +=2; |
| 205 |
}; |
| 206 |
// |
| 207 |
}; |
| 208 |
// |
| 209 |
fDataCALO[fCALOlength] = 0; |
| 210 |
fCALOlength++; |
| 211 |
fDataCALO[fCALOlength] = (UShort_t)chksum; |
| 212 |
fCALOlength++; |
| 213 |
fDataCALO[fCALOlength] = 0; |
| 214 |
fCALOlength++; |
| 215 |
fDataCALO[fCALOlength] = (UShort_t)((Int_t)(chksum >> 16)); |
| 216 |
fCALOlength++; |
| 217 |
// |
| 218 |
// Section XO is read in the opposite direction respect to the others |
| 219 |
// |
| 220 |
for (Int_t plane=0; plane < 11; plane++){ |
| 221 |
// |
| 222 |
if ( sec == 1 ) tstrip = fCALOlength+96*2; |
| 223 |
// |
| 224 |
for (Int_t strip=0; strip < 96; strip++){ |
| 225 |
// |
| 226 |
// save value |
| 227 |
// |
| 228 |
if ( sec == 1 ){ |
| 229 |
tstrip -= 2; |
| 230 |
fDataCALO[tstrip] = 0; |
| 231 |
fDataCALO[tstrip+1] = (Int_t)fcalrms[sec][plane][strip]; |
| 232 |
} else { |
| 233 |
fDataCALO[fCALOlength] = 0; |
| 234 |
fDataCALO[fCALOlength+1] = (Int_t)fcalrms[sec][plane][strip]; |
| 235 |
}; |
| 236 |
fCALOlength += 2; |
| 237 |
}; |
| 238 |
// |
| 239 |
}; |
| 240 |
// |
| 241 |
// Section XO is read in the opposite direction respect to the others |
| 242 |
// |
| 243 |
for (Int_t plane=0; plane < 11; plane++){ |
| 244 |
// |
| 245 |
if ( sec == 1 ) tstrip = fCALOlength+6*4; |
| 246 |
// |
| 247 |
for (Int_t strip=0; strip < 6; strip++){ |
| 248 |
// |
| 249 |
// save value |
| 250 |
// |
| 251 |
if ( sec == 1 ){ |
| 252 |
tstrip -= 4; |
| 253 |
fDataCALO[tstrip] = 0; |
| 254 |
fDataCALO[tstrip+1] = (Int_t)fcalbase[sec][plane][strip]; |
| 255 |
fDataCALO[tstrip+2] = 0; |
| 256 |
fDataCALO[tstrip+3] = (Int_t)fcalvar[sec][plane][strip]; |
| 257 |
} else { |
| 258 |
fDataCALO[fCALOlength] = 0; |
| 259 |
fDataCALO[fCALOlength+1] = (Int_t)fcalbase[sec][plane][strip]; |
| 260 |
fDataCALO[fCALOlength+2] = 0; |
| 261 |
fDataCALO[fCALOlength+3] = (Int_t)fcalvar[sec][plane][strip]; |
| 262 |
}; |
| 263 |
fCALOlength +=4; |
| 264 |
}; |
| 265 |
// |
| 266 |
}; |
| 267 |
// |
| 268 |
// |
| 269 |
// here we calculate and save the CRC |
| 270 |
// |
| 271 |
fDataCALO[fCALOlength] = 0; |
| 272 |
fCALOlength++; |
| 273 |
Short_t CRC = 0; |
| 274 |
for (UInt_t i=0; i<(fCALOlength-fSecPointer); i++){ |
| 275 |
CRC=crc(CRC,fDataCALO[i+fSecPointer]); |
| 276 |
}; |
| 277 |
fDataCALO[fCALOlength] = (UShort_t)CRC; |
| 278 |
fCALOlength++; |
| 279 |
// |
| 280 |
UInt_t length=fCALOlength*2; |
| 281 |
DigitizePSCU(length,0x18,fDataPSCU); |
| 282 |
// |
| 283 |
// Add padding to 64 bits |
| 284 |
// |
| 285 |
AddPadding(); |
| 286 |
// |
| 287 |
fOutputfile.write(reinterpret_cast<char*>(fDataPSCU),sizeof(UShort_t)*fPSCUbuffer); |
| 288 |
UShort_t temp[1000000]; |
| 289 |
memset(temp,0,sizeof(UShort_t)*1000000); |
| 290 |
swab(fDataCALO,temp,sizeof(UShort_t)*fCALOlength); // WE MUST SWAP THE BYTES!!! |
| 291 |
fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fCALOlength); |
| 292 |
// |
| 293 |
// padding to 64 bytes |
| 294 |
// |
| 295 |
if ( fPadding ){ |
| 296 |
fOutputfile.write(reinterpret_cast<char*>(fDataPadding),sizeof(UChar_t)*fPadding); |
| 297 |
}; |
| 298 |
// |
| 299 |
// |
| 300 |
}; |
| 301 |
// |
| 302 |
}; |
| 303 |
|
| 304 |
void Digitizer::CaloLoadCalib() { |
| 305 |
// |
| 306 |
fGivenCaloCalib = 0; // ####@@@@ should be given as input par @@@@#### |
| 307 |
// |
| 308 |
// first of all load the MIP to ADC conversion values |
| 309 |
// |
| 310 |
stringstream calfile; |
| 311 |
Int_t error = 0; |
| 312 |
GL_PARAM *glparam = new GL_PARAM(); |
| 313 |
// |
| 314 |
// determine where I can find calorimeter ADC to MIP conversion file |
| 315 |
// |
| 316 |
error = 0; |
| 317 |
error = glparam->Query_GL_PARAM(3,101,fDbc); |
| 318 |
// |
| 319 |
calfile.str(""); |
| 320 |
calfile << glparam->PATH.Data() << "/"; |
| 321 |
calfile << glparam->NAME.Data(); |
| 322 |
// |
| 323 |
printf("\n Using Calorimeter ADC to MIP conversion file: \n %s \n",calfile.str().c_str()); |
| 324 |
FILE *f; |
| 325 |
f = fopen(calfile.str().c_str(),"rb"); |
| 326 |
// |
| 327 |
memset(fCalomip,0,4224*sizeof(fCalomip[0][0][0])); |
| 328 |
// |
| 329 |
for (Int_t m = 0; m < 2 ; m++ ){ |
| 330 |
for (Int_t k = 0; k < 22; k++ ){ |
| 331 |
for (Int_t l = 0; l < 96; l++ ){ |
| 332 |
fread(&fCalomip[m][k][l],sizeof(fCalomip[m][k][l]),1,f); |
| 333 |
}; |
| 334 |
}; |
| 335 |
}; |
| 336 |
fclose(f); |
| 337 |
// |
| 338 |
// determine which calibration has to be used and load it for each section |
| 339 |
// |
| 340 |
GL_CALO_CALIB *glcalo = new GL_CALO_CALIB(); |
| 341 |
GL_ROOT *glroot = new GL_ROOT(); |
| 342 |
TString fcalname; |
| 343 |
UInt_t idcalib; |
| 344 |
UInt_t calibno; |
| 345 |
UInt_t utime = 0; |
| 346 |
// |
| 347 |
for (UInt_t s=0; s<4; s++){ |
| 348 |
// |
| 349 |
// clear calo calib variables for section s |
| 350 |
// |
| 351 |
ClearCaloCalib(s); |
| 352 |
// |
| 353 |
if ( fGivenCaloCalib ){ |
| 354 |
// |
| 355 |
// a time has been given as input on the command line so retrieve the calibration that preceed that time |
| 356 |
// |
| 357 |
glcalo->Query_GL_CALO_CALIB(fGivenCaloCalib,utime,s,fDbc); |
| 358 |
// |
| 359 |
calibno = glcalo->EV_ROOT; |
| 360 |
idcalib = glcalo->ID_ROOT_L0; |
| 361 |
// |
| 362 |
// determine path and name and entry of the calibration file |
| 363 |
// |
| 364 |
printf("\n"); |
| 365 |
printf(" ** SECTION %i **\n",s); |
| 366 |
// |
| 367 |
glroot->Query_GL_ROOT(idcalib,fDbc); |
| 368 |
// |
| 369 |
stringstream name; |
| 370 |
name.str(""); |
| 371 |
name << glroot->PATH.Data() << "/"; |
| 372 |
name << glroot->NAME.Data(); |
| 373 |
// |
| 374 |
fcalname = (TString)name.str().c_str(); |
| 375 |
// |
| 376 |
printf("\n Section %i : using file %s calibration at entry %i: \n",s,fcalname.Data(),calibno); |
| 377 |
// |
| 378 |
} else { |
| 379 |
error = 0; |
| 380 |
error = glparam->Query_GL_PARAM(1,104,fDbc); |
| 381 |
// |
| 382 |
calfile.str(""); |
| 383 |
calfile << glparam->PATH.Data() << "/"; |
| 384 |
calfile << glparam->NAME.Data(); |
| 385 |
// |
| 386 |
printf("\n Section %i : using default calorimeter calibration: \n %s \n",s,calfile.str().c_str()); |
| 387 |
// |
| 388 |
fcalname = (TString)calfile.str().c_str(); |
| 389 |
calibno = s; |
| 390 |
// |
| 391 |
}; |
| 392 |
// |
| 393 |
// load calibration variables in memory |
| 394 |
// |
| 395 |
CaloLoadCalib(s,fcalname,calibno); |
| 396 |
// |
| 397 |
}; |
| 398 |
// |
| 399 |
// at this point we have in memory the calorimeter calibration and we can save it to disk in the correct format and use it to digitize the data |
| 400 |
// |
| 401 |
delete glparam; |
| 402 |
delete glcalo; |
| 403 |
delete glroot; |
| 404 |
}; |
| 405 |
|
| 406 |
void Digitizer::DigitizeCALO() { |
| 407 |
// |
| 408 |
fModCalo = 0; // 0 is RAW, 1 is COMPRESS, 2 is FULL ####@@@@ should be given as input par @@@@#### |
| 409 |
// |
| 410 |
// |
| 411 |
// |
| 412 |
fCALOlength = 0; // reset total dimension of calo data |
| 413 |
// |
| 414 |
// gpamela variables to be used |
| 415 |
// |
| 416 |
// fhBookTree->SetBranchStatus("Nthcali",1);//modified by E.Vannuccini 03/08 |
| 417 |
// fhBookTree->SetBranchStatus("Icaplane",1); |
| 418 |
// fhBookTree->SetBranchStatus("Icastrip",1); |
| 419 |
// fhBookTree->SetBranchStatus("Icamod",1); |
| 420 |
// fhBookTree->SetBranchStatus("Enestrip",1); |
| 421 |
// |
| 422 |
// call different routines depending on the acq mode you want to simulate |
| 423 |
// |
| 424 |
switch ( fModCalo ){ |
| 425 |
case 0: |
| 426 |
this->DigitizeCALORAW(); |
| 427 |
break; |
| 428 |
case 1: |
| 429 |
this->DigitizeCALOCOMPRESS(); |
| 430 |
break; |
| 431 |
case 2: |
| 432 |
this->DigitizeCALOFULL(); |
| 433 |
break; |
| 434 |
}; |
| 435 |
// |
| 436 |
}; |
| 437 |
|
| 438 |
Float_t Digitizer::GetCALOen(Int_t sec, Int_t plane, Int_t strip){ |
| 439 |
// |
| 440 |
// determine plane and strip |
| 441 |
// |
| 442 |
Int_t mplane = 0; |
| 443 |
// |
| 444 |
// wrong! |
| 445 |
// |
| 446 |
// if ( sec == 0 || sec == 3 ) mplane = (plane * 4) + sec + 1; |
| 447 |
// if ( sec == 1 ) mplane = (plane * 4) + 2 + 1; |
| 448 |
// if ( sec == 2 ) mplane = (plane * 4) + 1 + 1; |
| 449 |
// |
| 450 |
if ( sec == 0 ) mplane = plane * 4 + 1; // it must be 0, 4, 8, ... (+1) from plane = 0, 11 |
| 451 |
if ( sec == 1 ) mplane = plane * 4 + 2 + 1; // it must be 2, 6, 10, ... (+1) from plane = 0, 11 |
| 452 |
if ( sec == 2 ) mplane = plane * 4 + 3 + 1; // it must be 3, 7, 11, ... (+1) from plane = 0, 11 |
| 453 |
if ( sec == 3 ) mplane = plane * 4 + 1 + 1; // it must be 1, 5, 9, ... (+1) from plane = 0, 11 |
| 454 |
// |
| 455 |
Int_t mstrip = strip + 1; |
| 456 |
// |
| 457 |
// search energy release in gpamela output |
| 458 |
// |
| 459 |
for (Int_t i=0; i<Nthcali;i++){ |
| 460 |
if ( Icaplane[i] == mplane && Icastrip[i] == mstrip ){ |
| 461 |
return (Enestrip[i]); |
| 462 |
}; |
| 463 |
}; |
| 464 |
// |
| 465 |
// if not found it means no energy release so return 0. |
| 466 |
// |
| 467 |
return(0.); |
| 468 |
}; |
| 469 |
|
| 470 |
void Digitizer::DigitizeCALORAW() { |
| 471 |
// |
| 472 |
// some variables |
| 473 |
// |
| 474 |
Float_t ens = 0.; |
| 475 |
UInt_t adcsig = 0; |
| 476 |
UInt_t adcbase = 0; |
| 477 |
UInt_t adc = 0; |
| 478 |
Int_t pre = 0; |
| 479 |
UInt_t l = 0; |
| 480 |
UInt_t lpl = 0; |
| 481 |
UInt_t tstrip = 0; |
| 482 |
UInt_t fSecPointer = 0; |
| 483 |
Double_t pedenoise; |
| 484 |
Float_t rms = 0.; |
| 485 |
Float_t pedestal = 0.; |
| 486 |
// |
| 487 |
// clean the data structure |
| 488 |
// |
| 489 |
memset(fDataCALO,0,sizeof(UShort_t)*fCALObuffer); |
| 490 |
// |
| 491 |
// Header of the four sections |
| 492 |
// |
| 493 |
fSecCalo[0] = 0xEA08; // XE |
| 494 |
fSecCalo[1] = 0xF108; // XO |
| 495 |
fSecCalo[2] = 0xF608; // YE |
| 496 |
fSecCalo[3] = 0xED08; // YO |
| 497 |
// |
| 498 |
// length of the data is 0x0428 in RAW mode |
| 499 |
// |
| 500 |
fSecCALOLength[0] = 0x0428; // XE |
| 501 |
fSecCALOLength[1] = 0x0428; // XO |
| 502 |
fSecCALOLength[2] = 0x0428; // YE |
| 503 |
fSecCALOLength[3] = 0x0428; // YO |
| 504 |
// |
| 505 |
// let's start |
| 506 |
// |
| 507 |
fCALOlength = 0; |
| 508 |
// |
| 509 |
for (Int_t sec=0; sec < 4; sec++){ |
| 510 |
// |
| 511 |
// sec = 0 -> XE 1 -> XO 2-> YE 3 -> YO |
| 512 |
// |
| 513 |
l = 0; // XE and XO are Y planes |
| 514 |
if ( sec < 2 ) l = 1; // while YE and YO are X planes |
| 515 |
// |
| 516 |
fSecPointer = fCALOlength; |
| 517 |
// |
| 518 |
// First of all we have section header and packet length |
| 519 |
// |
| 520 |
fDataCALO[fCALOlength] = fSecCalo[sec]; |
| 521 |
fCALOlength++; |
| 522 |
fDataCALO[fCALOlength] = fSecCALOLength[sec]; |
| 523 |
fCALOlength++; |
| 524 |
// |
| 525 |
// selftrigger coincidences - in the future we should add here some code to simulate timing response of pre-amplifiers |
| 526 |
// |
| 527 |
for (Int_t autoplane=0; autoplane < 7; autoplane++){ |
| 528 |
fDataCALO[fCALOlength] = 0x0000; |
| 529 |
fCALOlength++; |
| 530 |
}; |
| 531 |
// |
| 532 |
// |
| 533 |
// here comes data |
| 534 |
// |
| 535 |
// |
| 536 |
// Section XO is read in the opposite direction respect to the others |
| 537 |
// |
| 538 |
if ( sec == 1 ){ |
| 539 |
tstrip = 96*11 + fCALOlength; |
| 540 |
} else { |
| 541 |
tstrip = 0; |
| 542 |
}; |
| 543 |
// |
| 544 |
pre = -1; |
| 545 |
// |
| 546 |
for (Int_t strip=0; strip < 96; strip++){ |
| 547 |
// |
| 548 |
// which is the pre for this strip? |
| 549 |
// |
| 550 |
if (strip%16 == 0) { |
| 551 |
pre++; |
| 552 |
}; |
| 553 |
// |
| 554 |
if ( sec == 1 ) tstrip -= 11; |
| 555 |
// |
| 556 |
for (Int_t plane=0; plane < 11; plane++){ |
| 557 |
// |
| 558 |
// here is wrong!!!! |
| 559 |
// |
| 560 |
// |
| 561 |
// if ( plane%2 == 0 && sec%2 != 0){ |
| 562 |
// lpl = plane*2; |
| 563 |
// } else { |
| 564 |
// lpl = (plane*2) + 1; |
| 565 |
// }; |
| 566 |
// |
| 567 |
if ( sec == 0 || sec == 3 ) lpl = plane * 2; |
| 568 |
if ( sec == 1 || sec == 2 ) lpl = (plane * 2) + 1; |
| 569 |
// |
| 570 |
// get the energy in GeV from the simulation for that strip |
| 571 |
// |
| 572 |
ens = this->GetCALOen(sec,plane,strip); |
| 573 |
// |
| 574 |
// convert it into ADC channels |
| 575 |
// |
| 576 |
adcsig = int(ens*fCalomip[l][lpl][strip]/fCALOGeV2MIPratio); |
| 577 |
// |
| 578 |
// sum baselines |
| 579 |
// |
| 580 |
adcbase = (UInt_t)fcalbase[sec][plane][pre]; |
| 581 |
// |
| 582 |
// add noise and pedestals |
| 583 |
// |
| 584 |
pedestal = fcalped[sec][plane][strip]; |
| 585 |
rms = fcalrms[sec][plane][strip]/4.; |
| 586 |
// |
| 587 |
// Add random gaussian noise of RMS rms and Centered in the pedestal |
| 588 |
// |
| 589 |
pedenoise = gRandom->Gaus((Double_t)pedestal,(Double_t)rms); |
| 590 |
// |
| 591 |
// Sum all contribution |
| 592 |
// |
| 593 |
adc = adcsig + adcbase + (Int_t)round(pedenoise); |
| 594 |
// |
| 595 |
// Signal saturation |
| 596 |
// |
| 597 |
if ( adc > 0x7FFF ) adc = 0x7FFF; |
| 598 |
// |
| 599 |
// save value |
| 600 |
// |
| 601 |
if ( sec == 1 ){ |
| 602 |
fDataCALO[tstrip] = adc; |
| 603 |
tstrip++; |
| 604 |
} else { |
| 605 |
fDataCALO[fCALOlength] = adc; |
| 606 |
}; |
| 607 |
fCALOlength++; |
| 608 |
// |
| 609 |
}; |
| 610 |
// |
| 611 |
if ( sec == 1 ) tstrip -= 11; |
| 612 |
// |
| 613 |
}; |
| 614 |
// |
| 615 |
// here we calculate and save the CRC |
| 616 |
// |
| 617 |
Short_t CRC = 0; |
| 618 |
for (UInt_t i=0; i<(fCALOlength-fSecPointer); i++){ |
| 619 |
CRC=crc(CRC,fDataCALO[i+fSecPointer]); |
| 620 |
}; |
| 621 |
fDataCALO[fCALOlength] = (UShort_t)CRC; |
| 622 |
fCALOlength++; |
| 623 |
// |
| 624 |
}; |
| 625 |
// |
| 626 |
// for (Int_t i=0; i<fCALOlength; i++){ |
| 627 |
// printf(" WORD %i DIGIT %0x \n",i,fDataCALO[i]); |
| 628 |
// }; |
| 629 |
// |
| 630 |
}; |
| 631 |
|
| 632 |
void Digitizer::DigitizeCALOCOMPRESS() { |
| 633 |
// |
| 634 |
printf(" COMPRESS MODE STILL NOT IMPLEMENTED! \n"); |
| 635 |
// |
| 636 |
this->DigitizeCALORAW(); |
| 637 |
return; |
| 638 |
// |
| 639 |
// |
| 640 |
// |
| 641 |
fSecCalo[0] = 0xEA00; |
| 642 |
fSecCalo[1] = 0xF100; |
| 643 |
fSecCalo[2] = 0xF600; |
| 644 |
fSecCalo[3] = 0xED00; |
| 645 |
// |
| 646 |
// length of the data in DSP mode must be calculated on fly during digitization |
| 647 |
// |
| 648 |
memset(fSecCALOLength,0x0,4*sizeof(UShort_t)); |
| 649 |
// |
| 650 |
// here comes raw data |
| 651 |
// |
| 652 |
Int_t en = 0; |
| 653 |
// |
| 654 |
for (Int_t sec=0; sec < 4; sec++){ |
| 655 |
fDataCALO[en] = fSecCalo[sec]; |
| 656 |
en++; |
| 657 |
fDataCALO[en] = fSecCALOLength[sec]; |
| 658 |
en++; |
| 659 |
for (Int_t plane=0; plane < 11; plane++){ |
| 660 |
for (Int_t strip=0; strip < 11; strip++){ |
| 661 |
fDataCALO[en] = 0x0; |
| 662 |
en++; |
| 663 |
}; |
| 664 |
}; |
| 665 |
}; |
| 666 |
// |
| 667 |
}; |
| 668 |
|
| 669 |
void Digitizer::DigitizeCALOFULL() { |
| 670 |
// |
| 671 |
printf(" FULL MODE STILL NOT IMPLEMENTED! \n"); |
| 672 |
// |
| 673 |
this->DigitizeCALORAW(); |
| 674 |
return; |
| 675 |
// |
| 676 |
fSecCalo[0] = 0xEA00; |
| 677 |
fSecCalo[1] = 0xF100; |
| 678 |
fSecCalo[2] = 0xF600; |
| 679 |
fSecCalo[3] = 0xED00; |
| 680 |
// |
| 681 |
// length of the data in DSP mode must be calculated on fly during digitization |
| 682 |
// |
| 683 |
memset(fSecCALOLength,0x0,4*sizeof(UShort_t)); |
| 684 |
// |
| 685 |
// here comes raw data |
| 686 |
// |
| 687 |
Int_t en = 0; |
| 688 |
// |
| 689 |
for (Int_t sec=0; sec < 4; sec++){ |
| 690 |
fDataCALO[en] = fSecCalo[sec]; |
| 691 |
en++; |
| 692 |
fDataCALO[en] = fSecCALOLength[sec]; |
| 693 |
en++; |
| 694 |
for (Int_t plane=0; plane < 11; plane++){ |
| 695 |
for (Int_t strip=0; strip < 11; strip++){ |
| 696 |
fDataCALO[en] = 0x0; |
| 697 |
en++; |
| 698 |
}; |
| 699 |
}; |
| 700 |
}; |
| 701 |
// |
| 702 |
}; |