| 1 | 
#include "Digitizer.h" | 
| 2 | 
 | 
| 3 | 
extern "C"{ | 
| 4 | 
  short crc(short, short); | 
| 5 | 
}; | 
| 6 | 
 | 
| 7 | 
void Digitizer::ClearCaloCalib(Int_t s){ | 
| 8 | 
  // | 
| 9 | 
  fcstwerr[s] = 0; | 
| 10 | 
  fcperror[s] = 0.; | 
| 11 | 
  for ( Int_t d=0 ; d<11 ;d++  ){ | 
| 12 | 
    Int_t pre = -1; | 
| 13 | 
    for ( Int_t j=0; j<96 ;j++){ | 
| 14 | 
      if ( j%16 == 0 ) pre++; | 
| 15 | 
      fcalped[s][d][j] = 0.; | 
| 16 | 
      fcstwerr[s] = 0.; | 
| 17 | 
      fcperror[s] = 0.; | 
| 18 | 
      fcalgood[s][d][j] = 0.; | 
| 19 | 
      fcalthr[s][d][pre] = 0.; | 
| 20 | 
      fcalrms[s][d][j] = 0.; | 
| 21 | 
      fcalbase[s][d][pre] = 0.; | 
| 22 | 
      fcalvar[s][d][pre] = 0.; | 
| 23 | 
    }; | 
| 24 | 
  }; | 
| 25 | 
  return; | 
| 26 | 
} | 
| 27 | 
 | 
| 28 | 
Int_t Digitizer::CaloLoadCalib(Int_t s,TString fcalname, UInt_t calibno){ | 
| 29 | 
  // | 
| 30 | 
  // | 
| 31 | 
  UInt_t e = 0; | 
| 32 | 
  if ( s == 0 ) e = 0; | 
| 33 | 
  if ( s == 1 ) e = 2; | 
| 34 | 
  if ( s == 2 ) e = 3; | 
| 35 | 
  if ( s == 3 ) e = 1; | 
| 36 | 
  // | 
| 37 | 
  ifstream myfile; | 
| 38 | 
  myfile.open(fcalname.Data()); | 
| 39 | 
  if ( !myfile ){     | 
| 40 | 
    return(-107); | 
| 41 | 
  }; | 
| 42 | 
  myfile.close(); | 
| 43 | 
  // | 
| 44 | 
  TFile *File = new TFile(fcalname.Data()); | 
| 45 | 
  if ( !File ) return(-108); | 
| 46 | 
  TTree *tr = (TTree*)File->Get("CalibCalPed"); | 
| 47 | 
  if ( !tr ) return(-109); | 
| 48 | 
  // | 
| 49 | 
  TBranch *calo = tr->GetBranch("CalibCalPed"); | 
| 50 | 
  // | 
| 51 | 
  pamela::CalibCalPedEvent *ce = 0; | 
| 52 | 
  tr->SetBranchAddress("CalibCalPed", &ce); | 
| 53 | 
  // | 
| 54 | 
  Long64_t ncalibs = calo->GetEntries(); | 
| 55 | 
  // | 
| 56 | 
  if ( !ncalibs ) return(-110);  | 
| 57 | 
  // | 
| 58 | 
  calo->GetEntry(calibno); | 
| 59 | 
  // | 
| 60 | 
  if (ce->cstwerr[s] != 0 && ce->cperror[s] == 0 ) { | 
| 61 | 
    fcstwerr[s] = ce->cstwerr[s]; | 
| 62 | 
    fcperror[s] = ce->cperror[s]; | 
| 63 | 
    for ( Int_t d=0 ; d<11 ;d++  ){ | 
| 64 | 
      Int_t pre = -1; | 
| 65 | 
      for ( Int_t j=0; j<96 ;j++){ | 
| 66 | 
        if ( j%16 == 0 ) pre++; | 
| 67 | 
        fcalped[s][d][j] = ce->calped[e][d][j]; | 
| 68 | 
        fcalgood[s][d][j] = ce->calgood[e][d][j]; | 
| 69 | 
        fcalthr[s][d][pre] = ce->calthr[e][d][pre]; | 
| 70 | 
        fcalrms[s][d][j] = ce->calrms[e][d][j]; | 
| 71 | 
        fcalbase[s][d][pre] = ce->calbase[e][d][pre]; | 
| 72 | 
        fcalvar[s][d][pre] = ce->calvar[e][d][pre]; | 
| 73 | 
      }; | 
| 74 | 
    }; | 
| 75 | 
  } else { | 
| 76 | 
    printf(" CALORIMETER - ERROR: problems finding a good calibration in this file! \n\n "); | 
| 77 | 
    File->Close(); | 
| 78 | 
    return(-111); | 
| 79 | 
  }; | 
| 80 | 
  File->Close(); | 
| 81 | 
  return(0); | 
| 82 | 
} | 
| 83 | 
 | 
| 84 | 
 | 
| 85 | 
void Digitizer::DigitizeCALOCALIB() { | 
| 86 | 
  //  | 
| 87 | 
  // Header of the four sections | 
| 88 | 
  // | 
| 89 | 
  fSecCalo[0] = 0xAA00; // XE | 
| 90 | 
  fSecCalo[1] = 0xB100; // XO | 
| 91 | 
  fSecCalo[2] = 0xB600; // YE | 
| 92 | 
  fSecCalo[3] = 0xAD00; // YO | 
| 93 | 
  // | 
| 94 | 
  // length of the data is 0x1215  | 
| 95 | 
  //  | 
| 96 | 
  fSecCALOLength[0] = 0x1215; // XE | 
| 97 | 
  fSecCALOLength[1] = 0x1215; // XO | 
| 98 | 
  fSecCALOLength[2] = 0x1215; // YE | 
| 99 | 
  fSecCALOLength[3] = 0x1215; // YO | 
| 100 | 
  // | 
| 101 | 
  Int_t chksum = 0; | 
| 102 | 
  UInt_t tstrip = 0; | 
| 103 | 
  UInt_t fSecPointer = 0; | 
| 104 | 
  //  | 
| 105 | 
  for (Int_t sec=0; sec < 4; sec++){ | 
| 106 | 
    // | 
| 107 | 
    // sec =    0 -> XE      1 -> XO        2-> YE         3 -> YO | 
| 108 | 
    // | 
| 109 | 
    fCALOlength = 0; | 
| 110 | 
    memset(fDataCALO,0,sizeof(UShort_t)*fCALObuffer); | 
| 111 | 
    fSecPointer = fCALOlength; | 
| 112 | 
    // | 
| 113 | 
    // First of all we have section header and packet length | 
| 114 | 
    // | 
| 115 | 
    fDataCALO[fCALOlength] = fSecCalo[sec]; | 
| 116 | 
    fCALOlength++; | 
| 117 | 
    fDataCALO[fCALOlength] = fSecCALOLength[sec]; | 
| 118 | 
    fCALOlength++; | 
| 119 | 
    // | 
| 120 | 
    // Section XO is read in the opposite direction respect to the others | 
| 121 | 
    // | 
| 122 | 
    chksum = 0; | 
| 123 | 
    // | 
| 124 | 
    for (Int_t plane=0; plane < 11; plane++){ | 
| 125 | 
      // | 
| 126 | 
      if ( sec == 1 ) tstrip = fCALOlength + 96*2; | 
| 127 | 
      // | 
| 128 | 
      for (Int_t strip=0; strip < 96; strip++){    | 
| 129 | 
        // | 
| 130 | 
        chksum += (Int_t)fcalped[sec][plane][strip]; | 
| 131 | 
        // | 
| 132 | 
        // save value | 
| 133 | 
        //  | 
| 134 | 
        if ( sec == 1 ){ | 
| 135 | 
          tstrip -= 2; | 
| 136 | 
          fDataCALO[tstrip] = (Int_t)fcalped[sec][plane][strip]; | 
| 137 | 
          fDataCALO[tstrip+1] = (Int_t)fcalgood[sec][plane][strip]; | 
| 138 | 
        } else { | 
| 139 | 
          fDataCALO[fCALOlength] = (Int_t)fcalped[sec][plane][strip]; | 
| 140 | 
          fDataCALO[fCALOlength+1] = (Int_t)fcalgood[sec][plane][strip]; | 
| 141 | 
        };  | 
| 142 | 
        fCALOlength +=2; | 
| 143 | 
      }; | 
| 144 | 
      // | 
| 145 | 
    }; | 
| 146 | 
    // | 
| 147 | 
    fDataCALO[fCALOlength] = (UShort_t)chksum; | 
| 148 | 
    fCALOlength++; | 
| 149 | 
    fDataCALO[fCALOlength] = 0; | 
| 150 | 
    fCALOlength++; | 
| 151 | 
    fDataCALO[fCALOlength] = (UShort_t)((Int_t)(chksum >> 16)); | 
| 152 | 
    fCALOlength++; | 
| 153 | 
    // | 
| 154 | 
    // Section XO is read in the opposite direction respect to the others | 
| 155 | 
    // | 
| 156 | 
    chksum = 0; | 
| 157 | 
    // | 
| 158 | 
    for (Int_t plane=0; plane < 11; plane++){ | 
| 159 | 
      // | 
| 160 | 
      if ( sec == 1 ) tstrip = fCALOlength+6*2; | 
| 161 | 
      // | 
| 162 | 
      for (Int_t strip=0; strip < 6; strip++){ | 
| 163 | 
        // | 
| 164 | 
        chksum += (Int_t)fcalthr[sec][plane][strip]; | 
| 165 | 
        // | 
| 166 | 
        // save value | 
| 167 | 
        // | 
| 168 | 
        if ( sec == 1 ){ | 
| 169 | 
          tstrip -= 2; | 
| 170 | 
          fDataCALO[tstrip] = 0; | 
| 171 | 
          fDataCALO[tstrip+1] = (Int_t)fcalthr[sec][plane][strip]; | 
| 172 | 
        } else { | 
| 173 | 
          fDataCALO[fCALOlength] = 0; | 
| 174 | 
          fDataCALO[fCALOlength+1] = (Int_t)fcalthr[sec][plane][strip]; | 
| 175 | 
        }; | 
| 176 | 
        fCALOlength +=2; | 
| 177 | 
      }; | 
| 178 | 
      // | 
| 179 | 
    }; | 
| 180 | 
    // | 
| 181 | 
    fDataCALO[fCALOlength] = 0; | 
| 182 | 
    fCALOlength++; | 
| 183 | 
    fDataCALO[fCALOlength] = (UShort_t)chksum; | 
| 184 | 
    fCALOlength++; | 
| 185 | 
    fDataCALO[fCALOlength] = 0; | 
| 186 | 
    fCALOlength++; | 
| 187 | 
    fDataCALO[fCALOlength] = (UShort_t)((Int_t)(chksum >> 16)); | 
| 188 | 
    fCALOlength++; | 
| 189 | 
    // | 
| 190 | 
    // Section XO is read in the opposite direction respect to the others | 
| 191 | 
    // | 
| 192 | 
    for (Int_t plane=0; plane < 11; plane++){ | 
| 193 | 
      // | 
| 194 | 
      if ( sec == 1 ) tstrip = fCALOlength+96*2; | 
| 195 | 
      // | 
| 196 | 
      for (Int_t strip=0; strip < 96; strip++){ | 
| 197 | 
        // | 
| 198 | 
        // save value | 
| 199 | 
        // | 
| 200 | 
        if ( sec == 1 ){ | 
| 201 | 
          tstrip -= 2; | 
| 202 | 
          fDataCALO[tstrip] = 0; | 
| 203 | 
          fDataCALO[tstrip+1] = (Int_t)fcalrms[sec][plane][strip]; | 
| 204 | 
        } else { | 
| 205 | 
          fDataCALO[fCALOlength] = 0; | 
| 206 | 
          fDataCALO[fCALOlength+1] = (Int_t)fcalrms[sec][plane][strip]; | 
| 207 | 
        }; | 
| 208 | 
        fCALOlength += 2; | 
| 209 | 
      }; | 
| 210 | 
      // | 
| 211 | 
    };      | 
| 212 | 
    // | 
| 213 | 
    // Section XO is read in the opposite direction respect to the others | 
| 214 | 
    // | 
| 215 | 
    for (Int_t plane=0; plane < 11; plane++){ | 
| 216 | 
      // | 
| 217 | 
      if ( sec == 1 ) tstrip = fCALOlength+6*4; | 
| 218 | 
      // | 
| 219 | 
      for (Int_t strip=0; strip < 6; strip++){ | 
| 220 | 
        // | 
| 221 | 
        // save value | 
| 222 | 
        // | 
| 223 | 
        if ( sec == 1 ){ | 
| 224 | 
          tstrip -= 4; | 
| 225 | 
          fDataCALO[tstrip] = 0; | 
| 226 | 
          fDataCALO[tstrip+1] = (Int_t)fcalbase[sec][plane][strip]; | 
| 227 | 
          fDataCALO[tstrip+2] = 0; | 
| 228 | 
          fDataCALO[tstrip+3] = (Int_t)fcalvar[sec][plane][strip]; | 
| 229 | 
        } else {  | 
| 230 | 
          fDataCALO[fCALOlength] = 0; | 
| 231 | 
          fDataCALO[fCALOlength+1] = (Int_t)fcalbase[sec][plane][strip]; | 
| 232 | 
          fDataCALO[fCALOlength+2] = 0; | 
| 233 | 
          fDataCALO[fCALOlength+3] = (Int_t)fcalvar[sec][plane][strip]; | 
| 234 | 
        }; | 
| 235 | 
        fCALOlength +=4; | 
| 236 | 
      }; | 
| 237 | 
      // | 
| 238 | 
    };       | 
| 239 | 
    // | 
| 240 | 
    // | 
| 241 | 
    // here we calculate and save the CRC | 
| 242 | 
    // | 
| 243 | 
    fDataCALO[fCALOlength] = 0; | 
| 244 | 
    fCALOlength++; | 
| 245 | 
    Short_t CRC = 0; | 
| 246 | 
    for (UInt_t i=0; i<(fCALOlength-fSecPointer); i++){ | 
| 247 | 
      CRC=crc(CRC,fDataCALO[i+fSecPointer]); | 
| 248 | 
    }; | 
| 249 | 
    fDataCALO[fCALOlength] = (UShort_t)CRC; | 
| 250 | 
    fCALOlength++; | 
| 251 | 
    // | 
| 252 | 
    UInt_t length=fCALOlength*2; | 
| 253 | 
    DigitizePSCU(length,0x18,fDataPSCU); | 
| 254 | 
    // | 
| 255 | 
    // Add padding to 64 bits | 
| 256 | 
    // | 
| 257 | 
    AddPadding(); | 
| 258 | 
    // | 
| 259 | 
    fOutputfile.write(reinterpret_cast<char*>(fDataPSCU),sizeof(UShort_t)*fPSCUbuffer); | 
| 260 | 
    UShort_t temp[1000000]; | 
| 261 | 
    memset(temp,0,sizeof(UShort_t)*1000000); | 
| 262 | 
    swab(fDataCALO,temp,sizeof(UShort_t)*fCALOlength);  // WE MUST SWAP THE BYTES!!! | 
| 263 | 
    fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fCALOlength); | 
| 264 | 
    // | 
| 265 | 
    // padding to 64 bytes | 
| 266 | 
    // | 
| 267 | 
    if ( fPadding ){ | 
| 268 | 
      fOutputfile.write(reinterpret_cast<char*>(fDataPadding),sizeof(UChar_t)*fPadding); | 
| 269 | 
    }; | 
| 270 | 
    // | 
| 271 | 
    //     | 
| 272 | 
  }; | 
| 273 | 
  // | 
| 274 | 
}; | 
| 275 | 
 | 
| 276 | 
void Digitizer::CaloLoadCalib() { | 
| 277 | 
  // | 
| 278 | 
  fGivenCaloCalib = 0; //                                  ####@@@@ should be given as input par @@@@#### | 
| 279 | 
  // | 
| 280 | 
  // first of all load the MIP to ADC conversion values | 
| 281 | 
  // | 
| 282 | 
  stringstream calfile; | 
| 283 | 
  Int_t error = 0; | 
| 284 | 
  GL_PARAM *glparam = new GL_PARAM(); | 
| 285 | 
  // | 
| 286 | 
  // determine where I can find calorimeter ADC to MIP conversion file   | 
| 287 | 
  // | 
| 288 | 
  error = 0; | 
| 289 | 
  error = glparam->Query_GL_PARAM(3,101,fDbc); | 
| 290 | 
  // | 
| 291 | 
  calfile.str(""); | 
| 292 | 
  calfile << glparam->PATH.Data() << "/"; | 
| 293 | 
  calfile << glparam->NAME.Data(); | 
| 294 | 
  // | 
| 295 | 
  printf("\n Using Calorimeter ADC to MIP conversion file: \n %s \n",calfile.str().c_str()); | 
| 296 | 
  FILE *f; | 
| 297 | 
  f = fopen(calfile.str().c_str(),"rb"); | 
| 298 | 
  // | 
| 299 | 
  memset(fCalomip,0,4224*sizeof(fCalomip[0][0][0])); | 
| 300 | 
  // | 
| 301 | 
  for (Int_t m = 0; m < 2 ; m++ ){ | 
| 302 | 
    for (Int_t k = 0; k < 22; k++ ){ | 
| 303 | 
      for (Int_t l = 0; l < 96; l++ ){ | 
| 304 | 
        fread(&fCalomip[m][k][l],sizeof(fCalomip[m][k][l]),1,f); | 
| 305 | 
      }; | 
| 306 | 
    }; | 
| 307 | 
  }; | 
| 308 | 
  fclose(f); | 
| 309 | 
  // | 
| 310 | 
  // determine which calibration has to be used and load it for each section | 
| 311 | 
  //   | 
| 312 | 
  GL_CALO_CALIB *glcalo = new GL_CALO_CALIB(); | 
| 313 | 
  GL_ROOT *glroot = new GL_ROOT();   | 
| 314 | 
  TString fcalname; | 
| 315 | 
  UInt_t idcalib; | 
| 316 | 
  UInt_t calibno; | 
| 317 | 
  UInt_t utime = 0; | 
| 318 | 
  // | 
| 319 | 
  for (UInt_t s=0; s<4; s++){ | 
| 320 | 
    // | 
| 321 | 
    // clear calo calib variables for section s | 
| 322 | 
    // | 
| 323 | 
    ClearCaloCalib(s); | 
| 324 | 
    // | 
| 325 | 
    if ( fGivenCaloCalib ){ | 
| 326 | 
      // | 
| 327 | 
      // a time has been given as input on the command line so retrieve the calibration that preceed that time | 
| 328 | 
      // | 
| 329 | 
      glcalo->Query_GL_CALO_CALIB(fGivenCaloCalib,utime,s,fDbc); | 
| 330 | 
      //   | 
| 331 | 
      calibno = glcalo->EV_ROOT; | 
| 332 | 
      idcalib = glcalo->ID_ROOT_L0; | 
| 333 | 
      // | 
| 334 | 
      // determine path and name and entry of the calibration file | 
| 335 | 
      // | 
| 336 | 
      printf("\n"); | 
| 337 | 
      printf(" ** SECTION %i **\n",s); | 
| 338 | 
      // | 
| 339 | 
      glroot->Query_GL_ROOT(idcalib,fDbc); | 
| 340 | 
      // | 
| 341 | 
      stringstream name; | 
| 342 | 
      name.str(""); | 
| 343 | 
      name << glroot->PATH.Data() << "/"; | 
| 344 | 
      name << glroot->NAME.Data(); | 
| 345 | 
      // | 
| 346 | 
      fcalname = (TString)name.str().c_str(); | 
| 347 | 
      // | 
| 348 | 
      printf("\n Section %i : using  file %s calibration at entry %i: \n",s,fcalname.Data(),calibno); | 
| 349 | 
      // | 
| 350 | 
    } else { | 
| 351 | 
      error = 0; | 
| 352 | 
      error = glparam->Query_GL_PARAM(1,104,fDbc); | 
| 353 | 
      // | 
| 354 | 
      calfile.str(""); | 
| 355 | 
      calfile << glparam->PATH.Data() << "/"; | 
| 356 | 
      calfile << glparam->NAME.Data(); | 
| 357 | 
      // | 
| 358 | 
      printf("\n Section %i : using default calorimeter calibration: \n %s \n",s,calfile.str().c_str()); | 
| 359 | 
      // | 
| 360 | 
      fcalname = (TString)calfile.str().c_str(); | 
| 361 | 
      calibno = s; | 
| 362 | 
      // | 
| 363 | 
    }; | 
| 364 | 
    // | 
| 365 | 
    // load calibration variables in memory | 
| 366 | 
    // | 
| 367 | 
    CaloLoadCalib(s,fcalname,calibno); | 
| 368 | 
    // | 
| 369 | 
  }; | 
| 370 | 
  // | 
| 371 | 
  // at this point we have in memory the calorimeter calibration and we can save it to disk in the correct format and use it to digitize the data | 
| 372 | 
  // | 
| 373 | 
  delete glparam; | 
| 374 | 
  delete glcalo; | 
| 375 | 
  delete glroot; | 
| 376 | 
}; | 
| 377 | 
 | 
| 378 | 
void Digitizer::DigitizeCALO() { | 
| 379 | 
  // | 
| 380 | 
  fModCalo = 0; // 0 is RAW, 1 is COMPRESS, 2 is FULL     ####@@@@ should be given as input par @@@@#### | 
| 381 | 
  // | 
| 382 | 
  // | 
| 383 | 
  //  | 
| 384 | 
  fCALOlength = 0;  // reset total dimension of calo data | 
| 385 | 
  // | 
| 386 | 
  // gpamela variables to be used | 
| 387 | 
  // | 
| 388 | 
//   fhBookTree->SetBranchStatus("Nthcali",1);//modified by E.Vannuccini 03/08 | 
| 389 | 
//   fhBookTree->SetBranchStatus("Icaplane",1); | 
| 390 | 
//   fhBookTree->SetBranchStatus("Icastrip",1); | 
| 391 | 
//   fhBookTree->SetBranchStatus("Icamod",1); | 
| 392 | 
//   fhBookTree->SetBranchStatus("Enestrip",1); | 
| 393 | 
  // | 
| 394 | 
  // call different routines depending on the acq mode you want to simulate | 
| 395 | 
  // | 
| 396 | 
  switch ( fModCalo ){ | 
| 397 | 
  case 0: | 
| 398 | 
    this->DigitizeCALORAW(); | 
| 399 | 
    break; | 
| 400 | 
  case 1: | 
| 401 | 
    this->DigitizeCALOCOMPRESS(); | 
| 402 | 
    break; | 
| 403 | 
  case 2: | 
| 404 | 
    this->DigitizeCALOFULL(); | 
| 405 | 
    break; | 
| 406 | 
  }; | 
| 407 | 
  // | 
| 408 | 
}; | 
| 409 | 
 | 
| 410 | 
Float_t Digitizer::GetCALOen(Int_t sec, Int_t plane, Int_t strip){ | 
| 411 | 
  // | 
| 412 | 
  // determine plane and strip | 
| 413 | 
  // | 
| 414 | 
  Int_t mplane = 0; | 
| 415 | 
  // | 
| 416 | 
  // wrong! | 
| 417 | 
  //  | 
| 418 | 
  //  if ( sec == 0 || sec == 3 ) mplane = (plane * 4) + sec + 1;   | 
| 419 | 
  //  if ( sec == 1 ) mplane = (plane * 4) + 2 + 1;   | 
| 420 | 
  //  if ( sec == 2 ) mplane = (plane * 4) + 1 + 1;   | 
| 421 | 
  // | 
| 422 | 
  if ( sec == 0 ) mplane = plane * 4 + 1; // it must be 0, 4, 8, ... (+1)  from plane = 0, 11 | 
| 423 | 
  if ( sec == 1 ) mplane = plane * 4 + 2 + 1; // it must be 2, 6, 10, ... (+1)  from plane = 0, 11 | 
| 424 | 
  if ( sec == 2 ) mplane = plane * 4 + 3 + 1; // it must be 3, 7, 11, ... (+1)  from plane = 0, 11 | 
| 425 | 
  if ( sec == 3 ) mplane = plane * 4 + 1 + 1; // it must be 1, 5, 9, ... (+1)  from plane = 0, 11 | 
| 426 | 
  // | 
| 427 | 
  Int_t mstrip = strip + 1; | 
| 428 | 
  // | 
| 429 | 
  // search energy release in gpamela output | 
| 430 | 
  // | 
| 431 | 
  for (Int_t i=0; i<Nthcali;i++){ | 
| 432 | 
    if ( Icaplane[i] == mplane && Icastrip[i] == mstrip ){ | 
| 433 | 
      return (Enestrip[i]); | 
| 434 | 
    }; | 
| 435 | 
  }; | 
| 436 | 
  // | 
| 437 | 
  // if not found it means no energy release so return 0. | 
| 438 | 
  // | 
| 439 | 
  return(0.); | 
| 440 | 
}; | 
| 441 | 
 | 
| 442 | 
void Digitizer::DigitizeCALORAW() { | 
| 443 | 
  // | 
| 444 | 
  // some variables | 
| 445 | 
  // | 
| 446 | 
  Float_t ens = 0.; | 
| 447 | 
  UInt_t adcsig = 0; | 
| 448 | 
  UInt_t adcbase = 0; | 
| 449 | 
  UInt_t adc = 0; | 
| 450 | 
  Int_t pre = 0; | 
| 451 | 
  UInt_t l = 0; | 
| 452 | 
  UInt_t lpl = 0; | 
| 453 | 
  UInt_t tstrip = 0; | 
| 454 | 
  UInt_t fSecPointer = 0; | 
| 455 | 
  Double_t pedenoise; | 
| 456 | 
  Float_t rms = 0.; | 
| 457 | 
  Float_t pedestal = 0.; | 
| 458 | 
  // | 
| 459 | 
  // clean the data structure | 
| 460 | 
  // | 
| 461 | 
  memset(fDataCALO,0,sizeof(UShort_t)*fCALObuffer); | 
| 462 | 
  // | 
| 463 | 
  // Header of the four sections | 
| 464 | 
  // | 
| 465 | 
  fSecCalo[0] = 0xEA08; // XE | 
| 466 | 
  fSecCalo[1] = 0xF108; // XO | 
| 467 | 
  fSecCalo[2] = 0xF608; // YE  | 
| 468 | 
  fSecCalo[3] = 0xED08; // YO | 
| 469 | 
  // | 
| 470 | 
  // length of the data is 0x0428 in RAW mode | 
| 471 | 
  // | 
| 472 | 
  fSecCALOLength[0] = 0x0428; // XE | 
| 473 | 
  fSecCALOLength[1] = 0x0428; // XO | 
| 474 | 
  fSecCALOLength[2] = 0x0428; // YE | 
| 475 | 
  fSecCALOLength[3] = 0x0428; // YO | 
| 476 | 
  // | 
| 477 | 
  // let's start | 
| 478 | 
  // | 
| 479 | 
  fCALOlength = 0; | 
| 480 | 
  // | 
| 481 | 
  for (Int_t sec=0; sec < 4; sec++){ | 
| 482 | 
    // | 
| 483 | 
    // sec =    0 -> XE      1 -> XO        2-> YE         3 -> YO | 
| 484 | 
    // | 
| 485 | 
    l = 0;                 // XE and XO are Y planes  | 
| 486 | 
    if ( sec < 2 ) l = 1;  // while YE and  YO are X planes | 
| 487 | 
    // | 
| 488 | 
    fSecPointer = fCALOlength; | 
| 489 | 
    // | 
| 490 | 
    // First of all we have section header and packet length | 
| 491 | 
    // | 
| 492 | 
    fDataCALO[fCALOlength] = fSecCalo[sec]; | 
| 493 | 
    fCALOlength++; | 
| 494 | 
    fDataCALO[fCALOlength] = fSecCALOLength[sec]; | 
| 495 | 
    fCALOlength++; | 
| 496 | 
    // | 
| 497 | 
    // selftrigger coincidences - in the future we should add here some code to simulate timing response of pre-amplifiers | 
| 498 | 
    // | 
| 499 | 
    for (Int_t autoplane=0; autoplane < 7; autoplane++){ | 
| 500 | 
      fDataCALO[fCALOlength] = 0x0000; | 
| 501 | 
      fCALOlength++; | 
| 502 | 
    }; | 
| 503 | 
    // | 
| 504 | 
    // | 
| 505 | 
    // here comes data | 
| 506 | 
    // | 
| 507 | 
    // | 
| 508 | 
    // Section XO is read in the opposite direction respect to the others | 
| 509 | 
    // | 
| 510 | 
    if ( sec == 1 ){       | 
| 511 | 
      tstrip = 96*11 + fCALOlength; | 
| 512 | 
    } else { | 
| 513 | 
      tstrip = 0; | 
| 514 | 
    }; | 
| 515 | 
    // | 
| 516 | 
    pre = -1; | 
| 517 | 
    // | 
| 518 | 
    for (Int_t strip=0; strip < 96; strip++){    | 
| 519 | 
      // | 
| 520 | 
      // which is the pre for this strip? | 
| 521 | 
      // | 
| 522 | 
      if (strip%16 == 0) { | 
| 523 | 
        pre++; | 
| 524 | 
      }; | 
| 525 | 
      // | 
| 526 | 
      if ( sec == 1 ) tstrip -= 11; | 
| 527 | 
      // | 
| 528 | 
      for (Int_t plane=0; plane < 11; plane++){ | 
| 529 | 
        // | 
| 530 | 
        // here is wrong!!!! | 
| 531 | 
        // | 
| 532 | 
        // | 
| 533 | 
        //      if ( plane%2 == 0 && sec%2 != 0){ | 
| 534 | 
        //        lpl = plane*2; | 
| 535 | 
        //      } else { | 
| 536 | 
        //        lpl = (plane*2) + 1; | 
| 537 | 
        //      }; | 
| 538 | 
        // | 
| 539 | 
        if ( sec == 0 || sec == 3 ) lpl = plane * 2; | 
| 540 | 
        if ( sec == 1 || sec == 2 ) lpl = (plane * 2) + 1; | 
| 541 | 
        // | 
| 542 | 
        // get the energy in GeV from the simulation for that strip | 
| 543 | 
        // | 
| 544 | 
        ens = this->GetCALOen(sec,plane,strip);  | 
| 545 | 
        // | 
| 546 | 
        // convert it into ADC channels | 
| 547 | 
        //       | 
| 548 | 
        adcsig = int(ens*fCalomip[l][lpl][strip]/fCALOGeV2MIPratio); | 
| 549 | 
        // | 
| 550 | 
        // sum baselines | 
| 551 | 
        // | 
| 552 | 
        adcbase = (UInt_t)fcalbase[sec][plane][pre];  | 
| 553 | 
        // | 
| 554 | 
        // add noise and pedestals | 
| 555 | 
        //       | 
| 556 | 
        pedestal = fcalped[sec][plane][strip]; | 
| 557 | 
        rms = fcalrms[sec][plane][strip]/4.; | 
| 558 | 
        // | 
| 559 | 
        // Add random gaussian noise of RMS rms and Centered in the pedestal | 
| 560 | 
        //  | 
| 561 | 
        pedenoise = gRandom->Gaus((Double_t)pedestal,(Double_t)rms);  | 
| 562 | 
        // | 
| 563 | 
        // Sum all contribution | 
| 564 | 
        // | 
| 565 | 
        adc = adcsig + adcbase + (Int_t)round(pedenoise); | 
| 566 | 
        // | 
| 567 | 
        // Signal saturation | 
| 568 | 
        // | 
| 569 | 
        if ( adc > 0x7FFF ) adc = 0x7FFF; | 
| 570 | 
        // | 
| 571 | 
        // save value | 
| 572 | 
        // | 
| 573 | 
        if ( sec == 1 ){ | 
| 574 | 
          fDataCALO[tstrip] = adc; | 
| 575 | 
          tstrip++; | 
| 576 | 
        } else { | 
| 577 | 
          fDataCALO[fCALOlength] = adc; | 
| 578 | 
        }; | 
| 579 | 
        fCALOlength++; | 
| 580 | 
        // | 
| 581 | 
      }; | 
| 582 | 
      // | 
| 583 | 
      if ( sec == 1 ) tstrip -= 11; | 
| 584 | 
      // | 
| 585 | 
    }; | 
| 586 | 
    // | 
| 587 | 
    // here we calculate and save the CRC | 
| 588 | 
    // | 
| 589 | 
    Short_t CRC = 0; | 
| 590 | 
    for (UInt_t i=0; i<(fCALOlength-fSecPointer); i++){ | 
| 591 | 
      CRC=crc(CRC,fDataCALO[i+fSecPointer]); | 
| 592 | 
    }; | 
| 593 | 
    fDataCALO[fCALOlength] = (UShort_t)CRC; | 
| 594 | 
    fCALOlength++; | 
| 595 | 
    // | 
| 596 | 
  }; | 
| 597 | 
  // | 
| 598 | 
  //   for (Int_t i=0; i<fCALOlength; i++){ | 
| 599 | 
  //     printf(" WORD %i       DIGIT %0x   \n",i,fDataCALO[i]); | 
| 600 | 
  //   }; | 
| 601 | 
  // | 
| 602 | 
}; | 
| 603 | 
 | 
| 604 | 
void Digitizer::DigitizeCALOCOMPRESS() { | 
| 605 | 
  // | 
| 606 | 
  printf(" COMPRESS MODE STILL NOT IMPLEMENTED! \n");   | 
| 607 | 
  // | 
| 608 | 
  this->DigitizeCALORAW(); | 
| 609 | 
  return; | 
| 610 | 
  // | 
| 611 | 
  // | 
| 612 | 
  // | 
| 613 | 
  fSecCalo[0] = 0xEA00; | 
| 614 | 
  fSecCalo[1] = 0xF100; | 
| 615 | 
  fSecCalo[2] = 0xF600; | 
| 616 | 
  fSecCalo[3] = 0xED00; | 
| 617 | 
  // | 
| 618 | 
  // length of the data in DSP mode must be calculated on fly during digitization | 
| 619 | 
  // | 
| 620 | 
  memset(fSecCALOLength,0x0,4*sizeof(UShort_t)); | 
| 621 | 
  // | 
| 622 | 
  // here comes raw data | 
| 623 | 
  // | 
| 624 | 
  Int_t en = 0; | 
| 625 | 
  // | 
| 626 | 
  for (Int_t sec=0; sec < 4; sec++){ | 
| 627 | 
    fDataCALO[en] = fSecCalo[sec]; | 
| 628 | 
    en++; | 
| 629 | 
    fDataCALO[en] = fSecCALOLength[sec]; | 
| 630 | 
    en++; | 
| 631 | 
    for (Int_t plane=0; plane < 11; plane++){ | 
| 632 | 
      for (Int_t strip=0; strip < 11; strip++){ | 
| 633 | 
        fDataCALO[en] = 0x0; | 
| 634 | 
        en++; | 
| 635 | 
      }; | 
| 636 | 
    }; | 
| 637 | 
  }; | 
| 638 | 
  // | 
| 639 | 
}; | 
| 640 | 
 | 
| 641 | 
void Digitizer::DigitizeCALOFULL() { | 
| 642 | 
  // | 
| 643 | 
  printf(" FULL MODE STILL NOT IMPLEMENTED! \n");   | 
| 644 | 
  // | 
| 645 | 
  this->DigitizeCALORAW(); | 
| 646 | 
  return; | 
| 647 | 
  // | 
| 648 | 
  fSecCalo[0] = 0xEA00; | 
| 649 | 
  fSecCalo[1] = 0xF100; | 
| 650 | 
  fSecCalo[2] = 0xF600; | 
| 651 | 
  fSecCalo[3] = 0xED00; | 
| 652 | 
  // | 
| 653 | 
  // length of the data in DSP mode must be calculated on fly during digitization | 
| 654 | 
  // | 
| 655 | 
  memset(fSecCALOLength,0x0,4*sizeof(UShort_t)); | 
| 656 | 
  // | 
| 657 | 
  // here comes raw data | 
| 658 | 
  // | 
| 659 | 
  Int_t  en = 0; | 
| 660 | 
  // | 
| 661 | 
  for (Int_t sec=0; sec < 4; sec++){ | 
| 662 | 
    fDataCALO[en] = fSecCalo[sec]; | 
| 663 | 
    en++; | 
| 664 | 
    fDataCALO[en] = fSecCALOLength[sec]; | 
| 665 | 
    en++; | 
| 666 | 
    for (Int_t plane=0; plane < 11; plane++){ | 
| 667 | 
      for (Int_t strip=0; strip < 11; strip++){ | 
| 668 | 
        fDataCALO[en] = 0x0; | 
| 669 | 
        en++; | 
| 670 | 
      }; | 
| 671 | 
    }; | 
| 672 | 
  }; | 
| 673 | 
  // | 
| 674 | 
}; |