1 |
#include "Digitizer.h" |
2 |
|
3 |
extern "C"{ |
4 |
short crc(short, short); |
5 |
}; |
6 |
|
7 |
void Digitizer::ClearCaloCalib(Int_t s){ |
8 |
// |
9 |
fcstwerr[s] = 0; |
10 |
fcperror[s] = 0.; |
11 |
for ( Int_t d=0 ; d<11 ;d++ ){ |
12 |
Int_t pre = -1; |
13 |
for ( Int_t j=0; j<96 ;j++){ |
14 |
if ( j%16 == 0 ) pre++; |
15 |
fcalped[s][d][j] = 0.; |
16 |
fcstwerr[s] = 0.; |
17 |
fcperror[s] = 0.; |
18 |
fcalgood[s][d][j] = 0.; |
19 |
fcalthr[s][d][pre] = 0.; |
20 |
fcalrms[s][d][j] = 0.; |
21 |
fcalbase[s][d][pre] = 0.; |
22 |
fcalvar[s][d][pre] = 0.; |
23 |
}; |
24 |
}; |
25 |
return; |
26 |
} |
27 |
|
28 |
Int_t Digitizer::CaloLoadCalib(Int_t s,TString fcalname, UInt_t calibno){ |
29 |
// |
30 |
// |
31 |
UInt_t e = 0; |
32 |
if ( s == 0 ) e = 0; |
33 |
if ( s == 1 ) e = 2; |
34 |
if ( s == 2 ) e = 3; |
35 |
if ( s == 3 ) e = 1; |
36 |
// |
37 |
ifstream myfile; |
38 |
myfile.open(fcalname.Data()); |
39 |
if ( !myfile ){ |
40 |
return(-107); |
41 |
}; |
42 |
myfile.close(); |
43 |
// |
44 |
TFile *File = new TFile(fcalname.Data()); |
45 |
if ( !File ) return(-108); |
46 |
TTree *tr = (TTree*)File->Get("CalibCalPed"); |
47 |
if ( !tr ) return(-109); |
48 |
// |
49 |
TBranch *calo = tr->GetBranch("CalibCalPed"); |
50 |
// |
51 |
pamela::CalibCalPedEvent *ce = 0; |
52 |
tr->SetBranchAddress("CalibCalPed", &ce); |
53 |
// |
54 |
Long64_t ncalibs = calo->GetEntries(); |
55 |
// |
56 |
if ( !ncalibs ) return(-110); |
57 |
// |
58 |
calo->GetEntry(calibno); |
59 |
// |
60 |
if (ce->cstwerr[s] != 0 && ce->cperror[s] == 0 ) { |
61 |
fcstwerr[s] = ce->cstwerr[s]; |
62 |
fcperror[s] = ce->cperror[s]; |
63 |
for ( Int_t d=0 ; d<11 ;d++ ){ |
64 |
Int_t pre = -1; |
65 |
for ( Int_t j=0; j<96 ;j++){ |
66 |
if ( j%16 == 0 ) pre++; |
67 |
fcalped[s][d][j] = ce->calped[e][d][j]; |
68 |
fcalgood[s][d][j] = ce->calgood[e][d][j]; |
69 |
fcalthr[s][d][pre] = ce->calthr[e][d][pre]; |
70 |
fcalrms[s][d][j] = ce->calrms[e][d][j]; |
71 |
fcalbase[s][d][pre] = ce->calbase[e][d][pre]; |
72 |
fcalvar[s][d][pre] = ce->calvar[e][d][pre]; |
73 |
}; |
74 |
}; |
75 |
} else { |
76 |
printf(" CALORIMETER - ERROR: problems finding a good calibration in this file! \n\n "); |
77 |
File->Close(); |
78 |
return(-111); |
79 |
}; |
80 |
File->Close(); |
81 |
return(0); |
82 |
} |
83 |
|
84 |
|
85 |
void Digitizer::DigitizeCALOCALIB() { |
86 |
// |
87 |
// Header of the four sections |
88 |
// |
89 |
fSecCalo[0] = 0xAA00; // XE |
90 |
fSecCalo[1] = 0xB100; // XO |
91 |
fSecCalo[2] = 0xB600; // YE |
92 |
fSecCalo[3] = 0xAD00; // YO |
93 |
// |
94 |
// length of the data is 0x1215 |
95 |
// |
96 |
fSecCALOLength[0] = 0x1215; // XE |
97 |
fSecCALOLength[1] = 0x1215; // XO |
98 |
fSecCALOLength[2] = 0x1215; // YE |
99 |
fSecCALOLength[3] = 0x1215; // YO |
100 |
// |
101 |
Int_t chksum = 0; |
102 |
UInt_t tstrip = 0; |
103 |
UInt_t fSecPointer = 0; |
104 |
// |
105 |
for (Int_t sec=0; sec < 4; sec++){ |
106 |
// |
107 |
// sec = 0 -> XE 1 -> XO 2-> YE 3 -> YO |
108 |
// |
109 |
fCALOlength = 0; |
110 |
memset(fDataCALO,0,sizeof(UShort_t)*fCALObuffer); |
111 |
fSecPointer = fCALOlength; |
112 |
// |
113 |
// First of all we have section header and packet length |
114 |
// |
115 |
fDataCALO[fCALOlength] = fSecCalo[sec]; |
116 |
fCALOlength++; |
117 |
fDataCALO[fCALOlength] = fSecCALOLength[sec]; |
118 |
fCALOlength++; |
119 |
// |
120 |
// Section XO is read in the opposite direction respect to the others |
121 |
// |
122 |
chksum = 0; |
123 |
// |
124 |
for (Int_t plane=0; plane < 11; plane++){ |
125 |
// |
126 |
if ( sec == 1 ) tstrip = fCALOlength + 96*2; |
127 |
// |
128 |
for (Int_t strip=0; strip < 96; strip++){ |
129 |
// |
130 |
chksum += (Int_t)fcalped[sec][plane][strip]; |
131 |
// |
132 |
// save value |
133 |
// |
134 |
if ( sec == 1 ){ |
135 |
tstrip -= 2; |
136 |
fDataCALO[tstrip] = (Int_t)fcalped[sec][plane][strip]; |
137 |
fDataCALO[tstrip+1] = (Int_t)fcalgood[sec][plane][strip]; |
138 |
} else { |
139 |
fDataCALO[fCALOlength] = (Int_t)fcalped[sec][plane][strip]; |
140 |
fDataCALO[fCALOlength+1] = (Int_t)fcalgood[sec][plane][strip]; |
141 |
}; |
142 |
fCALOlength +=2; |
143 |
}; |
144 |
// |
145 |
}; |
146 |
// |
147 |
fDataCALO[fCALOlength] = (UShort_t)chksum; |
148 |
fCALOlength++; |
149 |
fDataCALO[fCALOlength] = 0; |
150 |
fCALOlength++; |
151 |
fDataCALO[fCALOlength] = (UShort_t)((Int_t)(chksum >> 16)); |
152 |
fCALOlength++; |
153 |
// |
154 |
// Section XO is read in the opposite direction respect to the others |
155 |
// |
156 |
chksum = 0; |
157 |
// |
158 |
for (Int_t plane=0; plane < 11; plane++){ |
159 |
// |
160 |
if ( sec == 1 ) tstrip = fCALOlength+6*2; |
161 |
// |
162 |
for (Int_t strip=0; strip < 6; strip++){ |
163 |
// |
164 |
chksum += (Int_t)fcalthr[sec][plane][strip]; |
165 |
// |
166 |
// save value |
167 |
// |
168 |
if ( sec == 1 ){ |
169 |
tstrip -= 2; |
170 |
fDataCALO[tstrip] = 0; |
171 |
fDataCALO[tstrip+1] = (Int_t)fcalthr[sec][plane][strip]; |
172 |
} else { |
173 |
fDataCALO[fCALOlength] = 0; |
174 |
fDataCALO[fCALOlength+1] = (Int_t)fcalthr[sec][plane][strip]; |
175 |
}; |
176 |
fCALOlength +=2; |
177 |
}; |
178 |
// |
179 |
}; |
180 |
// |
181 |
fDataCALO[fCALOlength] = 0; |
182 |
fCALOlength++; |
183 |
fDataCALO[fCALOlength] = (UShort_t)chksum; |
184 |
fCALOlength++; |
185 |
fDataCALO[fCALOlength] = 0; |
186 |
fCALOlength++; |
187 |
fDataCALO[fCALOlength] = (UShort_t)((Int_t)(chksum >> 16)); |
188 |
fCALOlength++; |
189 |
// |
190 |
// Section XO is read in the opposite direction respect to the others |
191 |
// |
192 |
for (Int_t plane=0; plane < 11; plane++){ |
193 |
// |
194 |
if ( sec == 1 ) tstrip = fCALOlength+96*2; |
195 |
// |
196 |
for (Int_t strip=0; strip < 96; strip++){ |
197 |
// |
198 |
// save value |
199 |
// |
200 |
if ( sec == 1 ){ |
201 |
tstrip -= 2; |
202 |
fDataCALO[tstrip] = 0; |
203 |
fDataCALO[tstrip+1] = (Int_t)fcalrms[sec][plane][strip]; |
204 |
} else { |
205 |
fDataCALO[fCALOlength] = 0; |
206 |
fDataCALO[fCALOlength+1] = (Int_t)fcalrms[sec][plane][strip]; |
207 |
}; |
208 |
fCALOlength += 2; |
209 |
}; |
210 |
// |
211 |
}; |
212 |
// |
213 |
// Section XO is read in the opposite direction respect to the others |
214 |
// |
215 |
for (Int_t plane=0; plane < 11; plane++){ |
216 |
// |
217 |
if ( sec == 1 ) tstrip = fCALOlength+6*4; |
218 |
// |
219 |
for (Int_t strip=0; strip < 6; strip++){ |
220 |
// |
221 |
// save value |
222 |
// |
223 |
if ( sec == 1 ){ |
224 |
tstrip -= 4; |
225 |
fDataCALO[tstrip] = 0; |
226 |
fDataCALO[tstrip+1] = (Int_t)fcalbase[sec][plane][strip]; |
227 |
fDataCALO[tstrip+2] = 0; |
228 |
fDataCALO[tstrip+3] = (Int_t)fcalvar[sec][plane][strip]; |
229 |
} else { |
230 |
fDataCALO[fCALOlength] = 0; |
231 |
fDataCALO[fCALOlength+1] = (Int_t)fcalbase[sec][plane][strip]; |
232 |
fDataCALO[fCALOlength+2] = 0; |
233 |
fDataCALO[fCALOlength+3] = (Int_t)fcalvar[sec][plane][strip]; |
234 |
}; |
235 |
fCALOlength +=4; |
236 |
}; |
237 |
// |
238 |
}; |
239 |
// |
240 |
// |
241 |
// here we calculate and save the CRC |
242 |
// |
243 |
fDataCALO[fCALOlength] = 0; |
244 |
fCALOlength++; |
245 |
Short_t CRC = 0; |
246 |
for (UInt_t i=0; i<(fCALOlength-fSecPointer); i++){ |
247 |
CRC=crc(CRC,fDataCALO[i+fSecPointer]); |
248 |
}; |
249 |
fDataCALO[fCALOlength] = (UShort_t)CRC; |
250 |
fCALOlength++; |
251 |
// |
252 |
UInt_t length=fCALOlength*2; |
253 |
DigitizePSCU(length,0x18,fDataPSCU); |
254 |
// |
255 |
// Add padding to 64 bits |
256 |
// |
257 |
AddPadding(); |
258 |
// |
259 |
fOutputfile.write(reinterpret_cast<char*>(fDataPSCU),sizeof(UShort_t)*fPSCUbuffer); |
260 |
UShort_t temp[1000000]; |
261 |
memset(temp,0,sizeof(UShort_t)*1000000); |
262 |
swab(fDataCALO,temp,sizeof(UShort_t)*fCALOlength); // WE MUST SWAP THE BYTES!!! |
263 |
fOutputfile.write(reinterpret_cast<char*>(temp),sizeof(UShort_t)*fCALOlength); |
264 |
// |
265 |
// padding to 64 bytes |
266 |
// |
267 |
if ( fPadding ){ |
268 |
fOutputfile.write(reinterpret_cast<char*>(fDataPadding),sizeof(UChar_t)*fPadding); |
269 |
}; |
270 |
// |
271 |
// |
272 |
}; |
273 |
// |
274 |
}; |
275 |
|
276 |
void Digitizer::CaloLoadCalib() { |
277 |
// |
278 |
fGivenCaloCalib = 0; // ####@@@@ should be given as input par @@@@#### |
279 |
// |
280 |
// first of all load the MIP to ADC conversion values |
281 |
// |
282 |
stringstream calfile; |
283 |
// Int_t error = 0; |
284 |
GL_PARAM *glparam = new GL_PARAM(); |
285 |
// |
286 |
// determine where I can find calorimeter ADC to MIP conversion file |
287 |
// |
288 |
// error = 0; |
289 |
glparam->Query_GL_PARAM(3,101,fDbc); |
290 |
// |
291 |
calfile.str(""); |
292 |
calfile << glparam->PATH.Data() << "/"; |
293 |
calfile << glparam->NAME.Data(); |
294 |
// |
295 |
printf("\n Using Calorimeter ADC to MIP conversion file: \n %s \n",calfile.str().c_str()); |
296 |
FILE *f; |
297 |
f = fopen(calfile.str().c_str(),"rb"); |
298 |
// |
299 |
memset(fCalomip,0,4224*sizeof(fCalomip[0][0][0])); |
300 |
// |
301 |
for (Int_t m = 0; m < 2 ; m++ ){ |
302 |
for (Int_t k = 0; k < 22; k++ ){ |
303 |
for (Int_t l = 0; l < 96; l++ ){ |
304 |
fread(&fCalomip[m][k][l],sizeof(fCalomip[m][k][l]),1,f); |
305 |
}; |
306 |
}; |
307 |
}; |
308 |
fclose(f); |
309 |
// |
310 |
// determine which calibration has to be used and load it for each section |
311 |
// |
312 |
GL_CALO_CALIB *glcalo = new GL_CALO_CALIB(); |
313 |
GL_ROOT *glroot = new GL_ROOT(); |
314 |
TString fcalname; |
315 |
UInt_t idcalib; |
316 |
UInt_t calibno; |
317 |
UInt_t utime = 0; |
318 |
// |
319 |
for (UInt_t s=0; s<4; s++){ |
320 |
// |
321 |
// clear calo calib variables for section s |
322 |
// |
323 |
ClearCaloCalib(s); |
324 |
// |
325 |
if ( fGivenCaloCalib ){ |
326 |
// |
327 |
// a time has been given as input on the command line so retrieve the calibration that preceed that time |
328 |
// |
329 |
glcalo->Query_GL_CALO_CALIB(fGivenCaloCalib,utime,s,fDbc); |
330 |
// |
331 |
calibno = glcalo->EV_ROOT; |
332 |
idcalib = glcalo->ID_ROOT_L0; |
333 |
// |
334 |
// determine path and name and entry of the calibration file |
335 |
// |
336 |
printf("\n"); |
337 |
printf(" ** SECTION %i **\n",s); |
338 |
// |
339 |
glroot->Query_GL_ROOT(idcalib,fDbc); |
340 |
// |
341 |
stringstream name; |
342 |
name.str(""); |
343 |
name << glroot->PATH.Data() << "/"; |
344 |
name << glroot->NAME.Data(); |
345 |
// |
346 |
fcalname = (TString)name.str().c_str(); |
347 |
// |
348 |
printf("\n Section %i : using file %s calibration at entry %i: \n",s,fcalname.Data(),calibno); |
349 |
// |
350 |
} else { |
351 |
// error = 0; |
352 |
glparam->Query_GL_PARAM(1,104,fDbc); |
353 |
// |
354 |
calfile.str(""); |
355 |
calfile << glparam->PATH.Data() << "/"; |
356 |
calfile << glparam->NAME.Data(); |
357 |
// |
358 |
printf("\n Section %i : using default calorimeter calibration: \n %s \n",s,calfile.str().c_str()); |
359 |
// |
360 |
fcalname = (TString)calfile.str().c_str(); |
361 |
calibno = s; |
362 |
// |
363 |
}; |
364 |
// |
365 |
// load calibration variables in memory |
366 |
// |
367 |
CaloLoadCalib(s,fcalname,calibno); |
368 |
// |
369 |
}; |
370 |
// |
371 |
// at this point we have in memory the calorimeter calibration and we can save it to disk in the correct format and use it to digitize the data |
372 |
// |
373 |
delete glparam; |
374 |
delete glcalo; |
375 |
delete glroot; |
376 |
}; |
377 |
|
378 |
void Digitizer::DigitizeCALO() { |
379 |
// |
380 |
// |
381 |
fCALOlength = 0; // reset total dimension of calo data |
382 |
// |
383 |
// gpamela variables to be used |
384 |
// |
385 |
// fhBookTree->SetBranchStatus("Nthcali",1);//modified by E.Vannuccini 03/08 |
386 |
// fhBookTree->SetBranchStatus("Icaplane",1); |
387 |
// fhBookTree->SetBranchStatus("Icastrip",1); |
388 |
// fhBookTree->SetBranchStatus("Icamod",1); |
389 |
// fhBookTree->SetBranchStatus("Enestrip",1); |
390 |
// |
391 |
// call different routines depending on the acq mode you want to simulate |
392 |
// |
393 |
switch ( fModCalo ){ |
394 |
case 0: |
395 |
this->DigitizeCALORAW(); |
396 |
break; |
397 |
case 1: |
398 |
this->DigitizeCALOCOMPRESS(); |
399 |
break; |
400 |
case 2: |
401 |
this->DigitizeCALOFULL(); |
402 |
break; |
403 |
}; |
404 |
// |
405 |
}; |
406 |
|
407 |
Float_t Digitizer::GetCALOen(Int_t sec, Int_t plane, Int_t strip){ |
408 |
// |
409 |
// determine plane and strip |
410 |
// |
411 |
Int_t mplane = 0; |
412 |
// |
413 |
// wrong! |
414 |
// |
415 |
// if ( sec == 0 || sec == 3 ) mplane = (plane * 4) + sec + 1; |
416 |
// if ( sec == 1 ) mplane = (plane * 4) + 2 + 1; |
417 |
// if ( sec == 2 ) mplane = (plane * 4) + 1 + 1; |
418 |
// |
419 |
if ( sec == 0 ) mplane = plane * 4 + 1; // it must be 0, 4, 8, ... (+1) from plane = 0, 11 |
420 |
if ( sec == 1 ) mplane = plane * 4 + 2 + 1; // it must be 2, 6, 10, ... (+1) from plane = 0, 11 |
421 |
if ( sec == 2 ) mplane = plane * 4 + 3 + 1; // it must be 3, 7, 11, ... (+1) from plane = 0, 11 |
422 |
if ( sec == 3 ) mplane = plane * 4 + 1 + 1; // it must be 1, 5, 9, ... (+1) from plane = 0, 11 |
423 |
// |
424 |
Int_t mstrip = strip + 1; |
425 |
// |
426 |
// search energy release in gpamela output |
427 |
// |
428 |
for (Int_t i=0; i<Nthcali;i++){ |
429 |
if ( Icaplane[i] == mplane && Icastrip[i] == mstrip ){ |
430 |
return (Enestrip[i]); |
431 |
}; |
432 |
}; |
433 |
// |
434 |
// if not found it means no energy release so return 0. |
435 |
// |
436 |
return(0.); |
437 |
}; |
438 |
|
439 |
void Digitizer::DigitizeCALORAW() { |
440 |
// |
441 |
// some variables |
442 |
// |
443 |
Float_t ens = 0.; |
444 |
UInt_t adcsig = 0; |
445 |
UInt_t adcbase = 0; |
446 |
UInt_t adc = 0; |
447 |
Int_t pre = 0; |
448 |
UInt_t l = 0; |
449 |
UInt_t lpl = 0; |
450 |
UInt_t tstrip = 0; |
451 |
UInt_t fSecPointer = 0; |
452 |
Double_t pedenoise; |
453 |
Float_t rms = 0.; |
454 |
Float_t pedestal = 0.; |
455 |
// |
456 |
// clean the data structure |
457 |
// |
458 |
memset(fDataCALO,0,sizeof(UShort_t)*fCALObuffer); |
459 |
// |
460 |
// Header of the four sections |
461 |
// |
462 |
fSecCalo[0] = 0xEA08; // XE |
463 |
fSecCalo[1] = 0xF108; // XO |
464 |
fSecCalo[2] = 0xF608; // YE |
465 |
fSecCalo[3] = 0xED08; // YO |
466 |
// |
467 |
// length of the data is 0x0428 in RAW mode |
468 |
// |
469 |
fSecCALOLength[0] = 0x0428; // XE |
470 |
fSecCALOLength[1] = 0x0428; // XO |
471 |
fSecCALOLength[2] = 0x0428; // YE |
472 |
fSecCALOLength[3] = 0x0428; // YO |
473 |
// |
474 |
// let's start |
475 |
// |
476 |
fCALOlength = 0; |
477 |
// |
478 |
for (Int_t sec=0; sec < 4; sec++){ |
479 |
// |
480 |
// sec = 0 -> XE 1 -> XO 2-> YE 3 -> YO |
481 |
// |
482 |
l = 0; // XE and XO are Y planes |
483 |
if ( sec < 2 ) l = 1; // while YE and YO are X planes |
484 |
// |
485 |
fSecPointer = fCALOlength; |
486 |
// |
487 |
// First of all we have section header and packet length |
488 |
// |
489 |
fDataCALO[fCALOlength] = fSecCalo[sec]; |
490 |
fCALOlength++; |
491 |
fDataCALO[fCALOlength] = fSecCALOLength[sec]; |
492 |
fCALOlength++; |
493 |
// |
494 |
// selftrigger coincidences - in the future we should add here some code to simulate timing response of pre-amplifiers |
495 |
// |
496 |
for (Int_t autoplane=0; autoplane < 7; autoplane++){ |
497 |
fDataCALO[fCALOlength] = 0x0000; |
498 |
fCALOlength++; |
499 |
}; |
500 |
// |
501 |
// |
502 |
// here comes data |
503 |
// |
504 |
// |
505 |
// Section XO is read in the opposite direction respect to the others |
506 |
// |
507 |
if ( sec == 1 ){ |
508 |
tstrip = 96*11 + fCALOlength; |
509 |
} else { |
510 |
tstrip = 0; |
511 |
}; |
512 |
// |
513 |
pre = -1; |
514 |
// |
515 |
for (Int_t strip=0; strip < 96; strip++){ |
516 |
// |
517 |
// which is the pre for this strip? |
518 |
// |
519 |
if (strip%16 == 0) { |
520 |
pre++; |
521 |
}; |
522 |
// |
523 |
if ( sec == 1 ) tstrip -= 11; |
524 |
// |
525 |
for (Int_t plane=0; plane < 11; plane++){ |
526 |
// |
527 |
// here is wrong!!!! |
528 |
// |
529 |
// |
530 |
// if ( plane%2 == 0 && sec%2 != 0){ |
531 |
// lpl = plane*2; |
532 |
// } else { |
533 |
// lpl = (plane*2) + 1; |
534 |
// }; |
535 |
// |
536 |
if ( sec == 0 || sec == 3 ) lpl = plane * 2; |
537 |
if ( sec == 1 || sec == 2 ) lpl = (plane * 2) + 1; |
538 |
// |
539 |
// get the energy in GeV from the simulation for that strip |
540 |
// |
541 |
ens = this->GetCALOen(sec,plane,strip); |
542 |
// |
543 |
// convert it into ADC channels |
544 |
// |
545 |
adcsig = int(ens*fCalomip[l][lpl][strip]/fCALOGeV2MIPratio); |
546 |
// |
547 |
// sum baselines |
548 |
// |
549 |
adcbase = (UInt_t)fcalbase[sec][plane][pre]; |
550 |
// |
551 |
// add noise and pedestals |
552 |
// |
553 |
pedestal = fcalped[sec][plane][strip]; |
554 |
rms = fcalrms[sec][plane][strip]/4.; |
555 |
// |
556 |
// Add random gaussian noise of RMS rms and Centered in the pedestal |
557 |
// |
558 |
pedenoise = gRandom->Gaus((Double_t)pedestal,(Double_t)rms); |
559 |
// |
560 |
// Sum all contribution |
561 |
// |
562 |
adc = adcsig + adcbase + (Int_t)round(pedenoise); |
563 |
// |
564 |
// Signal saturation |
565 |
// |
566 |
if ( adc > 0x7FFF ) adc = 0x7FFF; |
567 |
// |
568 |
// save value |
569 |
// |
570 |
if ( sec == 1 ){ |
571 |
fDataCALO[tstrip] = adc; |
572 |
tstrip++; |
573 |
} else { |
574 |
fDataCALO[fCALOlength] = adc; |
575 |
}; |
576 |
fCALOlength++; |
577 |
// |
578 |
}; |
579 |
// |
580 |
if ( sec == 1 ) tstrip -= 11; |
581 |
// |
582 |
}; |
583 |
// |
584 |
// here we calculate and save the CRC |
585 |
// |
586 |
Short_t CRC = 0; |
587 |
for (UInt_t i=0; i<(fCALOlength-fSecPointer); i++){ |
588 |
CRC=crc(CRC,fDataCALO[i+fSecPointer]); |
589 |
}; |
590 |
fDataCALO[fCALOlength] = (UShort_t)CRC; |
591 |
fCALOlength++; |
592 |
// |
593 |
}; |
594 |
// |
595 |
// for (Int_t i=0; i<fCALOlength; i++){ |
596 |
// printf(" WORD %i DIGIT %0x \n",i,fDataCALO[i]); |
597 |
// }; |
598 |
// |
599 |
}; |
600 |
|
601 |
|
602 |
void Digitizer::DigitizeCALOCOMPRESS() { |
603 |
// |
604 |
// CompressMode: implemented by C.Pizzolotto october 2009 |
605 |
// |
606 |
// some variables |
607 |
// |
608 |
Float_t ens = 0.; |
609 |
UInt_t adcsig = 0; |
610 |
UInt_t adcbase = 0; |
611 |
UInt_t adc[16]; |
612 |
Float_t rms = 0.; |
613 |
Double_t pedenoise=0.; |
614 |
Float_t pedestal = 0.; |
615 |
UInt_t pedround[16]; |
616 |
Float_t thres[16]; |
617 |
Float_t goodflag[16]; |
618 |
UInt_t min_adc = 0x7FFF; |
619 |
UInt_t min_adc_ch = 0; |
620 |
UInt_t l = 0; |
621 |
UInt_t lpl = 0; |
622 |
Int_t plane = 0; |
623 |
Int_t pre; |
624 |
Int_t npre = 0; // number of pre between 0-5 |
625 |
UInt_t strip = 0; |
626 |
UInt_t remainder; |
627 |
Float_t basesum=0.; |
628 |
Float_t basenof=0.; |
629 |
UInt_t baseline=0; |
630 |
UInt_t fSecPointer = 0; |
631 |
UInt_t fNofTStripsPointer = 0; |
632 |
UInt_t NofTransmittedStrips = 0 ; |
633 |
// |
634 |
// clean the data structure |
635 |
// |
636 |
memset(adc, 0,sizeof(adc)); |
637 |
memset(pedround, 0,sizeof(pedround)); |
638 |
memset(thres, 0,sizeof(thres)); |
639 |
memset(goodflag, 0,sizeof(goodflag)); |
640 |
// |
641 |
memset(fDataCALO,0,sizeof(UShort_t)*fCALObuffer); |
642 |
// |
643 |
// Header of the four sections |
644 |
// |
645 |
fSecCalo[0] = 0xEA00; // XE |
646 |
fSecCalo[1] = 0xF100; // XO |
647 |
fSecCalo[2] = 0xF600; // YE |
648 |
fSecCalo[3] = 0xED00; // YO |
649 |
// |
650 |
// here comes raw data |
651 |
// |
652 |
fCALOlength = 0; |
653 |
// |
654 |
for (Int_t sec=0; sec < 4; sec++){ // |
655 |
// |
656 |
// sec = 0 -> XE 1 -> XO 2-> YE 3 -> YO |
657 |
// |
658 |
l = 0; // XE and XO are Y planes |
659 |
if ( sec < 2 ) l = 1; // while YE and YO are X planes |
660 |
// |
661 |
fSecPointer = fCALOlength; |
662 |
// |
663 |
// First of all we have section header and packet length |
664 |
// |
665 |
fDataCALO[fCALOlength] = fSecCalo[sec]; |
666 |
fCALOlength++; |
667 |
fDataCALO[fCALOlength] = 0; // Unknown: length must be calculated on fly |
668 |
fCALOlength++; |
669 |
// |
670 |
// selftrigger coincidences - in the future we should add here some code to simulate timing response of pre-amplifiers |
671 |
// |
672 |
for (Int_t autoplane=0; autoplane < 7; autoplane++){ |
673 |
fDataCALO[fCALOlength] = 0x0000; |
674 |
fCALOlength++; |
675 |
}; |
676 |
// |
677 |
// second level trigger |
678 |
// |
679 |
fDataCALO[fCALOlength] = 0x0000; |
680 |
fCALOlength++; |
681 |
// |
682 |
// Nof strips transmetted: must be calculated on fly |
683 |
// |
684 |
fNofTStripsPointer = fCALOlength; |
685 |
fDataCALO[fCALOlength] = 0x0000; |
686 |
fCALOlength++; |
687 |
NofTransmittedStrips=0; |
688 |
// |
689 |
// Identifier of calo data |
690 |
// |
691 |
fDataCALO[fCALOlength] = 0xCA50; |
692 |
fCALOlength++; |
693 |
fDataCALO[fCALOlength] = 0xCA50; |
694 |
fCALOlength++; |
695 |
fDataCALO[fCALOlength] = 0xFFFF; // compress mode |
696 |
fCALOlength++; |
697 |
// |
698 |
// Pedestal threashold table checksum |
699 |
// |
700 |
fDataCALO[fCALOlength] = 0x0000; |
701 |
fCALOlength++; |
702 |
// |
703 |
// Calorimeter event counter |
704 |
// |
705 |
fDataCALO[fCALOlength] = fEvent; |
706 |
fCALOlength++; |
707 |
// |
708 |
// Start here with data |
709 |
// |
710 |
plane=-1; |
711 |
npre =-1; |
712 |
for (Int_t ipre=0; ipre< 66; ipre++){ // (11 planes*6 preampl) |
713 |
// |
714 |
// which plane |
715 |
if ( (ipre % 6) == 0) { |
716 |
plane++; |
717 |
} |
718 |
// |
719 |
pre=ipre; |
720 |
// |
721 |
// Adjust counter for plane X0 |
722 |
if (sec==1) // conto invertito |
723 |
{ |
724 |
remainder = pre % 6 ; |
725 |
pre = ((plane+1)*6) - remainder ; |
726 |
} |
727 |
// |
728 |
if ( sec == 0 || sec == 3 ) lpl = plane * 2; |
729 |
if ( sec == 1 || sec == 2 ) lpl = (plane * 2) + 1; |
730 |
// |
731 |
// initialize min_adc |
732 |
min_adc = 0x7FFF; |
733 |
for (Int_t ch=0; ch <16; ch++){ // 16 channels each pre |
734 |
// |
735 |
// strip number |
736 |
// |
737 |
strip=((pre-(6*plane))*16)+ch; |
738 |
if(sec==1) strip = ((pre-(6*plane))*16)+(15-ch)-16; |
739 |
// |
740 |
// calculate npre: a number between 0-5 |
741 |
// |
742 |
if( sec==1) { |
743 |
if ( ((95-strip) % 16) == 0) { |
744 |
npre++; |
745 |
if(npre>5) npre=0; |
746 |
} |
747 |
} else { |
748 |
if ( (strip % 16) == 0) { |
749 |
npre++; |
750 |
if(npre>5) npre=0; |
751 |
} |
752 |
} |
753 |
// |
754 |
// get the energy in GeV from the simulation for that strip |
755 |
// |
756 |
ens = this->GetCALOen(sec,plane,strip); |
757 |
// |
758 |
// convert it into ADC channels |
759 |
// |
760 |
adcsig = int(ens*fCalomip[l][lpl][strip]/fCALOGeV2MIPratio); |
761 |
// |
762 |
// sum baselines |
763 |
// |
764 |
adcbase = (UInt_t)fcalbase[sec][plane][npre]; |
765 |
// |
766 |
// add noise and pedestals |
767 |
// |
768 |
pedestal = fcalped[sec][plane][strip]; |
769 |
rms = fcalrms[sec][plane][strip]/4.; |
770 |
// |
771 |
// Add random gaussian noise of RMS rms and Centered in the pedestal |
772 |
// |
773 |
pedenoise = gRandom->Gaus((Double_t)pedestal,(Double_t)rms); |
774 |
// |
775 |
// Sum all contribution |
776 |
// |
777 |
adc[ch] = adcsig + adcbase + (Int_t)round(pedenoise); |
778 |
// |
779 |
// Signal saturation |
780 |
// |
781 |
if ( adc[ch] > 0x7FFF ) adc[ch] = 0x7FFF; |
782 |
// |
783 |
// save infos |
784 |
// |
785 |
pedround[ch] = (Int_t)round(pedestal) ; |
786 |
thres[ch] = ( fcalthr[sec][plane][npre] ); |
787 |
goodflag[ch] = ( fcalgood[sec][plane][strip] ); // if bad should be 255 |
788 |
// |
789 |
// Find minimum adc in this preamp |
790 |
// |
791 |
if ( goodflag[ch]==0 && (adc[ch]-pedround[ch])<min_adc ) |
792 |
{ |
793 |
min_adc = ( adc[ch]-pedround[ch] ) ; |
794 |
min_adc_ch = ch ; |
795 |
}; |
796 |
}; // close channel loop ch |
797 |
// |
798 |
// Find how many channels are below threshold in current preampl |
799 |
// |
800 |
Int_t nof_chs_below = 0; |
801 |
for (Int_t ch=0; ch <16; ch++){ |
802 |
if ( goodflag[ch]==0 && ((adc[ch]-pedround[ch]) < (min_adc+thres[min_adc_ch])) ) |
803 |
nof_chs_below++; |
804 |
}; |
805 |
// |
806 |
// Transmit data: CASE nof_chs_below<9 |
807 |
// |
808 |
if(nof_chs_below<9) |
809 |
{ |
810 |
if(sec==1) { |
811 |
fDataCALO[fCALOlength] = 0x1000 + ipre ; |
812 |
} else { |
813 |
fDataCALO[fCALOlength] = 0x1000 + pre ; |
814 |
}; |
815 |
fCALOlength++; |
816 |
for (Int_t ch=0; ch <16; ch++) |
817 |
{ |
818 |
fDataCALO[fCALOlength] = adc[ch]; |
819 |
fCALOlength++; |
820 |
NofTransmittedStrips++; |
821 |
}; |
822 |
} |
823 |
else |
824 |
// |
825 |
// Transmit data: CASE nof_chs_below>=9 |
826 |
// |
827 |
{ |
828 |
if(sec==1) { |
829 |
fDataCALO[fCALOlength] = 0x0800 + ipre ; |
830 |
} else { |
831 |
fDataCALO[fCALOlength] = 0x0800 + pre; |
832 |
}; |
833 |
fCALOlength++; |
834 |
// |
835 |
// calculate baseline and save it |
836 |
// |
837 |
basenof=0; |
838 |
baseline=0; |
839 |
basesum=0; |
840 |
for (Int_t ch=0; ch <16; ch++){ |
841 |
if( goodflag[ch]==0 && ( (adc[ch]-pedround[ch])<(min_adc+thres[ch]) ) ) |
842 |
{ |
843 |
basesum = basesum + (adc[ch]-pedround[ch]) ; |
844 |
basenof++; |
845 |
}; |
846 |
}; |
847 |
baseline = (Int_t)round( basesum / basenof ); |
848 |
fDataCALO[fCALOlength] = baseline; |
849 |
fCALOlength++; |
850 |
// |
851 |
// Transmit only channels > (min_adc+thres[ch]) |
852 |
// |
853 |
for (Int_t ch=0; ch <16; ch++){ |
854 |
if ( (adc[ch]-pedround[ch] )>(min_adc+thres[ch]) ) |
855 |
{ |
856 |
fDataCALO[fCALOlength] = ch; |
857 |
fCALOlength++; |
858 |
fDataCALO[fCALOlength] = adc[ch]; |
859 |
fCALOlength++; |
860 |
NofTransmittedStrips++; |
861 |
}; |
862 |
}; |
863 |
}; // close if nof_chs_below |
864 |
}; // close preampl loop |
865 |
// |
866 |
// Write the correct length |
867 |
// |
868 |
fDataCALO[fSecPointer+1] = (fCALOlength-fSecPointer+1)-2 ; |
869 |
// total length of the packet: -2: because the words with status and length are not included |
870 |
fDataCALO[fNofTStripsPointer] = NofTransmittedStrips ; |
871 |
// |
872 |
// here we calculate and save the CRC |
873 |
// |
874 |
Short_t CRC = 0; |
875 |
fDataCALO[fCALOlength] =0 ; |
876 |
for (UInt_t i=0; i<(fCALOlength-fSecPointer); i++){ |
877 |
CRC=crc(CRC,fDataCALO[i+fSecPointer]); |
878 |
}; |
879 |
fDataCALO[fCALOlength] = (UShort_t)CRC; |
880 |
fCALOlength++; |
881 |
// |
882 |
}; // close sec loop |
883 |
// The End |
884 |
} |
885 |
|
886 |
|
887 |
|
888 |
void Digitizer::DigitizeCALOFULL() { |
889 |
// |
890 |
printf(" FULL MODE STILL NOT IMPLEMENTED! %d\n",fEvent); |
891 |
// |
892 |
this->DigitizeCALORAW(); |
893 |
return; |
894 |
// |
895 |
fSecCalo[0] = 0xEA00; |
896 |
fSecCalo[1] = 0xF100; |
897 |
fSecCalo[2] = 0xF600; |
898 |
fSecCalo[3] = 0xED00; |
899 |
// |
900 |
// length of the data in DSP mode must be calculated on fly during digitization |
901 |
// |
902 |
memset(fSecCALOLength,0x0,4*sizeof(UShort_t)); |
903 |
// |
904 |
// here comes raw data |
905 |
// |
906 |
Int_t en = 0; |
907 |
// |
908 |
for (Int_t sec=0; sec < 4; sec++){ |
909 |
fDataCALO[en] = fSecCalo[sec]; |
910 |
en++; |
911 |
fDataCALO[en] = fSecCALOLength[sec]; |
912 |
en++; |
913 |
for (Int_t plane=0; plane < 11; plane++){ |
914 |
for (Int_t strip=0; strip < 11; strip++){ |
915 |
fDataCALO[en] = 0x0; |
916 |
en++; |
917 |
}; |
918 |
}; |
919 |
}; |
920 |
// |
921 |
} |