#include "Digitizer.h" void Digitizer::DigitizeAC() { // created: J. Conrad, KTH // modified: S. Orsi, INFN Roma2 // fDataAC[0-63]: main AC board // fDataAC[64-127]: extra AC board (identical to main board, for now) // We activate all branches. Once the digitization algorithm is determined // only the branches that involve needed information will be activated // Threshold: thr=0.8 MeV. Float_t thr = 8e-4; Int_t nReg=6,i; fDataAC[0] = 0xACAC; fDataAC[64]= 0xACAC; fDataAC[1] = 0xAC11; fDataAC[65] = 0xAC22; // the third word is a status word (dummy: "no errors are present in the AC boards") fDataAC[2] = 0xFFFF; //FFEF? fDataAC[66] = 0xFFFF; // FPGA Registers (dummy) for (i=0; i<=nReg; i++){ fDataAC[i+4] = 0xFFFF; fDataAC[i+68] = 0xFFFF; } // shift registers (moved to the end of the routine) Int_t evntLSB=(UShort_t)Ievnt; Int_t evntMSB=Ievnt >> 16; // singles counters are dummy for(i=0; i<=15; i++){ //SO Oct '07: fDataAC[i+26] = evntLSB; fDataAC[i+90] = evntLSB; } for(i=0; i<=7; i++){ fDataAC[i+42] = evntLSB; fDataAC[i+106] = evntLSB; } // increments for every trigger might be needed at some point. // dummy for now fDataAC[50] = 0x0000; fDataAC[114] = 0x0000; // dummy FPGA clock (increment by 1 at each event) if(Ievnt<=0xFFFF){ fDataAC[51] = 0x0000; fDataAC[52] = Ievnt; fDataAC[115] = 0x0000; fDataAC[116] = Ievnt; } else{ fDataAC[51] = evntMSB; fDataAC[52] = evntLSB; fDataAC[115] = fDataAC[51]; fDataAC[116] = fDataAC[52]; } // dummy temperatures fDataAC[53] = 0x0000; fDataAC[54] = 0x0000; fDataAC[117] = 0x0000; fDataAC[118] = 0x0000; // dummy DAC thresholds for(i=0; i<=7; i++){ fDataAC[i+55] = 0x1A13; fDataAC[i+119] = 0x1A13; } // In this simpliefied approach we will assume that once a particle releases > 0.5 mip in one of the 12 AC detectors it will fire. We will furthermore assume that both cards read out identical data. // If you develop your digitization algorithm, you should start by identifying the information present in level2 (post-darth-vader) data. Float_t SumEcat[4],SumEcas[4],SumEcard[4]; for(i=0;i<4;i++){ SumEcat[i]=0.; SumEcas[i]=0.; SumEcard[i]=0.; } // energy dependence on position (see file AcFitOutputDistancePmt.C by S.Orsi) // based on J.Lundquist's calculations (PhD thesis, page 94) // function: [0]+[1]*atan([2]/(x+1)), where the 3 parameters are: // 8.25470e-01 +- 1.79489e-02 // 6.41609e-01 +- 2.65846e-02 // 9.81177e+00 +- 1.21284e+00 // hp: 1 minimum ionising particle at 35cm from the PMT releases 1mip // PMT positions: x,y,z: (average position of the 2 PMTs) Float_t posCasPmt[4][3]={{28.308, -17.168, 63.644}, // 1 - CAS CPU: x,y,z {18.893, 24.913, 63.644}, // 2 - CAS DCDC {-24.307, 17.162, 63.644}, // 3 - CAS VME {-17.765, -28.300, 63.644}}; // 4 - CAS IPM Float_t dAC=0.; // distance from PMT if(Nthcat>*ncat){ cout<<"*** ERROR AC! Nthcat= "<0 && Icat[i]<5)SumEcat[Icat[i]-1]+=Erelcat[i]; } } if(Nthcas>*ncas){ cout<<"*** ERROR AC! Nthcas= "<0 && Icas[i]<5){ dAC=sqrt(pow((Xincas[i]+Xoutcas[i])/2 - posCasPmt[Icas[i]-1][0],2) + pow((Yincas[i]+Youtcas[i])/2 - posCasPmt[Icas[i]-1][1],2) + pow((Zincas[i]+Zoutcas[i])/2 - posCasPmt[Icas[i]-1][2],2)); SumEcas[Icas[i]-1] += Erelcas[i]*attenAC->Eval(dAC); } } } if(Nthcard>*ncar){ cout<<"*** ERROR AC! Nthcard= "<0 && Icard[i]<5)SumEcard[Icard[k]-1] += Erelcard[k]; } } // channel mapping Hit Map // 1 CARD4 0 LSB // 2 CAT2 0 // 3 CAS1 0 // 4 NC 0 // 5 CARD2 0 // 6 CAT4 1 // 7 CAS4 0 // 8 NC 0 // 9 CARD3 0 // 10 CAT3 0 // 11 CAS3 0 // 12 NC 0 // 13 CARD1 0 // 14 CAT1 0 // 15 CAS2 0 // 16 NC 0 MSB // In the first version only the hit-map is filled, not the SR. fDataAC[3] = 0x0000; if (SumEcas[0] > thr) fDataAC[3] = 0x0004; if (SumEcas[1] > thr) fDataAC[3] += 0x4000; if (SumEcas[2] > thr) fDataAC[3] += 0x0400; if (SumEcas[3] > thr) fDataAC[3] += 0x0040; if (SumEcat[0] > thr) fDataAC[3] += 0x2000; if (SumEcat[1] > thr) fDataAC[3] += 0x0002; if (SumEcat[2] > thr) fDataAC[3] += 0x0200; if (SumEcat[3] > thr) fDataAC[3] += 0x0020; if (SumEcard[0] > thr) fDataAC[3] += 0x1000; if (SumEcard[1] > thr) fDataAC[3] += 0x0010; if (SumEcard[2] > thr) fDataAC[3] += 0x0100; if (SumEcard[3] > thr) fDataAC[3] += 0x0001; fDataAC[67] = fDataAC[3]; // shift registers // the central bin is equal to the hitmap, all other bins in the shift register are 0 for (UInt_t i=0; i<=15; i++){ fDataAC[i+11] = 0x0000; fDataAC[i+75] = 0x0000; } fDataAC[18] = fDataAC[3]; fDataAC[82] = fDataAC[3]; // for (Int_t i=0; i