| 1 |
#include <sstream> |
| 2 |
#include <fstream> |
| 3 |
#include <stdlib.h> |
| 4 |
#include <stdio.h> |
| 5 |
#include <string.h> |
| 6 |
#include <ctype.h> |
| 7 |
#include <time.h> |
| 8 |
#include "Riostream.h" |
| 9 |
#include "TFile.h" |
| 10 |
#include "TDirectory.h" |
| 11 |
#include "TTree.h" |
| 12 |
#include "TLeafI.h" |
| 13 |
#include "TH1.h" |
| 14 |
#include "TH2.h" |
| 15 |
#include "TF1.h" |
| 16 |
#include "TMath.h" |
| 17 |
#include "TRandom.h" |
| 18 |
#include "TSQLServer.h" |
| 19 |
#include "TSystem.h" |
| 20 |
#include "CalibTrk1Event.h" |
| 21 |
#include "CalibTrk2Event.h" |
| 22 |
// |
| 23 |
#include "Digitizer.h" |
| 24 |
#include "CRC.h" |
| 25 |
// |
| 26 |
#include <PamelaRun.h> |
| 27 |
#include <physics/calorimeter/CalorimeterEvent.h> |
| 28 |
#include <CalibCalPedEvent.h> |
| 29 |
#include "GLTables.h" |
| 30 |
|
| 31 |
|
| 32 |
void Digitizer::DigitizeAC(TF1 *attenAC) { |
| 33 |
// created: J. Conrad, KTH |
| 34 |
// modified: S. Orsi, INFN Roma2 |
| 35 |
// fDataAC[0-63]: main AC board |
| 36 |
// fDataAC[64-127]: extra AC board (identical to main board, for now) |
| 37 |
|
| 38 |
// We activate all branches. Once the digitization algorithm is determined |
| 39 |
// only the branches that involve needed information will be activated |
| 40 |
|
| 41 |
fDataAC[0] = 0xACAC; |
| 42 |
fDataAC[64]= 0xACAC; |
| 43 |
fDataAC[1] = 0xAC11; |
| 44 |
fDataAC[65] = 0xAC22; |
| 45 |
|
| 46 |
// the third word is a status word (dummy: "no errors are present in the AC boards") |
| 47 |
fDataAC[2] = 0xFFFF; //FFEF? |
| 48 |
fDataAC[66] = 0xFFFF; |
| 49 |
|
| 50 |
const UInt_t nReg = 6; |
| 51 |
|
| 52 |
// FPGA Registers (dummy) |
| 53 |
for (UInt_t i=0; i<=nReg; i++){ |
| 54 |
fDataAC[i+4] = 0xFFFF; |
| 55 |
fDataAC[i+68] = 0xFFFF; |
| 56 |
} |
| 57 |
|
| 58 |
// the last word is a CRC |
| 59 |
// Dummy for the time being, but it might need to be calculated in the end |
| 60 |
fDataAC[63] = 0xABCD; |
| 61 |
fDataAC[127] = 0xABCD; |
| 62 |
|
| 63 |
// shift registers (moved to the end of the routine) |
| 64 |
|
| 65 |
//Int_t evntLSB=Ievnt%65536; |
| 66 |
//Int_t evntMSB=(Int_t)(Ievnt/65536); |
| 67 |
Int_t evntLSB=(UShort_t)Ievnt; |
| 68 |
Int_t evntMSB=Ievnt >> 16; |
| 69 |
|
| 70 |
// singles counters are dummy |
| 71 |
for (UInt_t i=0; i<=15; i++){ //SO Oct '07: // for (UInt_t i=0; i<=16; i++){ |
| 72 |
// fDataAC[i+26] = 0x0000; |
| 73 |
// fDataAC[i+90] = 0x0000; |
| 74 |
fDataAC[i+26] = evntLSB; |
| 75 |
fDataAC[i+90] = evntLSB; |
| 76 |
}; |
| 77 |
|
| 78 |
for (UInt_t i=0; i<=7; i++){ |
| 79 |
fDataAC[i+42] = evntLSB; |
| 80 |
fDataAC[i+106] = evntLSB; |
| 81 |
}; |
| 82 |
|
| 83 |
// increments for every trigger might be needed at some point. |
| 84 |
// dummy for now |
| 85 |
fDataAC[50] = 0x0000; |
| 86 |
fDataAC[114] = 0x0000; |
| 87 |
|
| 88 |
// dummy FPGA clock (increment by 1 at each event) |
| 89 |
if (Ievnt<=0xFFFF) { |
| 90 |
fDataAC[51] = 0x0000; |
| 91 |
fDataAC[52] = Ievnt; |
| 92 |
fDataAC[115] = 0x0000; |
| 93 |
fDataAC[116] = Ievnt; |
| 94 |
} else { |
| 95 |
fDataAC[51] = evntMSB; |
| 96 |
fDataAC[52] = evntLSB; |
| 97 |
fDataAC[115] = fDataAC[51]; |
| 98 |
fDataAC[116] = fDataAC[52]; |
| 99 |
} |
| 100 |
|
| 101 |
// dummy temperatures |
| 102 |
fDataAC[53] = 0x0000; |
| 103 |
fDataAC[54] = 0x0000; |
| 104 |
fDataAC[117] = 0x0000; |
| 105 |
fDataAC[118] = 0x0000; |
| 106 |
|
| 107 |
|
| 108 |
// dummy DAC thresholds |
| 109 |
for (UInt_t i=0; i<=7; i++){ |
| 110 |
fDataAC[i+55] = 0x1A13; |
| 111 |
fDataAC[i+119] = 0x1A13; |
| 112 |
} |
| 113 |
|
| 114 |
// In this simpliefied approach we will assume that once |
| 115 |
// a particle releases > 0.5 mip in one of the 12 AC detectors it |
| 116 |
// will fire. We will furthermore assume that both cards read out |
| 117 |
// identical data. |
| 118 |
|
| 119 |
// If you develop your digitization algorithm, you should start by |
| 120 |
// identifying the information present in level2 (post-darth-vader) |
| 121 |
// data. |
| 122 |
|
| 123 |
Float_t SumEcat[5]; |
| 124 |
Float_t SumEcas[5]; |
| 125 |
Float_t SumEcard[5]; |
| 126 |
for (Int_t k= 0;k<5;k++){ |
| 127 |
SumEcat[k]=0.; |
| 128 |
SumEcas[k]=0.; |
| 129 |
SumEcard[k]=0.; |
| 130 |
}; |
| 131 |
|
| 132 |
if (Nthcat>50 || Nthcas>50 || Nthcard>50) |
| 133 |
printf("*** ERROR AC! NthAC out of range!\n\n"); |
| 134 |
|
| 135 |
// energy dependence on position (see file AcFitOutputDistancePmt.C by S.Orsi) |
| 136 |
// based on J.Lundquist's calculations (PhD thesis, page 94) |
| 137 |
// function: [0]+[1]*atan([2]/(x+1)), where the 3 parameters are: |
| 138 |
// 8.25470e-01 +- 1.79489e-02 |
| 139 |
// 6.41609e-01 +- 2.65846e-02 |
| 140 |
// 9.81177e+00 +- 1.21284e+00 |
| 141 |
// hp: 1 minimum ionising particle at 35cm from the PMT releases 1mip |
| 142 |
|
| 143 |
//TF1 *attenAC = new TF1("fAttAC",".825+.64*atan(9.8/x)",0.,45.); |
| 144 |
|
| 145 |
// PMT positions: x,y,z: (average position of the 2 PMTs) |
| 146 |
Float_t posCasPmt[4][3]={{28.308, -17.168, 63.644}, // 1 - CAS CPU: x,y,z |
| 147 |
{18.893, 24.913, 63.644}, // 2 - CAS DCDC |
| 148 |
{-24.307, 17.162, 63.644}, // 3 - CAS VME |
| 149 |
{-17.765, -28.300, 63.644}}; // 4 - CAS IPM |
| 150 |
|
| 151 |
Float_t dAC=0.; // distance from PMT |
| 152 |
|
| 153 |
// look in CAT |
| 154 |
// for (UInt_t k= 0;k<50;k++){ |
| 155 |
for (Int_t k= 0;k<Nthcat;k++){ |
| 156 |
if (Erelcat[k] > 0) |
| 157 |
SumEcat[Icat[k]] += Erelcat[k]; |
| 158 |
}; |
| 159 |
|
| 160 |
// look in CAS |
| 161 |
for (Int_t k= 0;k<Nthcas;k++){ |
| 162 |
if (Erelcas[k] >0) { |
| 163 |
dAC=sqrt(pow((Xincas[k]+Xoutcas[k])/2 - posCasPmt[Icas[k]-1][0],2) + pow((Yincas[k]+Youtcas[k])/2 - posCasPmt[Icas[k]-1][1],2) + pow((Zincas[k]+Zoutcas[k])/2 - posCasPmt[Icas[k]-1][2],2)); |
| 164 |
SumEcas[Icas[k]] += Erelcas[k]*attenAC->Eval(dAC); |
| 165 |
} |
| 166 |
}; |
| 167 |
// attenAC->Delete(); |
| 168 |
// look in CARD |
| 169 |
for (Int_t k= 0;k<Nthcard;k++){ |
| 170 |
if (Erelcard[k] >0) |
| 171 |
SumEcard[Icard[k]] += Erelcard[k]; |
| 172 |
}; |
| 173 |
|
| 174 |
// channel mapping Hit Map |
| 175 |
// 1 CARD4 0 LSB |
| 176 |
// 2 CAT2 0 |
| 177 |
// 3 CAS1 0 |
| 178 |
// 4 NC 0 |
| 179 |
// 5 CARD2 0 |
| 180 |
// 6 CAT4 1 |
| 181 |
// 7 CAS4 0 |
| 182 |
// 8 NC 0 |
| 183 |
// 9 CARD3 0 |
| 184 |
// 10 CAT3 0 |
| 185 |
// 11 CAS3 0 |
| 186 |
// 12 NC 0 |
| 187 |
// 13 CARD1 0 |
| 188 |
// 14 CAT1 0 |
| 189 |
// 15 CAS2 0 |
| 190 |
// 16 NC 0 MSB |
| 191 |
|
| 192 |
// In the first version only the hit-map is filled, not the SR. |
| 193 |
|
| 194 |
// Threshold: 0.8 MeV. |
| 195 |
|
| 196 |
Float_t thr = 8e-4; |
| 197 |
|
| 198 |
fDataAC[3] = 0x0000; |
| 199 |
|
| 200 |
if (SumEcas[0] > thr) fDataAC[3] = 0x0004; |
| 201 |
if (SumEcas[1] > thr) fDataAC[3] += 0x4000; |
| 202 |
if (SumEcas[2] > thr) fDataAC[3] += 0x0400; |
| 203 |
if (SumEcas[3] > thr) fDataAC[3] += 0x0040; |
| 204 |
|
| 205 |
if (SumEcat[0] > thr) fDataAC[3] += 0x2000; |
| 206 |
if (SumEcat[1] > thr) fDataAC[3] += 0x0002; |
| 207 |
if (SumEcat[2] > thr) fDataAC[3] += 0x0200; |
| 208 |
if (SumEcat[3] > thr) fDataAC[3] += 0x0020; |
| 209 |
|
| 210 |
if (SumEcard[0] > thr) fDataAC[3] += 0x1000; |
| 211 |
if (SumEcard[1] > thr) fDataAC[3] += 0x0010; |
| 212 |
if (SumEcard[2] > thr) fDataAC[3] += 0x0100; |
| 213 |
if (SumEcard[3] > thr) fDataAC[3] += 0x0001; |
| 214 |
|
| 215 |
fDataAC[67] = fDataAC[3]; |
| 216 |
|
| 217 |
// shift registers |
| 218 |
// the central bin is equal to the hitmap, all other bins in the shift register are 0 |
| 219 |
for (UInt_t i=0; i<=15; i++){ |
| 220 |
fDataAC[i+11] = 0x0000; |
| 221 |
fDataAC[i+75] = 0x0000; |
| 222 |
} |
| 223 |
fDataAC[18] = fDataAC[3]; |
| 224 |
fDataAC[82] = fDataAC[3]; |
| 225 |
|
| 226 |
// for (Int_t i=0; i<fACbuffer; i++){ |
| 227 |
// printf("%0x ",fDataAC[i]); |
| 228 |
// if ((i+1)%8 ==0) cout << endl; |
| 229 |
// } |
| 230 |
}; |