|
#include <sstream> |
|
|
#include <fstream> |
|
|
#include <stdlib.h> |
|
|
#include <stdio.h> |
|
|
#include <string.h> |
|
|
#include <ctype.h> |
|
|
#include <time.h> |
|
|
#include "Riostream.h" |
|
|
#include "TFile.h" |
|
|
#include "TDirectory.h" |
|
|
#include "TTree.h" |
|
|
#include "TLeafI.h" |
|
|
#include "TH1.h" |
|
|
#include "TH2.h" |
|
|
#include "TF1.h" |
|
|
#include "TMath.h" |
|
|
#include "TRandom.h" |
|
|
#include "TSQLServer.h" |
|
|
#include "TSystem.h" |
|
|
#include "CalibTrk1Event.h" |
|
|
#include "CalibTrk2Event.h" |
|
|
// |
|
1 |
#include "Digitizer.h" |
#include "Digitizer.h" |
|
#include "CRC.h" |
|
|
// |
|
|
#include <PamelaRun.h> |
|
|
#include <physics/calorimeter/CalorimeterEvent.h> |
|
|
#include <CalibCalPedEvent.h> |
|
|
#include "GLTables.h" |
|
|
|
|
2 |
|
|
3 |
void Digitizer::DigitizeAC() { |
void Digitizer::DigitizeAC() { |
4 |
// created: J. Conrad, KTH |
// created: J. Conrad, KTH |
5 |
// modified: S. Orsi, INFN Roma2 |
// modified: S. Orsi, INFN Roma2 |
6 |
// fDataAC[0-63]: main AC board |
// fDataAC[0-63]: main AC board |
7 |
// fDataAC[64-127]: extra AC board (identical to main board, for now) |
// fDataAC[64-127]: extra AC board (identical to main board, for now) |
|
|
|
8 |
// We activate all branches. Once the digitization algorithm is determined |
// We activate all branches. Once the digitization algorithm is determined |
9 |
// only the branches that involve needed information will be activated |
// only the branches that involve needed information will be activated |
|
|
|
|
// fhBookTree->SetBranchStatus("Ievnt",&Ievnt);//modified by E.Vannuccini 03/08 |
|
|
// fhBookTree->SetBranchStatus("Nthcat",1); |
|
|
// fhBookTree->SetBranchStatus("Iparcat",1); |
|
|
// fhBookTree->SetBranchStatus("Icat",1); |
|
|
// fhBookTree->SetBranchStatus("Xincat",1); |
|
|
// fhBookTree->SetBranchStatus("Yincat",1); |
|
|
// fhBookTree->SetBranchStatus("Zincat",1); |
|
|
// fhBookTree->SetBranchStatus("Xoutcat",1); |
|
|
// fhBookTree->SetBranchStatus("Youtcat",1); |
|
|
// fhBookTree->SetBranchStatus("Zoutcat",1); |
|
|
// fhBookTree->SetBranchStatus("Erelcat",1); |
|
|
// fhBookTree->SetBranchStatus("Timecat",1); |
|
|
// fhBookTree->SetBranchStatus("Pathcat",1); |
|
|
// fhBookTree->SetBranchStatus("P0cat",1); |
|
|
// fhBookTree->SetBranchStatus("Nthcas",1); |
|
|
// fhBookTree->SetBranchStatus("Iparcas",1); |
|
|
// fhBookTree->SetBranchStatus("Icas",1); |
|
|
// fhBookTree->SetBranchStatus("Xincas",1); |
|
|
// fhBookTree->SetBranchStatus("Yincas",1); |
|
|
// fhBookTree->SetBranchStatus("Zincas",1); |
|
|
// fhBookTree->SetBranchStatus("Xoutcas",1); |
|
|
// fhBookTree->SetBranchStatus("Youtcas",1); |
|
|
// fhBookTree->SetBranchStatus("Zoutcas",1); |
|
|
// fhBookTree->SetBranchStatus("Erelcas",1); |
|
|
// fhBookTree->SetBranchStatus("Timecas",1); |
|
|
// fhBookTree->SetBranchStatus("Pathcas",1); |
|
|
// fhBookTree->SetBranchStatus("P0cas",1); |
|
|
// fhBookTree->SetBranchStatus("Nthcard",1); |
|
|
// fhBookTree->SetBranchStatus("Iparcard",1); |
|
|
// fhBookTree->SetBranchStatus("Icard",1); |
|
|
// fhBookTree->SetBranchStatus("Xincard",1); |
|
|
// fhBookTree->SetBranchStatus("Yincard",1); |
|
|
// fhBookTree->SetBranchStatus("Zincard",1); |
|
|
// fhBookTree->SetBranchStatus("Xoutcard",1); |
|
|
// fhBookTree->SetBranchStatus("Youtcard",1); |
|
|
// fhBookTree->SetBranchStatus("Zoutcard",1); |
|
|
// fhBookTree->SetBranchStatus("Erelcard",1); |
|
|
// fhBookTree->SetBranchStatus("Timecard",1); |
|
|
// fhBookTree->SetBranchStatus("Pathcard",1); |
|
|
// fhBookTree->SetBranchStatus("P0card",1); |
|
10 |
|
|
11 |
|
// Threshold: thr=0.8 MeV. |
12 |
|
Float_t thr = 8e-4; |
13 |
|
Int_t nReg=6,i; |
14 |
fDataAC[0] = 0xACAC; |
fDataAC[0] = 0xACAC; |
15 |
fDataAC[64]= 0xACAC; |
fDataAC[64]= 0xACAC; |
16 |
fDataAC[1] = 0xAC11; |
fDataAC[1] = 0xAC11; |
17 |
fDataAC[65] = 0xAC22; |
fDataAC[65] = 0xAC22; |
18 |
|
|
19 |
// the third word is a status word (dummy: "no errors are present in the AC boards") |
// the third word is a status word (dummy: "no errors are present in the AC boards") |
20 |
fDataAC[2] = 0xFFFF; //FFEF? |
fDataAC[2] = 0xFFFF; //FFEF? |
21 |
fDataAC[66] = 0xFFFF; |
fDataAC[66] = 0xFFFF; |
|
|
|
|
const UInt_t nReg = 6; |
|
|
|
|
22 |
// FPGA Registers (dummy) |
// FPGA Registers (dummy) |
23 |
for (UInt_t i=0; i<=nReg; i++){ |
for (i=0; i<=nReg; i++){ |
24 |
fDataAC[i+4] = 0xFFFF; |
fDataAC[i+4] = 0xFFFF; |
25 |
fDataAC[i+68] = 0xFFFF; |
fDataAC[i+68] = 0xFFFF; |
26 |
} |
} |
|
|
|
27 |
// the last word is a CRC |
// the last word is a CRC |
28 |
// Dummy for the time being, but it might need to be calculated in the end |
// Dummy for the time being, but it might need to be calculated in the end |
29 |
fDataAC[63] = 0xABCD; |
fDataAC[63] = 0xABCD; |
31 |
|
|
32 |
// shift registers (moved to the end of the routine) |
// shift registers (moved to the end of the routine) |
33 |
|
|
|
//Int_t evntLSB=Ievnt%65536; |
|
|
//Int_t evntMSB=(Int_t)(Ievnt/65536); |
|
34 |
Int_t evntLSB=(UShort_t)Ievnt; |
Int_t evntLSB=(UShort_t)Ievnt; |
35 |
Int_t evntMSB=Ievnt >> 16; |
Int_t evntMSB=Ievnt >> 16; |
36 |
|
|
37 |
// singles counters are dummy |
// singles counters are dummy |
38 |
for (UInt_t i=0; i<=15; i++){ //SO Oct '07: // for (UInt_t i=0; i<=16; i++){ |
for(i=0; i<=15; i++){ //SO Oct '07: |
|
// fDataAC[i+26] = 0x0000; |
|
|
// fDataAC[i+90] = 0x0000; |
|
39 |
fDataAC[i+26] = evntLSB; |
fDataAC[i+26] = evntLSB; |
40 |
fDataAC[i+90] = evntLSB; |
fDataAC[i+90] = evntLSB; |
41 |
}; |
} |
42 |
|
for(i=0; i<=7; i++){ |
|
// coincidences are dummy (increment by 1 at each event) |
|
|
// for (UInt_t i=0; i<=7; i++){ |
|
|
// fDataAC[i+42] = 0x0000; |
|
|
// fDataAC[i+106] = 0x0000; |
|
|
// } |
|
|
for (UInt_t i=0; i<=7; i++){ |
|
43 |
fDataAC[i+42] = evntLSB; |
fDataAC[i+42] = evntLSB; |
44 |
fDataAC[i+106] = evntLSB; |
fDataAC[i+106] = evntLSB; |
45 |
}; |
} |
|
|
|
46 |
// increments for every trigger might be needed at some point. |
// increments for every trigger might be needed at some point. |
47 |
// dummy for now |
// dummy for now |
48 |
fDataAC[50] = 0x0000; |
fDataAC[50] = 0x0000; |
49 |
fDataAC[114] = 0x0000; |
fDataAC[114] = 0x0000; |
50 |
|
|
51 |
// dummy FPGA clock (increment by 1 at each event) |
// dummy FPGA clock (increment by 1 at each event) |
52 |
/* |
if(Ievnt<=0xFFFF){ |
|
fDataAC[51] = 0x006C; |
|
|
fDataAC[52] = 0x6C6C; |
|
|
fDataAC[115] = 0x006C; |
|
|
fDataAC[116] = 0x6C6C; |
|
|
*/ |
|
|
if (Ievnt<=0xFFFF) { |
|
53 |
fDataAC[51] = 0x0000; |
fDataAC[51] = 0x0000; |
54 |
fDataAC[52] = Ievnt; |
fDataAC[52] = Ievnt; |
55 |
fDataAC[115] = 0x0000; |
fDataAC[115] = 0x0000; |
56 |
fDataAC[116] = Ievnt; |
fDataAC[116] = Ievnt; |
57 |
} else { |
} |
58 |
|
else{ |
59 |
fDataAC[51] = evntMSB; |
fDataAC[51] = evntMSB; |
60 |
fDataAC[52] = evntLSB; |
fDataAC[52] = evntLSB; |
61 |
fDataAC[115] = fDataAC[51]; |
fDataAC[115] = fDataAC[51]; |
62 |
fDataAC[116] = fDataAC[52]; |
fDataAC[116] = fDataAC[52]; |
63 |
} |
} |
|
|
|
64 |
// dummy temperatures |
// dummy temperatures |
65 |
fDataAC[53] = 0x0000; |
fDataAC[53] = 0x0000; |
66 |
fDataAC[54] = 0x0000; |
fDataAC[54] = 0x0000; |
67 |
fDataAC[117] = 0x0000; |
fDataAC[117] = 0x0000; |
68 |
fDataAC[118] = 0x0000; |
fDataAC[118] = 0x0000; |
|
|
|
|
|
|
69 |
// dummy DAC thresholds |
// dummy DAC thresholds |
70 |
for (UInt_t i=0; i<=7; i++){ |
for(i=0; i<=7; i++){ |
71 |
fDataAC[i+55] = 0x1A13; |
fDataAC[i+55] = 0x1A13; |
72 |
fDataAC[i+119] = 0x1A13; |
fDataAC[i+119] = 0x1A13; |
73 |
} |
} |
74 |
|
// In this simpliefied approach we will assume that once a particle releases > 0.5 mip in one of the 12 AC detectors it will fire. We will furthermore assume that both cards read out identical data. |
|
// In this simpliefied approach we will assume that once |
|
|
// a particle releases > 0.5 mip in one of the 12 AC detectors it |
|
|
// will fire. We will furthermore assume that both cards read out |
|
|
// identical data. |
|
|
|
|
|
// If you develop your digitization algorithm, you should start by |
|
|
// identifying the information present in level2 (post-darth-vader) |
|
|
// data. |
|
|
|
|
|
Float_t SumEcat[5]; |
|
|
Float_t SumEcas[5]; |
|
|
Float_t SumEcard[5]; |
|
|
for (Int_t k= 0;k<5;k++){ |
|
|
SumEcat[k]=0.; |
|
|
SumEcas[k]=0.; |
|
|
SumEcard[k]=0.; |
|
|
}; |
|
75 |
|
|
76 |
if (Nthcat>50 || Nthcas>50 || Nthcard>50) |
// If you develop your digitization algorithm, you should start by identifying the information present in level2 (post-darth-vader) data. |
|
printf("*** ERROR AC! NthAC out of range!\n\n"); |
|
77 |
|
|
78 |
|
Float_t SumEcat[4],SumEcas[4],SumEcard[4]; |
79 |
|
for(i=0;i<4;i++){ |
80 |
|
SumEcat[i]=0.; |
81 |
|
SumEcas[i]=0.; |
82 |
|
SumEcard[i]=0.; |
83 |
|
} |
84 |
// energy dependence on position (see file AcFitOutputDistancePmt.C by S.Orsi) |
// energy dependence on position (see file AcFitOutputDistancePmt.C by S.Orsi) |
85 |
// based on J.Lundquist's calculations (PhD thesis, page 94) |
// based on J.Lundquist's calculations (PhD thesis, page 94) |
86 |
// function: [0]+[1]*atan([2]/(x+1)), where the 3 parameters are: |
// function: [0]+[1]*atan([2]/(x+1)), where the 3 parameters are: |
89 |
// 9.81177e+00 +- 1.21284e+00 |
// 9.81177e+00 +- 1.21284e+00 |
90 |
// hp: 1 minimum ionising particle at 35cm from the PMT releases 1mip |
// hp: 1 minimum ionising particle at 35cm from the PMT releases 1mip |
91 |
|
|
|
TF1 *attenAC = new TF1("fAttAC",".825+.64*atan(9.8/x)",0.,45.); |
|
|
|
|
92 |
// PMT positions: x,y,z: (average position of the 2 PMTs) |
// PMT positions: x,y,z: (average position of the 2 PMTs) |
93 |
Float_t posCasPmt[4][3]={{28.308, -17.168, 63.644}, // 1 - CAS CPU: x,y,z |
Float_t posCasPmt[4][3]={{28.308, -17.168, 63.644}, // 1 - CAS CPU: x,y,z |
94 |
{18.893, 24.913, 63.644}, // 2 - CAS DCDC |
{18.893, 24.913, 63.644}, // 2 - CAS DCDC |
95 |
{-24.307, 17.162, 63.644}, // 3 - CAS VME |
{-24.307, 17.162, 63.644}, // 3 - CAS VME |
96 |
{-17.765, -28.300, 63.644}}; // 4 - CAS IPM |
{-17.765, -28.300, 63.644}}; // 4 - CAS IPM |
|
|
|
97 |
Float_t dAC=0.; // distance from PMT |
Float_t dAC=0.; // distance from PMT |
|
|
|
|
// look in CAT |
|
|
// for (UInt_t k= 0;k<50;k++){ |
|
|
for (Int_t k= 0;k<Nthcat;k++){ |
|
|
if (Erelcat[k] > 0) |
|
|
SumEcat[Icat[k]] += Erelcat[k]; |
|
|
}; |
|
|
|
|
|
// look in CAS |
|
|
for (Int_t k= 0;k<Nthcas;k++){ |
|
|
if (Erelcas[k] >0) { |
|
|
dAC=sqrt(pow((Xincas[k]+Xoutcas[k])/2 - posCasPmt[Icas[k]-1][0],2) + pow((Yincas[k]+Youtcas[k])/2 - posCasPmt[Icas[k]-1][1],2) + pow((Zincas[k]+Zoutcas[k])/2 - posCasPmt[Icas[k]-1][2],2)); |
|
|
SumEcas[Icas[k]] += Erelcas[k]*attenAC->Eval(dAC); |
|
|
} |
|
|
}; |
|
98 |
|
|
99 |
// look in CARD |
if(Nthcat>*ncat){ |
100 |
for (Int_t k= 0;k<Nthcard;k++){ |
cout<<"*** ERROR AC! Nthcat= "<<Nthcat<<" out of range! "<<endl; |
101 |
if (Erelcard[k] >0) |
for(i=0;i<4;i++)SumEcat[i]=2*thr; |
102 |
SumEcard[Icard[k]] += Erelcard[k]; |
} |
103 |
}; |
else{ |
104 |
|
for(i=0;i<Nthcat;i++){ |
105 |
|
if(Icat[i]>0 && Icat[i]<5)SumEcat[Icat[i]-1]+=Erelcat[i]; |
106 |
|
} |
107 |
|
} |
108 |
|
if(Nthcas>*ncas){ |
109 |
|
cout<<"*** ERROR AC! Nthcas= "<<Nthcas<<" out of range!"<<endl; |
110 |
|
for(i=0;i<4;i++)SumEcas[i]=2*thr; |
111 |
|
} |
112 |
|
else{ |
113 |
|
for (i=0;i<Nthcas;i++){ |
114 |
|
if(Icas[i]>0 && Icas[i]<5){ |
115 |
|
dAC=sqrt(pow((Xincas[i]+Xoutcas[i])/2 - posCasPmt[Icas[i]-1][0],2) + pow((Yincas[i]+Youtcas[i])/2 - posCasPmt[Icas[i]-1][1],2) + pow((Zincas[i]+Zoutcas[i])/2 - posCasPmt[Icas[i]-1][2],2)); |
116 |
|
SumEcas[Icas[i]-1] += Erelcas[i]*attenAC->Eval(dAC); |
117 |
|
} |
118 |
|
} |
119 |
|
} |
120 |
|
if(Nthcard>*ncar){ |
121 |
|
cout<<"*** ERROR AC! Nthcard= "<<Nthcard<<" out of range!"<<endl; |
122 |
|
for(i=0;i<4;i++)SumEcard[i]=2*thr; |
123 |
|
} |
124 |
|
else{ |
125 |
|
for(Int_t k= 0;k<Nthcard;k++){ |
126 |
|
if(Icard[i]>0 && Icard[i]<5)SumEcard[Icard[k]-1] += Erelcard[k]; |
127 |
|
} |
128 |
|
} |
129 |
|
|
130 |
// channel mapping Hit Map |
// channel mapping Hit Map |
131 |
// 1 CARD4 0 LSB |
// 1 CARD4 0 LSB |
147 |
|
|
148 |
// In the first version only the hit-map is filled, not the SR. |
// In the first version only the hit-map is filled, not the SR. |
149 |
|
|
|
// Threshold: 0.8 MeV. |
|
|
|
|
|
Float_t thr = 8e-4; |
|
|
|
|
150 |
fDataAC[3] = 0x0000; |
fDataAC[3] = 0x0000; |
151 |
|
|
152 |
if (SumEcas[0] > thr) fDataAC[3] = 0x0004; |
if (SumEcas[0] > thr) fDataAC[3] = 0x0004; |