1 |
#include <sstream> |
2 |
#include <fstream> |
3 |
#include <stdlib.h> |
4 |
#include <stdio.h> |
5 |
#include <string.h> |
6 |
#include <ctype.h> |
7 |
#include <time.h> |
8 |
#include "Riostream.h" |
9 |
#include "TFile.h" |
10 |
#include "TDirectory.h" |
11 |
#include "TTree.h" |
12 |
#include "TLeafI.h" |
13 |
#include "TH1.h" |
14 |
#include "TH2.h" |
15 |
#include "TF1.h" |
16 |
#include "TMath.h" |
17 |
#include "TRandom.h" |
18 |
#include "TSQLServer.h" |
19 |
#include "TSystem.h" |
20 |
#include "CalibTrk1Event.h" |
21 |
#include "CalibTrk2Event.h" |
22 |
// |
23 |
#include "Digitizer.h" |
24 |
#include "CRC.h" |
25 |
// |
26 |
#include <PamelaRun.h> |
27 |
#include <physics/calorimeter/CalorimeterEvent.h> |
28 |
#include <CalibCalPedEvent.h> |
29 |
#include "GLTables.h" |
30 |
|
31 |
|
32 |
void Digitizer::DigitizeAC(TF1 *attenAC) { |
33 |
// created: J. Conrad, KTH |
34 |
// modified: S. Orsi, INFN Roma2 |
35 |
// fDataAC[0-63]: main AC board |
36 |
// fDataAC[64-127]: extra AC board (identical to main board, for now) |
37 |
|
38 |
// We activate all branches. Once the digitization algorithm is determined |
39 |
// only the branches that involve needed information will be activated |
40 |
|
41 |
fDataAC[0] = 0xACAC; |
42 |
fDataAC[64]= 0xACAC; |
43 |
fDataAC[1] = 0xAC11; |
44 |
fDataAC[65] = 0xAC22; |
45 |
|
46 |
// the third word is a status word (dummy: "no errors are present in the AC boards") |
47 |
fDataAC[2] = 0xFFFF; //FFEF? |
48 |
fDataAC[66] = 0xFFFF; |
49 |
|
50 |
const UInt_t nReg = 6; |
51 |
|
52 |
// FPGA Registers (dummy) |
53 |
for (UInt_t i=0; i<=nReg; i++){ |
54 |
fDataAC[i+4] = 0xFFFF; |
55 |
fDataAC[i+68] = 0xFFFF; |
56 |
} |
57 |
|
58 |
// the last word is a CRC |
59 |
// Dummy for the time being, but it might need to be calculated in the end |
60 |
fDataAC[63] = 0xABCD; |
61 |
fDataAC[127] = 0xABCD; |
62 |
|
63 |
// shift registers (moved to the end of the routine) |
64 |
|
65 |
//Int_t evntLSB=Ievnt%65536; |
66 |
//Int_t evntMSB=(Int_t)(Ievnt/65536); |
67 |
Int_t evntLSB=(UShort_t)Ievnt; |
68 |
Int_t evntMSB=Ievnt >> 16; |
69 |
|
70 |
// singles counters are dummy |
71 |
for (UInt_t i=0; i<=15; i++){ //SO Oct '07: // for (UInt_t i=0; i<=16; i++){ |
72 |
// fDataAC[i+26] = 0x0000; |
73 |
// fDataAC[i+90] = 0x0000; |
74 |
fDataAC[i+26] = evntLSB; |
75 |
fDataAC[i+90] = evntLSB; |
76 |
}; |
77 |
|
78 |
for (UInt_t i=0; i<=7; i++){ |
79 |
fDataAC[i+42] = evntLSB; |
80 |
fDataAC[i+106] = evntLSB; |
81 |
}; |
82 |
|
83 |
// increments for every trigger might be needed at some point. |
84 |
// dummy for now |
85 |
fDataAC[50] = 0x0000; |
86 |
fDataAC[114] = 0x0000; |
87 |
|
88 |
// dummy FPGA clock (increment by 1 at each event) |
89 |
if (Ievnt<=0xFFFF) { |
90 |
fDataAC[51] = 0x0000; |
91 |
fDataAC[52] = Ievnt; |
92 |
fDataAC[115] = 0x0000; |
93 |
fDataAC[116] = Ievnt; |
94 |
} else { |
95 |
fDataAC[51] = evntMSB; |
96 |
fDataAC[52] = evntLSB; |
97 |
fDataAC[115] = fDataAC[51]; |
98 |
fDataAC[116] = fDataAC[52]; |
99 |
} |
100 |
|
101 |
// dummy temperatures |
102 |
fDataAC[53] = 0x0000; |
103 |
fDataAC[54] = 0x0000; |
104 |
fDataAC[117] = 0x0000; |
105 |
fDataAC[118] = 0x0000; |
106 |
|
107 |
|
108 |
// dummy DAC thresholds |
109 |
for (UInt_t i=0; i<=7; i++){ |
110 |
fDataAC[i+55] = 0x1A13; |
111 |
fDataAC[i+119] = 0x1A13; |
112 |
} |
113 |
|
114 |
// In this simpliefied approach we will assume that once |
115 |
// a particle releases > 0.5 mip in one of the 12 AC detectors it |
116 |
// will fire. We will furthermore assume that both cards read out |
117 |
// identical data. |
118 |
|
119 |
// If you develop your digitization algorithm, you should start by |
120 |
// identifying the information present in level2 (post-darth-vader) |
121 |
// data. |
122 |
|
123 |
Float_t SumEcat[5]; |
124 |
Float_t SumEcas[5]; |
125 |
Float_t SumEcard[5]; |
126 |
for (Int_t k= 0;k<5;k++){ |
127 |
SumEcat[k]=0.; |
128 |
SumEcas[k]=0.; |
129 |
SumEcard[k]=0.; |
130 |
}; |
131 |
|
132 |
if (Nthcat>50 || Nthcas>50 || Nthcard>50) |
133 |
printf("*** ERROR AC! NthAC out of range!\n\n"); |
134 |
|
135 |
// energy dependence on position (see file AcFitOutputDistancePmt.C by S.Orsi) |
136 |
// based on J.Lundquist's calculations (PhD thesis, page 94) |
137 |
// function: [0]+[1]*atan([2]/(x+1)), where the 3 parameters are: |
138 |
// 8.25470e-01 +- 1.79489e-02 |
139 |
// 6.41609e-01 +- 2.65846e-02 |
140 |
// 9.81177e+00 +- 1.21284e+00 |
141 |
// hp: 1 minimum ionising particle at 35cm from the PMT releases 1mip |
142 |
|
143 |
//TF1 *attenAC = new TF1("fAttAC",".825+.64*atan(9.8/x)",0.,45.); |
144 |
|
145 |
// PMT positions: x,y,z: (average position of the 2 PMTs) |
146 |
Float_t posCasPmt[4][3]={{28.308, -17.168, 63.644}, // 1 - CAS CPU: x,y,z |
147 |
{18.893, 24.913, 63.644}, // 2 - CAS DCDC |
148 |
{-24.307, 17.162, 63.644}, // 3 - CAS VME |
149 |
{-17.765, -28.300, 63.644}}; // 4 - CAS IPM |
150 |
|
151 |
Float_t dAC=0.; // distance from PMT |
152 |
|
153 |
// look in CAT |
154 |
// for (UInt_t k= 0;k<50;k++){ |
155 |
for (Int_t k= 0;k<Nthcat;k++){ |
156 |
if (Erelcat[k] > 0) |
157 |
SumEcat[Icat[k]] += Erelcat[k]; |
158 |
}; |
159 |
|
160 |
// look in CAS |
161 |
for (Int_t k= 0;k<Nthcas;k++){ |
162 |
if (Erelcas[k] >0) { |
163 |
dAC=sqrt(pow((Xincas[k]+Xoutcas[k])/2 - posCasPmt[Icas[k]-1][0],2) + pow((Yincas[k]+Youtcas[k])/2 - posCasPmt[Icas[k]-1][1],2) + pow((Zincas[k]+Zoutcas[k])/2 - posCasPmt[Icas[k]-1][2],2)); |
164 |
SumEcas[Icas[k]] += Erelcas[k]*attenAC->Eval(dAC); |
165 |
} |
166 |
}; |
167 |
// attenAC->Delete(); |
168 |
// look in CARD |
169 |
for (Int_t k= 0;k<Nthcard;k++){ |
170 |
if (Erelcard[k] >0) |
171 |
SumEcard[Icard[k]] += Erelcard[k]; |
172 |
}; |
173 |
|
174 |
// channel mapping Hit Map |
175 |
// 1 CARD4 0 LSB |
176 |
// 2 CAT2 0 |
177 |
// 3 CAS1 0 |
178 |
// 4 NC 0 |
179 |
// 5 CARD2 0 |
180 |
// 6 CAT4 1 |
181 |
// 7 CAS4 0 |
182 |
// 8 NC 0 |
183 |
// 9 CARD3 0 |
184 |
// 10 CAT3 0 |
185 |
// 11 CAS3 0 |
186 |
// 12 NC 0 |
187 |
// 13 CARD1 0 |
188 |
// 14 CAT1 0 |
189 |
// 15 CAS2 0 |
190 |
// 16 NC 0 MSB |
191 |
|
192 |
// In the first version only the hit-map is filled, not the SR. |
193 |
|
194 |
// Threshold: 0.8 MeV. |
195 |
|
196 |
Float_t thr = 8e-4; |
197 |
|
198 |
fDataAC[3] = 0x0000; |
199 |
|
200 |
if (SumEcas[0] > thr) fDataAC[3] = 0x0004; |
201 |
if (SumEcas[1] > thr) fDataAC[3] += 0x4000; |
202 |
if (SumEcas[2] > thr) fDataAC[3] += 0x0400; |
203 |
if (SumEcas[3] > thr) fDataAC[3] += 0x0040; |
204 |
|
205 |
if (SumEcat[0] > thr) fDataAC[3] += 0x2000; |
206 |
if (SumEcat[1] > thr) fDataAC[3] += 0x0002; |
207 |
if (SumEcat[2] > thr) fDataAC[3] += 0x0200; |
208 |
if (SumEcat[3] > thr) fDataAC[3] += 0x0020; |
209 |
|
210 |
if (SumEcard[0] > thr) fDataAC[3] += 0x1000; |
211 |
if (SumEcard[1] > thr) fDataAC[3] += 0x0010; |
212 |
if (SumEcard[2] > thr) fDataAC[3] += 0x0100; |
213 |
if (SumEcard[3] > thr) fDataAC[3] += 0x0001; |
214 |
|
215 |
fDataAC[67] = fDataAC[3]; |
216 |
|
217 |
// shift registers |
218 |
// the central bin is equal to the hitmap, all other bins in the shift register are 0 |
219 |
for (UInt_t i=0; i<=15; i++){ |
220 |
fDataAC[i+11] = 0x0000; |
221 |
fDataAC[i+75] = 0x0000; |
222 |
} |
223 |
fDataAC[18] = fDataAC[3]; |
224 |
fDataAC[82] = fDataAC[3]; |
225 |
|
226 |
// for (Int_t i=0; i<fACbuffer; i++){ |
227 |
// printf("%0x ",fDataAC[i]); |
228 |
// if ((i+1)%8 ==0) cout << endl; |
229 |
// } |
230 |
}; |