| 1 |
pamelats |
1.1 |
#include "Digitizer.h" |
| 2 |
|
|
|
| 3 |
pamelats |
1.3 |
void Digitizer::DigitizeAC() { |
| 4 |
pamelats |
1.1 |
// created: J. Conrad, KTH |
| 5 |
|
|
// modified: S. Orsi, INFN Roma2 |
| 6 |
|
|
// fDataAC[0-63]: main AC board |
| 7 |
|
|
// fDataAC[64-127]: extra AC board (identical to main board, for now) |
| 8 |
|
|
// We activate all branches. Once the digitization algorithm is determined |
| 9 |
|
|
// only the branches that involve needed information will be activated |
| 10 |
pamelats |
1.3 |
|
| 11 |
|
|
// Threshold: thr=0.8 MeV. |
| 12 |
|
|
Float_t thr = 8e-4; |
| 13 |
|
|
Int_t nReg=6,i; |
| 14 |
pamelats |
1.1 |
fDataAC[0] = 0xACAC; |
| 15 |
|
|
fDataAC[64]= 0xACAC; |
| 16 |
|
|
fDataAC[1] = 0xAC11; |
| 17 |
|
|
fDataAC[65] = 0xAC22; |
| 18 |
pamelats |
1.3 |
|
| 19 |
pamelats |
1.1 |
// the third word is a status word (dummy: "no errors are present in the AC boards") |
| 20 |
|
|
fDataAC[2] = 0xFFFF; //FFEF? |
| 21 |
|
|
fDataAC[66] = 0xFFFF; |
| 22 |
|
|
// FPGA Registers (dummy) |
| 23 |
pamelats |
1.3 |
for (i=0; i<=nReg; i++){ |
| 24 |
pamelats |
1.1 |
fDataAC[i+4] = 0xFFFF; |
| 25 |
|
|
fDataAC[i+68] = 0xFFFF; |
| 26 |
|
|
} |
| 27 |
|
|
// the last word is a CRC |
| 28 |
|
|
// Dummy for the time being, but it might need to be calculated in the end |
| 29 |
|
|
fDataAC[63] = 0xABCD; |
| 30 |
|
|
fDataAC[127] = 0xABCD; |
| 31 |
|
|
|
| 32 |
|
|
// shift registers (moved to the end of the routine) |
| 33 |
|
|
|
| 34 |
|
|
Int_t evntLSB=(UShort_t)Ievnt; |
| 35 |
|
|
Int_t evntMSB=Ievnt >> 16; |
| 36 |
|
|
|
| 37 |
|
|
// singles counters are dummy |
| 38 |
pamelats |
1.3 |
for(i=0; i<=15; i++){ //SO Oct '07: |
| 39 |
pamelats |
1.1 |
fDataAC[i+26] = evntLSB; |
| 40 |
|
|
fDataAC[i+90] = evntLSB; |
| 41 |
pamelats |
1.3 |
} |
| 42 |
|
|
for(i=0; i<=7; i++){ |
| 43 |
pamelats |
1.1 |
fDataAC[i+42] = evntLSB; |
| 44 |
|
|
fDataAC[i+106] = evntLSB; |
| 45 |
pamelats |
1.3 |
} |
| 46 |
pamelats |
1.1 |
// increments for every trigger might be needed at some point. |
| 47 |
|
|
// dummy for now |
| 48 |
|
|
fDataAC[50] = 0x0000; |
| 49 |
|
|
fDataAC[114] = 0x0000; |
| 50 |
|
|
|
| 51 |
|
|
// dummy FPGA clock (increment by 1 at each event) |
| 52 |
pamelats |
1.3 |
if(Ievnt<=0xFFFF){ |
| 53 |
pamelats |
1.1 |
fDataAC[51] = 0x0000; |
| 54 |
|
|
fDataAC[52] = Ievnt; |
| 55 |
|
|
fDataAC[115] = 0x0000; |
| 56 |
|
|
fDataAC[116] = Ievnt; |
| 57 |
pamelats |
1.3 |
} |
| 58 |
|
|
else{ |
| 59 |
pamelats |
1.1 |
fDataAC[51] = evntMSB; |
| 60 |
|
|
fDataAC[52] = evntLSB; |
| 61 |
|
|
fDataAC[115] = fDataAC[51]; |
| 62 |
|
|
fDataAC[116] = fDataAC[52]; |
| 63 |
|
|
} |
| 64 |
|
|
// dummy temperatures |
| 65 |
|
|
fDataAC[53] = 0x0000; |
| 66 |
|
|
fDataAC[54] = 0x0000; |
| 67 |
|
|
fDataAC[117] = 0x0000; |
| 68 |
|
|
fDataAC[118] = 0x0000; |
| 69 |
|
|
// dummy DAC thresholds |
| 70 |
pamelats |
1.3 |
for(i=0; i<=7; i++){ |
| 71 |
pamelats |
1.1 |
fDataAC[i+55] = 0x1A13; |
| 72 |
|
|
fDataAC[i+119] = 0x1A13; |
| 73 |
|
|
} |
| 74 |
pamelats |
1.3 |
// In this simpliefied approach we will assume that once a particle releases > 0.5 mip in one of the 12 AC detectors it will fire. We will furthermore assume that both cards read out identical data. |
| 75 |
pamelats |
1.1 |
|
| 76 |
pamelats |
1.3 |
// If you develop your digitization algorithm, you should start by identifying the information present in level2 (post-darth-vader) data. |
| 77 |
pamelats |
1.1 |
|
| 78 |
pamelats |
1.3 |
Float_t SumEcat[4],SumEcas[4],SumEcard[4]; |
| 79 |
|
|
for(i=0;i<4;i++){ |
| 80 |
|
|
SumEcat[i]=0.; |
| 81 |
|
|
SumEcas[i]=0.; |
| 82 |
|
|
SumEcard[i]=0.; |
| 83 |
|
|
} |
| 84 |
pamelats |
1.1 |
// energy dependence on position (see file AcFitOutputDistancePmt.C by S.Orsi) |
| 85 |
|
|
// based on J.Lundquist's calculations (PhD thesis, page 94) |
| 86 |
|
|
// function: [0]+[1]*atan([2]/(x+1)), where the 3 parameters are: |
| 87 |
|
|
// 8.25470e-01 +- 1.79489e-02 |
| 88 |
|
|
// 6.41609e-01 +- 2.65846e-02 |
| 89 |
|
|
// 9.81177e+00 +- 1.21284e+00 |
| 90 |
|
|
// hp: 1 minimum ionising particle at 35cm from the PMT releases 1mip |
| 91 |
|
|
|
| 92 |
|
|
// PMT positions: x,y,z: (average position of the 2 PMTs) |
| 93 |
|
|
Float_t posCasPmt[4][3]={{28.308, -17.168, 63.644}, // 1 - CAS CPU: x,y,z |
| 94 |
|
|
{18.893, 24.913, 63.644}, // 2 - CAS DCDC |
| 95 |
|
|
{-24.307, 17.162, 63.644}, // 3 - CAS VME |
| 96 |
|
|
{-17.765, -28.300, 63.644}}; // 4 - CAS IPM |
| 97 |
|
|
Float_t dAC=0.; // distance from PMT |
| 98 |
pamelats |
1.3 |
|
| 99 |
|
|
if(Nthcat>*ncat){ |
| 100 |
|
|
cout<<"*** ERROR AC! Nthcat= "<<Nthcat<<" out of range! "<<endl; |
| 101 |
|
|
for(i=0;i<4;i++)SumEcat[i]=2*thr; |
| 102 |
|
|
} |
| 103 |
|
|
else{ |
| 104 |
|
|
for(i=0;i<Nthcat;i++){ |
| 105 |
|
|
if(Icat[i]>0 && Icat[i]<5)SumEcat[Icat[i]-1]+=Erelcat[i]; |
| 106 |
|
|
} |
| 107 |
|
|
} |
| 108 |
|
|
if(Nthcas>*ncas){ |
| 109 |
|
|
cout<<"*** ERROR AC! Nthcas= "<<Nthcas<<" out of range!"<<endl; |
| 110 |
|
|
for(i=0;i<4;i++)SumEcas[i]=2*thr; |
| 111 |
|
|
} |
| 112 |
|
|
else{ |
| 113 |
|
|
for (i=0;i<Nthcas;i++){ |
| 114 |
|
|
if(Icas[i]>0 && Icas[i]<5){ |
| 115 |
|
|
dAC=sqrt(pow((Xincas[i]+Xoutcas[i])/2 - posCasPmt[Icas[i]-1][0],2) + pow((Yincas[i]+Youtcas[i])/2 - posCasPmt[Icas[i]-1][1],2) + pow((Zincas[i]+Zoutcas[i])/2 - posCasPmt[Icas[i]-1][2],2)); |
| 116 |
|
|
SumEcas[Icas[i]-1] += Erelcas[i]*attenAC->Eval(dAC); |
| 117 |
|
|
} |
| 118 |
|
|
} |
| 119 |
|
|
} |
| 120 |
|
|
if(Nthcard>*ncar){ |
| 121 |
|
|
cout<<"*** ERROR AC! Nthcard= "<<Nthcard<<" out of range!"<<endl; |
| 122 |
|
|
for(i=0;i<4;i++)SumEcard[i]=2*thr; |
| 123 |
|
|
} |
| 124 |
|
|
else{ |
| 125 |
|
|
for(Int_t k= 0;k<Nthcard;k++){ |
| 126 |
|
|
if(Icard[i]>0 && Icard[i]<5)SumEcard[Icard[k]-1] += Erelcard[k]; |
| 127 |
pamelats |
1.1 |
} |
| 128 |
pamelats |
1.3 |
} |
| 129 |
pamelats |
1.1 |
|
| 130 |
|
|
// channel mapping Hit Map |
| 131 |
|
|
// 1 CARD4 0 LSB |
| 132 |
|
|
// 2 CAT2 0 |
| 133 |
|
|
// 3 CAS1 0 |
| 134 |
|
|
// 4 NC 0 |
| 135 |
|
|
// 5 CARD2 0 |
| 136 |
|
|
// 6 CAT4 1 |
| 137 |
|
|
// 7 CAS4 0 |
| 138 |
|
|
// 8 NC 0 |
| 139 |
|
|
// 9 CARD3 0 |
| 140 |
|
|
// 10 CAT3 0 |
| 141 |
|
|
// 11 CAS3 0 |
| 142 |
|
|
// 12 NC 0 |
| 143 |
|
|
// 13 CARD1 0 |
| 144 |
|
|
// 14 CAT1 0 |
| 145 |
|
|
// 15 CAS2 0 |
| 146 |
|
|
// 16 NC 0 MSB |
| 147 |
|
|
|
| 148 |
|
|
// In the first version only the hit-map is filled, not the SR. |
| 149 |
|
|
|
| 150 |
|
|
fDataAC[3] = 0x0000; |
| 151 |
|
|
|
| 152 |
|
|
if (SumEcas[0] > thr) fDataAC[3] = 0x0004; |
| 153 |
|
|
if (SumEcas[1] > thr) fDataAC[3] += 0x4000; |
| 154 |
|
|
if (SumEcas[2] > thr) fDataAC[3] += 0x0400; |
| 155 |
|
|
if (SumEcas[3] > thr) fDataAC[3] += 0x0040; |
| 156 |
|
|
|
| 157 |
|
|
if (SumEcat[0] > thr) fDataAC[3] += 0x2000; |
| 158 |
|
|
if (SumEcat[1] > thr) fDataAC[3] += 0x0002; |
| 159 |
|
|
if (SumEcat[2] > thr) fDataAC[3] += 0x0200; |
| 160 |
|
|
if (SumEcat[3] > thr) fDataAC[3] += 0x0020; |
| 161 |
|
|
|
| 162 |
|
|
if (SumEcard[0] > thr) fDataAC[3] += 0x1000; |
| 163 |
|
|
if (SumEcard[1] > thr) fDataAC[3] += 0x0010; |
| 164 |
|
|
if (SumEcard[2] > thr) fDataAC[3] += 0x0100; |
| 165 |
|
|
if (SumEcard[3] > thr) fDataAC[3] += 0x0001; |
| 166 |
|
|
|
| 167 |
|
|
fDataAC[67] = fDataAC[3]; |
| 168 |
|
|
|
| 169 |
|
|
// shift registers |
| 170 |
|
|
// the central bin is equal to the hitmap, all other bins in the shift register are 0 |
| 171 |
|
|
for (UInt_t i=0; i<=15; i++){ |
| 172 |
|
|
fDataAC[i+11] = 0x0000; |
| 173 |
|
|
fDataAC[i+75] = 0x0000; |
| 174 |
|
|
} |
| 175 |
|
|
fDataAC[18] = fDataAC[3]; |
| 176 |
|
|
fDataAC[82] = fDataAC[3]; |
| 177 |
|
|
|
| 178 |
|
|
// for (Int_t i=0; i<fACbuffer; i++){ |
| 179 |
|
|
// printf("%0x ",fDataAC[i]); |
| 180 |
|
|
// if ((i+1)%8 ==0) cout << endl; |
| 181 |
|
|
// } |
| 182 |
|
|
}; |