1 |
SUBROUTINE GPUDIFFUSION(IACT,TRAPAR,NUMVOL,DELOSS,STEP,ITYPAR) |
2 |
******************************************************************************** |
3 |
* |
4 |
* To perform diffusion of electron and holes bunch inside the silicon |
5 |
* detectors of the spectrometer |
6 |
* |
7 |
* Variables definition: |
8 |
* IN: |
9 |
* IACT, integer specifing the action to be taken. It is the INWVOL |
10 |
* variable in GCTRAK common |
11 |
* 0: Track is inside a volume |
12 |
* 1: Entering a new volume or is a new track |
13 |
* 2: Track is exiting current volume |
14 |
* TRAPAR, track parameter, is the VECT vector in GCTRAK common (x,y,z..) |
15 |
* NUMVOL, integr array of numbers identifying the DETECTOR (NUMBV di gustep) |
16 |
* |
17 |
* DELOSS, energy loss in the step (GeV) |
18 |
* ITYPAR, id particella della traccia(vhit(9) che sarà iparspe nell'entupla finale) |
19 |
* OUT: |
20 |
* |
21 |
* |
22 |
* Called by: GPUSPE |
23 |
* Author: Elena Taddei, 04/08/2005 , S. Bottai 30/01/06 |
24 |
* |
25 |
************************************************************************************* |
26 |
#include "gpstripspe.inc" |
27 |
#include "gpgeo.inc" |
28 |
#include "gpdgeo.inc" |
29 |
#include "gpgene.inc" |
30 |
#include "gpkey.inc" |
31 |
#include "gpdkey.inc" |
32 |
|
33 |
INTEGER IACT,NUMVOL(20) |
34 |
REAL DELOSS, TRAPAR(7),xyzspa(3),VPOS(3),xyzspac(3) |
35 |
REAL BMAGNET(3),STRPOSL(3),STRPOSG(3) |
36 |
INTEGER ONCE |
37 |
DATA ONCE /0/ |
38 |
SAVE ONCE |
39 |
|
40 |
c IF(NUMVOL(1).NE.0) THEN |
41 |
NSPEPLANE=NUMVOL(1) |
42 |
c ELSE IF(NUMVOL(1).EQ.0) THEN |
43 |
c NSPEPLANE=6 |
44 |
c ENDIF |
45 |
|
46 |
|
47 |
VPOS(1)=TRAPAR(1)-STEP/2.*TRAPAR(4) |
48 |
VPOS(2)=TRAPAR(2)-STEP/2.*TRAPAR(5) |
49 |
VPOS(3)=TRAPAR(3)-STEP/2.*TRAPAR(6) |
50 |
|
51 |
|
52 |
delossmev=deloss*1000. |
53 |
|
54 |
|
55 |
call gmtod(VPOS,xyzspa,1) |
56 |
zup=TSPA(3)-xyzspa(3) |
57 |
zdown=TSPA(3)+xyzspa(3) |
58 |
|
59 |
|
60 |
nearstripx=nearstx(xyzspa(1),xyzspa(2)) |
61 |
if(nearstripx.ne.0) then |
62 |
|
63 |
|
64 |
dx=xyzspa(1)-xstrip(nearstripx) |
65 |
|
66 |
|
67 |
**************************************************************************** |
68 |
* |
69 |
* X-view strips collect holes, Y-view strips collect electrons. |
70 |
* Both charge carriers are shifted due to the magnetic field. |
71 |
* The shift for holes is significant, because it is |
72 |
* orthogonal to read-out strips. |
73 |
* A correction for this effect is introduced. |
74 |
* v is along -Z; B is along -Y --> shift is along -X |
75 |
* |
76 |
***************************************************************************** |
77 |
|
78 |
|
79 |
IF(FFIELD.NE.0) THEN |
80 |
|
81 |
CALL GUFIELD(VPOS,BMAGNET) |
82 |
|
83 |
c PRINT*,'VPOS:',VPOS(1),' ',VPOS(2),' ',VPOS(3),' ',BMAGNET(2) |
84 |
c |
85 |
c to be checked |
86 |
c |
87 |
xshift=xyzspa(1)+zdown*hallmob*1.e-4*BMAGNET(2)/10. |
88 |
|
89 |
IF(NSPEPLANE.EQ.6) xshift=xyzspa(1)- |
90 |
+ zdown*hallmob*1.e-4*BMAGNET(2)/10. |
91 |
|
92 |
ELSE |
93 |
xshift=xyzspa(1) |
94 |
ENDIF |
95 |
c PRINT*,'NSPEPLENE: ',NSPEPLANE |
96 |
c PRINT*,'xyzspa: ', xyzspa(1),' ',xyzspa(2),' ',xyzspa(3) |
97 |
c PRINT*,'zdown:', zdown |
98 |
c PRINT*,'Bmagnet(2): ',BMAGNET(2) |
99 |
c PRINT*,'hallmob: ',hallmob |
100 |
c PRINT*,'shift(um):',(xshift-xyzspa(1))*10000,'pl:',NSPEPLANE |
101 |
* |
102 |
* Now widths of Gaussian functions can be calculated by means of |
103 |
* the routine sigmadiffus, that gives sigma in m --> *100 --> cm |
104 |
* |
105 |
sigxi=amax1(0.00014,100.*sigmadiffus(zdown)) !perchè min=1.4 um? |
106 |
|
107 |
* |
108 |
* Sharing of the charge on strips. |
109 |
* erf(x) from cernlib computes the (signed) integral of the gaussian |
110 |
* function from -x to x (sigma=sqrt(1./2.), x0=0). If you have gaussian |
111 |
* function with x0=a, sigma=b, area between -x and x is obtainable by the |
112 |
* following formula: |
113 |
* |
114 |
* A = erf((x-a)/(sqrt(2.)*b)) A>0 if x-a>0; A<0 if x-a<0 |
115 |
* |
116 |
* erfc(x) (ALWAYS > 0) computes the complementary function, i.e. |
117 |
* 2*integral between x and +infinity |
118 |
* --> 0.5*erfc(x)=area of the gaussian between x to +inf. |
119 |
* |
120 |
|
121 |
NSTRIPLOW=MIN(23,NEARSTRIPX) |
122 |
NSTRIPHIGH=MIN(15,NSTRIPX-NEARSTRIPX) |
123 |
|
124 |
DO J=(NEARSTRIPX-NSTRIPLOW+8),(NEARSTRIPX+NSTRIPHIGH-6) |
125 |
xqdivjm1=xstrip(j)-pitchx/2. |
126 |
xqdivj=xstrip(j)+pitchx/2. |
127 |
qfract=0.5*erfc((xqdivjm1-xshift)/(sqrt(2.)*sigxi)) |
128 |
+ -0.5*erfc((xqdivj-xshift)/(sqrt(2.)*sigxi)) |
129 |
|
130 |
proxtanti(NSPEPLANE,numvol(2),j)= |
131 |
+ proxtanti(NSPEPLANE,numvol(2),j)+delossmev*qfract |
132 |
IF(GLOBSTRIPX(NSPEPLANE,NUMVOL(2),J).EQ.0.) THEN |
133 |
STRPOSL(1)=XSTRIP(J) |
134 |
STRPOSL(2)=0. |
135 |
STRPOSL(3)=0. |
136 |
CALL GDTOM(STRPOSL,STRPOSG,1) |
137 |
GLOBSTRIPX(NSPEPLANE,NUMVOL(2),J)=STRPOSG(1) |
138 |
ENDIF |
139 |
|
140 |
enddo |
141 |
endif |
142 |
|
143 |
|
144 |
|
145 |
|
146 |
|
147 |
nearstripy=nearsty(xyzspa(1),xyzspa(2)) |
148 |
cc PRINT*,xyzspa(1),' ',xyzspa(2),' ', nearstripx, ' ', nearstripy |
149 |
|
150 |
if(nearstripy.ne.0) then |
151 |
|
152 |
dy=xyzspa(2)-ystrip(nearstripy) |
153 |
|
154 |
|
155 |
sigyi=amax1(0.00023,100.*sigmadiffus(zup ) ) !perchè min=2.3 um? |
156 |
|
157 |
* |
158 |
* The standard deviation on the Y side is increased |
159 |
* according to a parabolic behaviour + a constant term near p-stop |
160 |
* |
161 |
py=pitchy |
162 |
if (abs(dy).lt.abs((py-psy2)/2.)) then |
163 |
sigyi=sigyi-psy1*(dy**2)+(py-psy2)*psy1*abs(dy) |
164 |
else |
165 |
sigyi=sigyi-psy1*(((py-psy2)/2.)**2) |
166 |
+ +(py-psy2)*psy1*abs((py-psy2)/2.) |
167 |
endif |
168 |
|
169 |
|
170 |
NSTRIPLOW=MIN(7,NEARSTRIPY) |
171 |
NSTRIPHIGH=MIN(7,NSTRIPY-NEARSTRIPY) |
172 |
|
173 |
do j=(NEARSTRIPY-NSTRIPLOW+1),(NEARSTRIPY+NSTRIPHIGH) |
174 |
yqdivjm1=ystrip(j)-py/2. |
175 |
yqdivj=ystrip(j)+py/2. |
176 |
qfract=0.5*erfc((yqdivjm1-xyzspa(2))/(sqrt(2.)*sigyi)) |
177 |
+ -0.5*erfc((yqdivj-xyzspa(2))/(sqrt(2.)*sigyi)) |
178 |
cc PRINT*,'J ',j, 'qfract', qfract |
179 |
proytanti(NSPEPLANE,numvol(2),j)= |
180 |
+ proytanti(NSPEPLANE,numvol(2),j)+delossmev*qfract |
181 |
cc PRINT*,'proytanti', proytanti(NSPEPLANE,numvol(2),j) |
182 |
IF(GLOBSTRIPY(NSPEPLANE,NUMVOL(2),J).EQ.0.) THEN |
183 |
STRPOSL(1)=0. |
184 |
STRPOSL(2)=YSTRIP(J) |
185 |
STRPOSL(3)=0. |
186 |
CALL GDTOM(STRPOSL,STRPOSG,1) |
187 |
GLOBSTRIPY(NSPEPLANE,NUMVOL(2),J)=STRPOSG(2) |
188 |
ENDIF |
189 |
|
190 |
enddo |
191 |
|
192 |
endif |
193 |
|
194 |
|
195 |
|
196 |
END |
197 |
|
198 |
* |
199 |
* //////////////////////////////////////////////////////////////////////////////////////// |
200 |
* |
201 |
real function sigmadiffus(zp) |
202 |
********************************************************************* |
203 |
* Width of the Gaussian function due to diffusion spread is found. |
204 |
* x,y,z : where charge is generated (position in given in cm) |
205 |
* As output standard deviation (m) due to diffusion in silicon |
206 |
* Diffusion coefficients are proportional to mobility: D=kTm/q, |
207 |
* where m is mobility: this is true in the Internatinal System |
208 |
* of units, not in GCS. We compute this quantity in the |
209 |
* I.S. (renormalitation for m --> cm has been taken into account: |
210 |
* zpsi=zp/100. ! cm --> m |
211 |
* Efield=Efield*100. ! V/cm --> V/m --> 10^-4 ) |
212 |
* WARNING!! Sigma is independent on the carrier mobility m, |
213 |
* because hdiff = c*m but time = c/m. As a consequence, |
214 |
* sigma is independent on the dopant concentration. |
215 |
* E-h pairs created are mostly confined in a tube of about 1 um diameter. |
216 |
********************************************************************** |
217 |
#include "gpstripspe.inc" |
218 |
|
219 |
zm=zp/100. ! cm --> m |
220 |
Evm=ebias*100. ! V/cm --> V/m |
221 |
|
222 |
vdepl=55. |
223 |
vappl=70. |
224 |
thick=3.e-4 |
225 |
* |
226 |
* timemu = collection time * mobility |
227 |
* |
228 |
timemu=abs(-(thick**2/(2.*vdepl))*log(1-(2*vdepl*zm)/ |
229 |
+ ((vdepl+vappl)*thick))) |
230 |
|
231 |
sigmadiffus=sqrt((2.*boltis*temperature*timemu)/eis)+dsigma |
232 |
|
233 |
return |
234 |
end |
235 |
|
236 |
* //////////////////////////////////////////////////////////// |
237 |
|
238 |
|
239 |
|
240 |
real function xstrip(j) |
241 |
cv parameter......... |
242 |
#include "gpstripspe.inc" |
243 |
parameter (jlastx=2042) |
244 |
parameter (xlast=5.333/2.-0.07315) |
245 |
parameter (jfirstx=8) |
246 |
parameter (xfirst=0.07315-5.333/2.) |
247 |
|
248 |
px=pitchx |
249 |
py=pitchy |
250 |
if(j.lt.jfirstx.or.j.gt.jlastx) then |
251 |
write(6,*) 'error , stripx=',j,'not existing' |
252 |
xstrip=-1.e10 |
253 |
endif |
254 |
xstrip=(j-jfirstx)*px+xfirst |
255 |
|
256 |
end |
257 |
|
258 |
|
259 |
real function ystrip(j) |
260 |
cv parameter......... |
261 |
#include "gpstripspe.inc" |
262 |
parameter (jlasty=1024) |
263 |
parameter (ylast=7./2.-0.09855) |
264 |
parameter (jfirsty=1) |
265 |
parameter (yfirst=0.0985-7./2.) |
266 |
|
267 |
px=pitchx |
268 |
py=pitchy |
269 |
if(j.lt.jfirsty.or.j.gt.jlasty) then |
270 |
write(6,*) 'error , stripy=',j,'not existing' |
271 |
ystrip=-1.e10 |
272 |
endif |
273 |
ystrip=(j-jfirsty)*py+yfirst |
274 |
|
275 |
end |
276 |
|
277 |
|
278 |
|
279 |
function nearstx(x,y) |
280 |
cv parameter......... |
281 |
#include "gpstripspe.inc" |
282 |
parameter (jlastx=2042) |
283 |
parameter (xlast=5.333/2.-0.07315) |
284 |
parameter (jfirstx=8) |
285 |
parameter (xfirst=0.07315-5.333/2.) |
286 |
parameter (y1xstrip=0.1117-7./2.) |
287 |
parameter (y2xstrip=7./2.-0.09) |
288 |
|
289 |
px=pitchx |
290 |
py=pitchy |
291 |
if(x.lt.(xfirst-px/2.).or.x.gt.(xlast+px/2.)) then |
292 |
nearstx=0 |
293 |
return |
294 |
endif |
295 |
if(y.lt.y1xstrip.or.y.gt.y2xstrip) then |
296 |
nearstx=0 |
297 |
return |
298 |
endif |
299 |
|
300 |
nearstx=int((x-xfirst)/px)+jfirstx |
301 |
if( (x-xstrip(nearstx)).gt.(px/2.) ) nearstx=nearstx+1 |
302 |
|
303 |
|
304 |
end |
305 |
|
306 |
function nearsty(x,y) |
307 |
cv parameter......... |
308 |
#include "gpstripspe.inc" |
309 |
parameter (jlasty=1024) |
310 |
parameter (ylast=7./2.-0.09855) |
311 |
parameter (jfirsty=1) |
312 |
parameter (yfirst=0.0985-7./2.) |
313 |
|
314 |
parameter (x1ystrip=0.0894-5.333/2.) |
315 |
parameter (x2ystrip=5.333/2.-0.1221) |
316 |
|
317 |
px=pitchx |
318 |
py=pitchy |
319 |
if(y.lt.(yfirst-py/2.).or.y.gt.(ylast+py/2.)) then |
320 |
nearsty=0 |
321 |
return |
322 |
endif |
323 |
if(x.lt.x1ystrip.or.x.gt.x2ystrip) then |
324 |
nearsty=0 |
325 |
return |
326 |
endif |
327 |
|
328 |
nearsty=int((y-yfirst)/py)+jfirsty |
329 |
if( (y-ystrip(nearsty)).gt.(py/2.) ) nearsty=nearsty+1 |
330 |
|
331 |
|
332 |
|
333 |
end |