1 |
// $Id: PamVMCPrimaryGenerator.cxx,v 1.0 2006/06/03 |
2 |
|
3 |
|
4 |
#include <TVirtualMC.h> |
5 |
#include <TVirtualMCStack.h> |
6 |
#include <TPDGCode.h> |
7 |
#include <TDatabasePDG.h> |
8 |
#include <TParticlePDG.h> |
9 |
#include <TVector3.h> |
10 |
#include <TMath.h> |
11 |
#include <Riostream.h> |
12 |
|
13 |
#include "PamVMCPrimaryGenerator.h" |
14 |
|
15 |
using namespace TMath; |
16 |
|
17 |
ClassImp(PamVMCPrimary) |
18 |
|
19 |
PamVMCPrimary & operator+=(PamVMCPrimary &a, const PamVMCPrimary &b) |
20 |
{ |
21 |
a.fPDG=b.fPDG; |
22 |
a.fX0=b.fX0; |
23 |
a.fY0=b.fY0; |
24 |
a.fZ0=b.fZ0; |
25 |
a.fTHETA=b.fTHETA; |
26 |
a.fPHI=b.fPHI; |
27 |
a.fP0=b.fP0; |
28 |
a.fGOOD=b.fGOOD; |
29 |
|
30 |
return a; |
31 |
} |
32 |
|
33 |
|
34 |
ClassImp(PamVMCPrimaryGenerator) |
35 |
|
36 |
PamVMCPrimaryGenerator::PamVMCPrimaryGenerator(TVirtualMCStack* stack) |
37 |
: TObject(), |
38 |
fStack(stack), |
39 |
fevno(0), |
40 |
fmass(0.), |
41 |
fcharge(0.), |
42 |
frandom(0) |
43 |
{ |
44 |
// Standard constructor |
45 |
|
46 |
ftheta = new TF1("ftheta","sin(x)*cos(x)",0.,acos(-1.)/4.); |
47 |
ftheta->SetNpx(1000); |
48 |
|
49 |
fprimColl = new TClonesArray("PamVMCPrimary"); |
50 |
fprim.fPDG=kProton; |
51 |
fprim.fX0=1.; |
52 |
fprim.fY0=1.; |
53 |
fprim.fZ0=130.; |
54 |
fprim.fTHETA=0.; |
55 |
fprim.fPHI=0.; |
56 |
fprim.fP0=1.; //1GV |
57 |
|
58 |
} |
59 |
|
60 |
PamVMCPrimaryGenerator::PamVMCPrimaryGenerator() |
61 |
: TObject(), |
62 |
fStack(0), |
63 |
fevno(0), |
64 |
fmass(0.), |
65 |
fcharge(0.), |
66 |
fprimColl(0), |
67 |
frandom(0) |
68 |
{ |
69 |
// Default constructor |
70 |
//Default primary proton |
71 |
ftheta = new TF1("ftheta","sin(x)*cos(x)",0.,acos(-1.)/4.); |
72 |
ftheta->SetNpx(1000); |
73 |
|
74 |
fprim.fPDG=kProton; |
75 |
fprim.fX0=1.; |
76 |
fprim.fY0=1.; |
77 |
fprim.fZ0=130.; |
78 |
fprim.fTHETA=0.; |
79 |
fprim.fPHI=0.; |
80 |
fprim.fP0=1.; //1GV |
81 |
} |
82 |
|
83 |
PamVMCPrimaryGenerator::~PamVMCPrimaryGenerator() |
84 |
{ |
85 |
// Destructor |
86 |
delete ftheta; |
87 |
delete fprimColl; |
88 |
} |
89 |
|
90 |
// private methods |
91 |
|
92 |
|
93 |
void PamVMCPrimaryGenerator::GeneratePrimary() |
94 |
{ |
95 |
// Add one primary particle to the user stack (derived from TVirtualMCStack). |
96 |
|
97 |
// Track ID (filled by stack) |
98 |
Int_t ntr; |
99 |
|
100 |
// Option: to be tracked |
101 |
Int_t toBeDone = 1; |
102 |
|
103 |
// Particle type |
104 |
Int_t pdg = fprim.fPDG; |
105 |
|
106 |
Double_t fvx, fvy, fvz; |
107 |
fvx=fprim.fX0; |
108 |
fvy=fprim.fY0; |
109 |
fvz=fprim.fZ0; |
110 |
|
111 |
// Position |
112 |
|
113 |
Double_t tof = 0.; |
114 |
|
115 |
// Energy (in GeV) |
116 |
//printf("generateprimary check fprimP0 = %f\n",fprim.fP0); |
117 |
Double_t kinEnergy = MomentumToKinE(fprim.fP0); |
118 |
Double_t e = fmass + kinEnergy; |
119 |
|
120 |
// Particle momentum |
121 |
Double_t px, py, pz; |
122 |
|
123 |
px = fprim.fP0*Sin(fprim.fTHETA)*Cos(fprim.fPHI); |
124 |
py = fprim.fP0*Sin(fprim.fTHETA)*Sin(fprim.fPHI); |
125 |
pz = -fprim.fP0*Cos(fprim.fTHETA); |
126 |
|
127 |
// Polarization |
128 |
TVector3 polar; |
129 |
|
130 |
// Add particle to stack |
131 |
fStack->PushTrack(toBeDone, -1, pdg, px, py, pz, e, fvx, fvy, fvz, tof, |
132 |
polar.X(), polar.Y(), polar.Z(), |
133 |
kPPrimary, ntr, 1., 0); |
134 |
|
135 |
PamVMCPrimary * pc = (PamVMCPrimary *)fprimColl->New(fevno++); |
136 |
|
137 |
*pc = fprim; |
138 |
} |
139 |
|
140 |
|
141 |
void PamVMCPrimaryGenerator::SetParticle(Int_t pdg){ |
142 |
fprim.fPDG=pdg; |
143 |
//TParticlePDG* particlePDG = TDatabasePDG::Instance()->GetParticle(fprim.fPDG); |
144 |
fmass = (TDatabasePDG::Instance()->GetParticle(fprim.fPDG))->Mass(); |
145 |
fcharge = ((TDatabasePDG::Instance()->GetParticle(fprim.fPDG))->Charge())/3.; |
146 |
} |
147 |
|
148 |
void PamVMCPrimaryGenerator::SetMomentum( |
149 |
Double_t px, Double_t py, Double_t pz) |
150 |
{ |
151 |
fprim.fP0= Sqrt(px*px+py*py+pz*pz); |
152 |
fprim.fTHETA=ATan(Sqrt(px*px+py*py)/pz); |
153 |
fprim.fPHI=ATan(py/px); |
154 |
} |
155 |
|
156 |
void PamVMCPrimaryGenerator::GenSpe(Double_t PEmin, Double_t PEmax, Bool_t isEnergy) |
157 |
{ |
158 |
if(isEnergy) { |
159 |
fprim.fP0=frandom->Uniform(KinEToMomentum(PEmin),KinEToMomentum(PEmax)); |
160 |
} else{ |
161 |
fprim.fP0=frandom->Uniform(PEmin,PEmax); |
162 |
} |
163 |
|
164 |
} |
165 |
|
166 |
void PamVMCPrimaryGenerator::GenSpe(Double_t PEmin, Double_t PEmax, Double_t gamma, Bool_t isEnergy) |
167 |
{ |
168 |
Double_t alpha = 1.+gamma; //integral spectral index |
169 |
if(alpha==0.){ |
170 |
fprim.fP0=Exp(Log(PEmin)+frandom->Uniform(0.,1.)*(Log(PEmax)-Log(PEmin))); |
171 |
} else { |
172 |
if(PEmin==0.) PEmin=1.E-10; |
173 |
fprim.fP0=Power((frandom->Uniform(0.,1.)*(Power(PEmax,alpha)-Power(PEmin,alpha))+Power(PEmin,alpha)),1./alpha); |
174 |
} |
175 |
cout<<"GenSpe fprim.fP0= "<<fprim.fP0<<endl; |
176 |
if(isEnergy) fprim.fP0=KinEToMomentum(fprim.fP0); |
177 |
|
178 |
} |
179 |
|
180 |
|
181 |
//Cecilia Pizzolotto: powerlaw spectrum 3 with the shape |
182 |
// J(E) = 0.5*(E + b * exp(-c * sqrt(E)))^-a |
183 |
// between PEmin and PEmax and with the input parameters a,b,c. |
184 |
// Valeria di Felice fits parameter values are: |
185 |
// protons: a,b,c= 2.70, 2.15, 0.21 |
186 |
// electrons: a,b,c= 0.0638, 1.248e-16, -38.248 |
187 |
void PamVMCPrimaryGenerator::GenSpe_3par(Double_t PEmin, Double_t PEmax, Double_t a, Double_t b, Double_t c) |
188 |
{ |
189 |
|
190 |
Bool_t found=0; |
191 |
Double_t funct_min, funct_max; |
192 |
funct_max = function3par(PEmin,a,b,c); |
193 |
funct_min = function3par(PEmax,a,b,c); |
194 |
// |
195 |
Double_t wurfP; |
196 |
Double_t wurfy ; |
197 |
//printf("in genspe3par^^^^%f ^^%f ^^^^^^^^%f ^^^^^%f^^^^^^^\n",PEmin,PEmax,funct_min,funct_max); |
198 |
//printf("in par^^ %f %f %f \n",a,b,c); |
199 |
while( found==0 ) |
200 |
{ |
201 |
wurfP = frandom->Uniform(PEmin,PEmax); |
202 |
wurfy = frandom->Uniform(funct_min,funct_max); |
203 |
if( wurfy<(function3par(wurfP,a,b,c) )) |
204 |
{ |
205 |
// this is ok! |
206 |
fprim.fP0=wurfP; |
207 |
found=1; |
208 |
} |
209 |
} |
210 |
//printf("exit+++++++++++++++++++ %f %f \n",wurfP,fprim.fP0); |
211 |
} |
212 |
|
213 |
|
214 |
|
215 |
// cecilia pizzolotto |
216 |
void PamVMCPrimaryGenerator::GenSpe_Flat(Double_t PEmin, Double_t PEmax, Double_t gamma, Bool_t isEnergy) |
217 |
{ |
218 |
// Generates a flat spectrum from PEmin to PElim. Then a power law |
219 |
Double_t PElim = 1.; |
220 |
//Double_t alpha = 1.+gamma; //integral spectral index |
221 |
|
222 |
Bool_t okflag=0.; |
223 |
Double_t throw_x =0.; |
224 |
Double_t throw_y =0.; |
225 |
|
226 |
while(okflag==0) |
227 |
{ |
228 |
throw_x=frandom->Uniform(PEmin,PEmax); |
229 |
// cout<<" x "<<throw_x<<endl; |
230 |
if(throw_x<=PElim) |
231 |
{ |
232 |
okflag=1.; |
233 |
} |
234 |
else |
235 |
{ |
236 |
throw_y=frandom->Uniform(0.,1.); |
237 |
if( throw_y<(1*pow(throw_x,gamma))) |
238 |
{ |
239 |
okflag=1.; |
240 |
} |
241 |
} |
242 |
} |
243 |
fprim.fP0=throw_x; |
244 |
//h->Fill(fprimf.P0); |
245 |
okflag=0.; // reset |
246 |
|
247 |
if(isEnergy) fprim.fP0=KinEToMomentum(fprim.fP0); |
248 |
|
249 |
} |
250 |
|
251 |
// Spherical distribution -- Test by Cecilia P july 2009 ---- |
252 |
// flusso isotropo su 2pi |
253 |
void PamVMCPrimaryGenerator::GenSphericalPhiThe() |
254 |
{ |
255 |
// Generate phi theta |
256 |
Double_t theta=0.; |
257 |
Double_t phi=0.; |
258 |
|
259 |
Double_t xcos = sqrt( frandom->Uniform(0.,1.) ); |
260 |
theta = acos(xcos); //RAD |
261 |
|
262 |
phi = frandom->Uniform(0.,2.*Pi()); |
263 |
|
264 |
SetDirection(theta, phi); |
265 |
return; |
266 |
} |
267 |
|
268 |
|
269 |
|
270 |
|
271 |
|
272 |
void PamVMCPrimaryGenerator::GenSphPhiThe(Double_t xmin, Double_t xmax, Double_t ymin, Double_t ymax, |
273 |
Double_t zmin, Double_t zmax) |
274 |
{ |
275 |
Bool_t trkGood = kFALSE; |
276 |
Double_t theta = 999.; |
277 |
Double_t phi = 0.; |
278 |
Double_t x2,y2,x3,y3; |
279 |
Double_t x0,y0,z0; |
280 |
|
281 |
//static const Double_t rad2deg = 57.2958; |
282 |
// S21 and S31 position/size taken as reference (z on top of det) |
283 |
// constraint: must pass throuth these planes |
284 |
static const Double_t s2_xmax=9.05, s2_ymax=7.55, s2_z=73.439; // z on top of det |
285 |
static const Double_t s3_xmax=9.05, s3_ymax=7.55, s3_z=26.093; // z on top of det |
286 |
|
287 |
//Double_t thetamax=3.14; |
288 |
//thetamax = atan((xmax+s3_xmax)/(zmax-s3_z)); |
289 |
//cout<<" Quanto รจ il theta max? "<<thetamax<<" in deg "<<thetamax*(90./Pi())<<endl; |
290 |
|
291 |
while (trkGood!=kTRUE) |
292 |
{ |
293 |
x0= frandom->Uniform(xmin,xmax); |
294 |
y0= frandom->Uniform(ymin,ymax); |
295 |
z0= frandom->Uniform(zmin,zmax); |
296 |
|
297 |
// Generate phi theta |
298 |
theta=999.; // init |
299 |
while (theta>=0.65) // take only theta smaller than 37deg=0.65rad |
300 |
{ |
301 |
Double_t xcos = sqrt( frandom->Uniform(0.,1.) ); |
302 |
theta = acos(xcos); //RAD |
303 |
} |
304 |
phi = frandom->Uniform(0.,2.*Pi()); |
305 |
|
306 |
// Calculate xy at the constraint |
307 |
Double_t fact2 = (s2_z-z0)/cos(theta); |
308 |
x2 = x0 + fabs(fact2) * sin(theta) * cos(phi); |
309 |
y2 = y0 + fabs(fact2) * sin(theta) * sin(phi); |
310 |
Double_t fact3 = (s3_z-z0)/cos(theta); |
311 |
x3 = x0 + fabs(fact3) * sin(theta) * cos(phi); |
312 |
y3 = y0 + fabs(fact3) * sin(theta) * sin(phi); |
313 |
|
314 |
//cout<<" x/y0= "<<x0<<" "<<y0<<" x/y2= "<<fact2*sin(theta)*cos(phi)<<" "<<x2<<" xy3= "<< |
315 |
// fact3*sin(theta)*cos(phi)<<" "<<x3<<" phi/the "<<phi*(90./Pi())<<" "<<theta*(90./Pi())<<endl; |
316 |
|
317 |
// Test condition on the direction |
318 |
if ( Abs(x2) <= Abs(s2_xmax) && Abs(y2) <= Abs(s2_ymax) && |
319 |
Abs(x3) <= Abs(s3_xmax) && Abs(y3) <= Abs(s3_ymax) ) { |
320 |
trkGood = kTRUE; |
321 |
//cout<<" x/y0= "<<x0<<" "<<y0<<" x/y2= "<<fact2*sin(theta)*cos(phi)<<" "<<x2<<" xy3= "<< |
322 |
// fact3*sin(theta)*cos(phi)<<" "<<x3<<endl; |
323 |
} |
324 |
} |
325 |
|
326 |
// Set direction and position: |
327 |
SetDirection(theta, phi); |
328 |
SetPosition(x0, y0, z0); |
329 |
|
330 |
return; |
331 |
} |