113 |
Double_t tof = 0.; |
Double_t tof = 0.; |
114 |
|
|
115 |
// Energy (in GeV) |
// Energy (in GeV) |
116 |
|
//printf("generateprimary check fprimP0 = %f\n",fprim.fP0); |
117 |
Double_t kinEnergy = MomentumToKinE(fprim.fP0); |
Double_t kinEnergy = MomentumToKinE(fprim.fP0); |
118 |
Double_t e = fmass + kinEnergy; |
Double_t e = fmass + kinEnergy; |
119 |
|
|
172 |
if(PEmin==0.) PEmin=1.E-10; |
if(PEmin==0.) PEmin=1.E-10; |
173 |
fprim.fP0=Power((frandom->Uniform(0.,1.)*(Power(PEmax,alpha)-Power(PEmin,alpha))+Power(PEmin,alpha)),1./alpha); |
fprim.fP0=Power((frandom->Uniform(0.,1.)*(Power(PEmax,alpha)-Power(PEmin,alpha))+Power(PEmin,alpha)),1./alpha); |
174 |
} |
} |
175 |
|
cout<<"GenSpe fprim.fP0= "<<fprim.fP0<<endl; |
176 |
|
if(isEnergy) fprim.fP0=KinEToMomentum(fprim.fP0); |
177 |
|
|
178 |
|
} |
179 |
|
|
180 |
|
|
181 |
|
//Cecilia Pizzolotto: powerlaw spectrum 3 with the shape |
182 |
|
// J(E) = 0.5*(E + b * exp(-c * sqrt(E)))^-a |
183 |
|
// between PEmin and PEmax and with the input parameters a,b,c. |
184 |
|
// Valeria di Felice fits parameter values are: |
185 |
|
// protons: a,b,c= 2.70, 2.15, 0.21 |
186 |
|
// electrons: a,b,c= 0.0638, 1.248e-16, -38.248 |
187 |
|
void PamVMCPrimaryGenerator::GenSpe_3par(Double_t PEmin, Double_t PEmax, Double_t a, Double_t b, Double_t c) |
188 |
|
{ |
189 |
|
|
190 |
|
Bool_t found=0; |
191 |
|
Double_t funct_min, funct_max; |
192 |
|
funct_max = function3par(PEmin,a,b,c); |
193 |
|
funct_min = function3par(PEmax,a,b,c); |
194 |
|
// |
195 |
|
Double_t wurfP; |
196 |
|
Double_t wurfy ; |
197 |
|
//printf("in genspe3par^^^^%f ^^%f ^^^^^^^^%f ^^^^^%f^^^^^^^\n",PEmin,PEmax,funct_min,funct_max); |
198 |
|
//printf("in par^^ %f %f %f \n",a,b,c); |
199 |
|
while( found==0 ) |
200 |
|
{ |
201 |
|
wurfP = frandom->Uniform(PEmin,PEmax); |
202 |
|
wurfy = frandom->Uniform(funct_min,funct_max); |
203 |
|
if( wurfy<(function3par(wurfP,a,b,c) )) |
204 |
|
{ |
205 |
|
// this is ok! |
206 |
|
fprim.fP0=wurfP; |
207 |
|
found=1; |
208 |
|
} |
209 |
|
} |
210 |
|
//printf("exit+++++++++++++++++++ %f %f \n",wurfP,fprim.fP0); |
211 |
|
} |
212 |
|
|
213 |
|
|
214 |
|
|
215 |
|
// cecilia pizzolotto |
216 |
|
void PamVMCPrimaryGenerator::GenSpe_Flat(Double_t PEmin, Double_t PEmax, Double_t gamma, Bool_t isEnergy) |
217 |
|
{ |
218 |
|
// Generates a flat spectrum from PEmin to PElim. Then a power law |
219 |
|
Double_t PElim = 1.; |
220 |
|
//Double_t alpha = 1.+gamma; //integral spectral index |
221 |
|
|
222 |
|
Bool_t okflag=0.; |
223 |
|
Double_t throw_x =0.; |
224 |
|
Double_t throw_y =0.; |
225 |
|
|
226 |
|
while(okflag==0) |
227 |
|
{ |
228 |
|
throw_x=frandom->Uniform(PEmin,PEmax); |
229 |
|
// cout<<" x "<<throw_x<<endl; |
230 |
|
if(throw_x<=PElim) |
231 |
|
{ |
232 |
|
okflag=1.; |
233 |
|
} |
234 |
|
else |
235 |
|
{ |
236 |
|
throw_y=frandom->Uniform(0.,1.); |
237 |
|
if( throw_y<(1*pow(throw_x,gamma))) |
238 |
|
{ |
239 |
|
okflag=1.; |
240 |
|
} |
241 |
|
} |
242 |
|
} |
243 |
|
fprim.fP0=throw_x; |
244 |
|
//h->Fill(fprimf.P0); |
245 |
|
okflag=0.; // reset |
246 |
|
|
247 |
if(isEnergy) fprim.fP0=KinEToMomentum(fprim.fP0); |
if(isEnergy) fprim.fP0=KinEToMomentum(fprim.fP0); |
248 |
|
|
249 |
} |
} |
250 |
|
|
251 |
|
// Spherical distribution -- Test by Cecilia P july 2009 ---- |
252 |
|
// flusso isotropo su 2pi |
253 |
|
void PamVMCPrimaryGenerator::GenSphericalPhiThe() |
254 |
|
{ |
255 |
|
// Generate phi theta |
256 |
|
Double_t theta=0.; |
257 |
|
Double_t phi=0.; |
258 |
|
|
259 |
|
Double_t xcos = sqrt( frandom->Uniform(0.,1.) ); |
260 |
|
theta = acos(xcos); //RAD |
261 |
|
|
262 |
|
phi = frandom->Uniform(0.,2.*Pi()); |
263 |
|
|
264 |
|
SetDirection(theta, phi); |
265 |
|
return; |
266 |
|
} |
267 |
|
|
268 |
|
|
269 |
|
|
270 |
|
|
271 |
|
|
272 |
|
void PamVMCPrimaryGenerator::GenSphPhiThe(Double_t xmin, Double_t xmax, Double_t ymin, Double_t ymax, |
273 |
|
Double_t zmin, Double_t zmax) |
274 |
|
{ |
275 |
|
Bool_t trkGood = kFALSE; |
276 |
|
Double_t theta = 999.; |
277 |
|
Double_t phi = 0.; |
278 |
|
Double_t x2,y2,x3,y3; |
279 |
|
Double_t x0,y0,z0; |
280 |
|
|
281 |
|
//static const Double_t rad2deg = 57.2958; |
282 |
|
// S21 and S31 position/size taken as reference (z on top of det) |
283 |
|
// constraint: must pass throuth these planes |
284 |
|
static const Double_t s2_xmax=9.05, s2_ymax=7.55, s2_z=73.439; // z on top of det |
285 |
|
static const Double_t s3_xmax=9.05, s3_ymax=7.55, s3_z=26.093; // z on top of det |
286 |
|
|
287 |
|
//Double_t thetamax=3.14; |
288 |
|
//thetamax = atan((xmax+s3_xmax)/(zmax-s3_z)); |
289 |
|
//cout<<" Quanto รจ il theta max? "<<thetamax<<" in deg "<<thetamax*(90./Pi())<<endl; |
290 |
|
|
291 |
|
while (trkGood!=kTRUE) |
292 |
|
{ |
293 |
|
x0= frandom->Uniform(xmin,xmax); |
294 |
|
y0= frandom->Uniform(ymin,ymax); |
295 |
|
z0= frandom->Uniform(zmin,zmax); |
296 |
|
|
297 |
|
// Generate phi theta |
298 |
|
theta=999.; // init |
299 |
|
while (theta>=0.65) // take only theta smaller than 37deg=0.65rad |
300 |
|
{ |
301 |
|
Double_t xcos = sqrt( frandom->Uniform(0.,1.) ); |
302 |
|
theta = acos(xcos); //RAD |
303 |
|
} |
304 |
|
phi = frandom->Uniform(0.,2.*Pi()); |
305 |
|
|
306 |
|
// Calculate xy at the constraint |
307 |
|
Double_t fact2 = (s2_z-z0)/cos(theta); |
308 |
|
x2 = x0 + fabs(fact2) * sin(theta) * cos(phi); |
309 |
|
y2 = y0 + fabs(fact2) * sin(theta) * sin(phi); |
310 |
|
Double_t fact3 = (s3_z-z0)/cos(theta); |
311 |
|
x3 = x0 + fabs(fact3) * sin(theta) * cos(phi); |
312 |
|
y3 = y0 + fabs(fact3) * sin(theta) * sin(phi); |
313 |
|
|
314 |
|
//cout<<" x/y0= "<<x0<<" "<<y0<<" x/y2= "<<fact2*sin(theta)*cos(phi)<<" "<<x2<<" xy3= "<< |
315 |
|
// fact3*sin(theta)*cos(phi)<<" "<<x3<<" phi/the "<<phi*(90./Pi())<<" "<<theta*(90./Pi())<<endl; |
316 |
|
|
317 |
|
// Test condition on the direction |
318 |
|
if ( Abs(x2) <= Abs(s2_xmax) && Abs(y2) <= Abs(s2_ymax) && |
319 |
|
Abs(x3) <= Abs(s3_xmax) && Abs(y3) <= Abs(s3_ymax) ) { |
320 |
|
trkGood = kTRUE; |
321 |
|
//cout<<" x/y0= "<<x0<<" "<<y0<<" x/y2= "<<fact2*sin(theta)*cos(phi)<<" "<<x2<<" xy3= "<< |
322 |
|
// fact3*sin(theta)*cos(phi)<<" "<<x3<<endl; |
323 |
|
} |
324 |
|
} |
325 |
|
|
326 |
|
// Set direction and position: |
327 |
|
SetDirection(theta, phi); |
328 |
|
SetPosition(x0, y0, z0); |
329 |
|
|
330 |
|
return; |
331 |
|
} |