1 |
#include "PamVMCCaloDig.h" |
2 |
#include <TTree.h> |
3 |
#include "CalibCalPedEvent.h" |
4 |
|
5 |
using namespace pamela; |
6 |
|
7 |
ClassImp(PamVMCCaloDig) |
8 |
|
9 |
extern "C"{ |
10 |
short crc(short, short); |
11 |
}; |
12 |
|
13 |
|
14 |
void PamVMCCaloDig::LoadCalib(){ |
15 |
|
16 |
cout<<"Loading Tracker Calibrations..."<<endl; |
17 |
|
18 |
|
19 |
|
20 |
fhc =(TClonesArray*)fhitscolmap.GetValue("CAST"); |
21 |
if (!fhc) cout <<"!!!WARNING Hit Collection of CAL not found by PamVMCCaloDig!!!!"<<endl; |
22 |
|
23 |
Int_t GivenCaloCalib = 0; //@@@ should be given as input par @@@ |
24 |
|
25 |
Int_t time=3; |
26 |
Int_t type=101; |
27 |
|
28 |
fdberr = fsql->Query_GL_PARAM(time,type); |
29 |
|
30 |
if(fdberr<0){ |
31 |
cout<<"No such record in DB for CAL: time="<<time<<" type="<<type<<endl; |
32 |
ThrowCalFileWarning("CAL"); |
33 |
|
34 |
} else { |
35 |
|
36 |
fquery.str(""); |
37 |
fquery << fsql->GetPAR()->PATH.Data() << "/"; |
38 |
fquery << fsql->GetPAR()->NAME.Data(); |
39 |
|
40 |
ThrowCalFileUsage("CAL",fquery.str().c_str()); |
41 |
|
42 |
|
43 |
FILE *f; |
44 |
f = fopen(fquery.str().c_str(),"rb"); |
45 |
|
46 |
if(f==NULL) ThrowCalFileWarning("CAL"); |
47 |
else{ |
48 |
memset(fCalomip,0,4224*sizeof(fCalomip[0][0][0])); |
49 |
|
50 |
for (Int_t m = 0; m < 2 ; m++ ){ |
51 |
for (Int_t k = 0; k < 22; k++ ){ |
52 |
for (Int_t l = 0; l < 96; l++ ){ |
53 |
fread(&fCalomip[m][k][l],sizeof(fCalomip[m][k][l]),1,f); |
54 |
}; |
55 |
}; |
56 |
}; |
57 |
fclose(f); |
58 |
|
59 |
|
60 |
// determine which calibration has to be used |
61 |
// and load it for each section |
62 |
|
63 |
UInt_t idcalib, calibno; |
64 |
UInt_t utime = 0; |
65 |
TString calname; |
66 |
for (UInt_t s=0; s<4; s++){ |
67 |
|
68 |
// clear calo calib variables for section s |
69 |
|
70 |
ClearCaloCalib(s); |
71 |
|
72 |
if ( GivenCaloCalib ){ |
73 |
|
74 |
// a time has been given as input on the command line |
75 |
// so retrieve the calibration that preceed that time |
76 |
|
77 |
fsql->Query_GL_CALO_CALIB(GivenCaloCalib,utime,s); |
78 |
|
79 |
calibno = fsql->GetCaloCalib()->EV_ROOT; |
80 |
idcalib = fsql->GetCaloCalib()->ID_ROOT_L0; |
81 |
|
82 |
// determine path and name and entry of the calibration file |
83 |
|
84 |
printf("\n"); |
85 |
printf(" ** SECTION %i **\n",s); |
86 |
|
87 |
fsql->Query_GL_ROOT(idcalib); |
88 |
|
89 |
fquery.str(""); |
90 |
fquery << fsql->GetROOT()->PATH.Data() << "/"; |
91 |
fquery << fsql->GetROOT()->NAME.Data(); |
92 |
|
93 |
calname = (TString)fquery.str().c_str(); |
94 |
|
95 |
printf("\n Section %i : using file %s calibration at entry %i: \n",s,calname.Data(),calibno); |
96 |
|
97 |
} else { |
98 |
|
99 |
fdberr = 0; |
100 |
fdberr = fsql->Query_GL_PARAM(1,104); |
101 |
|
102 |
fquery.str(""); |
103 |
fquery << fsql->GetPAR()->PATH.Data() << "/"; |
104 |
fquery << fsql->GetPAR()->NAME.Data(); |
105 |
|
106 |
printf("\n Section %i : using default calorimeter calibration: \n %s \n",s,fquery.str().c_str()); |
107 |
|
108 |
calname = (TString)fquery.str().c_str(); |
109 |
calibno = s; |
110 |
|
111 |
}; |
112 |
|
113 |
// load calibration variables in memory |
114 |
|
115 |
CaloLoadCalib(s,calname,calibno); |
116 |
|
117 |
}; |
118 |
// |
119 |
// at this point we have in memory the calorimeter calibration |
120 |
// and we can save it to disk in the correct format and use it to digitize the data |
121 |
// |
122 |
|
123 |
DigitizeCALOCALIB(); |
124 |
} |
125 |
} |
126 |
} |
127 |
|
128 |
|
129 |
void PamVMCCaloDig::ClearCaloCalib(Int_t s){ |
130 |
|
131 |
fcstwerr[s] = 0; |
132 |
fcperror[s] = 0.; |
133 |
for ( Int_t d=0 ; d<11 ;d++ ){ |
134 |
Int_t pre = -1; |
135 |
for ( Int_t j=0; j<96 ;j++){ |
136 |
if ( j%16 == 0 ) pre++; |
137 |
fcalped[s][d][j] = 0.; |
138 |
fcstwerr[s] = 0.; |
139 |
fcperror[s] = 0.; |
140 |
fcalgood[s][d][j] = 0.; |
141 |
fcalthr[s][d][pre] = 0.; |
142 |
fcalrms[s][d][j] = 0.; |
143 |
fcalbase[s][d][pre] = 0.; |
144 |
fcalvar[s][d][pre] = 0.; |
145 |
}; |
146 |
}; |
147 |
return; |
148 |
} |
149 |
|
150 |
Int_t PamVMCCaloDig::CaloLoadCalib(Int_t s,TString calname, UInt_t calibno){ |
151 |
|
152 |
UInt_t e = 0; |
153 |
switch(s){ |
154 |
case 0: e = 0; |
155 |
break; |
156 |
case 1: e = 2; |
157 |
break; |
158 |
case 2: e = 3; |
159 |
break; |
160 |
case 3: e = 1; |
161 |
break; |
162 |
default: |
163 |
break; |
164 |
} |
165 |
fcfile.open(calname.Data()); |
166 |
ThrowCalFileUsage("CAL",calname.Data()); |
167 |
if ( !fcfile ){ |
168 |
ThrowCalFileWarning("CAL"); |
169 |
return(-107); |
170 |
}; |
171 |
fcfile.close(); |
172 |
|
173 |
fcrfile = new TFile(calname.Data()); |
174 |
if ( !fcrfile ){ |
175 |
ThrowCalFileWarning("CAL"); |
176 |
return(-108); |
177 |
} |
178 |
TTree *tr = (TTree*)fcrfile->Get("CalibCalPed"); |
179 |
if ( !tr ){ |
180 |
cout<<"!!!WARNING Tree CalibCalPed in file "<<calname.Data() |
181 |
<<" was NOT found!!!"<<endl; |
182 |
return(-109); |
183 |
} |
184 |
TBranch *calo = tr->GetBranch("CalibCalPed"); |
185 |
CalibCalPedEvent *ce = 0; |
186 |
tr->SetBranchAddress("CalibCalPed", &ce); |
187 |
Long64_t ncalibs = calo->GetEntries(); |
188 |
if ( !ncalibs ){ |
189 |
cout<<"!!!WARNING No entries in calibration file!!!"<<endl; |
190 |
return(-110); |
191 |
} |
192 |
|
193 |
calo->GetEntry(calibno); |
194 |
|
195 |
if (ce->cstwerr[s] != 0 && ce->cperror[s] == 0 ) { |
196 |
fcstwerr[s] = ce->cstwerr[s]; |
197 |
fcperror[s] = ce->cperror[s]; |
198 |
for ( Int_t d=0 ; d<11 ;d++ ){ |
199 |
Int_t pre = -1; |
200 |
for ( Int_t j=0; j<96 ;j++){ |
201 |
if ( j%16 == 0 ) pre++; |
202 |
fcalped[s][d][j] = ce->calped[e][d][j]; |
203 |
fcalgood[s][d][j] = ce->calgood[e][d][j]; |
204 |
fcalthr[s][d][pre] = ce->calthr[e][d][pre]; |
205 |
fcalrms[s][d][j] = ce->calrms[e][d][j]; |
206 |
fcalbase[s][d][pre] = ce->calbase[e][d][pre]; |
207 |
fcalvar[s][d][pre] = ce->calvar[e][d][pre]; |
208 |
}; |
209 |
}; |
210 |
} else { |
211 |
printf(" CALORIMETER - ERROR: problems finding a good calibration in this file! \n\n "); |
212 |
fcrfile->Close(); |
213 |
return(-111); |
214 |
}; |
215 |
fcrfile->Close(); |
216 |
delete ce; |
217 |
return(0); |
218 |
} |
219 |
|
220 |
void PamVMCCaloDig::DigitizeCALOCALIB() { |
221 |
|
222 |
|
223 |
// Header of the four sections |
224 |
|
225 |
fSecCalo[0] = 0xAA00; // XE |
226 |
fSecCalo[1] = 0xB100; // XO |
227 |
fSecCalo[2] = 0xB600; // YE |
228 |
fSecCalo[3] = 0xAD00; // YO |
229 |
|
230 |
// length of the data is 0x1215 |
231 |
|
232 |
fSecCaloLength[0] = 0x1215; // XE |
233 |
fSecCaloLength[1] = 0x1215; // XO |
234 |
fSecCaloLength[2] = 0x1215; // YE |
235 |
fSecCaloLength[3] = 0x1215; // YO |
236 |
|
237 |
Short_t CRC; |
238 |
|
239 |
for(Int_t sec=0; sec < 4; sec++){ |
240 |
// |
241 |
// sec = 0 -> XE 1 -> XO 2-> YE 3 -> YO |
242 |
// |
243 |
fData.clear(); |
244 |
|
245 |
fData.push_back(fSecCalo[sec]); |
246 |
fData.push_back(fSecCaloLength[sec]); |
247 |
|
248 |
if ( sec==1 ){ |
249 |
FillCalPedBack(&fData,sec); |
250 |
FillCalThrBack(&fData,sec); |
251 |
FillCalRmsBack(&fData,sec); |
252 |
FillCalBaseVarBack(&fData,sec); |
253 |
} else { |
254 |
FillCalPedNorm(&fData,sec); |
255 |
FillCalThrNorm(&fData,sec); |
256 |
FillCalRmsNorm(&fData,sec); |
257 |
FillCalBaseVarNorm(&fData,sec); |
258 |
} |
259 |
//CRC |
260 |
|
261 |
fData.push_back(0x0000); |
262 |
CRC = 0; |
263 |
|
264 |
|
265 |
USBuffer::const_iterator p = fData.begin(); |
266 |
while( p!= fData.end() ){ |
267 |
CRC=crc(CRC,*p); |
268 |
p++; |
269 |
} |
270 |
fData.push_back(CRC); |
271 |
|
272 |
//Writing calibrations |
273 |
DigitizePSCU(fData.size()*2,0x18); |
274 |
fraw->WritePSCU(&fDataPSCU); |
275 |
fraw->CopyUShortToBuff(&fData); |
276 |
|
277 |
//No padding for now... |
278 |
} |
279 |
} |
280 |
|
281 |
void PamVMCCaloDig::FillCalPedNorm(USBuffer *buff, Int_t sec){ |
282 |
|
283 |
Int_t chksum = 0; |
284 |
for (Int_t plane=0; plane < 11; plane++){ |
285 |
for (Int_t strip=0; strip < 96; strip++){ |
286 |
chksum += (Int_t)fcalped[sec][plane][strip]; |
287 |
buff->push_back((Int_t)fcalped[sec][plane][strip]); |
288 |
buff->push_back((Int_t)fcalgood[sec][plane][strip]); |
289 |
} |
290 |
|
291 |
}//3-2114 |
292 |
|
293 |
buff->push_back(((UShort_t)chksum)); |
294 |
buff->push_back(0x0000); |
295 |
buff->push_back(((UShort_t)((Int_t)(chksum >> 16)))); |
296 |
} |
297 |
|
298 |
void PamVMCCaloDig::FillCalPedBack(USBuffer *buff, Int_t sec){ |
299 |
|
300 |
Int_t chksum = 0; |
301 |
for (Int_t plane=0; plane < 11; plane++){ |
302 |
for (Int_t strip=95; strip >= 0; strip--){ |
303 |
chksum += (Int_t)fcalped[sec][plane][strip]; |
304 |
buff->push_back((Int_t)fcalped[sec][plane][strip]); |
305 |
buff->push_back((Int_t)fcalgood[sec][plane][strip]); |
306 |
} |
307 |
}//3-2114 |
308 |
|
309 |
buff->push_back(((UShort_t)chksum)); |
310 |
buff->push_back(0x0000); |
311 |
buff->push_back(((UShort_t)((Int_t)(chksum >> 16)))); |
312 |
} |
313 |
|
314 |
|
315 |
void PamVMCCaloDig::FillCalThrNorm(USBuffer *buff, Int_t sec){ |
316 |
|
317 |
Int_t chksum = 0; |
318 |
for (Int_t plane=0; plane < 11; plane++){ |
319 |
for (Int_t strip=0; strip < 6; strip++){ |
320 |
chksum += (Int_t)fcalthr[sec][plane][strip]; |
321 |
buff->push_back(0x0000); |
322 |
buff->push_back((Int_t)fcalthr[sec][plane][strip]); |
323 |
} |
324 |
|
325 |
}//2118-2249 |
326 |
|
327 |
buff->push_back(0x0000); |
328 |
buff->push_back(((UShort_t)chksum)); |
329 |
buff->push_back(0x0000); |
330 |
buff->push_back(((UShort_t)((Int_t)(chksum >> 16)))); |
331 |
} |
332 |
|
333 |
void PamVMCCaloDig::FillCalThrBack(USBuffer *buff, Int_t sec){ |
334 |
|
335 |
Int_t chksum = 0; |
336 |
for (Int_t plane=0; plane < 11; plane++){ |
337 |
for (Int_t strip=5; strip >= 0; strip--){ |
338 |
chksum += (Int_t)fcalthr[sec][plane][strip]; |
339 |
buff->push_back(0x0000); |
340 |
buff->push_back((Int_t)fcalthr[sec][plane][strip]); |
341 |
} |
342 |
}//2118-2249 |
343 |
|
344 |
buff->push_back(0x0000); |
345 |
buff->push_back(((UShort_t)chksum)); |
346 |
buff->push_back(0x0000); |
347 |
buff->push_back(((UShort_t)((Int_t)(chksum >> 16)))); |
348 |
} |
349 |
|
350 |
void PamVMCCaloDig::FillCalRmsNorm(USBuffer *buff, Int_t sec){ |
351 |
|
352 |
for (Int_t plane=0; plane < 11; plane++){ |
353 |
for (Int_t strip=0; strip < 96; strip++){ |
354 |
buff->push_back(0x0000); |
355 |
buff->push_back((Int_t)fcalrms[sec][plane][strip]); |
356 |
} |
357 |
}//2254-4365 |
358 |
} |
359 |
|
360 |
void PamVMCCaloDig::FillCalRmsBack(USBuffer *buff, Int_t sec){ |
361 |
|
362 |
for (Int_t plane=0; plane < 11; plane++){ |
363 |
for (Int_t strip=95; strip >= 0; strip--){ |
364 |
buff->push_back(0x0000); |
365 |
buff->push_back((Int_t)fcalrms[sec][plane][strip]); |
366 |
} |
367 |
}//2254-4365 |
368 |
} |
369 |
|
370 |
void PamVMCCaloDig::FillCalBaseVarNorm(USBuffer *buff, Int_t sec){ |
371 |
|
372 |
for (Int_t plane=0; plane < 11; plane++){ |
373 |
for (Int_t strip=0; strip < 6; strip++){ |
374 |
buff->push_back(0x0000); |
375 |
buff->push_back(((Int_t)fcalbase[sec][plane][strip])); |
376 |
buff->push_back(0x0000); |
377 |
buff->push_back(((Int_t)fcalvar[sec][plane][strip])); |
378 |
} |
379 |
}//4366-4629 |
380 |
} |
381 |
|
382 |
void PamVMCCaloDig::FillCalBaseVarBack(USBuffer *buff, Int_t sec){ |
383 |
|
384 |
for (Int_t plane=0; plane < 11; plane++){ |
385 |
for (Int_t strip=5; strip >= 0; strip--){ |
386 |
buff->push_back(0x0000); |
387 |
buff->push_back((Int_t)fcalbase[sec][plane][strip]); |
388 |
buff->push_back(0x0000); |
389 |
buff->push_back((Int_t)fcalvar[sec][plane][strip]); |
390 |
} |
391 |
}//4366-4629 |
392 |
} |
393 |
|
394 |
void PamVMCCaloDig::Digitize(){ |
395 |
|
396 |
cout<<"Digitizing CALO..."<<endl; |
397 |
|
398 |
Int_t ModCalo = 1; // 0 is RAW, 1 is COMPRESS, 2 is FULL |
399 |
//####@@@@ should be given as input par @@@@#### |
400 |
|
401 |
|
402 |
// call different routines depending on the acq mode you want to simulate |
403 |
|
404 |
switch ( ModCalo ){ |
405 |
case 0: |
406 |
this->DigitizeCaloRaw(); |
407 |
break; |
408 |
case 1: |
409 |
this->DigitizeCaloCompress(); |
410 |
break; |
411 |
case 2: |
412 |
this->DigitizeCaloFull(); |
413 |
break; |
414 |
}; |
415 |
} |
416 |
|
417 |
void PamVMCCaloDig::DigitizeCaloRaw(){ |
418 |
|
419 |
|
420 |
// some variables |
421 |
// |
422 |
Float_t ens = 0.; |
423 |
UInt_t adcsig = 0; |
424 |
UInt_t adcbase = 0; |
425 |
UInt_t adc = 0; |
426 |
Int_t pre = 0; |
427 |
UInt_t l = 0; |
428 |
UInt_t lpl = 0; |
429 |
UInt_t tstrip = 0; |
430 |
UInt_t fSecPointer = 0; |
431 |
Int_t fCALOlength; |
432 |
Double_t pedenoise; |
433 |
Float_t rms = 0.; |
434 |
Float_t pedestal = 0.; |
435 |
// |
436 |
// clean the data structure |
437 |
// |
438 |
|
439 |
UShort_t DataCALO[4264]; |
440 |
fData.clear(); |
441 |
|
442 |
memset(DataCALO,0,sizeof(UShort_t)*4264); |
443 |
|
444 |
static const Float_t CALOGeV2MIPratio = 0.0001059994; |
445 |
|
446 |
// Header of the four sections |
447 |
|
448 |
fSecCalo[0] = 0xEA08; // XE |
449 |
fSecCalo[1] = 0xF108; // XO |
450 |
fSecCalo[2] = 0xF608; // YE |
451 |
fSecCalo[3] = 0xED08; // YO |
452 |
|
453 |
// length of the data is 0x0428 in RAW mode |
454 |
|
455 |
fSecCaloLength[0] = 0x0428; // XE |
456 |
fSecCaloLength[1] = 0x0428; // XO |
457 |
fSecCaloLength[2] = 0x0428; // YE |
458 |
fSecCaloLength[3] = 0x0428; // YO |
459 |
// let's start |
460 |
// |
461 |
fCALOlength = 0; |
462 |
// |
463 |
for (Int_t sec=0; sec < 4; sec++){ |
464 |
// |
465 |
// sec = 0 -> XE 1 -> XO 2-> YE 3 -> YO |
466 |
// |
467 |
l = 0; // XE and XO are Y planes |
468 |
if ( sec < 2 ) l = 1; // while YE and YO are X planes |
469 |
// |
470 |
fSecPointer = fCALOlength; |
471 |
// |
472 |
// First of all we have section header and packet length |
473 |
// |
474 |
DataCALO[fCALOlength] = fSecCalo[sec]; //1 |
475 |
fCALOlength++; |
476 |
DataCALO[fCALOlength] = fSecCaloLength[sec]; //2 |
477 |
fCALOlength++; |
478 |
// |
479 |
// selftrigger coincidences - in the future we should add here some code |
480 |
// to simulate timing response of pre-amplifiers |
481 |
// |
482 |
for (Int_t autoplane=0; autoplane < 7; autoplane++){ |
483 |
DataCALO[fCALOlength] = 0x0000; |
484 |
fCALOlength++; |
485 |
}; //3-8 |
486 |
// |
487 |
// |
488 |
// here comes data |
489 |
// |
490 |
// |
491 |
// Section XO is read in the opposite direction respect to the others |
492 |
// |
493 |
if ( sec == 1 ){ |
494 |
tstrip = 96*11 + fCALOlength; //tstrip = 1064 |
495 |
} else { |
496 |
tstrip = 0; |
497 |
}; |
498 |
// |
499 |
pre = -1; |
500 |
// |
501 |
for (Int_t strip=0; strip < 96; strip++){ |
502 |
// |
503 |
// which is the pre for this strip? |
504 |
// |
505 |
if (strip%16 == 0) { |
506 |
pre++; |
507 |
}; |
508 |
// |
509 |
if ( sec == 1 ) tstrip -= 11; |
510 |
// |
511 |
for (Int_t plane=0; plane < 11; plane++){ |
512 |
|
513 |
if ( sec == 0 || sec == 3 ) lpl = plane * 2; |
514 |
if ( sec == 1 || sec == 2 ) lpl = (plane * 2) + 1; |
515 |
// |
516 |
// get the energy in GeV from the simulation for that strip |
517 |
// |
518 |
ens = this->GetCaloErel(sec,plane,strip); |
519 |
// |
520 |
// convert it into ADC channels |
521 |
// |
522 |
adcsig = int(ens*fCalomip[l][lpl][strip]/CALOGeV2MIPratio); |
523 |
// |
524 |
// sum baselines |
525 |
// |
526 |
adcbase = (UInt_t)fcalbase[sec][plane][pre]; |
527 |
// |
528 |
// add noise and pedestals |
529 |
// |
530 |
pedestal = fcalped[sec][plane][strip]; |
531 |
rms = fcalrms[sec][plane][strip]/4.; |
532 |
// |
533 |
// Add random gaussian noise of RMS rms and Centered in the pedestal |
534 |
// |
535 |
pedenoise = frandom->Gaus((Double_t)pedestal,(Double_t)rms); |
536 |
// |
537 |
// Sum all contribution |
538 |
// |
539 |
adc = adcsig + adcbase + (Int_t)round(pedenoise); |
540 |
// |
541 |
// Signal saturation |
542 |
// |
543 |
if ( adc > 0x7FFF ) adc = 0x7FFF; |
544 |
// |
545 |
// save value |
546 |
// |
547 |
if ( sec == 1 ){ |
548 |
DataCALO[tstrip] = adc; |
549 |
tstrip++; |
550 |
} else { |
551 |
DataCALO[fCALOlength] = adc; |
552 |
}; |
553 |
fCALOlength++; |
554 |
// |
555 |
}; |
556 |
// |
557 |
if ( sec == 1 ) tstrip -= 11; |
558 |
// |
559 |
}; |
560 |
// |
561 |
// here we calculate and save the CRC |
562 |
// |
563 |
Short_t CRC = 0; |
564 |
for (UInt_t i=0; i<(fCALOlength-fSecPointer); i++){ |
565 |
CRC=crc(CRC,DataCALO[i+fSecPointer]); |
566 |
}; |
567 |
DataCALO[fCALOlength] = (UShort_t)CRC; |
568 |
fCALOlength++; |
569 |
}; |
570 |
|
571 |
for (Int_t i = 0; i<fCALOlength; i++) fData.push_back(DataCALO[i]); |
572 |
//reverse(fData.begin(),fData.end()); |
573 |
//for (Int_t i = 0; i<fCALOlength; i++) fData.push_back(DataCALO[fCALOlength-i-1]); |
574 |
} |
575 |
|
576 |
|
577 |
Float_t PamVMCCaloDig::GetCaloErel(Int_t sec, Int_t plane, Int_t strip){ |
578 |
|
579 |
// determine plane and strip |
580 |
|
581 |
Int_t mplane = 0; |
582 |
|
583 |
switch (sec){ |
584 |
case 0: //3 |
585 |
mplane = plane * 4 ; // it must be 0, 4, 8, ... (+1) from plane = 0, 11 YO |
586 |
break; |
587 |
case 1: //2 |
588 |
mplane = plane * 4 + 2; // it must be 2, 6, 10, ... (+1) from plane = 0, 11 YE |
589 |
break; |
590 |
case 2: //1 |
591 |
mplane = plane * 4 + 3 ; // it must be 3, 7, 11, ... (+1) from plane = 0, 11 XO |
592 |
break; |
593 |
case 3: //0 |
594 |
mplane = plane * 4 + 1 ; // it must be 1, 5, 9, ... (+1) from plane = 0, 11 XE |
595 |
break; |
596 |
} |
597 |
|
598 |
|
599 |
Float_t Erel = 0.; |
600 |
|
601 |
// search energy release in VMC output |
602 |
if (fhc){ |
603 |
PamVMCDetectorHit * hit = (PamVMCDetectorHit*)fhc->At(mplane*96+strip); |
604 |
if (hit) Erel=hit->GetEREL(); |
605 |
// if(Erel) cout<<"sec:"<<sec<<" plane:"<<plane<<" mplane:"<<mplane<<" AT:"<<mplane*96+strip<<" POS:"<<hit->GetPOS()<<endl; |
606 |
} //else cout<<"CALO HIT Collection pointer not found"<<endl; |
607 |
|
608 |
// if ((sec == 2) && (plane == 0)) Erel = 0.01; else Erel = 0.; |
609 |
|
610 |
return Erel; |
611 |
} |
612 |
|
613 |
|
614 |
|
615 |
void PamVMCCaloDig::DigitizeCaloCompress(){ |
616 |
// |
617 |
// CompressMode implemented by C.Pizzolotto october 2009 |
618 |
// |
619 |
// some variables |
620 |
// |
621 |
Float_t ens = 0.; |
622 |
UInt_t adcsig = 0; |
623 |
UInt_t adcbase = 0; |
624 |
UInt_t adc[16]; |
625 |
Float_t rms = 0.; |
626 |
Double_t pedenoise=0.; |
627 |
Float_t pedestal = 0.; |
628 |
UInt_t pedround[16]; |
629 |
Float_t thres[16]; |
630 |
Float_t goodflag[16]; |
631 |
UInt_t min_adc = 0x7FFF; |
632 |
UInt_t min_adc_ch = 0; |
633 |
UInt_t l = 0; |
634 |
UInt_t lpl = 0; |
635 |
Int_t plane = 0; |
636 |
Int_t pre; |
637 |
Int_t npre = 0; // number of pre between 0-5 |
638 |
UInt_t strip = 0; |
639 |
UInt_t remainder; |
640 |
Float_t basesum=0.; |
641 |
Float_t basenof=0.; |
642 |
UInt_t baseline=0; |
643 |
UInt_t fSecPointer = 0; |
644 |
UInt_t fNofTStripsPointer = 0; |
645 |
UInt_t NofTransmittedStrips = 0 ; |
646 |
Int_t fCALOlength; |
647 |
UShort_t DataCALO[9040]; //TOO LONG? 4264ma non e' vero che e' cosi' lungo...... CECI CECI CECI |
648 |
fData.clear(); |
649 |
static const Float_t CALOGeV2MIPratio = 0.0001059994; |
650 |
// |
651 |
// clean the data structure |
652 |
// |
653 |
memset(adc, 0,sizeof(adc)); |
654 |
memset(pedround, 0,sizeof(pedround)); |
655 |
memset(thres, 0,sizeof(thres)); |
656 |
memset(goodflag, 0,sizeof(goodflag)); |
657 |
// |
658 |
memset(DataCALO,0,sizeof(UShort_t)*9040); |
659 |
// |
660 |
// Header of the four sections |
661 |
// |
662 |
fSecCalo[0] = 0xEA00; // XE |
663 |
fSecCalo[1] = 0xF100; // XO |
664 |
fSecCalo[2] = 0xF600; // YE |
665 |
fSecCalo[3] = 0xED00; // YO |
666 |
// |
667 |
// here comes raw data |
668 |
// |
669 |
fCALOlength = 0; |
670 |
// |
671 |
for (Int_t sec=0; sec < 4; sec++){ // |
672 |
// |
673 |
// sec = 0 -> XE 1 -> XO 2-> YE 3 -> YO |
674 |
// |
675 |
l = 0; // XE and XO are Y planes |
676 |
if ( sec < 2 ) l = 1; // while YE and YO are X planes |
677 |
// |
678 |
fSecPointer = fCALOlength; |
679 |
// |
680 |
// First of all we have section header and packet length |
681 |
// |
682 |
DataCALO[fCALOlength] = fSecCalo[sec]; |
683 |
fCALOlength++; |
684 |
DataCALO[fCALOlength] = 0; // Unknown: length must be calculated on fly |
685 |
fCALOlength++; |
686 |
// |
687 |
// selftrigger coincidences - in the future we should add here some code to simulate timing response of pre-amplifiers |
688 |
// |
689 |
for (Int_t autoplane=0; autoplane < 7; autoplane++){ |
690 |
DataCALO[fCALOlength] = 0x0000; |
691 |
fCALOlength++; |
692 |
}; |
693 |
// |
694 |
// second level trigger |
695 |
// |
696 |
DataCALO[fCALOlength] = 0x0000; |
697 |
fCALOlength++; |
698 |
// |
699 |
// Nof strips transmetted: must be calculated on fly |
700 |
// |
701 |
fNofTStripsPointer = fCALOlength; |
702 |
DataCALO[fCALOlength] = 0x0000; |
703 |
fCALOlength++; |
704 |
NofTransmittedStrips=0; |
705 |
// |
706 |
// Identifier of calo data |
707 |
// |
708 |
DataCALO[fCALOlength] = 0xCA50; |
709 |
fCALOlength++; |
710 |
DataCALO[fCALOlength] = 0xCA50; |
711 |
fCALOlength++; |
712 |
DataCALO[fCALOlength] = 0xFFFF; // compresso |
713 |
fCALOlength++; |
714 |
// |
715 |
// Pedestal threashold table checksum |
716 |
// |
717 |
DataCALO[fCALOlength] = 0x0000; |
718 |
fCALOlength++; |
719 |
// |
720 |
// Calorimeter event counter |
721 |
// |
722 |
DataCALO[fCALOlength] = Getevtcalo() ; |
723 |
fCALOlength++; |
724 |
//cout<<" evtcalo?"<<Getevtcalo()<<endl; |
725 |
// |
726 |
// Start here with data |
727 |
// |
728 |
plane=-1; |
729 |
npre =-1; |
730 |
for (Int_t ipre=0; ipre< 66; ipre++){ // (11 planes*6 preampl) |
731 |
// |
732 |
// which plane |
733 |
if ( (ipre % 6) == 0) { |
734 |
plane++; |
735 |
} |
736 |
// |
737 |
pre=ipre; |
738 |
// |
739 |
// Adjust counter for plane X0 |
740 |
if (sec==1) // conto invertito |
741 |
{ |
742 |
remainder = pre % 6 ; |
743 |
pre = ((plane+1)*6) - remainder ; |
744 |
} |
745 |
// |
746 |
if ( sec == 0 || sec == 3 ) lpl = plane * 2; |
747 |
if ( sec == 1 || sec == 2 ) lpl = (plane * 2) + 1; |
748 |
// |
749 |
// initialize min_adc |
750 |
min_adc = 0x7FFF; |
751 |
for (Int_t ch=0; ch <16; ch++){ // 16 channels each pre |
752 |
// |
753 |
// strip number |
754 |
// |
755 |
strip=((pre-(6*plane))*16)+ch; |
756 |
if(sec==1) strip = ((pre-(6*plane))*16)+(15-ch)-16; |
757 |
// |
758 |
// calculate npre a number between 0-5 |
759 |
// |
760 |
if( sec==1) { |
761 |
if ( ((95-strip) % 16) == 0) { |
762 |
npre++; |
763 |
if(npre>5) npre=0; |
764 |
} |
765 |
} else { |
766 |
if ( (strip % 16) == 0) { |
767 |
npre++; |
768 |
if(npre>5) npre=0; |
769 |
} |
770 |
} |
771 |
// |
772 |
ens = this->GetCaloErel(sec,plane,strip); |
773 |
// |
774 |
// convert it into ADC channels |
775 |
// |
776 |
adcsig = int(ens*fCalomip[l][lpl][strip]/CALOGeV2MIPratio); |
777 |
// |
778 |
// sum baselines |
779 |
// |
780 |
adcbase = (UInt_t)fcalbase[sec][plane][npre]; |
781 |
// |
782 |
// add noise and pedestals |
783 |
// |
784 |
pedestal = fcalped[sec][plane][strip]; |
785 |
rms = fcalrms[sec][plane][strip]/4.; |
786 |
// |
787 |
// Add random gaussian noise of RMS rms and Centered in the pedestal |
788 |
// |
789 |
pedenoise = frandom->Gaus((Double_t)pedestal,(Double_t)rms); |
790 |
// |
791 |
// Sum all contribution |
792 |
// |
793 |
adc[ch] = adcsig + adcbase + (Int_t)round(pedenoise); |
794 |
// |
795 |
// Signal saturation |
796 |
// |
797 |
if ( adc[ch] > 0x7FFF ) adc[ch] = 0x7FFF; |
798 |
// |
799 |
// save infos |
800 |
// |
801 |
pedround[ch] = (Int_t)round(pedestal) ; |
802 |
thres[ch] = ( fcalthr[sec][plane][npre] ); |
803 |
goodflag[ch] = ( fcalgood[sec][plane][strip] ); // if bad should be 255 |
804 |
// |
805 |
// Find minimum adc in this preamp |
806 |
// |
807 |
if ( goodflag[ch]==0 && (adc[ch]-pedround[ch])<min_adc ) |
808 |
{ |
809 |
min_adc = ( adc[ch]-pedround[ch] ) ; |
810 |
min_adc_ch = ch ; |
811 |
} |
812 |
}; // close channel loop ch |
813 |
// |
814 |
// Find how many channels are below threshold |
815 |
// |
816 |
Int_t nof_chs_below = 0; |
817 |
for (Int_t ch=0; ch <16; ch++){ // 16 channels each pre |
818 |
if ( goodflag[ch]==0 && ((adc[ch]-pedround[ch]) < (min_adc+thres[min_adc_ch])) ) |
819 |
nof_chs_below++; |
820 |
}; |
821 |
// |
822 |
// Transmit data: CASE nof_chs_below<9 |
823 |
// |
824 |
if(nof_chs_below<9) |
825 |
{ |
826 |
if(sec==1) { |
827 |
DataCALO[fCALOlength] = 0x1000 + ipre ; |
828 |
} else { |
829 |
DataCALO[fCALOlength] = 0x1000 + pre ; |
830 |
} |
831 |
fCALOlength++; |
832 |
for (Int_t ch=0; ch <16; ch++) |
833 |
{ |
834 |
DataCALO[fCALOlength] = adc[ch]; |
835 |
fCALOlength++; |
836 |
NofTransmittedStrips++; |
837 |
}; |
838 |
} |
839 |
else |
840 |
// |
841 |
// Transmit data: CASE nof_chs_below>=9 |
842 |
// |
843 |
{ |
844 |
if(sec==1) { |
845 |
DataCALO[fCALOlength] = 0x0800 + ipre ; |
846 |
} else { |
847 |
DataCALO[fCALOlength] = 0x0800 + pre; |
848 |
} |
849 |
fCALOlength++; |
850 |
// |
851 |
// calculate baseline and save it |
852 |
// |
853 |
basenof=0; |
854 |
baseline=0; |
855 |
basesum=0; |
856 |
for (Int_t ch=0; ch <16; ch++){ |
857 |
if( goodflag[ch]==0 && ( (adc[ch]-pedround[ch])<(min_adc+thres[ch]) ) ) |
858 |
{ |
859 |
basesum = basesum + (adc[ch]-pedround[ch]) ; |
860 |
basenof++; |
861 |
} |
862 |
}; |
863 |
baseline = (Int_t)round( basesum / basenof ); |
864 |
DataCALO[fCALOlength] = baseline; |
865 |
fCALOlength++; |
866 |
// |
867 |
// Transmit only channels > (min_adc+thres[ch]) |
868 |
// |
869 |
for (Int_t ch=0; ch <16; ch++){ |
870 |
if ( (adc[ch]-pedround[ch] )>(min_adc+thres[ch]) ) |
871 |
{ |
872 |
DataCALO[fCALOlength] = ch; |
873 |
fCALOlength++; |
874 |
DataCALO[fCALOlength] = adc[ch]; |
875 |
fCALOlength++; |
876 |
NofTransmittedStrips++; |
877 |
} |
878 |
}; |
879 |
} // close if nof_chs_below |
880 |
}; // close preampl loop |
881 |
// |
882 |
// Write the length |
883 |
// |
884 |
DataCALO[fSecPointer+1] = (fCALOlength-fSecPointer+1)-2 ; |
885 |
// total length of the packet: -2: because the words with status and length are not included |
886 |
DataCALO[fNofTStripsPointer] = NofTransmittedStrips ; |
887 |
// |
888 |
// here we calculate and save the CRC |
889 |
// |
890 |
Short_t CRC = 0; |
891 |
for (UInt_t i=0; i<(fCALOlength-fSecPointer); i++){ |
892 |
CRC=crc(CRC,DataCALO[i+fSecPointer]); |
893 |
}; |
894 |
DataCALO[fCALOlength] = (UShort_t)CRC; |
895 |
fCALOlength++; |
896 |
// |
897 |
}; // close sec loop |
898 |
|
899 |
Incrementevtcalo(); |
900 |
|
901 |
for (Int_t i = 0; i<fCALOlength; i++) fData.push_back(DataCALO[i]); |
902 |
|
903 |
return; |
904 |
|
905 |
|
906 |
|
907 |
|
908 |
} |
909 |
|
910 |
void PamVMCCaloDig::DigitizeCaloFull(){ |
911 |
|
912 |
cout<<"!!!WARNING PamVMCCaloDig FULL MODE STILL NOT IMPLEMENTED!!!"<<endl; |
913 |
|
914 |
this->DigitizeCaloRaw(); |
915 |
return; |
916 |
|
917 |
} |