| 1 |
mayorov |
1.1 |
#include <RanGen.h> |
| 2 |
|
|
|
| 3 |
|
|
using namespace std; |
| 4 |
|
|
|
| 5 |
|
|
ClassImp(RanGen); |
| 6 |
|
|
|
| 7 |
|
|
RanGen::RanGen(Int_t seed) : TRandom3(seed){ |
| 8 |
|
|
} |
| 9 |
|
|
|
| 10 |
|
|
RanGen::~RanGen(){}; |
| 11 |
|
|
|
| 12 |
|
|
Double_t RanGen::Gamma(Int_t n, Double_t theta){ |
| 13 |
|
|
|
| 14 |
|
|
Double_t value = 0; |
| 15 |
|
|
|
| 16 |
|
|
for(Int_t i=0; i<n; i++) value -= TMath::Log( this->Uniform() ); |
| 17 |
|
|
|
| 18 |
|
|
return value; |
| 19 |
|
|
|
| 20 |
|
|
} |
| 21 |
|
|
|
| 22 |
|
|
|
| 23 |
|
|
vector<Double_t> RanGen::Dirichlet(Int_t n, vector<Int_t> x){ |
| 24 |
|
|
|
| 25 |
|
|
Double_t sum = 0; |
| 26 |
|
|
vector<Double_t> gammas(n); |
| 27 |
|
|
vector<Double_t> value(n); |
| 28 |
|
|
|
| 29 |
|
|
for(Int_t i=0; i<n; i++){ |
| 30 |
|
|
gammas[i] = Gamma(x[i], 1); |
| 31 |
|
|
sum += gammas[i]; |
| 32 |
|
|
} |
| 33 |
|
|
|
| 34 |
|
|
for(Int_t i=0; i<n; i++){ |
| 35 |
|
|
if(sum) |
| 36 |
|
|
value[i] = gammas[i]/sum; |
| 37 |
|
|
else |
| 38 |
|
|
value[i] = 0; |
| 39 |
|
|
} |
| 40 |
|
|
|
| 41 |
|
|
return value; |
| 42 |
|
|
|
| 43 |
|
|
} |
| 44 |
|
|
|
| 45 |
|
|
|
| 46 |
|
|
Int_t RanGen::Binomial(Int_t n, Double_t p){ |
| 47 |
|
|
unsigned int i, a, b, k = 0; |
| 48 |
|
|
while (n > 10) /* This parameter is tunable */ |
| 49 |
|
|
{ |
| 50 |
|
|
double X; |
| 51 |
|
|
a = 1 + (n / 2); |
| 52 |
|
|
b = 1 + n - a; |
| 53 |
|
|
|
| 54 |
|
|
X = this->Beta((Int_t) a, (Int_t) b); |
| 55 |
|
|
|
| 56 |
|
|
if (X >= p) |
| 57 |
|
|
{ |
| 58 |
|
|
n = a - 1; |
| 59 |
|
|
p /= X; |
| 60 |
|
|
} |
| 61 |
|
|
else |
| 62 |
|
|
{ |
| 63 |
|
|
k += a; |
| 64 |
|
|
n = b - 1; |
| 65 |
|
|
p = (p - X) / (1 - X); |
| 66 |
|
|
} |
| 67 |
|
|
} |
| 68 |
|
|
|
| 69 |
|
|
for (i = 0; i < n; i++) |
| 70 |
|
|
{ |
| 71 |
|
|
double u = this->Uniform(); |
| 72 |
|
|
if (u < p) |
| 73 |
|
|
k++; |
| 74 |
|
|
} |
| 75 |
|
|
|
| 76 |
|
|
return k; |
| 77 |
|
|
|
| 78 |
|
|
} |
| 79 |
|
|
|
| 80 |
|
|
Double_t RanGen::Beta(const Int_t a, const Int_t b){ |
| 81 |
|
|
double x1 = this->Gamma(a, 1.0); |
| 82 |
|
|
double x2 = this->Gamma(b, 1.0); |
| 83 |
|
|
|
| 84 |
|
|
return x1 / (x1 + x2); |
| 85 |
|
|
} |
| 86 |
|
|
|
| 87 |
|
|
vector<Int_t> RanGen::Multinomial(Int_t N, vector<Double_t> p){ |
| 88 |
|
|
|
| 89 |
|
|
/* From the GSL Library: |
| 90 |
|
|
The multinomial distribution has the form |
| 91 |
|
|
|
| 92 |
|
|
N! n_1 n_2 n_K |
| 93 |
|
|
prob(n_1, n_2, ... n_K) = -------------------- p_1 p_2 ... p_K |
| 94 |
|
|
(n_1! n_2! ... n_K!) |
| 95 |
|
|
|
| 96 |
|
|
where n_1, n_2, ... n_K are nonnegative integers, sum_{k=1,K} n_k = N, |
| 97 |
|
|
and p = (p_1, p_2, ..., p_K) is a probability distribution. |
| 98 |
|
|
|
| 99 |
|
|
Random variates are generated using the conditional binomial method. |
| 100 |
|
|
This scales well with N and does not require a setup step. |
| 101 |
|
|
|
| 102 |
|
|
Ref: |
| 103 |
|
|
C.S. David, The computer generation of multinomial random variates, |
| 104 |
|
|
Comp. Stat. Data Anal. 16 (1993) 205-217 |
| 105 |
|
|
*/ |
| 106 |
|
|
|
| 107 |
|
|
size_t K = p.size(); |
| 108 |
|
|
vector<Int_t> n(K); |
| 109 |
|
|
|
| 110 |
|
|
size_t k; |
| 111 |
|
|
double norm = 0.0; |
| 112 |
|
|
double sum_p = 0.0; |
| 113 |
|
|
|
| 114 |
|
|
unsigned int sum_n = 0; |
| 115 |
|
|
|
| 116 |
|
|
/* p[k] may contain non-negative weights that do not sum to 1.0. |
| 117 |
|
|
* Even a probability distribution will not exactly sum to 1.0 |
| 118 |
|
|
* due to rounding errors. |
| 119 |
|
|
*/ |
| 120 |
|
|
|
| 121 |
|
|
for (k = 0; k < K; k++) |
| 122 |
|
|
{ |
| 123 |
|
|
norm += p[k]; |
| 124 |
|
|
} |
| 125 |
|
|
|
| 126 |
|
|
for (k = 0; k < K; k++) |
| 127 |
|
|
{ |
| 128 |
|
|
if (p[k] > 0.0) |
| 129 |
|
|
{ |
| 130 |
|
|
n[k] = this->Binomial(N - sum_n, p[k] / (norm - sum_p)); |
| 131 |
|
|
} |
| 132 |
|
|
else |
| 133 |
|
|
{ |
| 134 |
|
|
n[k] = 0; |
| 135 |
|
|
} |
| 136 |
|
|
|
| 137 |
|
|
sum_p += p[k]; |
| 138 |
|
|
sum_n += n[k]; |
| 139 |
|
|
} |
| 140 |
|
|
return n; |
| 141 |
|
|
|
| 142 |
|
|
} |