1 |
#include <iostream> |
2 |
#include <fstream> |
3 |
#include <stdio.h> |
4 |
#include <math.h> |
5 |
#include <TH1F.h> |
6 |
#include <TH2F.h> |
7 |
#include <TH1D.h> |
8 |
#include <TH2D.h> |
9 |
#include <TFile.h> |
10 |
#include <TROOT.h> |
11 |
#include <TList.h> |
12 |
#include <TString.h> |
13 |
//#include <TObjectString.h> |
14 |
#include <TGraphAsymmErrors.h> |
15 |
#include <TGraphErrors.h> |
16 |
#include <TChain.h> |
17 |
#include <TCutG.h> |
18 |
#include <TF1.h> |
19 |
#include <TCanvas.h> |
20 |
#include <TObjString.h> |
21 |
#include <TMath.h> |
22 |
|
23 |
#include <PamUnfold.h> |
24 |
|
25 |
using namespace std; |
26 |
|
27 |
ClassImp(PamUnfold); |
28 |
|
29 |
|
30 |
PamUnfold::PamUnfold(TString name, TString title) : TNamed(name, title){ |
31 |
|
32 |
cout << "WARNING:: entering PamUnfold::PamUnfold(TString name, TString title)" << endl; |
33 |
cout << " empty constructor be sure to initialize measured and smearing" << endl; |
34 |
|
35 |
_measured = NULL; |
36 |
_smearing = NULL; |
37 |
_prior = NULL; |
38 |
|
39 |
} |
40 |
|
41 |
PamUnfold::~PamUnfold(){ |
42 |
} |
43 |
|
44 |
PamUnfold::PamUnfold(TString name, TString title, TH1D* measured, TH2D* smearing) : TNamed(name, title){ |
45 |
|
46 |
_measured = measured; |
47 |
_smearing = smearing; |
48 |
_prior = NULL; |
49 |
|
50 |
if( !IsBinningOK() ) |
51 |
cerr << " -- ERROR in PamUnfold::PamUnfold(TString name, TString title, TH1D* measured, TH2D* smearing)" << endl; |
52 |
|
53 |
if( !IsSmNormalized() ){ |
54 |
cerr << " -- WARNING in PamUnfold::PamUnfold(TString name, TString title, TH1D* measured, TH2D* smearing)" << endl; |
55 |
cerr << " ---- Remember to provide the normalization histogram for the smearing matrix" << endl; |
56 |
} |
57 |
|
58 |
Init(); |
59 |
|
60 |
_is_improved = kFALSE; |
61 |
_smooth = kFALSE; |
62 |
_smooth_opt = "ROOT"; |
63 |
|
64 |
_nsamples = 500; |
65 |
_max_steps = 50; |
66 |
_min_chi2 = 1.; |
67 |
|
68 |
} |
69 |
|
70 |
void PamUnfold::AddExcludedBin(Int_t bin){ |
71 |
_excluded_bins.push_back(bin); |
72 |
} |
73 |
|
74 |
TH1D* PamUnfold::GetMeasured(){ |
75 |
return _measured; |
76 |
} |
77 |
|
78 |
TH2D* PamUnfold::GetSmearing(){ |
79 |
return _smearing; |
80 |
} |
81 |
|
82 |
TH1D* PamUnfold::GetUnfolded(){ |
83 |
TH1D* __unfolded = (TH1D*) _unfolded->Clone( Form("%s_%s_unf", _measured->GetName(), this->GetName()) ); |
84 |
return __unfolded; |
85 |
} |
86 |
|
87 |
TList* PamUnfold::GetBinHistList(){ |
88 |
return _bin_hist_list; |
89 |
} |
90 |
|
91 |
void PamUnfold::SetMeasured(TH1D* measured){ |
92 |
_measured = measured; |
93 |
} |
94 |
|
95 |
void PamUnfold::SetSmearing(TH2D* smearing){ |
96 |
|
97 |
_smearing = smearing; |
98 |
|
99 |
if( !IsBinningOK() ) |
100 |
cerr << " -- ERROR in PamUnfold::SetSmearing(TH2D* smearing)" << endl; |
101 |
|
102 |
Init(); |
103 |
|
104 |
} |
105 |
|
106 |
void PamUnfold::SetPrior(TH1D* prior){ |
107 |
|
108 |
_prior = (TH1D*) prior->Clone( Form("_prior_%s", this->GetName()) ); |
109 |
|
110 |
if( !IsBinningOK() ) |
111 |
cerr << " -- ERROR in PamUnfold::SetPrior(TH1D* prior)" << endl; |
112 |
|
113 |
} |
114 |
|
115 |
void PamUnfold::SetNormalization(TH1D* norm){ |
116 |
_norm = norm; |
117 |
|
118 |
//If the matrix is not normalized it is normalized now. |
119 |
if( !IsSmNormalized() ){ |
120 |
cout << " Normalizing smearing matrix" << endl; |
121 |
|
122 |
try{ if(!_norm) throw 1; } |
123 |
catch(int e){ |
124 |
if(e==1){ |
125 |
cerr << " -- ERROR in PamUnfold::Init()" << endl; |
126 |
cerr << " ---- Normalization histogram is NULL" << endl; |
127 |
cerr << " execution is likely to crash." << endl; |
128 |
} |
129 |
} |
130 |
|
131 |
NormalizeMatrix(); |
132 |
|
133 |
} |
134 |
|
135 |
} |
136 |
|
137 |
void PamUnfold::SetImproved(Bool_t improv){ |
138 |
_is_improved = improv; |
139 |
} |
140 |
|
141 |
void PamUnfold::SetSmoothing(Bool_t smooth, TString smooth_opt){ |
142 |
|
143 |
_smooth = smooth; |
144 |
_smooth_opt = smooth_opt; |
145 |
|
146 |
if(!_smooth_opt.CompareTo("")) |
147 |
_smooth_opt = "ROOT"; |
148 |
|
149 |
} |
150 |
|
151 |
void PamUnfold::SetNsamples(UInt_t nsamples){ |
152 |
_nsamples = nsamples; |
153 |
} |
154 |
|
155 |
void PamUnfold::SetMaxSteps(UInt_t max_steps){ |
156 |
_max_steps = max_steps; |
157 |
} |
158 |
|
159 |
void PamUnfold::SetMinChi2(Double_t min_chi2){ |
160 |
_min_chi2 = min_chi2; |
161 |
} |
162 |
|
163 |
|
164 |
Bool_t PamUnfold::IsSmNormalized(){ |
165 |
|
166 |
Double_t sum = 0; |
167 |
for(UInt_t i=0; i<_smearing->GetNbinsX(); i++){ |
168 |
sum = 0; |
169 |
for(UInt_t j=0; j<_smearing->GetNbinsY(); j++) |
170 |
sum += _smearing->GetBinContent(_smearing->GetBin(i+1,j+1)); |
171 |
if(sum>1.0000001){ |
172 |
cout << "Bin: " << i+1 << " sum=" << sum << endl; |
173 |
return kFALSE; |
174 |
} |
175 |
} |
176 |
|
177 |
return kTRUE; |
178 |
|
179 |
} |
180 |
|
181 |
void PamUnfold::WMovAvSmooth(TH1D* input, vector<Int_t>&excl){ |
182 |
|
183 |
Double_t* xarr = new Double_t [input->GetNbinsX()]; |
184 |
|
185 |
for(UInt_t ib=0; ib<input->GetNbinsX(); ib++) |
186 |
xarr[ib] = (Double_t) input->GetBinContent(ib+1); |
187 |
|
188 |
Bool_t excluding; |
189 |
for(UInt_t ib=1; ib<input->GetNbinsX()-1; ib++){ |
190 |
|
191 |
excluding = kFALSE; |
192 |
for(UInt_t iex=0; iex<excl.size(); iex++) |
193 |
if( |
194 |
ib == excl[iex] || |
195 |
ib+1 == excl[iex] || |
196 |
ib+2 == excl[iex] |
197 |
) excluding = kTRUE; |
198 |
if(excluding) continue; |
199 |
|
200 |
Double_t xc = xarr[ib]; |
201 |
Double_t xl = xarr[ib-1]; |
202 |
Double_t xh = xarr[ib+1]; |
203 |
Double_t x = 0.25*(xh+xl) + 0.5*xc; |
204 |
input->SetBinContent(ib+1, (Float_t) x); |
205 |
} |
206 |
|
207 |
delete xarr; |
208 |
|
209 |
return; |
210 |
|
211 |
} |
212 |
|
213 |
Double_t PamUnfold::GetChi2H( TH1D* h1, TH1D* h2 ){ |
214 |
|
215 |
if(h1->GetNbinsX() != h2->GetNbinsX()){ |
216 |
cout << " -- Warning in PamUnfold::GetChi2H(TH1D*, TH1D*) : Histograms have different number of bins" << endl; |
217 |
return -1; |
218 |
} |
219 |
|
220 |
const Double_t* x_1 = h1->GetXaxis()->GetXbins()->GetArray(); |
221 |
const Double_t* x_2 = h2->GetXaxis()->GetXbins()->GetArray(); |
222 |
|
223 |
for(Int_t ib=0; ib < h1->GetNbinsX()+1; ib++){ |
224 |
if(x_1[ib] != x_2[ib]){ |
225 |
cout << " -- Warning in PamUnfold::GetChi2H(TH1D*, TH1D*) : Histograms have different number of bins" << endl; |
226 |
return -1; |
227 |
} |
228 |
else |
229 |
continue; |
230 |
} |
231 |
|
232 |
|
233 |
|
234 |
Double_t chi2 = 0; |
235 |
for(UInt_t i=0; i<h1->GetNbinsX(); i++){ |
236 |
if(h1->GetBinContent(i+1) + h2->GetBinContent(i+2) > 1) |
237 |
chi2 += pow(h1->GetBinContent(i+1) - h2->GetBinContent(i+1),2)/(h1->GetBinContent(i+1) + h2->GetBinContent(i+2)); |
238 |
else |
239 |
chi2 += pow(h1->GetBinContent(i+1) - h2->GetBinContent(i+1),2); |
240 |
} |
241 |
|
242 |
return chi2; |
243 |
} |
244 |
|
245 |
void PamUnfold::Unfold(){ |
246 |
|
247 |
|
248 |
//Smoothing is applied to the spectrum, not to the counts histogram!!! |
249 |
// ------------------------------------------------------ |
250 |
// Prior initialization |
251 |
// ------------------------------------------------------ |
252 |
|
253 |
for(Int_t i=0; i<_prior->GetNbinsX(); i++) |
254 |
_prior->SetBinContent(i+1, _prior->GetBinContent(i+1)/_prior->GetBinWidth(i+1) ); |
255 |
|
256 |
if(_smooth){ |
257 |
if(_smooth_opt.Contains("WMA")){ |
258 |
cout << " --- Using Weighted Moving Average smoothing\n"; |
259 |
WMovAvSmooth(_prior, _excluded_bins); |
260 |
} |
261 |
else if(_smooth_opt.Contains("ROOT")){ |
262 |
cout << " --- Using standard ROOT smoothing\n"; |
263 |
_prior->Smooth(); |
264 |
} |
265 |
else |
266 |
cout << " --- WARNING: No valid smoothing option specified" << endl; |
267 |
} |
268 |
|
269 |
for(Int_t i=0; i<_prior->GetNbinsX(); i++) |
270 |
_prior->SetBinContent(i+1, _prior->GetBinContent(i+1)*_prior->GetBinWidth(i+1) ); |
271 |
|
272 |
_prior->Scale(1./_prior->GetSumOfWeights()); //The prior is a 'probability' so it has to be normalized at the very last step |
273 |
|
274 |
// ------------------------------------------------------ |
275 |
// Unfolding |
276 |
// ------------------------------------------------------ |
277 |
|
278 |
cout << " --- UNFOLDING!!" << endl; |
279 |
|
280 |
TH2D* theta = (TH2D*) _smearing->Clone("theta"); |
281 |
theta->Reset(); |
282 |
|
283 |
for(Int_t i=0; i<theta->GetNbinsY(); i++){ |
284 |
for(Int_t j=0; j<theta->GetNbinsX(); j++){ |
285 |
|
286 |
Double_t s = _smearing->GetBinContent(_smearing->GetBin(i+1,j+1))*_prior->GetBinContent(i+1); |
287 |
Double_t ls = 0; |
288 |
for(Int_t k=0; k<_smearing->GetNbinsX(); k++) |
289 |
ls+=_smearing->GetBinContent(_smearing->GetBin(k+1,j+1))*_prior->GetBinContent(k+1); |
290 |
|
291 |
if(ls) |
292 |
theta->SetBinContent(theta->GetBin(j+1,i+1),s/ls); |
293 |
} |
294 |
} |
295 |
|
296 |
_unfolded->Reset(); |
297 |
|
298 |
for(Int_t i=0; i<_unfolded->GetNbinsX(); i++){ |
299 |
Double_t num = 0; |
300 |
Double_t den = 0; |
301 |
Double_t err = 0; |
302 |
for(Int_t j=0; j<theta->GetNbinsX(); j++){ |
303 |
|
304 |
num+=theta->GetBinContent( theta->GetBin(j+1,i+1) )*_measured->GetBinContent(j+1); |
305 |
den+=_smearing->GetBinContent(_smearing->GetBin(i+1,j+1)); |
306 |
err+=pow( theta->GetBinContent(theta->GetBin(j+1,i+1))*_measured->GetBinError(j+1), 1 ); |
307 |
// err+=pow( theta->GetBinContent(theta->GetBin(j+1,i+1))*sp->GetBinError(j+1), 2 ); |
308 |
|
309 |
} |
310 |
|
311 |
if(den){ |
312 |
_unfolded->SetBinContent(i+1, num/den); |
313 |
_unfolded->SetBinError(i+1, fabs(err)/den); |
314 |
// _unfolded->SetBinError(i+1,sqrt(err)/den); |
315 |
} |
316 |
} |
317 |
|
318 |
} |
319 |
|
320 |
|
321 |
void PamUnfold::ImprovedUnfold(){ |
322 |
|
323 |
|
324 |
vector<Int_t> mu(_measured->GetNbinsX()); |
325 |
|
326 |
//Smoothing is applied to the spectrum, not to the counts histogram!!! |
327 |
// ------------------------------------------------------ |
328 |
// Prior initialization |
329 |
// ------------------------------------------------------ |
330 |
|
331 |
for(Int_t i=0; i<_prior->GetNbinsX(); i++) |
332 |
_prior->SetBinContent(i+1, _prior->GetBinContent(i+1)/_prior->GetBinWidth(i+1) ); |
333 |
|
334 |
if(_smooth){ |
335 |
if(_smooth_opt.Contains("WMA")){ |
336 |
cout << " --- Using Weighted Moving Average smoothing\n"; |
337 |
WMovAvSmooth(_prior, _excluded_bins); |
338 |
} |
339 |
else if(_smooth_opt.Contains("ROOT")){ |
340 |
cout << " --- Using standard ROOT smoothing\n"; |
341 |
_prior->Smooth(); |
342 |
} |
343 |
else |
344 |
cout << " --- WARNING: No valid smoothing option specified" << endl; |
345 |
} |
346 |
|
347 |
for(Int_t i=0; i<_prior->GetNbinsX(); i++) |
348 |
_prior->SetBinContent(i+1, _prior->GetBinContent(i+1)*_prior->GetBinWidth(i+1) ); |
349 |
|
350 |
_prior->Scale(1./_prior->GetSumOfWeights()); //The prior is a 'probability' so it has to be normalized at the very last step |
351 |
|
352 |
// ------------------------------------------------------ |
353 |
// Unfolding |
354 |
// ------------------------------------------------------ |
355 |
|
356 |
cout << " --- UNFOLDING!!" << endl; |
357 |
|
358 |
_bin_list->Clear(); |
359 |
|
360 |
TMVA::Timer* timer = new TMVA::Timer(_nsamples, "unf"); |
361 |
for(UInt_t sample=0; sample<_nsamples; sample++){ |
362 |
|
363 |
cout << " ---- Sampling... " << timer->GetLeftTime(sample) << " left..." << endl << flush <<"\33[1A"; |
364 |
|
365 |
SampleMatrix(); |
366 |
|
367 |
TH2D* theta = (TH2D*) _smearing_sample->Clone("theta"); |
368 |
theta->Reset(); |
369 |
|
370 |
for(Int_t i=0; i<theta->GetNbinsY(); i++){ |
371 |
for(Int_t j=0; j<theta->GetNbinsX(); j++){ |
372 |
|
373 |
Double_t s = _smearing_sample->GetBinContent(_smearing_sample->GetBin(i+1,j+1))*_prior->GetBinContent(i+1); |
374 |
Double_t ls = 0; |
375 |
for(Int_t k=0; k<_smearing_sample->GetNbinsX(); k++) |
376 |
ls+=_smearing_sample->GetBinContent(_smearing_sample->GetBin(k+1,j+1))*_prior->GetBinContent(k+1); |
377 |
|
378 |
if(ls) |
379 |
theta->SetBinContent(theta->GetBin(j+1,i+1),s/ls); |
380 |
|
381 |
} |
382 |
} |
383 |
|
384 |
TVectorD* result = new TVectorD(_unfolded->GetNbinsX()); |
385 |
|
386 |
//Sampling mu_j and rounding to nearest integer |
387 |
for(Int_t j=0; j<_measured->GetNbinsX(); j++){ |
388 |
mu[j] = TMath::Nint( rangen->Gamma( 1 + _measured->GetBinContent(j+1), 1 ) ); |
389 |
|
390 |
vector<Double_t> theta_vec_j(_unfolded->GetNbinsX()); |
391 |
for(Int_t i=0; i<_unfolded->GetNbinsX(); i++){ |
392 |
theta_vec_j[i] = theta->GetBinContent( theta->GetBin(j+1,i+1) ); |
393 |
// cout << theta_vec_j[i] << " "; |
394 |
} |
395 |
// cout << endl; |
396 |
|
397 |
vector<Int_t> res_partial = rangen->Multinomial(mu[j], theta_vec_j); |
398 |
for(Int_t i=0; i<_unfolded->GetNbinsX(); i++){ |
399 |
// cout << res_partial[i] << " "; |
400 |
(*result)[i] += res_partial[i]; |
401 |
} |
402 |
// cout << endl; |
403 |
// cout << _measured->GetBinContent(j+1) << " " << mu[j] << " " << res_partial[17] << " " << (*result)[17] << endl; |
404 |
|
405 |
} |
406 |
|
407 |
|
408 |
for(Int_t i=0; i<_unfolded->GetNbinsX(); i++){ |
409 |
Double_t den = 0; |
410 |
for(Int_t j=0; j<_measured->GetNbinsX(); j++) |
411 |
den+=_smearing_sample->GetBinContent(_smearing_sample->GetBin(i+1,j+1)); |
412 |
|
413 |
(*result)[i] /= den; |
414 |
} |
415 |
|
416 |
_bin_list->Add(result); |
417 |
|
418 |
} |
419 |
|
420 |
BuildFlux(); |
421 |
|
422 |
} |
423 |
|
424 |
|
425 |
Bool_t PamUnfold::IsBinningOK(){ |
426 |
|
427 |
Int_t n_meas = _measured->GetNbinsX(); |
428 |
Int_t n_smy = _smearing->GetNbinsY(); |
429 |
|
430 |
|
431 |
if(n_meas != n_smy){ |
432 |
cerr << " --- Different binning between measured and smearing" << endl; |
433 |
cerr << " ---- measured: " << n_meas << " bins; smearing:" << n_smy << " bins on Y-axis" << endl; |
434 |
return kFALSE; |
435 |
} |
436 |
|
437 |
const Double_t* x_meas = _measured->GetXaxis()->GetXbins()->GetArray(); |
438 |
const Double_t* y_sm = _smearing->GetYaxis()->GetXbins()->GetArray(); |
439 |
|
440 |
for(Int_t ib=0; ib < n_meas+1; ib++){ |
441 |
if( fabs(x_meas[ib] - y_sm[ib])/x_meas[ib] > 1e-4 ){ |
442 |
cerr << " --- Different binning between measured and smearing" << endl; |
443 |
cerr << " ---- x_meas[" << ib << "] = " << x_meas[ib] << ";" |
444 |
<<" y_sm[" << ib << "] = " << y_sm[ib] << ";" << endl; |
445 |
return kFALSE; |
446 |
} |
447 |
else |
448 |
continue; |
449 |
} |
450 |
|
451 |
|
452 |
|
453 |
if(_prior){ |
454 |
|
455 |
Int_t n_prior = _prior->GetNbinsX(); |
456 |
Int_t n_smx = _smearing->GetNbinsX(); |
457 |
|
458 |
if(n_prior != n_smx){ |
459 |
cerr << " --- Different binning between prior and smearing" << endl; |
460 |
return kFALSE; |
461 |
} |
462 |
|
463 |
const Double_t* x_prior = _prior->GetXaxis()->GetXbins()->GetArray(); |
464 |
const Double_t* x_sm = _smearing->GetXaxis()->GetXbins()->GetArray(); |
465 |
|
466 |
for(Int_t ib=0; ib < n_prior+1; ib++){ |
467 |
if( fabs(x_prior[ib] - x_sm[ib])/x_sm[ib] > 1e-4 ){ |
468 |
cerr << " --- Different binning between prior and smearing" << endl; |
469 |
return kFALSE; |
470 |
} |
471 |
else |
472 |
continue; |
473 |
} |
474 |
} |
475 |
|
476 |
|
477 |
return kTRUE; |
478 |
|
479 |
} |
480 |
|
481 |
void PamUnfold::IterativeUnfolding(UInt_t niter, TList* list){ |
482 |
|
483 |
cout << " -- PamUnfold object " << this->GetName() << endl |
484 |
<< " Starting unfolding"; |
485 |
|
486 |
if(!niter) |
487 |
cout << " with chi2 convergence check"; |
488 |
else |
489 |
cout << " with " << niter << " iterations"; |
490 |
|
491 |
if(_is_improved) |
492 |
cout << " and improved algorithm (may take a while...)"; |
493 |
else |
494 |
cout << " and standard algorithm"; |
495 |
|
496 |
cout << endl; |
497 |
|
498 |
if(list) |
499 |
cout << " Saving iterations to TList object at " << list << endl; |
500 |
|
501 |
|
502 |
UInt_t iiter = 0; |
503 |
Double_t chi2 = 1e6; |
504 |
Bool_t kFlag = kTRUE; |
505 |
|
506 |
while( kFlag ){ |
507 |
|
508 |
if(iiter > 0) |
509 |
SetPrior(_old_unfolded); |
510 |
|
511 |
if(_is_improved) |
512 |
ImprovedUnfold(); |
513 |
else |
514 |
Unfold(); |
515 |
|
516 |
if(iiter > 0){ |
517 |
chi2 = GetChi2H( _unfolded, _old_unfolded ); |
518 |
cout << " Chi2 of change from iteration " << iiter-1 << " to " << iiter << " = " << chi2 << endl; |
519 |
} |
520 |
|
521 |
if(!niter) |
522 |
kFlag = chi2 < _min_chi2 ? kFALSE : kTRUE; |
523 |
else |
524 |
kFlag = iiter == niter ? kFALSE : kTRUE; |
525 |
|
526 |
if(iiter >= _max_steps){ |
527 |
kFlag = kFALSE; |
528 |
cerr << "WARNING: Unfolding procedure did not converge in less than " << _max_steps << " steps\n"; |
529 |
} |
530 |
|
531 |
_old_unfolded = GetUnfolded(); |
532 |
|
533 |
_old_unfolded->SetName( Form("%s_%03i", _old_unfolded->GetName(), iiter) ); |
534 |
if(list){ |
535 |
list->Add( _old_unfolded ); |
536 |
} |
537 |
iiter++; |
538 |
|
539 |
} |
540 |
|
541 |
cout << " Unfolding converged" << endl; |
542 |
|
543 |
} |
544 |
|
545 |
void PamUnfold::Init(){ |
546 |
|
547 |
cout << " -- PamUnfold object " << this->GetName() << endl |
548 |
<< " Initializing unfolded histogram" << endl; |
549 |
|
550 |
_unfolded = new TH1D( Form("%s_%s_u", _measured->GetName(), this->GetName()), "", _smearing->GetNbinsX(), _smearing->GetXaxis()->GetXbins()->GetArray()); |
551 |
_unfolded->Reset(); |
552 |
|
553 |
_prior = (TH1D*) _unfolded->Clone( Form("_prior_%s",this->GetName()) ); |
554 |
_prior->Reset(); |
555 |
|
556 |
cout << " Initializing flat Prior" << endl; |
557 |
//Initializing flat prior |
558 |
for(UInt_t ibin=0; ibin<_prior->GetNbinsX(); ibin++){ |
559 |
_prior->SetBinContent(ibin+1, _prior->GetBinWidth(ibin+1)/(_prior->GetBinLowEdge(_prior->GetNbinsX()+1)-_prior->GetBinLowEdge(1)) ); |
560 |
} |
561 |
|
562 |
cout << " Initializing Random number generator" << endl; |
563 |
rangen = new RanGen(); |
564 |
|
565 |
_bin_list = new TList(); |
566 |
_bin_hist_list = new TList(); |
567 |
_smearing_sample = (TH2D*) _smearing->Clone( Form("%s_sample", _smearing->GetName()) ); |
568 |
|
569 |
cout << " Initialization done" << endl; |
570 |
|
571 |
} |
572 |
|
573 |
|
574 |
void PamUnfold::NormalizeMatrix(){ |
575 |
|
576 |
for(UInt_t ibiny=0; ibiny<_smearing->GetNbinsY(); ibiny++){ |
577 |
for(UInt_t ibinx=0; ibinx<_smearing->GetNbinsX(); ibinx++){ |
578 |
Int_t globalbin = _smearing->GetBin(ibinx+1, ibiny+1); |
579 |
if(_norm->GetBinContent(ibinx+1)) |
580 |
_smearing->SetBinContent( globalbin, _smearing->GetBinContent(globalbin)/_norm->GetBinContent(ibinx+1) ); |
581 |
} |
582 |
} |
583 |
|
584 |
} |
585 |
|
586 |
void PamUnfold::SampleMatrix(){ |
587 |
|
588 |
_smearing_sample->Reset(); |
589 |
|
590 |
vector<Int_t> alpha(_smearing->GetNbinsY()+1); |
591 |
vector<Double_t> sampled; |
592 |
|
593 |
for(UInt_t ibinx=0; ibinx<_smearing->GetNbinsX(); ibinx++){ |
594 |
|
595 |
// cout << _norm->GetBinContent(ibinx+1) << endl; |
596 |
Double_t snorm=0; |
597 |
for(UInt_t ibiny=0; ibiny<_smearing->GetNbinsY(); ibiny++){ |
598 |
Int_t globalbin = _smearing->GetBin(ibinx+1, ibiny+1); |
599 |
snorm += _smearing->GetBinContent(globalbin); |
600 |
alpha[ibiny] = TMath::Nint( _smearing->GetBinContent(globalbin) * _norm->GetBinContent(ibinx+1) ); |
601 |
} |
602 |
alpha[_smearing->GetNbinsY()] = TMath::Nint( (1 - snorm) * _norm->GetBinContent(ibinx+1) ); |
603 |
//cout << "bin: " << ibinx << " " << alpha[_smearing->GetNbinsY()] << endl; |
604 |
|
605 |
sampled = rangen->Dirichlet(_smearing->GetNbinsY() + 1, alpha); |
606 |
|
607 |
for(UInt_t ibiny=0; ibiny<_smearing_sample->GetNbinsY(); ibiny++){ |
608 |
Int_t globalbin = _smearing_sample->GetBin(ibinx+1, ibiny+1); |
609 |
// cout << sampled[ibiny] << " "; |
610 |
_smearing_sample->SetBinContent(globalbin, sampled[ibiny]); |
611 |
} |
612 |
// cout << endl; |
613 |
} |
614 |
// cout << endl; |
615 |
|
616 |
} |
617 |
|
618 |
|
619 |
void PamUnfold::BuildFlux(){ |
620 |
|
621 |
_unfolded->Reset(); |
622 |
_bin_hist_list->Delete(); |
623 |
|
624 |
for(Int_t j=0; j<_unfolded->GetNbinsX(); j++){ |
625 |
Double_t min=1e9; |
626 |
Double_t max=0; |
627 |
Double_t check=0; |
628 |
|
629 |
for(Int_t i=0; i<_bin_list->GetEntries(); i++){ |
630 |
TVectorD* vv = (TVectorD*) _bin_list->At(i); |
631 |
check = (*vv)(j); |
632 |
if(check<min) min=check; |
633 |
if(check>max) max=check; |
634 |
} |
635 |
|
636 |
_bin_hist_list->Add( new TH1D( Form("hh_%03i", j), ";Events", 150, min-20, max+20 ) ); |
637 |
} |
638 |
|
639 |
for(Int_t i=0; i<_bin_list->GetEntries(); i++){ |
640 |
TVectorD* vv = (TVectorD*) _bin_list->At(i); |
641 |
//cout << "Bin " << i << " "; |
642 |
for(Int_t j=0; j<vv->GetNoElements(); j++){ |
643 |
//cout << (*vv)(j) << " "; |
644 |
((TH1D*) _bin_hist_list->At(j))->Fill( (*vv)(j) ); |
645 |
} |
646 |
// cout << endl; |
647 |
} |
648 |
|
649 |
Double_t qq = 0.682689492137; |
650 |
Double_t yq[2], xq[2]; |
651 |
xq[0] = (1-qq)/2; xq[1] = xq[0] + qq; |
652 |
|
653 |
|
654 |
for(Int_t j=0; j<_unfolded->GetNbinsX(); j++){ |
655 |
TH1D* mt = ((TH1D*) _bin_hist_list->At(j)); |
656 |
mt->GetQuantiles(2, yq, xq); |
657 |
|
658 |
double mean = 0.5*(yq[0] + yq[1]); |
659 |
double err = 0.5*(yq[1] - yq[0]); |
660 |
if(mt->ComputeIntegral()){ |
661 |
_unfolded->SetBinContent(j+1, mean); |
662 |
_unfolded->SetBinError(j+1, err); |
663 |
} |
664 |
else{ |
665 |
_unfolded->SetBinContent(j+1, 0); |
666 |
_unfolded->SetBinError(j+1, 0); |
667 |
} |
668 |
|
669 |
} |
670 |
|
671 |
} |
672 |
|
673 |
void PamUnfold::Draw(TString path){ |
674 |
|
675 |
Int_t nx, ny; |
676 |
FindSplitting(_unfolded->GetNbinsX() , nx, ny); |
677 |
canv = dynamic_cast<TCanvas*>(gDirectory->FindObject( Form("canv_%s", this->GetName()) )); |
678 |
if(!canv) canv = new TCanvas(Form("canv_%s", this->GetName()), "Bin Distributions", 0, 0, 4 + 500*nx, 28 + 500*ny); |
679 |
canv->Divide(nx, ny); |
680 |
|
681 |
for(Int_t ip=0; ip<_unfolded->GetNbinsX(); ip++){ |
682 |
canv->cd(ip+1); |
683 |
|
684 |
TH1D* mt = ((TH1D*) _bin_hist_list->At(ip)); |
685 |
mt->Draw(); |
686 |
|
687 |
Double_t mean = _unfolded->GetBinContent(ip+1); |
688 |
Double_t err = _unfolded->GetBinError(ip+1); |
689 |
|
690 |
TLine* line1 = new TLine(mean-err, 0, mean-err, mt->GetMaximum()); |
691 |
TLine* line2 = new TLine(mean+err, 0, mean+err, mt->GetMaximum()); |
692 |
TLine* line3 = new TLine(mean, 0, mean, mt->GetMaximum()); |
693 |
|
694 |
line1->SetLineWidth(2); |
695 |
line1->SetLineColor(2); |
696 |
line2->SetLineWidth(2); |
697 |
line2->SetLineColor(2); |
698 |
line3->SetLineWidth(2); |
699 |
line3->SetLineColor(4); |
700 |
|
701 |
line1->Draw("same"); |
702 |
line2->Draw("same"); |
703 |
line3->Draw("same"); |
704 |
|
705 |
} |
706 |
|
707 |
if(path) canv->Print(path); |
708 |
|
709 |
} |
710 |
|
711 |
void PamUnfold::FindSplitting(Int_t n, Int_t &nx, Int_t &ny){ |
712 |
|
713 |
Int_t x = TMath::Nint( sqrt(n) ); |
714 |
if(x*x == n){ nx=ny=x; return; } |
715 |
|
716 |
x = floor( sqrt(n) ) + 1; |
717 |
for(Int_t y=0; y<=x; y++){ |
718 |
if(y*x>=n){ ny = y; break;} |
719 |
} |
720 |
nx = x; |
721 |
|
722 |
if(ny>nx){ nx=ny; ny=x;} |
723 |
|
724 |
} |