| 1 | 
mayorov | 
1.1 | 
#include <iostream> | 
| 2 | 
  | 
  | 
#include <fstream> | 
| 3 | 
  | 
  | 
#include <stdio.h> | 
| 4 | 
  | 
  | 
#include <math.h> | 
| 5 | 
  | 
  | 
#include <TH1F.h> | 
| 6 | 
  | 
  | 
#include <TH2F.h> | 
| 7 | 
  | 
  | 
#include <TH1D.h> | 
| 8 | 
  | 
  | 
#include <TH2D.h> | 
| 9 | 
  | 
  | 
#include <TFile.h> | 
| 10 | 
  | 
  | 
#include <TROOT.h> | 
| 11 | 
  | 
  | 
#include <TList.h> | 
| 12 | 
  | 
  | 
#include <TString.h> | 
| 13 | 
  | 
  | 
//#include <TObjectString.h> | 
| 14 | 
  | 
  | 
#include <TGraphAsymmErrors.h> | 
| 15 | 
  | 
  | 
#include <TGraphErrors.h> | 
| 16 | 
  | 
  | 
#include <TChain.h> | 
| 17 | 
  | 
  | 
#include <TCutG.h> | 
| 18 | 
  | 
  | 
#include <TF1.h> | 
| 19 | 
  | 
  | 
#include <TCanvas.h> | 
| 20 | 
  | 
  | 
#include <TObjString.h> | 
| 21 | 
  | 
  | 
#include <TMath.h> | 
| 22 | 
  | 
  | 
 | 
| 23 | 
  | 
  | 
#include <PamUnfold.h> | 
| 24 | 
  | 
  | 
 | 
| 25 | 
  | 
  | 
using namespace std; | 
| 26 | 
  | 
  | 
 | 
| 27 | 
  | 
  | 
ClassImp(PamUnfold); | 
| 28 | 
  | 
  | 
 | 
| 29 | 
  | 
  | 
 | 
| 30 | 
  | 
  | 
PamUnfold::PamUnfold(TString name, TString title) : TNamed(name, title){ | 
| 31 | 
  | 
  | 
 | 
| 32 | 
  | 
  | 
  cout << "WARNING:: entering PamUnfold::PamUnfold(TString name, TString title)" << endl; | 
| 33 | 
  | 
  | 
  cout << "           empty constructor be sure to initialize measured and smearing" << endl; | 
| 34 | 
  | 
  | 
 | 
| 35 | 
  | 
  | 
  _measured = NULL; | 
| 36 | 
  | 
  | 
  _smearing = NULL; | 
| 37 | 
  | 
  | 
  _prior = NULL; | 
| 38 | 
  | 
  | 
 | 
| 39 | 
  | 
  | 
} | 
| 40 | 
  | 
  | 
 | 
| 41 | 
  | 
  | 
PamUnfold::~PamUnfold(){ | 
| 42 | 
  | 
  | 
} | 
| 43 | 
  | 
  | 
 | 
| 44 | 
  | 
  | 
PamUnfold::PamUnfold(TString name, TString title, TH1D* measured, TH2D* smearing) : TNamed(name, title){ | 
| 45 | 
  | 
  | 
 | 
| 46 | 
  | 
  | 
  _measured = measured; | 
| 47 | 
  | 
  | 
  _smearing = smearing; | 
| 48 | 
  | 
  | 
  _prior = NULL; | 
| 49 | 
  | 
  | 
 | 
| 50 | 
  | 
  | 
  if( !IsBinningOK() ) | 
| 51 | 
  | 
  | 
    cerr << " -- ERROR in PamUnfold::PamUnfold(TString name, TString title, TH1D* measured, TH2D* smearing)" << endl; | 
| 52 | 
  | 
  | 
 | 
| 53 | 
  | 
  | 
  if( !IsSmNormalized() ){ | 
| 54 | 
  | 
  | 
    cerr << " -- WARNING in PamUnfold::PamUnfold(TString name, TString title, TH1D* measured, TH2D* smearing)" << endl; | 
| 55 | 
  | 
  | 
    cerr << " ---- Remember to provide the normalization histogram for the smearing matrix" << endl; | 
| 56 | 
  | 
  | 
  } | 
| 57 | 
  | 
  | 
 | 
| 58 | 
  | 
  | 
  Init(); | 
| 59 | 
  | 
  | 
 | 
| 60 | 
  | 
  | 
  _is_improved = kFALSE; | 
| 61 | 
  | 
  | 
  _smooth = kFALSE; | 
| 62 | 
  | 
  | 
  _smooth_opt = "ROOT"; | 
| 63 | 
  | 
  | 
 | 
| 64 | 
  | 
  | 
  _nsamples = 500; | 
| 65 | 
  | 
  | 
  _max_steps = 50; | 
| 66 | 
  | 
  | 
  _min_chi2 = 1.; | 
| 67 | 
  | 
  | 
 | 
| 68 | 
  | 
  | 
} | 
| 69 | 
  | 
  | 
 | 
| 70 | 
  | 
  | 
void PamUnfold::AddExcludedBin(Int_t bin){ | 
| 71 | 
  | 
  | 
  _excluded_bins.push_back(bin); | 
| 72 | 
  | 
  | 
} | 
| 73 | 
  | 
  | 
 | 
| 74 | 
  | 
  | 
TH1D* PamUnfold::GetMeasured(){ | 
| 75 | 
  | 
  | 
  return _measured; | 
| 76 | 
  | 
  | 
} | 
| 77 | 
  | 
  | 
 | 
| 78 | 
  | 
  | 
TH2D* PamUnfold::GetSmearing(){ | 
| 79 | 
  | 
  | 
  return _smearing; | 
| 80 | 
  | 
  | 
} | 
| 81 | 
  | 
  | 
 | 
| 82 | 
  | 
  | 
TH1D* PamUnfold::GetUnfolded(){ | 
| 83 | 
  | 
  | 
  TH1D* __unfolded = (TH1D*) _unfolded->Clone( Form("%s_%s_unf", _measured->GetName(), this->GetName()) ); | 
| 84 | 
  | 
  | 
  return __unfolded; | 
| 85 | 
  | 
  | 
} | 
| 86 | 
  | 
  | 
 | 
| 87 | 
  | 
  | 
TList* PamUnfold::GetBinHistList(){ | 
| 88 | 
  | 
  | 
  return _bin_hist_list; | 
| 89 | 
  | 
  | 
} | 
| 90 | 
  | 
  | 
 | 
| 91 | 
  | 
  | 
void PamUnfold::SetMeasured(TH1D* measured){ | 
| 92 | 
  | 
  | 
  _measured = measured; | 
| 93 | 
  | 
  | 
} | 
| 94 | 
  | 
  | 
 | 
| 95 | 
  | 
  | 
void PamUnfold::SetSmearing(TH2D* smearing){ | 
| 96 | 
  | 
  | 
 | 
| 97 | 
  | 
  | 
  _smearing = smearing; | 
| 98 | 
  | 
  | 
 | 
| 99 | 
  | 
  | 
  if( !IsBinningOK() ) | 
| 100 | 
  | 
  | 
    cerr << " -- ERROR in PamUnfold::SetSmearing(TH2D* smearing)" << endl; | 
| 101 | 
  | 
  | 
 | 
| 102 | 
  | 
  | 
  Init(); | 
| 103 | 
  | 
  | 
 | 
| 104 | 
  | 
  | 
} | 
| 105 | 
  | 
  | 
 | 
| 106 | 
  | 
  | 
void PamUnfold::SetPrior(TH1D* prior){ | 
| 107 | 
  | 
  | 
 | 
| 108 | 
  | 
  | 
  _prior = (TH1D*) prior->Clone( Form("_prior_%s", this->GetName()) ); | 
| 109 | 
  | 
  | 
 | 
| 110 | 
  | 
  | 
  if( !IsBinningOK() ) | 
| 111 | 
  | 
  | 
    cerr << " -- ERROR in PamUnfold::SetPrior(TH1D* prior)" << endl; | 
| 112 | 
  | 
  | 
 | 
| 113 | 
  | 
  | 
} | 
| 114 | 
  | 
  | 
 | 
| 115 | 
  | 
  | 
void PamUnfold::SetNormalization(TH1D* norm){ | 
| 116 | 
  | 
  | 
  _norm = norm; | 
| 117 | 
  | 
  | 
 | 
| 118 | 
  | 
  | 
  //If the matrix is not normalized it is normalized now. | 
| 119 | 
  | 
  | 
  if( !IsSmNormalized() ){ | 
| 120 | 
  | 
  | 
    cout << "      Normalizing smearing matrix" << endl; | 
| 121 | 
  | 
  | 
 | 
| 122 | 
  | 
  | 
    try{ if(!_norm) throw 1; } | 
| 123 | 
  | 
  | 
    catch(int e){ | 
| 124 | 
  | 
  | 
      if(e==1){ | 
| 125 | 
  | 
  | 
        cerr << " -- ERROR in PamUnfold::Init()" << endl; | 
| 126 | 
  | 
  | 
        cerr << " ---- Normalization histogram is NULL" << endl; | 
| 127 | 
  | 
  | 
        cerr << "      execution is likely to crash." << endl; | 
| 128 | 
  | 
  | 
      } | 
| 129 | 
  | 
  | 
    } | 
| 130 | 
  | 
  | 
 | 
| 131 | 
  | 
  | 
    NormalizeMatrix(); | 
| 132 | 
  | 
  | 
 | 
| 133 | 
  | 
  | 
  } | 
| 134 | 
  | 
  | 
 | 
| 135 | 
  | 
  | 
} | 
| 136 | 
  | 
  | 
 | 
| 137 | 
  | 
  | 
void PamUnfold::SetImproved(Bool_t improv){ | 
| 138 | 
  | 
  | 
  _is_improved = improv; | 
| 139 | 
  | 
  | 
} | 
| 140 | 
  | 
  | 
 | 
| 141 | 
  | 
  | 
void PamUnfold::SetSmoothing(Bool_t smooth, TString smooth_opt){ | 
| 142 | 
  | 
  | 
 | 
| 143 | 
  | 
  | 
  _smooth = smooth; | 
| 144 | 
  | 
  | 
  _smooth_opt = smooth_opt; | 
| 145 | 
  | 
  | 
 | 
| 146 | 
  | 
  | 
  if(!_smooth_opt.CompareTo("")) | 
| 147 | 
  | 
  | 
    _smooth_opt = "ROOT"; | 
| 148 | 
  | 
  | 
 | 
| 149 | 
  | 
  | 
} | 
| 150 | 
  | 
  | 
 | 
| 151 | 
  | 
  | 
void PamUnfold::SetNsamples(UInt_t nsamples){ | 
| 152 | 
  | 
  | 
  _nsamples = nsamples; | 
| 153 | 
  | 
  | 
} | 
| 154 | 
  | 
  | 
 | 
| 155 | 
  | 
  | 
void PamUnfold::SetMaxSteps(UInt_t max_steps){ | 
| 156 | 
  | 
  | 
  _max_steps = max_steps; | 
| 157 | 
  | 
  | 
} | 
| 158 | 
  | 
  | 
 | 
| 159 | 
  | 
  | 
void PamUnfold::SetMinChi2(Double_t min_chi2){ | 
| 160 | 
  | 
  | 
  _min_chi2 = min_chi2; | 
| 161 | 
  | 
  | 
} | 
| 162 | 
  | 
  | 
 | 
| 163 | 
  | 
  | 
 | 
| 164 | 
  | 
  | 
Bool_t PamUnfold::IsSmNormalized(){ | 
| 165 | 
  | 
  | 
 | 
| 166 | 
  | 
  | 
  Double_t sum = 0; | 
| 167 | 
  | 
  | 
  for(UInt_t i=0; i<_smearing->GetNbinsX(); i++){ | 
| 168 | 
  | 
  | 
    sum = 0; | 
| 169 | 
  | 
  | 
    for(UInt_t j=0; j<_smearing->GetNbinsY(); j++) | 
| 170 | 
  | 
  | 
      sum += _smearing->GetBinContent(_smearing->GetBin(i+1,j+1)); | 
| 171 | 
  | 
  | 
    if(sum>1.0000001){ | 
| 172 | 
  | 
  | 
      cout << "Bin: " << i+1 << " sum=" << sum << endl; | 
| 173 | 
  | 
  | 
      return kFALSE; | 
| 174 | 
  | 
  | 
    } | 
| 175 | 
  | 
  | 
  } | 
| 176 | 
  | 
  | 
 | 
| 177 | 
  | 
  | 
  return kTRUE; | 
| 178 | 
  | 
  | 
 | 
| 179 | 
  | 
  | 
} | 
| 180 | 
  | 
  | 
 | 
| 181 | 
  | 
  | 
void PamUnfold::WMovAvSmooth(TH1D* input, vector<Int_t>&excl){ | 
| 182 | 
  | 
  | 
 | 
| 183 | 
  | 
  | 
  Double_t* xarr = new Double_t [input->GetNbinsX()]; | 
| 184 | 
  | 
  | 
 | 
| 185 | 
  | 
  | 
  for(UInt_t ib=0; ib<input->GetNbinsX(); ib++) | 
| 186 | 
  | 
  | 
    xarr[ib] = (Double_t) input->GetBinContent(ib+1); | 
| 187 | 
  | 
  | 
 | 
| 188 | 
  | 
  | 
  Bool_t excluding; | 
| 189 | 
  | 
  | 
  for(UInt_t ib=1; ib<input->GetNbinsX()-1; ib++){ | 
| 190 | 
  | 
  | 
 | 
| 191 | 
  | 
  | 
    excluding = kFALSE; | 
| 192 | 
  | 
  | 
    for(UInt_t iex=0; iex<excl.size(); iex++) | 
| 193 | 
  | 
  | 
      if( | 
| 194 | 
  | 
  | 
         ib   == excl[iex] || | 
| 195 | 
  | 
  | 
         ib+1 == excl[iex] || | 
| 196 | 
  | 
  | 
         ib+2 == excl[iex] | 
| 197 | 
  | 
  | 
         ) excluding = kTRUE; | 
| 198 | 
  | 
  | 
    if(excluding) continue; | 
| 199 | 
  | 
  | 
 | 
| 200 | 
  | 
  | 
    Double_t xc = xarr[ib]; | 
| 201 | 
  | 
  | 
    Double_t xl = xarr[ib-1]; | 
| 202 | 
  | 
  | 
    Double_t xh = xarr[ib+1]; | 
| 203 | 
  | 
  | 
    Double_t x = 0.25*(xh+xl) + 0.5*xc; | 
| 204 | 
  | 
  | 
    input->SetBinContent(ib+1, (Float_t) x); | 
| 205 | 
  | 
  | 
  } | 
| 206 | 
  | 
  | 
 | 
| 207 | 
  | 
  | 
  delete xarr; | 
| 208 | 
  | 
  | 
 | 
| 209 | 
  | 
  | 
  return; | 
| 210 | 
  | 
  | 
 | 
| 211 | 
  | 
  | 
} | 
| 212 | 
  | 
  | 
 | 
| 213 | 
  | 
  | 
Double_t PamUnfold::GetChi2H( TH1D* h1, TH1D* h2 ){ | 
| 214 | 
  | 
  | 
 | 
| 215 | 
  | 
  | 
  if(h1->GetNbinsX() != h2->GetNbinsX()){ | 
| 216 | 
  | 
  | 
    cout << " -- Warning in PamUnfold::GetChi2H(TH1D*, TH1D*) : Histograms have different number of bins" << endl; | 
| 217 | 
  | 
  | 
    return -1; | 
| 218 | 
  | 
  | 
  } | 
| 219 | 
  | 
  | 
 | 
| 220 | 
  | 
  | 
  const Double_t* x_1 = h1->GetXaxis()->GetXbins()->GetArray(); | 
| 221 | 
  | 
  | 
  const Double_t* x_2 = h2->GetXaxis()->GetXbins()->GetArray(); | 
| 222 | 
  | 
  | 
 | 
| 223 | 
  | 
  | 
  for(Int_t ib=0; ib < h1->GetNbinsX()+1; ib++){ | 
| 224 | 
  | 
  | 
    if(x_1[ib] != x_2[ib]){ | 
| 225 | 
  | 
  | 
      cout << " -- Warning in PamUnfold::GetChi2H(TH1D*, TH1D*) : Histograms have different number of bins" << endl; | 
| 226 | 
  | 
  | 
      return -1; | 
| 227 | 
  | 
  | 
    } | 
| 228 | 
  | 
  | 
    else | 
| 229 | 
  | 
  | 
      continue; | 
| 230 | 
  | 
  | 
  } | 
| 231 | 
  | 
  | 
 | 
| 232 | 
  | 
  | 
 | 
| 233 | 
  | 
  | 
 | 
| 234 | 
  | 
  | 
  Double_t chi2 = 0; | 
| 235 | 
  | 
  | 
  for(UInt_t i=0; i<h1->GetNbinsX(); i++){ | 
| 236 | 
  | 
  | 
    if(h1->GetBinContent(i+1) + h2->GetBinContent(i+2) > 1) | 
| 237 | 
  | 
  | 
      chi2 += pow(h1->GetBinContent(i+1) - h2->GetBinContent(i+1),2)/(h1->GetBinContent(i+1) + h2->GetBinContent(i+2)); | 
| 238 | 
  | 
  | 
    else | 
| 239 | 
  | 
  | 
      chi2 += pow(h1->GetBinContent(i+1) - h2->GetBinContent(i+1),2); | 
| 240 | 
  | 
  | 
  } | 
| 241 | 
  | 
  | 
 | 
| 242 | 
  | 
  | 
  return chi2; | 
| 243 | 
  | 
  | 
} | 
| 244 | 
  | 
  | 
 | 
| 245 | 
  | 
  | 
void PamUnfold::Unfold(){ | 
| 246 | 
  | 
  | 
 | 
| 247 | 
  | 
  | 
 | 
| 248 | 
  | 
  | 
  //Smoothing is applied to the spectrum, not to the counts histogram!!! | 
| 249 | 
  | 
  | 
  // ------------------------------------------------------ | 
| 250 | 
  | 
  | 
  //   Prior initialization | 
| 251 | 
  | 
  | 
  // ------------------------------------------------------ | 
| 252 | 
  | 
  | 
 | 
| 253 | 
  | 
  | 
  for(Int_t i=0; i<_prior->GetNbinsX(); i++)  | 
| 254 | 
  | 
  | 
    _prior->SetBinContent(i+1, _prior->GetBinContent(i+1)/_prior->GetBinWidth(i+1) ); | 
| 255 | 
  | 
  | 
 | 
| 256 | 
  | 
  | 
  if(_smooth){ | 
| 257 | 
  | 
  | 
    if(_smooth_opt.Contains("WMA")){ | 
| 258 | 
  | 
  | 
      cout << " --- Using Weighted Moving Average smoothing\n"; | 
| 259 | 
  | 
  | 
      WMovAvSmooth(_prior, _excluded_bins); | 
| 260 | 
  | 
  | 
    } | 
| 261 | 
  | 
  | 
    else if(_smooth_opt.Contains("ROOT")){ | 
| 262 | 
  | 
  | 
      cout << " --- Using standard ROOT smoothing\n"; | 
| 263 | 
  | 
  | 
      _prior->Smooth(); | 
| 264 | 
  | 
  | 
    } | 
| 265 | 
  | 
  | 
    else | 
| 266 | 
  | 
  | 
      cout << " --- WARNING: No valid smoothing option specified" << endl; | 
| 267 | 
  | 
  | 
  } | 
| 268 | 
  | 
  | 
 | 
| 269 | 
  | 
  | 
  for(Int_t i=0; i<_prior->GetNbinsX(); i++)  | 
| 270 | 
  | 
  | 
    _prior->SetBinContent(i+1, _prior->GetBinContent(i+1)*_prior->GetBinWidth(i+1) ); | 
| 271 | 
  | 
  | 
 | 
| 272 | 
  | 
  | 
  _prior->Scale(1./_prior->GetSumOfWeights()); //The prior is a 'probability' so it has to be normalized at the very last step | 
| 273 | 
  | 
  | 
 | 
| 274 | 
  | 
  | 
  // ------------------------------------------------------ | 
| 275 | 
  | 
  | 
  //   Unfolding | 
| 276 | 
  | 
  | 
  // ------------------------------------------------------ | 
| 277 | 
  | 
  | 
 | 
| 278 | 
  | 
  | 
  cout << " --- UNFOLDING!!" << endl; | 
| 279 | 
  | 
  | 
 | 
| 280 | 
  | 
  | 
  TH2D* theta = (TH2D*) _smearing->Clone("theta"); | 
| 281 | 
  | 
  | 
  theta->Reset(); | 
| 282 | 
  | 
  | 
 | 
| 283 | 
  | 
  | 
  for(Int_t i=0; i<theta->GetNbinsY(); i++){ | 
| 284 | 
  | 
  | 
    for(Int_t j=0; j<theta->GetNbinsX(); j++){ | 
| 285 | 
  | 
  | 
 | 
| 286 | 
  | 
  | 
      Double_t s = _smearing->GetBinContent(_smearing->GetBin(i+1,j+1))*_prior->GetBinContent(i+1); | 
| 287 | 
  | 
  | 
      Double_t ls = 0; | 
| 288 | 
  | 
  | 
      for(Int_t k=0; k<_smearing->GetNbinsX(); k++) | 
| 289 | 
  | 
  | 
        ls+=_smearing->GetBinContent(_smearing->GetBin(k+1,j+1))*_prior->GetBinContent(k+1); | 
| 290 | 
  | 
  | 
 | 
| 291 | 
  | 
  | 
      if(ls) | 
| 292 | 
  | 
  | 
        theta->SetBinContent(theta->GetBin(j+1,i+1),s/ls); | 
| 293 | 
  | 
  | 
    } | 
| 294 | 
  | 
  | 
  } | 
| 295 | 
  | 
  | 
 | 
| 296 | 
  | 
  | 
  _unfolded->Reset(); | 
| 297 | 
  | 
  | 
 | 
| 298 | 
  | 
  | 
  for(Int_t i=0; i<_unfolded->GetNbinsX(); i++){ | 
| 299 | 
  | 
  | 
    Double_t num = 0; | 
| 300 | 
  | 
  | 
    Double_t den = 0; | 
| 301 | 
  | 
  | 
    Double_t err = 0; | 
| 302 | 
  | 
  | 
    for(Int_t j=0; j<theta->GetNbinsX(); j++){ | 
| 303 | 
  | 
  | 
 | 
| 304 | 
  | 
  | 
      num+=theta->GetBinContent( theta->GetBin(j+1,i+1) )*_measured->GetBinContent(j+1); | 
| 305 | 
  | 
  | 
      den+=_smearing->GetBinContent(_smearing->GetBin(i+1,j+1)); | 
| 306 | 
  | 
  | 
      err+=pow( theta->GetBinContent(theta->GetBin(j+1,i+1))*_measured->GetBinError(j+1), 1 ); | 
| 307 | 
  | 
  | 
      //      err+=pow( theta->GetBinContent(theta->GetBin(j+1,i+1))*sp->GetBinError(j+1), 2 ); | 
| 308 | 
  | 
  | 
 | 
| 309 | 
  | 
  | 
    } | 
| 310 | 
  | 
  | 
 | 
| 311 | 
  | 
  | 
    if(den){ | 
| 312 | 
  | 
  | 
      _unfolded->SetBinContent(i+1, num/den); | 
| 313 | 
  | 
  | 
      _unfolded->SetBinError(i+1, fabs(err)/den); | 
| 314 | 
  | 
  | 
      //      _unfolded->SetBinError(i+1,sqrt(err)/den); | 
| 315 | 
  | 
  | 
    } | 
| 316 | 
  | 
  | 
  } | 
| 317 | 
  | 
  | 
 | 
| 318 | 
  | 
  | 
} | 
| 319 | 
  | 
  | 
 | 
| 320 | 
  | 
  | 
 | 
| 321 | 
  | 
  | 
void PamUnfold::ImprovedUnfold(){ | 
| 322 | 
  | 
  | 
 | 
| 323 | 
  | 
  | 
 | 
| 324 | 
  | 
  | 
  vector<Int_t> mu(_measured->GetNbinsX()); | 
| 325 | 
  | 
  | 
 | 
| 326 | 
  | 
  | 
  //Smoothing is applied to the spectrum, not to the counts histogram!!! | 
| 327 | 
  | 
  | 
  // ------------------------------------------------------ | 
| 328 | 
  | 
  | 
  //   Prior initialization | 
| 329 | 
  | 
  | 
  // ------------------------------------------------------ | 
| 330 | 
  | 
  | 
 | 
| 331 | 
  | 
  | 
  for(Int_t i=0; i<_prior->GetNbinsX(); i++)  | 
| 332 | 
  | 
  | 
    _prior->SetBinContent(i+1, _prior->GetBinContent(i+1)/_prior->GetBinWidth(i+1) ); | 
| 333 | 
  | 
  | 
 | 
| 334 | 
  | 
  | 
  if(_smooth){ | 
| 335 | 
  | 
  | 
    if(_smooth_opt.Contains("WMA")){ | 
| 336 | 
  | 
  | 
      cout << " --- Using Weighted Moving Average smoothing\n"; | 
| 337 | 
  | 
  | 
      WMovAvSmooth(_prior, _excluded_bins); | 
| 338 | 
  | 
  | 
    } | 
| 339 | 
  | 
  | 
    else if(_smooth_opt.Contains("ROOT")){ | 
| 340 | 
  | 
  | 
      cout << " --- Using standard ROOT smoothing\n"; | 
| 341 | 
  | 
  | 
      _prior->Smooth(); | 
| 342 | 
  | 
  | 
    } | 
| 343 | 
  | 
  | 
    else | 
| 344 | 
  | 
  | 
      cout << " --- WARNING: No valid smoothing option specified" << endl; | 
| 345 | 
  | 
  | 
  } | 
| 346 | 
  | 
  | 
 | 
| 347 | 
  | 
  | 
  for(Int_t i=0; i<_prior->GetNbinsX(); i++)  | 
| 348 | 
  | 
  | 
    _prior->SetBinContent(i+1, _prior->GetBinContent(i+1)*_prior->GetBinWidth(i+1) ); | 
| 349 | 
  | 
  | 
 | 
| 350 | 
  | 
  | 
  _prior->Scale(1./_prior->GetSumOfWeights()); //The prior is a 'probability' so it has to be normalized at the very last step | 
| 351 | 
  | 
  | 
 | 
| 352 | 
  | 
  | 
  // ------------------------------------------------------ | 
| 353 | 
  | 
  | 
  //   Unfolding | 
| 354 | 
  | 
  | 
  // ------------------------------------------------------ | 
| 355 | 
  | 
  | 
 | 
| 356 | 
  | 
  | 
  cout << " --- UNFOLDING!!" << endl; | 
| 357 | 
  | 
  | 
 | 
| 358 | 
  | 
  | 
  _bin_list->Clear(); | 
| 359 | 
  | 
  | 
 | 
| 360 | 
  | 
  | 
  TMVA::Timer* timer = new TMVA::Timer(_nsamples, "unf"); | 
| 361 | 
  | 
  | 
  for(UInt_t sample=0; sample<_nsamples; sample++){ | 
| 362 | 
  | 
  | 
     | 
| 363 | 
  | 
  | 
    cout << " ---- Sampling... " << timer->GetLeftTime(sample) << " left..." << endl << flush <<"\33[1A"; | 
| 364 | 
  | 
  | 
 | 
| 365 | 
  | 
  | 
    SampleMatrix(); | 
| 366 | 
  | 
  | 
     | 
| 367 | 
  | 
  | 
    TH2D* theta = (TH2D*) _smearing_sample->Clone("theta"); | 
| 368 | 
  | 
  | 
    theta->Reset(); | 
| 369 | 
  | 
  | 
     | 
| 370 | 
  | 
  | 
    for(Int_t i=0; i<theta->GetNbinsY(); i++){ | 
| 371 | 
  | 
  | 
      for(Int_t j=0; j<theta->GetNbinsX(); j++){ | 
| 372 | 
  | 
  | 
         | 
| 373 | 
  | 
  | 
        Double_t s = _smearing_sample->GetBinContent(_smearing_sample->GetBin(i+1,j+1))*_prior->GetBinContent(i+1); | 
| 374 | 
  | 
  | 
        Double_t ls = 0; | 
| 375 | 
  | 
  | 
        for(Int_t k=0; k<_smearing_sample->GetNbinsX(); k++) | 
| 376 | 
  | 
  | 
          ls+=_smearing_sample->GetBinContent(_smearing_sample->GetBin(k+1,j+1))*_prior->GetBinContent(k+1); | 
| 377 | 
  | 
  | 
         | 
| 378 | 
  | 
  | 
        if(ls) | 
| 379 | 
  | 
  | 
          theta->SetBinContent(theta->GetBin(j+1,i+1),s/ls); | 
| 380 | 
  | 
  | 
 | 
| 381 | 
  | 
  | 
      } | 
| 382 | 
  | 
  | 
    } | 
| 383 | 
  | 
  | 
     | 
| 384 | 
  | 
  | 
    TVectorD* result = new TVectorD(_unfolded->GetNbinsX()); | 
| 385 | 
  | 
  | 
     | 
| 386 | 
  | 
  | 
    //Sampling mu_j and rounding to nearest integer | 
| 387 | 
  | 
  | 
    for(Int_t j=0; j<_measured->GetNbinsX(); j++){ | 
| 388 | 
  | 
  | 
      mu[j] = TMath::Nint( rangen->Gamma( 1 + _measured->GetBinContent(j+1), 1 ) ); | 
| 389 | 
  | 
  | 
 | 
| 390 | 
  | 
  | 
      vector<Double_t> theta_vec_j(_unfolded->GetNbinsX()); | 
| 391 | 
  | 
  | 
      for(Int_t i=0; i<_unfolded->GetNbinsX(); i++){ | 
| 392 | 
  | 
  | 
        theta_vec_j[i] = theta->GetBinContent( theta->GetBin(j+1,i+1) ); | 
| 393 | 
  | 
  | 
        //      cout << theta_vec_j[i] << " "; | 
| 394 | 
  | 
  | 
      } | 
| 395 | 
  | 
  | 
      //      cout << endl; | 
| 396 | 
  | 
  | 
 | 
| 397 | 
  | 
  | 
      vector<Int_t> res_partial = rangen->Multinomial(mu[j], theta_vec_j); | 
| 398 | 
  | 
  | 
      for(Int_t i=0; i<_unfolded->GetNbinsX(); i++){ | 
| 399 | 
  | 
  | 
        //      cout << res_partial[i] << " "; | 
| 400 | 
  | 
  | 
        (*result)[i] += res_partial[i]; | 
| 401 | 
  | 
  | 
      } | 
| 402 | 
  | 
  | 
      // cout << endl; | 
| 403 | 
  | 
  | 
      // cout << _measured->GetBinContent(j+1) << " " << mu[j] << " " << res_partial[17] << " " << (*result)[17] << endl; | 
| 404 | 
  | 
  | 
 | 
| 405 | 
  | 
  | 
    } | 
| 406 | 
  | 
  | 
 | 
| 407 | 
  | 
  | 
     | 
| 408 | 
  | 
  | 
    for(Int_t i=0; i<_unfolded->GetNbinsX(); i++){ | 
| 409 | 
  | 
  | 
      Double_t den = 0; | 
| 410 | 
  | 
  | 
      for(Int_t j=0; j<_measured->GetNbinsX(); j++) | 
| 411 | 
  | 
  | 
        den+=_smearing_sample->GetBinContent(_smearing_sample->GetBin(i+1,j+1));    | 
| 412 | 
  | 
  | 
 | 
| 413 | 
  | 
  | 
        (*result)[i] /= den; | 
| 414 | 
  | 
  | 
    } | 
| 415 | 
  | 
  | 
 | 
| 416 | 
  | 
  | 
    _bin_list->Add(result); | 
| 417 | 
  | 
  | 
     | 
| 418 | 
  | 
  | 
  } | 
| 419 | 
  | 
  | 
 | 
| 420 | 
  | 
  | 
  BuildFlux(); | 
| 421 | 
  | 
  | 
 | 
| 422 | 
  | 
  | 
} | 
| 423 | 
  | 
  | 
 | 
| 424 | 
  | 
  | 
 | 
| 425 | 
  | 
  | 
Bool_t PamUnfold::IsBinningOK(){ | 
| 426 | 
  | 
  | 
 | 
| 427 | 
  | 
  | 
  Int_t n_meas = _measured->GetNbinsX(); | 
| 428 | 
  | 
  | 
  Int_t n_smy = _smearing->GetNbinsY(); | 
| 429 | 
  | 
  | 
 | 
| 430 | 
  | 
  | 
 | 
| 431 | 
  | 
  | 
  if(n_meas != n_smy){ | 
| 432 | 
  | 
  | 
    cerr << " --- Different binning between measured and smearing" << endl; | 
| 433 | 
  | 
  | 
    cerr << " ---- measured: " << n_meas << " bins;  smearing:" << n_smy << " bins on Y-axis" << endl; | 
| 434 | 
  | 
  | 
    return kFALSE; | 
| 435 | 
  | 
  | 
  } | 
| 436 | 
  | 
  | 
 | 
| 437 | 
  | 
  | 
  const Double_t* x_meas = _measured->GetXaxis()->GetXbins()->GetArray(); | 
| 438 | 
  | 
  | 
  const Double_t* y_sm = _smearing->GetYaxis()->GetXbins()->GetArray(); | 
| 439 | 
  | 
  | 
 | 
| 440 | 
  | 
  | 
  for(Int_t ib=0; ib < n_meas+1; ib++){ | 
| 441 | 
  | 
  | 
    if( fabs(x_meas[ib] - y_sm[ib])/x_meas[ib] > 1e-4 ){ | 
| 442 | 
  | 
  | 
      cerr << " --- Different binning between measured and smearing" << endl; | 
| 443 | 
  | 
  | 
      cerr << " ---- x_meas[" << ib << "] = " << x_meas[ib] << ";" | 
| 444 | 
  | 
  | 
           <<"  y_sm[" << ib << "] = " << y_sm[ib] << ";" << endl; | 
| 445 | 
  | 
  | 
      return kFALSE; | 
| 446 | 
  | 
  | 
    } | 
| 447 | 
  | 
  | 
    else | 
| 448 | 
  | 
  | 
      continue; | 
| 449 | 
  | 
  | 
  } | 
| 450 | 
  | 
  | 
 | 
| 451 | 
  | 
  | 
 | 
| 452 | 
  | 
  | 
 | 
| 453 | 
  | 
  | 
  if(_prior){ | 
| 454 | 
  | 
  | 
 | 
| 455 | 
  | 
  | 
    Int_t n_prior = _prior->GetNbinsX(); | 
| 456 | 
  | 
  | 
    Int_t n_smx = _smearing->GetNbinsX(); | 
| 457 | 
  | 
  | 
 | 
| 458 | 
  | 
  | 
    if(n_prior != n_smx){ | 
| 459 | 
  | 
  | 
      cerr << " --- Different binning between prior and smearing" << endl; | 
| 460 | 
  | 
  | 
      return kFALSE; | 
| 461 | 
  | 
  | 
    } | 
| 462 | 
  | 
  | 
 | 
| 463 | 
  | 
  | 
    const Double_t* x_prior = _prior->GetXaxis()->GetXbins()->GetArray(); | 
| 464 | 
  | 
  | 
    const Double_t* x_sm = _smearing->GetXaxis()->GetXbins()->GetArray(); | 
| 465 | 
  | 
  | 
     | 
| 466 | 
  | 
  | 
    for(Int_t ib=0; ib < n_prior+1; ib++){ | 
| 467 | 
  | 
  | 
      if( fabs(x_prior[ib] - x_sm[ib])/x_sm[ib] > 1e-4 ){ | 
| 468 | 
  | 
  | 
        cerr << " --- Different binning between prior and smearing" << endl; | 
| 469 | 
  | 
  | 
        return kFALSE; | 
| 470 | 
  | 
  | 
      } | 
| 471 | 
  | 
  | 
      else | 
| 472 | 
  | 
  | 
        continue; | 
| 473 | 
  | 
  | 
    } | 
| 474 | 
  | 
  | 
  } | 
| 475 | 
  | 
  | 
 | 
| 476 | 
  | 
  | 
 | 
| 477 | 
  | 
  | 
  return kTRUE; | 
| 478 | 
  | 
  | 
   | 
| 479 | 
  | 
  | 
} | 
| 480 | 
  | 
  | 
 | 
| 481 | 
  | 
  | 
void PamUnfold::IterativeUnfolding(UInt_t niter, TList* list){ | 
| 482 | 
  | 
  | 
 | 
| 483 | 
  | 
  | 
  cout << " -- PamUnfold object " << this->GetName() << endl | 
| 484 | 
  | 
  | 
       << "      Starting unfolding"; | 
| 485 | 
  | 
  | 
 | 
| 486 | 
  | 
  | 
  if(!niter) | 
| 487 | 
  | 
  | 
    cout << " with chi2 convergence check"; | 
| 488 | 
  | 
  | 
  else | 
| 489 | 
  | 
  | 
    cout << " with " << niter << " iterations"; | 
| 490 | 
  | 
  | 
 | 
| 491 | 
  | 
  | 
  if(_is_improved) | 
| 492 | 
  | 
  | 
    cout << " and improved algorithm (may take a while...)"; | 
| 493 | 
  | 
  | 
  else | 
| 494 | 
  | 
  | 
    cout << " and standard algorithm"; | 
| 495 | 
  | 
  | 
 | 
| 496 | 
  | 
  | 
  cout << endl; | 
| 497 | 
  | 
  | 
 | 
| 498 | 
  | 
  | 
  if(list) | 
| 499 | 
  | 
  | 
    cout << "      Saving iterations to TList object at " << list << endl; | 
| 500 | 
  | 
  | 
 | 
| 501 | 
  | 
  | 
 | 
| 502 | 
  | 
  | 
  UInt_t iiter = 0; | 
| 503 | 
  | 
  | 
  Double_t chi2 = 1e6; | 
| 504 | 
  | 
  | 
  Bool_t kFlag = kTRUE; | 
| 505 | 
  | 
  | 
 | 
| 506 | 
  | 
  | 
  while( kFlag ){ | 
| 507 | 
  | 
  | 
 | 
| 508 | 
  | 
  | 
    if(iiter > 0) | 
| 509 | 
  | 
  | 
      SetPrior(_old_unfolded); | 
| 510 | 
  | 
  | 
 | 
| 511 | 
  | 
  | 
    if(_is_improved) | 
| 512 | 
  | 
  | 
      ImprovedUnfold(); | 
| 513 | 
  | 
  | 
    else | 
| 514 | 
  | 
  | 
      Unfold(); | 
| 515 | 
  | 
  | 
 | 
| 516 | 
  | 
  | 
    if(iiter > 0){ | 
| 517 | 
  | 
  | 
      chi2 = GetChi2H( _unfolded, _old_unfolded ); | 
| 518 | 
  | 
  | 
      cout << "       Chi2 of change from iteration " << iiter-1 << " to " << iiter << " = " << chi2 << endl; | 
| 519 | 
  | 
  | 
    } | 
| 520 | 
  | 
  | 
 | 
| 521 | 
  | 
  | 
    if(!niter) | 
| 522 | 
  | 
  | 
      kFlag = chi2 < _min_chi2  ?  kFALSE : kTRUE; | 
| 523 | 
  | 
  | 
    else | 
| 524 | 
  | 
  | 
      kFlag = iiter == niter  ?  kFALSE : kTRUE; | 
| 525 | 
  | 
  | 
 | 
| 526 | 
  | 
  | 
    if(iiter >= _max_steps){ | 
| 527 | 
  | 
  | 
      kFlag = kFALSE; | 
| 528 | 
  | 
  | 
      cerr << "WARNING: Unfolding procedure did not converge in less than " << _max_steps << " steps\n"; | 
| 529 | 
  | 
  | 
    } | 
| 530 | 
  | 
  | 
 | 
| 531 | 
  | 
  | 
    _old_unfolded = GetUnfolded(); | 
| 532 | 
  | 
  | 
 | 
| 533 | 
  | 
  | 
    _old_unfolded->SetName( Form("%s_%03i", _old_unfolded->GetName(), iiter) ); | 
| 534 | 
  | 
  | 
    if(list){  | 
| 535 | 
  | 
  | 
      list->Add( _old_unfolded ); | 
| 536 | 
  | 
  | 
    } | 
| 537 | 
  | 
  | 
    iiter++; | 
| 538 | 
  | 
  | 
 | 
| 539 | 
  | 
  | 
  } | 
| 540 | 
  | 
  | 
 | 
| 541 | 
  | 
  | 
  cout << "      Unfolding converged" << endl; | 
| 542 | 
  | 
  | 
 | 
| 543 | 
  | 
  | 
} | 
| 544 | 
  | 
  | 
 | 
| 545 | 
  | 
  | 
void PamUnfold::Init(){ | 
| 546 | 
  | 
  | 
 | 
| 547 | 
  | 
  | 
  cout << " -- PamUnfold object " << this->GetName() << endl | 
| 548 | 
  | 
  | 
       << "      Initializing unfolded histogram" << endl; | 
| 549 | 
  | 
  | 
 | 
| 550 | 
  | 
  | 
  _unfolded = new TH1D( Form("%s_%s_u", _measured->GetName(), this->GetName()), "", _smearing->GetNbinsX(), _smearing->GetXaxis()->GetXbins()->GetArray()); | 
| 551 | 
  | 
  | 
  _unfolded->Reset(); | 
| 552 | 
  | 
  | 
 | 
| 553 | 
  | 
  | 
  _prior = (TH1D*) _unfolded->Clone( Form("_prior_%s",this->GetName()) ); | 
| 554 | 
  | 
  | 
  _prior->Reset(); | 
| 555 | 
  | 
  | 
 | 
| 556 | 
  | 
  | 
  cout << "      Initializing flat Prior" << endl; | 
| 557 | 
  | 
  | 
  //Initializing flat prior | 
| 558 | 
  | 
  | 
  for(UInt_t ibin=0; ibin<_prior->GetNbinsX(); ibin++){ | 
| 559 | 
  | 
  | 
    _prior->SetBinContent(ibin+1, _prior->GetBinWidth(ibin+1)/(_prior->GetBinLowEdge(_prior->GetNbinsX()+1)-_prior->GetBinLowEdge(1)) ); | 
| 560 | 
  | 
  | 
  } | 
| 561 | 
  | 
  | 
 | 
| 562 | 
  | 
  | 
  cout << "      Initializing Random number generator" << endl; | 
| 563 | 
  | 
  | 
  rangen = new RanGen(); | 
| 564 | 
  | 
  | 
 | 
| 565 | 
  | 
  | 
  _bin_list = new TList(); | 
| 566 | 
  | 
  | 
  _bin_hist_list = new TList(); | 
| 567 | 
  | 
  | 
  _smearing_sample = (TH2D*) _smearing->Clone( Form("%s_sample", _smearing->GetName()) ); | 
| 568 | 
  | 
  | 
 | 
| 569 | 
  | 
  | 
  cout << "      Initialization done" << endl; | 
| 570 | 
  | 
  | 
 | 
| 571 | 
  | 
  | 
} | 
| 572 | 
  | 
  | 
 | 
| 573 | 
  | 
  | 
 | 
| 574 | 
  | 
  | 
void PamUnfold::NormalizeMatrix(){ | 
| 575 | 
  | 
  | 
 | 
| 576 | 
  | 
  | 
  for(UInt_t ibiny=0; ibiny<_smearing->GetNbinsY(); ibiny++){ | 
| 577 | 
  | 
  | 
    for(UInt_t ibinx=0; ibinx<_smearing->GetNbinsX(); ibinx++){ | 
| 578 | 
  | 
  | 
      Int_t globalbin = _smearing->GetBin(ibinx+1, ibiny+1); | 
| 579 | 
  | 
  | 
      if(_norm->GetBinContent(ibinx+1)) | 
| 580 | 
  | 
  | 
        _smearing->SetBinContent( globalbin, _smearing->GetBinContent(globalbin)/_norm->GetBinContent(ibinx+1) ); | 
| 581 | 
  | 
  | 
    } | 
| 582 | 
  | 
  | 
  } | 
| 583 | 
  | 
  | 
 | 
| 584 | 
  | 
  | 
} | 
| 585 | 
  | 
  | 
 | 
| 586 | 
  | 
  | 
void PamUnfold::SampleMatrix(){ | 
| 587 | 
  | 
  | 
 | 
| 588 | 
  | 
  | 
  _smearing_sample->Reset(); | 
| 589 | 
  | 
  | 
 | 
| 590 | 
  | 
  | 
  vector<Int_t> alpha(_smearing->GetNbinsY()+1); | 
| 591 | 
  | 
  | 
  vector<Double_t> sampled; | 
| 592 | 
  | 
  | 
 | 
| 593 | 
  | 
  | 
  for(UInt_t ibinx=0; ibinx<_smearing->GetNbinsX(); ibinx++){ | 
| 594 | 
  | 
  | 
 | 
| 595 | 
  | 
  | 
    //    cout << _norm->GetBinContent(ibinx+1) << endl; | 
| 596 | 
  | 
  | 
    Double_t snorm=0; | 
| 597 | 
  | 
  | 
    for(UInt_t ibiny=0; ibiny<_smearing->GetNbinsY(); ibiny++){ | 
| 598 | 
  | 
  | 
      Int_t globalbin = _smearing->GetBin(ibinx+1, ibiny+1); | 
| 599 | 
  | 
  | 
      snorm += _smearing->GetBinContent(globalbin); | 
| 600 | 
  | 
  | 
      alpha[ibiny] = TMath::Nint( _smearing->GetBinContent(globalbin) * _norm->GetBinContent(ibinx+1) );  | 
| 601 | 
  | 
  | 
    } | 
| 602 | 
  | 
  | 
    alpha[_smearing->GetNbinsY()] = TMath::Nint( (1 - snorm) * _norm->GetBinContent(ibinx+1) ); | 
| 603 | 
  | 
  | 
    //cout << "bin: " << ibinx << "  " << alpha[_smearing->GetNbinsY()] << endl; | 
| 604 | 
  | 
  | 
 | 
| 605 | 
  | 
  | 
    sampled = rangen->Dirichlet(_smearing->GetNbinsY() + 1, alpha); | 
| 606 | 
  | 
  | 
 | 
| 607 | 
  | 
  | 
    for(UInt_t ibiny=0; ibiny<_smearing_sample->GetNbinsY(); ibiny++){ | 
| 608 | 
  | 
  | 
      Int_t globalbin = _smearing_sample->GetBin(ibinx+1, ibiny+1); | 
| 609 | 
  | 
  | 
      //      cout << sampled[ibiny] << " "; | 
| 610 | 
  | 
  | 
      _smearing_sample->SetBinContent(globalbin, sampled[ibiny]); | 
| 611 | 
  | 
  | 
    } | 
| 612 | 
  | 
  | 
    //    cout << endl; | 
| 613 | 
  | 
  | 
  } | 
| 614 | 
  | 
  | 
  //  cout << endl; | 
| 615 | 
  | 
  | 
 | 
| 616 | 
  | 
  | 
} | 
| 617 | 
  | 
  | 
 | 
| 618 | 
  | 
  | 
 | 
| 619 | 
  | 
  | 
void PamUnfold::BuildFlux(){ | 
| 620 | 
  | 
  | 
 | 
| 621 | 
  | 
  | 
  _unfolded->Reset(); | 
| 622 | 
  | 
  | 
  _bin_hist_list->Delete(); | 
| 623 | 
  | 
  | 
 | 
| 624 | 
  | 
  | 
  for(Int_t j=0; j<_unfolded->GetNbinsX(); j++){ | 
| 625 | 
  | 
  | 
    Double_t min=1e9; | 
| 626 | 
  | 
  | 
    Double_t max=0; | 
| 627 | 
  | 
  | 
    Double_t check=0; | 
| 628 | 
  | 
  | 
 | 
| 629 | 
  | 
  | 
    for(Int_t i=0; i<_bin_list->GetEntries(); i++){ | 
| 630 | 
  | 
  | 
      TVectorD* vv = (TVectorD*) _bin_list->At(i); | 
| 631 | 
  | 
  | 
      check = (*vv)(j); | 
| 632 | 
  | 
  | 
      if(check<min) min=check; | 
| 633 | 
  | 
  | 
      if(check>max) max=check; | 
| 634 | 
  | 
  | 
    } | 
| 635 | 
  | 
  | 
 | 
| 636 | 
  | 
  | 
    _bin_hist_list->Add( new TH1D( Form("hh_%03i", j), ";Events", 150, min-20, max+20 ) ); | 
| 637 | 
  | 
  | 
  } | 
| 638 | 
  | 
  | 
 | 
| 639 | 
  | 
  | 
  for(Int_t i=0; i<_bin_list->GetEntries(); i++){ | 
| 640 | 
  | 
  | 
    TVectorD* vv = (TVectorD*) _bin_list->At(i); | 
| 641 | 
  | 
  | 
    //cout << "Bin " << i << " "; | 
| 642 | 
  | 
  | 
    for(Int_t j=0; j<vv->GetNoElements(); j++){ | 
| 643 | 
  | 
  | 
      //cout << (*vv)(j) << " "; | 
| 644 | 
  | 
  | 
      ((TH1D*) _bin_hist_list->At(j))->Fill( (*vv)(j) ); | 
| 645 | 
  | 
  | 
    } | 
| 646 | 
  | 
  | 
    //    cout << endl; | 
| 647 | 
  | 
  | 
  } | 
| 648 | 
  | 
  | 
 | 
| 649 | 
  | 
  | 
  Double_t qq = 0.682689492137; | 
| 650 | 
  | 
  | 
  Double_t yq[2], xq[2]; | 
| 651 | 
  | 
  | 
  xq[0] = (1-qq)/2; xq[1] = xq[0] + qq; | 
| 652 | 
  | 
  | 
 | 
| 653 | 
  | 
  | 
 | 
| 654 | 
  | 
  | 
  for(Int_t j=0; j<_unfolded->GetNbinsX(); j++){ | 
| 655 | 
  | 
  | 
    TH1D* mt = ((TH1D*) _bin_hist_list->At(j)); | 
| 656 | 
  | 
  | 
    mt->GetQuantiles(2, yq, xq); | 
| 657 | 
  | 
  | 
 | 
| 658 | 
  | 
  | 
    double mean = 0.5*(yq[0] + yq[1]); | 
| 659 | 
  | 
  | 
    double err  = 0.5*(yq[1] - yq[0]); | 
| 660 | 
  | 
  | 
    if(mt->ComputeIntegral()){ | 
| 661 | 
  | 
  | 
      _unfolded->SetBinContent(j+1, mean); | 
| 662 | 
  | 
  | 
      _unfolded->SetBinError(j+1, err); | 
| 663 | 
  | 
  | 
    } | 
| 664 | 
  | 
  | 
    else{ | 
| 665 | 
  | 
  | 
      _unfolded->SetBinContent(j+1, 0); | 
| 666 | 
  | 
  | 
      _unfolded->SetBinError(j+1, 0); | 
| 667 | 
  | 
  | 
    } | 
| 668 | 
  | 
  | 
 | 
| 669 | 
  | 
  | 
  } | 
| 670 | 
  | 
  | 
 | 
| 671 | 
  | 
  | 
} | 
| 672 | 
  | 
  | 
 | 
| 673 | 
  | 
  | 
void PamUnfold::Draw(TString path){ | 
| 674 | 
  | 
  | 
 | 
| 675 | 
  | 
  | 
  Int_t nx, ny; | 
| 676 | 
  | 
  | 
  FindSplitting(_unfolded->GetNbinsX() , nx, ny); | 
| 677 | 
  | 
  | 
  canv = dynamic_cast<TCanvas*>(gDirectory->FindObject( Form("canv_%s", this->GetName()) )); | 
| 678 | 
  | 
  | 
  if(!canv) canv = new TCanvas(Form("canv_%s", this->GetName()), "Bin Distributions", 0, 0, 4 + 500*nx, 28 + 500*ny); | 
| 679 | 
  | 
  | 
  canv->Divide(nx, ny); | 
| 680 | 
  | 
  | 
 | 
| 681 | 
  | 
  | 
  for(Int_t ip=0; ip<_unfolded->GetNbinsX(); ip++){ | 
| 682 | 
  | 
  | 
    canv->cd(ip+1); | 
| 683 | 
  | 
  | 
 | 
| 684 | 
  | 
  | 
    TH1D* mt = ((TH1D*) _bin_hist_list->At(ip)); | 
| 685 | 
  | 
  | 
    mt->Draw(); | 
| 686 | 
  | 
  | 
 | 
| 687 | 
  | 
  | 
    Double_t mean = _unfolded->GetBinContent(ip+1); | 
| 688 | 
  | 
  | 
    Double_t err  = _unfolded->GetBinError(ip+1); | 
| 689 | 
  | 
  | 
 | 
| 690 | 
  | 
  | 
    TLine* line1 = new TLine(mean-err, 0, mean-err, mt->GetMaximum()); | 
| 691 | 
  | 
  | 
    TLine* line2 = new TLine(mean+err, 0, mean+err, mt->GetMaximum()); | 
| 692 | 
  | 
  | 
    TLine* line3 = new TLine(mean, 0, mean, mt->GetMaximum()); | 
| 693 | 
  | 
  | 
 | 
| 694 | 
  | 
  | 
    line1->SetLineWidth(2); | 
| 695 | 
  | 
  | 
    line1->SetLineColor(2); | 
| 696 | 
  | 
  | 
    line2->SetLineWidth(2); | 
| 697 | 
  | 
  | 
    line2->SetLineColor(2); | 
| 698 | 
  | 
  | 
    line3->SetLineWidth(2); | 
| 699 | 
  | 
  | 
    line3->SetLineColor(4); | 
| 700 | 
  | 
  | 
 | 
| 701 | 
  | 
  | 
    line1->Draw("same"); | 
| 702 | 
  | 
  | 
    line2->Draw("same"); | 
| 703 | 
  | 
  | 
    line3->Draw("same"); | 
| 704 | 
  | 
  | 
 | 
| 705 | 
  | 
  | 
  } | 
| 706 | 
  | 
  | 
 | 
| 707 | 
  | 
  | 
  if(path) canv->Print(path); | 
| 708 | 
  | 
  | 
 | 
| 709 | 
  | 
  | 
} | 
| 710 | 
  | 
  | 
 | 
| 711 | 
  | 
  | 
void PamUnfold::FindSplitting(Int_t n, Int_t &nx, Int_t &ny){ | 
| 712 | 
  | 
  | 
 | 
| 713 | 
  | 
  | 
  Int_t x = TMath::Nint( sqrt(n) ); | 
| 714 | 
  | 
  | 
  if(x*x == n){ nx=ny=x; return; } | 
| 715 | 
  | 
  | 
 | 
| 716 | 
  | 
  | 
  x = floor( sqrt(n) ) + 1; | 
| 717 | 
  | 
  | 
  for(Int_t y=0; y<=x; y++){ | 
| 718 | 
  | 
  | 
    if(y*x>=n){ ny = y; break;} | 
| 719 | 
  | 
  | 
  } | 
| 720 | 
  | 
  | 
  nx = x; | 
| 721 | 
  | 
  | 
 | 
| 722 | 
  | 
  | 
  if(ny>nx){ nx=ny; ny=x;} | 
| 723 | 
  | 
  | 
 | 
| 724 | 
  | 
  | 
} |