/[PAMELA software]/PamUnfold/src/PamUnfold.cpp
ViewVC logotype

Annotation of /PamUnfold/src/PamUnfold.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.1 - (hide annotations) (download)
Thu Aug 30 16:51:05 2018 UTC (6 years, 4 months ago) by mayorov
Branch: MAIN
CVS Tags: PU1r1, HEAD
PamUnfold was upload to CVS

1 mayorov 1.1 #include <iostream>
2     #include <fstream>
3     #include <stdio.h>
4     #include <math.h>
5     #include <TH1F.h>
6     #include <TH2F.h>
7     #include <TH1D.h>
8     #include <TH2D.h>
9     #include <TFile.h>
10     #include <TROOT.h>
11     #include <TList.h>
12     #include <TString.h>
13     //#include <TObjectString.h>
14     #include <TGraphAsymmErrors.h>
15     #include <TGraphErrors.h>
16     #include <TChain.h>
17     #include <TCutG.h>
18     #include <TF1.h>
19     #include <TCanvas.h>
20     #include <TObjString.h>
21     #include <TMath.h>
22    
23     #include <PamUnfold.h>
24    
25     using namespace std;
26    
27     ClassImp(PamUnfold);
28    
29    
30     PamUnfold::PamUnfold(TString name, TString title) : TNamed(name, title){
31    
32     cout << "WARNING:: entering PamUnfold::PamUnfold(TString name, TString title)" << endl;
33     cout << " empty constructor be sure to initialize measured and smearing" << endl;
34    
35     _measured = NULL;
36     _smearing = NULL;
37     _prior = NULL;
38    
39     }
40    
41     PamUnfold::~PamUnfold(){
42     }
43    
44     PamUnfold::PamUnfold(TString name, TString title, TH1D* measured, TH2D* smearing) : TNamed(name, title){
45    
46     _measured = measured;
47     _smearing = smearing;
48     _prior = NULL;
49    
50     if( !IsBinningOK() )
51     cerr << " -- ERROR in PamUnfold::PamUnfold(TString name, TString title, TH1D* measured, TH2D* smearing)" << endl;
52    
53     if( !IsSmNormalized() ){
54     cerr << " -- WARNING in PamUnfold::PamUnfold(TString name, TString title, TH1D* measured, TH2D* smearing)" << endl;
55     cerr << " ---- Remember to provide the normalization histogram for the smearing matrix" << endl;
56     }
57    
58     Init();
59    
60     _is_improved = kFALSE;
61     _smooth = kFALSE;
62     _smooth_opt = "ROOT";
63    
64     _nsamples = 500;
65     _max_steps = 50;
66     _min_chi2 = 1.;
67    
68     }
69    
70     void PamUnfold::AddExcludedBin(Int_t bin){
71     _excluded_bins.push_back(bin);
72     }
73    
74     TH1D* PamUnfold::GetMeasured(){
75     return _measured;
76     }
77    
78     TH2D* PamUnfold::GetSmearing(){
79     return _smearing;
80     }
81    
82     TH1D* PamUnfold::GetUnfolded(){
83     TH1D* __unfolded = (TH1D*) _unfolded->Clone( Form("%s_%s_unf", _measured->GetName(), this->GetName()) );
84     return __unfolded;
85     }
86    
87     TList* PamUnfold::GetBinHistList(){
88     return _bin_hist_list;
89     }
90    
91     void PamUnfold::SetMeasured(TH1D* measured){
92     _measured = measured;
93     }
94    
95     void PamUnfold::SetSmearing(TH2D* smearing){
96    
97     _smearing = smearing;
98    
99     if( !IsBinningOK() )
100     cerr << " -- ERROR in PamUnfold::SetSmearing(TH2D* smearing)" << endl;
101    
102     Init();
103    
104     }
105    
106     void PamUnfold::SetPrior(TH1D* prior){
107    
108     _prior = (TH1D*) prior->Clone( Form("_prior_%s", this->GetName()) );
109    
110     if( !IsBinningOK() )
111     cerr << " -- ERROR in PamUnfold::SetPrior(TH1D* prior)" << endl;
112    
113     }
114    
115     void PamUnfold::SetNormalization(TH1D* norm){
116     _norm = norm;
117    
118     //If the matrix is not normalized it is normalized now.
119     if( !IsSmNormalized() ){
120     cout << " Normalizing smearing matrix" << endl;
121    
122     try{ if(!_norm) throw 1; }
123     catch(int e){
124     if(e==1){
125     cerr << " -- ERROR in PamUnfold::Init()" << endl;
126     cerr << " ---- Normalization histogram is NULL" << endl;
127     cerr << " execution is likely to crash." << endl;
128     }
129     }
130    
131     NormalizeMatrix();
132    
133     }
134    
135     }
136    
137     void PamUnfold::SetImproved(Bool_t improv){
138     _is_improved = improv;
139     }
140    
141     void PamUnfold::SetSmoothing(Bool_t smooth, TString smooth_opt){
142    
143     _smooth = smooth;
144     _smooth_opt = smooth_opt;
145    
146     if(!_smooth_opt.CompareTo(""))
147     _smooth_opt = "ROOT";
148    
149     }
150    
151     void PamUnfold::SetNsamples(UInt_t nsamples){
152     _nsamples = nsamples;
153     }
154    
155     void PamUnfold::SetMaxSteps(UInt_t max_steps){
156     _max_steps = max_steps;
157     }
158    
159     void PamUnfold::SetMinChi2(Double_t min_chi2){
160     _min_chi2 = min_chi2;
161     }
162    
163    
164     Bool_t PamUnfold::IsSmNormalized(){
165    
166     Double_t sum = 0;
167     for(UInt_t i=0; i<_smearing->GetNbinsX(); i++){
168     sum = 0;
169     for(UInt_t j=0; j<_smearing->GetNbinsY(); j++)
170     sum += _smearing->GetBinContent(_smearing->GetBin(i+1,j+1));
171     if(sum>1.0000001){
172     cout << "Bin: " << i+1 << " sum=" << sum << endl;
173     return kFALSE;
174     }
175     }
176    
177     return kTRUE;
178    
179     }
180    
181     void PamUnfold::WMovAvSmooth(TH1D* input, vector<Int_t>&excl){
182    
183     Double_t* xarr = new Double_t [input->GetNbinsX()];
184    
185     for(UInt_t ib=0; ib<input->GetNbinsX(); ib++)
186     xarr[ib] = (Double_t) input->GetBinContent(ib+1);
187    
188     Bool_t excluding;
189     for(UInt_t ib=1; ib<input->GetNbinsX()-1; ib++){
190    
191     excluding = kFALSE;
192     for(UInt_t iex=0; iex<excl.size(); iex++)
193     if(
194     ib == excl[iex] ||
195     ib+1 == excl[iex] ||
196     ib+2 == excl[iex]
197     ) excluding = kTRUE;
198     if(excluding) continue;
199    
200     Double_t xc = xarr[ib];
201     Double_t xl = xarr[ib-1];
202     Double_t xh = xarr[ib+1];
203     Double_t x = 0.25*(xh+xl) + 0.5*xc;
204     input->SetBinContent(ib+1, (Float_t) x);
205     }
206    
207     delete xarr;
208    
209     return;
210    
211     }
212    
213     Double_t PamUnfold::GetChi2H( TH1D* h1, TH1D* h2 ){
214    
215     if(h1->GetNbinsX() != h2->GetNbinsX()){
216     cout << " -- Warning in PamUnfold::GetChi2H(TH1D*, TH1D*) : Histograms have different number of bins" << endl;
217     return -1;
218     }
219    
220     const Double_t* x_1 = h1->GetXaxis()->GetXbins()->GetArray();
221     const Double_t* x_2 = h2->GetXaxis()->GetXbins()->GetArray();
222    
223     for(Int_t ib=0; ib < h1->GetNbinsX()+1; ib++){
224     if(x_1[ib] != x_2[ib]){
225     cout << " -- Warning in PamUnfold::GetChi2H(TH1D*, TH1D*) : Histograms have different number of bins" << endl;
226     return -1;
227     }
228     else
229     continue;
230     }
231    
232    
233    
234     Double_t chi2 = 0;
235     for(UInt_t i=0; i<h1->GetNbinsX(); i++){
236     if(h1->GetBinContent(i+1) + h2->GetBinContent(i+2) > 1)
237     chi2 += pow(h1->GetBinContent(i+1) - h2->GetBinContent(i+1),2)/(h1->GetBinContent(i+1) + h2->GetBinContent(i+2));
238     else
239     chi2 += pow(h1->GetBinContent(i+1) - h2->GetBinContent(i+1),2);
240     }
241    
242     return chi2;
243     }
244    
245     void PamUnfold::Unfold(){
246    
247    
248     //Smoothing is applied to the spectrum, not to the counts histogram!!!
249     // ------------------------------------------------------
250     // Prior initialization
251     // ------------------------------------------------------
252    
253     for(Int_t i=0; i<_prior->GetNbinsX(); i++)
254     _prior->SetBinContent(i+1, _prior->GetBinContent(i+1)/_prior->GetBinWidth(i+1) );
255    
256     if(_smooth){
257     if(_smooth_opt.Contains("WMA")){
258     cout << " --- Using Weighted Moving Average smoothing\n";
259     WMovAvSmooth(_prior, _excluded_bins);
260     }
261     else if(_smooth_opt.Contains("ROOT")){
262     cout << " --- Using standard ROOT smoothing\n";
263     _prior->Smooth();
264     }
265     else
266     cout << " --- WARNING: No valid smoothing option specified" << endl;
267     }
268    
269     for(Int_t i=0; i<_prior->GetNbinsX(); i++)
270     _prior->SetBinContent(i+1, _prior->GetBinContent(i+1)*_prior->GetBinWidth(i+1) );
271    
272     _prior->Scale(1./_prior->GetSumOfWeights()); //The prior is a 'probability' so it has to be normalized at the very last step
273    
274     // ------------------------------------------------------
275     // Unfolding
276     // ------------------------------------------------------
277    
278     cout << " --- UNFOLDING!!" << endl;
279    
280     TH2D* theta = (TH2D*) _smearing->Clone("theta");
281     theta->Reset();
282    
283     for(Int_t i=0; i<theta->GetNbinsY(); i++){
284     for(Int_t j=0; j<theta->GetNbinsX(); j++){
285    
286     Double_t s = _smearing->GetBinContent(_smearing->GetBin(i+1,j+1))*_prior->GetBinContent(i+1);
287     Double_t ls = 0;
288     for(Int_t k=0; k<_smearing->GetNbinsX(); k++)
289     ls+=_smearing->GetBinContent(_smearing->GetBin(k+1,j+1))*_prior->GetBinContent(k+1);
290    
291     if(ls)
292     theta->SetBinContent(theta->GetBin(j+1,i+1),s/ls);
293     }
294     }
295    
296     _unfolded->Reset();
297    
298     for(Int_t i=0; i<_unfolded->GetNbinsX(); i++){
299     Double_t num = 0;
300     Double_t den = 0;
301     Double_t err = 0;
302     for(Int_t j=0; j<theta->GetNbinsX(); j++){
303    
304     num+=theta->GetBinContent( theta->GetBin(j+1,i+1) )*_measured->GetBinContent(j+1);
305     den+=_smearing->GetBinContent(_smearing->GetBin(i+1,j+1));
306     err+=pow( theta->GetBinContent(theta->GetBin(j+1,i+1))*_measured->GetBinError(j+1), 1 );
307     // err+=pow( theta->GetBinContent(theta->GetBin(j+1,i+1))*sp->GetBinError(j+1), 2 );
308    
309     }
310    
311     if(den){
312     _unfolded->SetBinContent(i+1, num/den);
313     _unfolded->SetBinError(i+1, fabs(err)/den);
314     // _unfolded->SetBinError(i+1,sqrt(err)/den);
315     }
316     }
317    
318     }
319    
320    
321     void PamUnfold::ImprovedUnfold(){
322    
323    
324     vector<Int_t> mu(_measured->GetNbinsX());
325    
326     //Smoothing is applied to the spectrum, not to the counts histogram!!!
327     // ------------------------------------------------------
328     // Prior initialization
329     // ------------------------------------------------------
330    
331     for(Int_t i=0; i<_prior->GetNbinsX(); i++)
332     _prior->SetBinContent(i+1, _prior->GetBinContent(i+1)/_prior->GetBinWidth(i+1) );
333    
334     if(_smooth){
335     if(_smooth_opt.Contains("WMA")){
336     cout << " --- Using Weighted Moving Average smoothing\n";
337     WMovAvSmooth(_prior, _excluded_bins);
338     }
339     else if(_smooth_opt.Contains("ROOT")){
340     cout << " --- Using standard ROOT smoothing\n";
341     _prior->Smooth();
342     }
343     else
344     cout << " --- WARNING: No valid smoothing option specified" << endl;
345     }
346    
347     for(Int_t i=0; i<_prior->GetNbinsX(); i++)
348     _prior->SetBinContent(i+1, _prior->GetBinContent(i+1)*_prior->GetBinWidth(i+1) );
349    
350     _prior->Scale(1./_prior->GetSumOfWeights()); //The prior is a 'probability' so it has to be normalized at the very last step
351    
352     // ------------------------------------------------------
353     // Unfolding
354     // ------------------------------------------------------
355    
356     cout << " --- UNFOLDING!!" << endl;
357    
358     _bin_list->Clear();
359    
360     TMVA::Timer* timer = new TMVA::Timer(_nsamples, "unf");
361     for(UInt_t sample=0; sample<_nsamples; sample++){
362    
363     cout << " ---- Sampling... " << timer->GetLeftTime(sample) << " left..." << endl << flush <<"\33[1A";
364    
365     SampleMatrix();
366    
367     TH2D* theta = (TH2D*) _smearing_sample->Clone("theta");
368     theta->Reset();
369    
370     for(Int_t i=0; i<theta->GetNbinsY(); i++){
371     for(Int_t j=0; j<theta->GetNbinsX(); j++){
372    
373     Double_t s = _smearing_sample->GetBinContent(_smearing_sample->GetBin(i+1,j+1))*_prior->GetBinContent(i+1);
374     Double_t ls = 0;
375     for(Int_t k=0; k<_smearing_sample->GetNbinsX(); k++)
376     ls+=_smearing_sample->GetBinContent(_smearing_sample->GetBin(k+1,j+1))*_prior->GetBinContent(k+1);
377    
378     if(ls)
379     theta->SetBinContent(theta->GetBin(j+1,i+1),s/ls);
380    
381     }
382     }
383    
384     TVectorD* result = new TVectorD(_unfolded->GetNbinsX());
385    
386     //Sampling mu_j and rounding to nearest integer
387     for(Int_t j=0; j<_measured->GetNbinsX(); j++){
388     mu[j] = TMath::Nint( rangen->Gamma( 1 + _measured->GetBinContent(j+1), 1 ) );
389    
390     vector<Double_t> theta_vec_j(_unfolded->GetNbinsX());
391     for(Int_t i=0; i<_unfolded->GetNbinsX(); i++){
392     theta_vec_j[i] = theta->GetBinContent( theta->GetBin(j+1,i+1) );
393     // cout << theta_vec_j[i] << " ";
394     }
395     // cout << endl;
396    
397     vector<Int_t> res_partial = rangen->Multinomial(mu[j], theta_vec_j);
398     for(Int_t i=0; i<_unfolded->GetNbinsX(); i++){
399     // cout << res_partial[i] << " ";
400     (*result)[i] += res_partial[i];
401     }
402     // cout << endl;
403     // cout << _measured->GetBinContent(j+1) << " " << mu[j] << " " << res_partial[17] << " " << (*result)[17] << endl;
404    
405     }
406    
407    
408     for(Int_t i=0; i<_unfolded->GetNbinsX(); i++){
409     Double_t den = 0;
410     for(Int_t j=0; j<_measured->GetNbinsX(); j++)
411     den+=_smearing_sample->GetBinContent(_smearing_sample->GetBin(i+1,j+1));
412    
413     (*result)[i] /= den;
414     }
415    
416     _bin_list->Add(result);
417    
418     }
419    
420     BuildFlux();
421    
422     }
423    
424    
425     Bool_t PamUnfold::IsBinningOK(){
426    
427     Int_t n_meas = _measured->GetNbinsX();
428     Int_t n_smy = _smearing->GetNbinsY();
429    
430    
431     if(n_meas != n_smy){
432     cerr << " --- Different binning between measured and smearing" << endl;
433     cerr << " ---- measured: " << n_meas << " bins; smearing:" << n_smy << " bins on Y-axis" << endl;
434     return kFALSE;
435     }
436    
437     const Double_t* x_meas = _measured->GetXaxis()->GetXbins()->GetArray();
438     const Double_t* y_sm = _smearing->GetYaxis()->GetXbins()->GetArray();
439    
440     for(Int_t ib=0; ib < n_meas+1; ib++){
441     if( fabs(x_meas[ib] - y_sm[ib])/x_meas[ib] > 1e-4 ){
442     cerr << " --- Different binning between measured and smearing" << endl;
443     cerr << " ---- x_meas[" << ib << "] = " << x_meas[ib] << ";"
444     <<" y_sm[" << ib << "] = " << y_sm[ib] << ";" << endl;
445     return kFALSE;
446     }
447     else
448     continue;
449     }
450    
451    
452    
453     if(_prior){
454    
455     Int_t n_prior = _prior->GetNbinsX();
456     Int_t n_smx = _smearing->GetNbinsX();
457    
458     if(n_prior != n_smx){
459     cerr << " --- Different binning between prior and smearing" << endl;
460     return kFALSE;
461     }
462    
463     const Double_t* x_prior = _prior->GetXaxis()->GetXbins()->GetArray();
464     const Double_t* x_sm = _smearing->GetXaxis()->GetXbins()->GetArray();
465    
466     for(Int_t ib=0; ib < n_prior+1; ib++){
467     if( fabs(x_prior[ib] - x_sm[ib])/x_sm[ib] > 1e-4 ){
468     cerr << " --- Different binning between prior and smearing" << endl;
469     return kFALSE;
470     }
471     else
472     continue;
473     }
474     }
475    
476    
477     return kTRUE;
478    
479     }
480    
481     void PamUnfold::IterativeUnfolding(UInt_t niter, TList* list){
482    
483     cout << " -- PamUnfold object " << this->GetName() << endl
484     << " Starting unfolding";
485    
486     if(!niter)
487     cout << " with chi2 convergence check";
488     else
489     cout << " with " << niter << " iterations";
490    
491     if(_is_improved)
492     cout << " and improved algorithm (may take a while...)";
493     else
494     cout << " and standard algorithm";
495    
496     cout << endl;
497    
498     if(list)
499     cout << " Saving iterations to TList object at " << list << endl;
500    
501    
502     UInt_t iiter = 0;
503     Double_t chi2 = 1e6;
504     Bool_t kFlag = kTRUE;
505    
506     while( kFlag ){
507    
508     if(iiter > 0)
509     SetPrior(_old_unfolded);
510    
511     if(_is_improved)
512     ImprovedUnfold();
513     else
514     Unfold();
515    
516     if(iiter > 0){
517     chi2 = GetChi2H( _unfolded, _old_unfolded );
518     cout << " Chi2 of change from iteration " << iiter-1 << " to " << iiter << " = " << chi2 << endl;
519     }
520    
521     if(!niter)
522     kFlag = chi2 < _min_chi2 ? kFALSE : kTRUE;
523     else
524     kFlag = iiter == niter ? kFALSE : kTRUE;
525    
526     if(iiter >= _max_steps){
527     kFlag = kFALSE;
528     cerr << "WARNING: Unfolding procedure did not converge in less than " << _max_steps << " steps\n";
529     }
530    
531     _old_unfolded = GetUnfolded();
532    
533     _old_unfolded->SetName( Form("%s_%03i", _old_unfolded->GetName(), iiter) );
534     if(list){
535     list->Add( _old_unfolded );
536     }
537     iiter++;
538    
539     }
540    
541     cout << " Unfolding converged" << endl;
542    
543     }
544    
545     void PamUnfold::Init(){
546    
547     cout << " -- PamUnfold object " << this->GetName() << endl
548     << " Initializing unfolded histogram" << endl;
549    
550     _unfolded = new TH1D( Form("%s_%s_u", _measured->GetName(), this->GetName()), "", _smearing->GetNbinsX(), _smearing->GetXaxis()->GetXbins()->GetArray());
551     _unfolded->Reset();
552    
553     _prior = (TH1D*) _unfolded->Clone( Form("_prior_%s",this->GetName()) );
554     _prior->Reset();
555    
556     cout << " Initializing flat Prior" << endl;
557     //Initializing flat prior
558     for(UInt_t ibin=0; ibin<_prior->GetNbinsX(); ibin++){
559     _prior->SetBinContent(ibin+1, _prior->GetBinWidth(ibin+1)/(_prior->GetBinLowEdge(_prior->GetNbinsX()+1)-_prior->GetBinLowEdge(1)) );
560     }
561    
562     cout << " Initializing Random number generator" << endl;
563     rangen = new RanGen();
564    
565     _bin_list = new TList();
566     _bin_hist_list = new TList();
567     _smearing_sample = (TH2D*) _smearing->Clone( Form("%s_sample", _smearing->GetName()) );
568    
569     cout << " Initialization done" << endl;
570    
571     }
572    
573    
574     void PamUnfold::NormalizeMatrix(){
575    
576     for(UInt_t ibiny=0; ibiny<_smearing->GetNbinsY(); ibiny++){
577     for(UInt_t ibinx=0; ibinx<_smearing->GetNbinsX(); ibinx++){
578     Int_t globalbin = _smearing->GetBin(ibinx+1, ibiny+1);
579     if(_norm->GetBinContent(ibinx+1))
580     _smearing->SetBinContent( globalbin, _smearing->GetBinContent(globalbin)/_norm->GetBinContent(ibinx+1) );
581     }
582     }
583    
584     }
585    
586     void PamUnfold::SampleMatrix(){
587    
588     _smearing_sample->Reset();
589    
590     vector<Int_t> alpha(_smearing->GetNbinsY()+1);
591     vector<Double_t> sampled;
592    
593     for(UInt_t ibinx=0; ibinx<_smearing->GetNbinsX(); ibinx++){
594    
595     // cout << _norm->GetBinContent(ibinx+1) << endl;
596     Double_t snorm=0;
597     for(UInt_t ibiny=0; ibiny<_smearing->GetNbinsY(); ibiny++){
598     Int_t globalbin = _smearing->GetBin(ibinx+1, ibiny+1);
599     snorm += _smearing->GetBinContent(globalbin);
600     alpha[ibiny] = TMath::Nint( _smearing->GetBinContent(globalbin) * _norm->GetBinContent(ibinx+1) );
601     }
602     alpha[_smearing->GetNbinsY()] = TMath::Nint( (1 - snorm) * _norm->GetBinContent(ibinx+1) );
603     //cout << "bin: " << ibinx << " " << alpha[_smearing->GetNbinsY()] << endl;
604    
605     sampled = rangen->Dirichlet(_smearing->GetNbinsY() + 1, alpha);
606    
607     for(UInt_t ibiny=0; ibiny<_smearing_sample->GetNbinsY(); ibiny++){
608     Int_t globalbin = _smearing_sample->GetBin(ibinx+1, ibiny+1);
609     // cout << sampled[ibiny] << " ";
610     _smearing_sample->SetBinContent(globalbin, sampled[ibiny]);
611     }
612     // cout << endl;
613     }
614     // cout << endl;
615    
616     }
617    
618    
619     void PamUnfold::BuildFlux(){
620    
621     _unfolded->Reset();
622     _bin_hist_list->Delete();
623    
624     for(Int_t j=0; j<_unfolded->GetNbinsX(); j++){
625     Double_t min=1e9;
626     Double_t max=0;
627     Double_t check=0;
628    
629     for(Int_t i=0; i<_bin_list->GetEntries(); i++){
630     TVectorD* vv = (TVectorD*) _bin_list->At(i);
631     check = (*vv)(j);
632     if(check<min) min=check;
633     if(check>max) max=check;
634     }
635    
636     _bin_hist_list->Add( new TH1D( Form("hh_%03i", j), ";Events", 150, min-20, max+20 ) );
637     }
638    
639     for(Int_t i=0; i<_bin_list->GetEntries(); i++){
640     TVectorD* vv = (TVectorD*) _bin_list->At(i);
641     //cout << "Bin " << i << " ";
642     for(Int_t j=0; j<vv->GetNoElements(); j++){
643     //cout << (*vv)(j) << " ";
644     ((TH1D*) _bin_hist_list->At(j))->Fill( (*vv)(j) );
645     }
646     // cout << endl;
647     }
648    
649     Double_t qq = 0.682689492137;
650     Double_t yq[2], xq[2];
651     xq[0] = (1-qq)/2; xq[1] = xq[0] + qq;
652    
653    
654     for(Int_t j=0; j<_unfolded->GetNbinsX(); j++){
655     TH1D* mt = ((TH1D*) _bin_hist_list->At(j));
656     mt->GetQuantiles(2, yq, xq);
657    
658     double mean = 0.5*(yq[0] + yq[1]);
659     double err = 0.5*(yq[1] - yq[0]);
660     if(mt->ComputeIntegral()){
661     _unfolded->SetBinContent(j+1, mean);
662     _unfolded->SetBinError(j+1, err);
663     }
664     else{
665     _unfolded->SetBinContent(j+1, 0);
666     _unfolded->SetBinError(j+1, 0);
667     }
668    
669     }
670    
671     }
672    
673     void PamUnfold::Draw(TString path){
674    
675     Int_t nx, ny;
676     FindSplitting(_unfolded->GetNbinsX() , nx, ny);
677     canv = dynamic_cast<TCanvas*>(gDirectory->FindObject( Form("canv_%s", this->GetName()) ));
678     if(!canv) canv = new TCanvas(Form("canv_%s", this->GetName()), "Bin Distributions", 0, 0, 4 + 500*nx, 28 + 500*ny);
679     canv->Divide(nx, ny);
680    
681     for(Int_t ip=0; ip<_unfolded->GetNbinsX(); ip++){
682     canv->cd(ip+1);
683    
684     TH1D* mt = ((TH1D*) _bin_hist_list->At(ip));
685     mt->Draw();
686    
687     Double_t mean = _unfolded->GetBinContent(ip+1);
688     Double_t err = _unfolded->GetBinError(ip+1);
689    
690     TLine* line1 = new TLine(mean-err, 0, mean-err, mt->GetMaximum());
691     TLine* line2 = new TLine(mean+err, 0, mean+err, mt->GetMaximum());
692     TLine* line3 = new TLine(mean, 0, mean, mt->GetMaximum());
693    
694     line1->SetLineWidth(2);
695     line1->SetLineColor(2);
696     line2->SetLineWidth(2);
697     line2->SetLineColor(2);
698     line3->SetLineWidth(2);
699     line3->SetLineColor(4);
700    
701     line1->Draw("same");
702     line2->Draw("same");
703     line3->Draw("same");
704    
705     }
706    
707     if(path) canv->Print(path);
708    
709     }
710    
711     void PamUnfold::FindSplitting(Int_t n, Int_t &nx, Int_t &ny){
712    
713     Int_t x = TMath::Nint( sqrt(n) );
714     if(x*x == n){ nx=ny=x; return; }
715    
716     x = floor( sqrt(n) ) + 1;
717     for(Int_t y=0; y<=x; y++){
718     if(y*x>=n){ ny = y; break;}
719     }
720     nx = x;
721    
722     if(ny>nx){ nx=ny; ny=x;}
723    
724     }

  ViewVC Help
Powered by ViewVC 1.1.23