/[PAMELA software]/PamCut/Fortran/efficiency.f
ViewVC logotype

Annotation of /PamCut/Fortran/efficiency.f

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.1 - (hide annotations) (download)
Thu Sep 24 18:18:36 2009 UTC (15 years, 3 months ago) by pam-fi
Branch: MAIN
CVS Tags: Root_V8, MergedToHEAD_1, nuclei_reproc, MergedFromV8_1, BeforeMergingFromV8_1, V9, HEAD
Branch point for: V8
Added to repository.

1 pam-fi 1.1 * ATTENTION: in this version err_bar_inf and err_bar_sup are double precision; also all other real variables are double precision.
2     * IMPORTANT: care has been taken that factors in expressions (before assignment to a double precision variable) are evaluated in double precision format.
3     * NOTE: in general, double precision variables must be used for all cases where the result of an exponential or factorial is assigned.
4    
5     LOGICAL FUNCTION efficiency(ntot,nhit,eff,err_bar_inf,err_bar_sup) ! err_bar_inf and err_bar_sup are defined .ge.0
6    
7     IMPLICIT DOUBLE PRECISION(A-H), DOUBLE PRECISION(O-Z)
8    
9     * NOTE: confmin,conmax and conres are ignored when the Gaussian approximation is used (simple formula with nhit and ntot only).
10    
11     DOUBLE PRECISION k_e_val
12    
13     LOGICAL choice, end_r
14    
15     DOUBLE PRECISION fact_r ! real to avoid integer (incorrect) result
16     DOUBLE PRECISION p_r, s_r, r_1, r_2, f_1, f_2, e_val
17     DOUBLE PRECISION eval_min, eval_max, eff, e_res
18    
19     INTEGER k_r_meas
20    
21     DOUBLE PRECISION e(1:2)
22    
23     DOUBLE PRECISION err_bar_inf, err_bar_sup
24    
25     * VERY IMPORTANT NOTE: at present the Gaussian approximation is used also when not justified, near eff=0; in particular, with this solution, for eff=0 the error bar is by construction 0.
26     * NOTE !! the algorithm can be improved introducing the real error bar values (when necessary, i.e. near eff=0) also for eff < 50% (at present the Gaussian approximation is automatically used for this condition, see below)
27    
28     if (ntot.lt.8.OR.nhit.lt.0) then
29     * do not perform any efficiency calculation if ntot < 8 (this, together with condition nhit.le.ntot-4, assures that when efficiency is < 50% the Gaussian approximation is always used) OR nhit < 0 (non-physical values)
30    
31     eff=1.1d+0;
32     err_bar_inf=0.d+0;
33     err_bar_sup=0.d+0;
34    
35     efficiency=.false.
36    
37     else ! perform efficiency calculation
38    
39     eff=dfloat(nhit)/dfloat(ntot) ! double precision
40    
41     c print*, nhit, ntot, eff
42    
43     k_r_meas=nhit
44    
45     if (nhit.le.ntot-4) then ! the Gaussian approximation is possible
46     * NOTE: ntot-4 is the highest number which is less than ntot/ntot*(ntot+4), for ntot.ge.12 (assumed here). This condition assures that the Gaussian approximation does not violate the physical meaning of confidence intervals, but does not guarantee that the Gaussian appproximation well reproduces the binominal confidence intervals.
47    
48     err_bar_sup=sqrt(eff*(1.-eff)/dfloat(ntot))
49    
50     err_bar_inf=err_bar_sup
51    
52     efficiency=.true.
53    
54     else ! the binomial confidence intervals must be calculated
55    
56     * The needed resolution in the determination of the lower and upper limits of the confidence interval is automatically and safely determined depending on the expected size of the lower confidence error bar. For ntot=10^3 AND nhit=ntot-3 or greater, the lower bar is between 1.2 and 2.3 * 10^-3, meaning that a reasonable resolution is 1*10^-4. Since the size scales as the inverse of ntot, it can be concluded that the needed resolution is given by: 0.1 / ntot
57    
58     e_res=0.1/dfloat(ntot)
59    
60     * The upper and lower limit of the range which is checked to estimate the error bars are automatically and safely determined.
61    
62     * For the lower limit of the checked range, a reasonable estimate is given by: measured efficiency - highest possible value of the lower error bar - 3 times the resolution (0.1 / ntot).
63     * Since the size of the lower error bar scales as the inverse of ntot, it can be concluded that the highest possible value of the lower error bar is given by: 2.3 / ntot
64     * Finally, the lower limit of the range is given by: measured efficiency - (2.3+3*0.1)/ntot = measured efficiency - 2.6/ntot
65    
66     eval_min=eff-2.6/dfloat(ntot)
67    
68     * For the upper limit of the checked range, it can be shown that the size of the lower part of the range, as chosen above, is of the same order of 1 - measured efficiency (precisely, it ~86% or greater). Then for the upper limit of the range, 1 can be chosen without problems.
69    
70     eval_max=1.
71    
72     * NOTE: in general it is better to use k_r integer values and not r real (and hence approximate values) if possible.
73    
74     * for each eff. value e_ival, determine if the eff. estimate (r measured) lays inside the acceptance interval for r
75     * NOTE: it is convenient to start scanning the e_val range from 1-e_res toward 0.
76     * First the e_max for confidence interval will be determined , then the e_min.
77    
78     * Initialization
79    
80     i_end_ph=0 ! index of ended phase
81    
82     * Two phases
83     * 1) search for e_max starting from eval_max (typically few steps)
84     * 2) search for e_min starting from eval_min (typically many steps!!)
85    
86     istep=0 ! initialization of e_val step index for the starting phase
87    
88     do 100 while (i_end_ph .lt. 2) ! loop on e_val (two phases): exit when phase 2 (e_min search) is completed
89    
90     c print*, istep
91    
92     istep=istep+1
93    
94     * Initialization: new e_val step
95     if (i_end_ph .eq. 0) then ! phase 1
96     e_val=eval_max-(istep-1)*e_res ! starts from veval_max(1) (or 1)
97     c print*, istep, e_val
98    
99     else ! phase 2
100     * NOTE: to avoid problems in very high (or low) number management, it is a good idea to start the scan from as near as possible to k_r_meas and with a not too high resolution (to limit the number of steps).
101     * In doing this it is assumed that the confidence interval is continuous, as follows from properties of binomial distribution (to be demonstrated!!!).
102     * NOTE (VERY IMPORTANT!!): the minimum (starting point) eval_min for phase 2 scan must be chosen in such a way that the lower limit results greater than this value (otherwise it means that the true confidence interval extends also below this limit!!!)
103     * NOTE (IMPORTANT): also it is very useful in the praphs to choose the lower limit of the vertical axis to be equal to the minimum (starting point) eval_min for phase 2, and the upper limit to be greater than 1.
104     e_val=eval_min+(istep-1)*e_res
105     c print*, istep, e_val
106     endif
107    
108     if (i_end_ph .eq. 0) then
109     if (e_val .eq. 1) then
110     if (k_r_meas .eq. ntot) then
111     * If this condition is true, then e_max is automatically determined (end first phase). Otherwise e_val=1 simply does not belong to confidence interval.
112     i_end_ph=1
113     e(i_end_ph)=abs(e_val-eff)
114     endif
115     goto 150
116     endif
117     if (e_val .eq. 0) then ! last e_val possible for e_max
118     i_end_ph=1
119     e(i_end_ph)=abs(e_val-eff)
120     goto 150
121     endif
122     endif
123    
124     if (i_end_ph .eq. 1) then
125     if (e_val .eq. 0) then
126     if (k_r_meas .eq. 0) then
127     * If this condition is true, then e_min is automatically determined (end second phase). Otherwise e_val=0 simply does not belong to confidence interval.
128     i_end_ph=2
129     e(i_end_ph)=abs(e_val-eff)
130     endif
131     goto 150
132     endif
133     if (e_val .eq. 1) then ! last e_val possible for e_min
134     i_end_ph=2
135     e(i_end_ph)=abs(e_val-eff)
136     goto 150
137     endif
138     endif
139    
140     * NOTE: k_e_val is not integer in general!!!
141    
142     k_e_val=e_val*ntot ! real
143    
144     * construction of acceptance interval (with Feldman-Cousins ordering method). In particular one must find the r value r_max that maximizes f(r,e_val)=b(r,e_val)/b(r,r).
145    
146     * NOTE: k_r is an integer index for possible discrete r values: k_r=r*ntot
147     * NOTE: f(r,e_val)=e_val**(k_r)*(1-e_val)**(ntot-k_r)/(r**(k_r)*r**(ntot-k_r))
148    
149     * **** determination of r_m, the new discrete value to be added to the acceptance interval
150     * for m=1 one takes the two discrete r values r_1_1 and r_1_2 such that r_1_1<e_val<r_1_2 and evaluates f(r,e_val) to find the maximum (r_1)
151     * for m>1, the two values are simply r_m_1 and r_m_2, such that r_m_1<r_(m-1)<r_m_2
152    
153     * initializations for each fixed e_val
154    
155     m=1
156     s_r=0.
157     end_r=.false.
158     do 200 while (end_r .eqv. .false.) ! loop on k_r values to construct acceptance interval
159    
160     choice=.false.
161    
162     if (m .eq. 1) then
163    
164     * From the binomial distribution properties, it follows that r_max is one of the two discrete values of r which lay on the two sides of e_val. r_max then becomes r_1.
165     * NOTE: by construction if the following code is executed, 0<e_val<1, so that the two r values are always such that 0 =< r =< 1
166    
167     * NOTE: the difference between the two k_r value is 1
168    
169     k_r_1=int(k_e_val)
170     k_r_2=k_r_1+1
171     choice=.true.
172    
173     else
174    
175     * NOTE: the difference between the two k_r value is at least 2
176     * NOTE: for what follows it cannot be possible to be here and have both k_r_min=0 and k_r_max=1 (loop is exited after s_r=1 check).
177     if (k_r_min .eq. 0) then
178     k_r=k_r_max+1
179     k_r_max=k_r_max+1
180     elseif (k_r_max .eq. ntot) then
181     k_r=k_r_min-1
182     k_r_min=k_r_min-1
183     else ! two allowed values
184     k_r_1=k_r_min-1
185     k_r_2=k_r_max+1
186     choice=.true.
187     endif
188     endif
189    
190     * ** Choice among the two (if allowed) r values.
191    
192     if (choice .eqv. .true.) then
193    
194     * useful definitions
195    
196     r_1=k_r_1 ! cast into double precision
197     r_1=r_1/ntot ! left side; pay attention to the division by integer
198    
199     r_2=k_r_2 ! cast into double precision
200     r_2=r_2/ntot ! right side; pay attention to the division by integer
201    
202     * Calculation of the ratio of probabilities for the two possible (and allowed) r values.
203     * NOTE: in case r_1=0 or r_2=1, then b(r_0,r_0) or b(r_1,r_1) is undefined but the limit is 1 (binomial distribution is degenerated into a step function).
204    
205     if (k_r_1 .eq. 0) then
206     f_1=e_val**k_r_1*(1-e_val)**(ntot-k_r_1) ! limit
207     else ! usual definition
208     f_1=e_val**k_r_1*(1-e_val)**(ntot-k_r_1)/
209     $ (r_1**k_r_1*(1-r_1)**(ntot-k_r_1))
210     endif
211    
212     if (k_r_2 .eq. ntot) then
213     f_2=e_val**k_r_2*(1-e_val)**(ntot-k_r_2)
214     else
215     f_2=e_val**k_r_2*(1-e_val)**(ntot-k_r_2)/
216     $ (r_2**k_r_2*(1-r_2)**(ntot-k_r_2))
217     endif
218    
219     c print*, f_1, f_2
220    
221     if (f_1 .gt. f_2) then
222     k_r=k_r_1
223     k_r_min=k_r_1 ! and k_r_max unchanged
224     elseif (f_1 .lt. f_2) then
225     k_r=k_r_2
226     k_r_max=k_r_2 ! and k_r_min unchanged
227     * NOTE: f_1=f_2 case can happen also because of rounding to 6-th significant digit.
228     else ! when equal , the k_r value nearer to k_meas is chosen
229     if (k_e_val .lt. k_r_meas) then
230     k_r=k_r_2
231     k_r_max=k_r_2 ! and k_r_min unchanged
232     else
233     k_r=k_r_1
234     k_r_min=k_r_1 ! and k_r_max unchanged
235     endif
236     endif
237    
238     if (m .eq. 1) then ! necessary to initialize the remaining acceptance interval limit
239     if (f_1 .gt. f_2) then
240     k_r_max=k_r_min
241     elseif (f_1 .lt. f_2) then
242     k_r_min=k_r_max
243     else
244     if (k_e_val .lt. k_r_meas) then
245     k_r_min=k_r_max
246     else
247     k_r_max=k_r_min
248     endif
249     endif
250     endif
251    
252     endif
253    
254     * Check if r_meas belongs to the acceptance interval, i.e. if the new value r_m is equal to r_meas
255    
256     if (k_r_meas .eq. k_r) then
257     end_r=.true.
258     i_end_ph=i_end_ph+1
259     if (i_end_ph.eq.1) then ! first phase: search for e_max
260     if (e_val.lt.eff) then ! possibly caused by finite resolution in e_val scan
261     e(i_end_ph)=0
262     else
263     e(i_end_ph)=abs(e_val-eff)
264     endif
265     else ! second phase: search for e_min
266     if (e_val.gt.eff) then ! possibly caused by finite resolution in e_val scan
267     e(i_end_ph)=0
268     else
269     e(i_end_ph)=abs(e_val-eff)
270     endif
271     endif
272     istep=0 ! initializes step counter from next phase
273     * Acceptance interval not completed but r_meas belongs to it, hence e_i=e_val.
274     else ! otherwise compare the sum of probabilities against 1-alfa=0.683
275    
276     * Calculate probability p(r_m,e_val) for the new value r_m.
277    
278     * Calculate binomial coefficient: ntot*...*(ntot - k_r + 1)/k_r!
279     * NOTE: if k_r=0, then numerator is 1; if k_r=0, then denominator is 1.
280     * Numerator: ntot*...*(ntot - k_r + 1): k_r terms
281     * Denominator: k_r!: k_r terms
282    
283     * Probability: p(r_m,e_val)=(n_r/d_r)*(e_val**k_r)*(1-e_val)**(ntot-k_r)
284    
285     fact_r=1D0 ! initialization (and final value for k_r=0)
286     c print*, fact_r
287     fact_r=fact_r*e_val**k_r*(1-e_val)**(ntot-k_r)
288     c print*, fact_r
289     if (k_r .gt. 0) then
290     do i_r=k_r,1,-1
291     c if(i_r.le.ntot-k_r)then
292     c fact_r=(fact_r*e_val*(1-e_val)*(ntot-i_r+1))/(k_r-i_r+1)
293     c else
294     fact_r=(fact_r*(ntot-i_r+1))/(k_r-i_r+1) ! pay attention to the division by integer!!
295     c if (i_end_ph.eq.1) then
296     c print*, e_val, k_r, i_r, fact_r, p_r, s_r
297     c endif
298     c endif
299     enddo
300     endif
301    
302     c p_r=fact_r*e_val**k_r*(1-e_val)**(ntot-k_r)
303     p_r=fact_r
304    
305     * Add the probability to the previous overall sum.
306    
307     s_r=s_r+p_r
308    
309     c if (i_end_ph.eq.0) then
310     c print*, i_end_ph, k_r_meas, e_val, k_r, fact_r, p_r
311     c endif
312    
313     * Compare the new sum with 1-alfa
314    
315     if (s_r .ge. 0.683) then
316     end_r=.true.
317     * End scan on r variable but continue scan on e_val variable (acceptance interval defined but does contain r_meas)
318     endif
319     * Otherwise continue scan on r variable to complete the acceptance interval.
320    
321     endif
322    
323     m=m+1
324    
325     200 continue
326    
327     150 continue
328    
329     100 continue
330    
331     c if (plane_ind.eq.1) then
332     c write(*,*) 'strip 7', vnhit_strip_sel(1,7),vngood_strip_sel(1,7)
333     c write(*,*) eff(7), 'end'
334     c endif
335    
336     err_bar_sup=e(1)
337     err_bar_inf=e(2)
338    
339     efficiency=.true.
340    
341     endif
342    
343     endif
344    
345     c print*, e(1), e(2)
346    
347     end

  ViewVC Help
Powered by ViewVC 1.1.23